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MELL proof-nets in the category of graphs

Giulio Guerrieri* Giulia Manara’ Luc Pellissier*
Lorenzo Tortora de Falco® Lionel Vaux Auclair’
Abstract

We present a formalization of proof-nets (and more generally, proof-
structures) for the multiplicative-exponential fragment of linear logic, with
a novel treatment of boxes: instead of integrating boxes into to the graphical
structure (e.g., by adding explicit auxiliary doors, plus a mapping from boxed
nodes to the main door, and ad hoc conditions on the nesting of boxes), we
fix a graph morphism from the underlying graph of the proof-structure to the
tree of boxes given by the nesting order. This approach allows to apply tools
and notions from the theory of algebraic graph transformations, and obtain
very synthetic presentations of sophisticated operations: for instance, each
element of the Taylor expansion of a proof-structure is obtained by a pull-
back along a morphism representing a thick subtree of the tree of boxes. A
treatment of cut elimination in this framework currently under development.

Linear Logic (LL) [[13] has been introduced by Girard as a refinement of in-
tuitionistic and classical logic that isolates the infinitary parts of reasoning under
two modalities: the exponentials ! and ?. These modalities give a logical status
to operations of resource/hypothesis management such as copying/contraction or
erasing/weakening: a proof without exponentials corresponds to a program/proof
that uses its arguments/hypotheses linearly, i.e. exactly once, while an exponential
proof corresponds to a program/proof that can use its arguments/hypotheses at will.

Among other contributions, this refinement provided by LL brought about a
reflection on the following central questions in proof-theory: What is a proof?
How can we represent a proof? Here we aim to contribute to the way proofs can
be represented in LL, pushing forward with Girard’s graphical spirit [13]].

Proof-nets and proof-structures. One of the features of LL is that it allows us to
represent its proofs as proof-nets, a graphical syntax alternative to sequent calculus.
Sequent calculus is a standard formalism for several logical systems. However, se-
quent calculus forces an order among inference rules even when they are evidently
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independent, a drawback called bureaucracy. Proof-nets, instead, are a geomet-
rical, parallel and bureaucracy-free representation of proofs as labeled directed
graphs. In proof-nets deductive rules are disposed on the plane, in parallel, and
connected only by their causal relation. Clearly, not all graphs that can be written
in the language of LL are proof-nets, i.e. represent a proof in LL sequent calcu-
lus. Proof-nets are special inhabitants of the wider land of proof-structures: they
can be characterized, among proof-structures, by abstract (geometric) conditions
called correctness criteria [[13]. The procedure of cut-elimination can be applied
directly to proof-structures, and proof-nets can also be seen as the proof-structures
with a good behavior with respect to cut-elimination [2]. Cut-elimination defined
on proof-structures is more elegant than in sequent calculus because it drastically
reduces the need for commutative steps, the non-interesting and bureaucratic bur-
den in a cut-elimination procedure for sequent calculus. Indeed, in proof-structures
there is no last rule, and so most commutative cut-elimination cases just disappear.

Boxes. Regrettably, the one above is a faithful picture of the advantages of proof-
structures only in the multiplicative fragment of LL (MLL) [5]], which does not
have the exponentials and so it is not sufficiently expressive to encode classical
or intuitionistic logic (or the A-calculus). To handle the exponentials, Girard was
forced to introduce boxes. They come with the black-box principle: “boxes are
treated in a perfectly modular way: we can use the box B without knowing its
content, i.e., another box B’ with exactly the same doors would do as well” [13]].
According to this principle, boxes forbid interaction between their content and
their outer environment. This is evident in the definition of correctness criteria
for MELL (the multiplicative-exponential fragment of LL) and in the definition of
cut-elimination steps for MELL. Let us consider cut-elimination. Cut-elimination
steps for the !-modality in MELL require us to duplicate or erase whole sub-proofs.
Proofs in sequent calculus are tree-shaped and bear a clear notion of last rule, the
root of the tree. As a consequence, given a !-rule r in a sequent calculus proof, there
is an evident sub-proof ending with r, the sub-tree rooted in r, which is the content
of the box associated with r. So, non-linear cut-elimination steps can easily be de-
fined by duplicating or erasing such sub-trees. In proof-structures, instead, the sit-
uation radically changes, because a proof-structure in general has many last rules,
one for each formula in the conclusions. Given a rule r it is not clear how to find
a sub-proof-structure ending with r. Thus, in order to define cut-elimination steps
for the !-modality in MELL proof-structures—which requires to identify some sub-
proof-structure—some information has to been added to graphs.

Bureaucracy comes back! The typical solution betrays Girard’s spirit and re-
introduces part of the bureaucracy in MELL proof-structures, pairing each !-rule
with an explicit box containing the sub-proof that can be duplicated or erased dur-
ing cut-elimination. In some fragments of MELL (for instance the intuitionistic one
corresponding to the A-calculus [22] or more generally the polarized one [17, [1])
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where proof-structures still have an implicit tree-like structure (since among the
conclusions there is always exactly one distinct output, the analogue of sequent
calculus last rule), an explicit box is actually not needed, and boxes can be recov-
ered by a correctness criterion. But here we are interested in the full (classical)
MELL fragment, where linear negation is involutive and classical duality can be
interpreted as the possibility of juggling between different conclusions. And we
want to disentangle the identification of boxes from correctness. Concretely, in the
literature mainly two kinds of solution that make use of explicit boxes can be found:

1. A MELL proof-structure is a directed graph (defined non-inductively) to-
gether with some additional information to identify the content and the bor-
der of each box. This additional information can be provided either infor-
mally, just drawing the border of each box in the graph [[13| 6} [19], but then
the definition of MELL proof-structure is not rigorous; or in a more formal
way [9, 16/ (7], but then the definition is highly technical and ad hoc;

2. A MELL proof-structure is an inductive directed graph [18,120, 23| 8], where
with any vertex v of type ! is associated another directed graph representing
the content of the box of v. This inductive solution can be taken to extremes
by representing proof-structures with term-like syntax [10} 4]

The drawback of Item [I| is that the definition of MELL proof-structure is not
easily manageable because either it is not precise or it is too tricky. Item[2] instead,
provides more manageable definitions of MELL proof-structures, but another draw-
back arises: Girard’s idea of proofs as graphs in watered-down, and it makes way
for more ad hoc means to represent proofs.

Our contribution. Following [14} [15]], we present here a purely graphical def-
inition of MELL proof-structures, so as to keep Girard’s original intuition of a
proof-structure as a graph even in MELL. Our definition follows the non-inductive
approach seen in Item (1} and improves its state of the art. It is completely based
on standard notions coming from graph theory, being formal (with an eye towards
complete computer formalization) but still easy to handle, and it avoids ad hoc
technicalities to identify the border and the content of a box. We use n-ary vertices
of type ? collapsing weakening, dereliction and contraction (like in [6]): in this
way, we get a canonical representation of MELL proof-structures.
Roughly, we define a MELL proof-structure R as made of three components:

* adirected labeled graph |R| representing R without boxes,
* atree /g representing the nesting order of the boxes of R,

* a graph morphism boxg from |R| to the reflexive-transitive closure @7 of
27g, which allows us to recognize the content and border of all boxes in R.
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Figure 1: Vertices of a DiLL graph, with their labels and their typed inputs and
outputs (ordered left-to-right). Vertices of type concl are often omitted.

We now give a precise definition of a MELL proof-structure, and more generally
of a DiLL proof-structure [L1}, 20} 23], which extends MELL by allowing for !
the duals of dereliction, contraction and weakening for ?. We suppose known the
definitions of directed graph, rooted tree, and morphism of these structures. An
input (resp. output) of a vertex v is an edge incoming in (resp. outgoing from) v.

Definition 1 (Proof-structure). A DiLL graph G is a (finite) directed graph with:

* edges e labeled by a MELL formula c(e), the type of e, where MELL formulas
are defined by the grammar A,B:=X | X+ |1| L|A®QB|A®B|'A| A, and
the linear negation (-)* is defined via De Morgan laws 1+ = |, (A®@ B)* =
AL BBt and (1A)* = A, so as to be involutive, i.e. A*+ = A;

* vertices v labeled by {(v) € { az, cut,1, L ,®,78,2,!, conc}, the type of v; all
the vertices verify the conditions of Figure[l|: the input of any vertex of type
conc is a conclusion of G; an input of a vertex of type ! is a !-input of G;

* an order < that is total on the conclusions of G and on the inputs of each
vertex of type B, R.

A (DiLL) proof-structure is a triple R = (|R|, .o/ ,box) where:
* |R| is a DiLL graph, called the underlying graph of R;
» o/ is a rooted tree, called the box-tree of R;

e box: |R| — .&/° is a morphism of directed graphs, called the box-function
of R (<7 © is the reflexive-transitive closure of <7 ), such that:

— itinduces a partial bijection from the !-inputs of |R| and the edges in ﬂf,
— for any edge from V' to v, if box(v) # box(V') then ¢(v) € {L?}.EI
A proof-structure R = (|R|, <7 ,box) is:

1. MELL if all vertices in |R| of type | have exactly one input, and the partial
bijection induced by box from the -inputs of |R| to the edges in <7 is total;

2. DilLLg (or resource or box-free) if the box-tree <7 of R is just one vertex.

An example of a MELL proof-structure is given in Figure

IThe !-inputs that box maps to the edges of &7 are the ones associated with a box. In DILL, a
vertex of type ! may have several inputs, and not all of them are necessarily associated with a box.
ZRoughly, it says that the border of a box is made of (inputs of) vertices of type ! or 2.
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Figure 2: An MELL proof-structure R = (|R|, %, boxg): boxg is given by colors.

Our proof-structures are still manageable: in this framework, sophisticated op-
erations on them such as cut-elimination or the Taylor expansion [12], as well as
correctness graphs to characterize the proof-structures that are proof-nets (i.e. that
correspond to proofs in the LL sequent calculus), are easy to define formally. Also,
identity of proof-structures is defined naturally as a graph isomorphism.

Taylor expansion via pullbacks. As a test of the usability of our formalism for
MELL proof-structures, we give an elegant definition of their Taylor expansion, by
means of pullbacks. The Taylor expansion .7 (R) [12] of a MELL proof-structure
R is a possibly infinite set of box-free proof-structures: roughly, each element of
7 (R) is obtained from R by replacing each box B in R with np copies of its content
(for some np € N), recursively on the depth of R. Note that np depends not only on
B but also on which “copy” of all boxes containing B we are considering.

Usually, the Taylor expansion of MELL proof-structure is defined globally and
inductively [[19} 21]]: with a MELL proof-structure R is directly associated its Tay-
lor expansion (the whole set!) by induction on the depth of R. A drawback of this
approach is that, for each element of .7 (R), the way the different copies of the con-
tent of a box are merged has to be defined “by hand”, which is syntactically heavy.

Following [[16} (14} [15]], we adopt an alternative non-inductive approach: the
Taylor expansion is defined pointwise. Indeed, a MELL proof-structure R has a
tree structure @ made explicit by its graph morphism boxg. The definition of
the Taylor expansion uses this tree structure: first, we define how to “expand” a
tree via the notion of thick subtree 3] (roughly, it states the number of copies of
each box to be taken, recursively): see Figure (3| for an example. We then take all
these expansions of the box-tree <#; of a proof-structure R and we pull them back
to the underlying graph, finally we forget the tree structures associated with them.
Figure [ shows the element of the Taylor expansion of R in Figure [2]obtained from
the thick subtree in Figure [3] Thus, pullbacks gives us an abstract and elegant
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Figure 3: Example of a thick subtree of the tree @ in Figure [2| (the mapping to
edges and vertices of o7 is given by colors).

PP PP &
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Figure 4: The element of the Taylor expansion of the MELL proof-structure R in
Figure 2] obtained from the thick subtree of .7 in Figure

way to define the merging of the different copies of the content of a box in an
element of .7 (R). The use of pullbacks is possible because all the components of
our definition of a MELL proof-structure live in the category of directed graphs.

Cut-elimination via pullbacks. In a MELL proof-structure R, cut-elimination
steps not involving the exponentials ! and ? are easy to define: they only entail local
modifications on the underlying graph |R| of R. An exponential cut-elimination
step, instead, is complex because it may erase or duplicate the content of a box, or
nest the content of a box inside another box: they involve global modifications not
only in the underlying graph |R| of R, but also in its box-tree %z and in its box-
function boxg. Defining formally such operations “by hand” is syntactically heavy.
In our formalism, exponential cut-elimination steps can be defined in two stages,
where the heavy part is still managed in a concise way by the notion of pullback.

1. The cut between a !-node (the main door of a box B) and a ?-node with
n premises, induces a specific thick subtree 7 of .oz, the one that takes n
copies of B. The pullback from |R| and T defines a new proof-structure R’
(with tree structure 7), where the box B has been duplicated n times (erased
if n = 0), but the cut has not been eliminated yet.

2. The result of the cut-elimination step is then obtained from R’ by local
changes in its underlying graph (by eliminating the cut-node similarly to
multiplicative steps) and in the tree 7 (by equalizing some nodes, to take into
account the new nesting order of boxes).

Conclusions. In our framework, operations or relations on MELL proof-structures
such as cut-elimination, or the Taylor expansion, or identity, which are intuitively
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clear but tricky to define in a rigorous way, find an elegant, formal and not ad hoc
definition. Our way to represent MELL proof-structures, and to define the Taylor
expansion and the identity of MELL proof-structures has been introduced in [[14]]
and used in [[15]. The definition of cut-elimination is part of an ongoing work that
we hope can be easily generalized to parallel cut-elimination steps. The goal is
to ground the syntax of MELL proof-structures and the study of their operational
properties on rigorous bases, by means of handy and elegant tools, pushing forward
with Girard’s original spirit of representing proofs as graphs.
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