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https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

Towards a Curry-Howard Correspondence for
Linear, Reversible Computation

Kostia Chardonnet* Alexis Saurin † Benoı̂t Valiron‡

Abstract

In this paper, we present a linear and reversible language with induc-
tive and coinductive types, together with a Curry-Howard correspondence
with the positive fragment of the logic µMALL: linear logic extended with
least fixed points allowing inductive statements. Linear, reversible computa-
tion makes an important sub-class of quantum computation without measure-
ment. In the latter, the notion of purely quantum recursive type is not yet well
understood. Moreover, models for reasoning about quantum algorithms only
provide complex types for classical datatypes: there are usually no types for
purely quantum objects beside tensors of quantum bits. This work is a first
step towards understanding purely quantum recursive types.

1 Introduction

Computation and logic are two faces of the same coin: a proof s of A→ B can
be regarded as a function —parametrized by an argument of type A— that pro-
duces a proof of B whenever it is fed with a proof of A. Known as the Curry-
Howard correspondence, this connection between proofs and programs provides
a versatile framework. It has been used to mirror first and second-order log-
ics with dependent-type systems, separation logics with memory-aware type sys-
tems [Rey02], resource-sensitive logics with differential privacy [GH+13], logics
with monads with reasoning on side-effects [SHK+16, MHRM20], etc.

This paper is concerned with the case of reversible computation, a sub-class
of pure quantum computation (without measurement). In the latter, the notion
of purely quantum recursive type is not yet well understood. Moreover, models
for reasoning about quantum algorithms only provide complex types for classical
datatypes: there are usually no types for purely quantum objects beside tensors of
quantum bits. In general quantum computation, one has access to a co-processor
holding a “quantum” memory. This memory consists of “quantum” bits having
a peculiar property: their state cannot be duplicated, and the operations one can
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perform on them are unitary, reversible operations. The co-processor comes with
an interface to which one can send instructions to allocate, update or read quantum
registers. Quantum memories can be used to solve classical problems faster than
with purely conventional means. Quantum programming languages are nowadays
pervasive [FBW18] and several formal approaches based on logical systems have
been proposed to relate to this model of computation. However, all of these lan-
guages rely on a purely classical control-flow: quantum computation is reduced
to describing a list of instructions —a quantum circuit— to be sent to the co-
processor. While some notion of purely quantum control flow of a program ex-
ists, such as quantum conditional expression where the execution of two express
becomes itself a superposition of execution, richer notion of quantum control flow
does not exists in their more general case, which is the case for recursion. In par-
ticular, in this model operations performed on the quantum memory only act on
quantum bits and tensors thereof, while the classical computer enjoys the manipu-
lation of any kind of data with the help of rich type systems.

This extended abstract aims at proposing a type system featuring inductive
types for a purely reversible language, first step towards a rich quantum type sys-
tem. We base our study on the approach presented in [SVV18]. In this model,
reversible computation is restricted to two main types: the tensor, written A⊗B
and the co-product, written A⊕B. The former corresponds to the type of all pairs
of elements of type A and elements of type B, while the latter represents the dis-
joint union of all elements of type a and elements of type B. For instance, a bit
can be typed with 111⊕111, where 111 is a type with only one element. The language
in [SVV18] offers the possibility to code isos —reversible maps— with pattern
matching. An iso is for instance the swap operation, typed with A⊗B↔ B⊗A.
The language also permits higher-order operations on isos, so that an iso can be
parametrized by another iso, and is extended with lists (denoted with [A]). For
instance, one can type a map operation acting on all the elements of a list with
(A↔ B)→ ([A]↔ [B]). However, if [SVV18] hints at an extension toward pure
quantum computation, the type system is not formally connected to any logical
system.

The main contribution of this work is a Curry-Howard correspondence for a
purely reversible typed language in the style of [SVV18], with more general recur-
sions, inductive type and better computational expressivity results. However, while
higher-order can be consider and do not impact the results, we dismiss it in this ex-
tended abstract in order to keep things more intuitive. In particular, in [SVV18]
the only recursive type they have is the one of list, which is hard-coded into the
language. We capitalize on the logic µMALL [BM07, BDA16]: an extension of
the additive and multiplicative fragment of linear logic with least and greatest fixed
points allowing inductive and coinductive statements. This logic contains both a
tensor and a co-product, and its strict linearity makes it a good fit for a reversible
type system.
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A ` A id
Γ1,A ` ∆1 Γ2 ` ∆2,A

Γ1,Γ2 ` ∆1,∆2
cut ∆ ` A

∆,111 ` A
111L

` 111
111R

∆,A,B `C
∆,A⊗B `C

⊗L
∆ ` A Γ ` B
∆,Γ ` A⊗B

⊗R

∆,A `C ∆,B `C
∆,A⊕B `C

⊕L
∆ ` Ai

∆ ` A1⊕A2
⊕i

R i ∈ {1,2}
A[X ← µX .A] ` B

µX .A ` B
µL

A ` B[X ← µX .B]
A ` µX .B

µR

Figure 1: Rules for µMALL.

2 Background on µMALL

The logic µMALL [BM07, BDA16] is an extension of the additive and multiplica-
tive fragment of linear logic [Gir87]. The syntax of linear logic is extended with the
formulas µX .A and its dual νX .A (where X is a type variable occuring in A), which
can be understood at the least and greatest fixed points of the operator X 7→ A.
These permit inductive and coinductive statements. We are only interested in a
fragment of µMALL which contains the tensor, the plus, the unit and the µ con-
nective. Note that our system only deals with closed formulas. The syntax of
formulas of µMALL is A,B ::= 111 | X | A⊗B | A⊕B | µX .A The derivation
rules are shown in Figure 1. They defined a binary relation ∆ ` Γ on set of formu-
las defined inductively. For each rule the assumptions are above the line while the
conclusion is under. In the rules, the comma stands for the disjoint union: observe
that each formula has to be used exactly once and cannot be duplicated or erased.
In µMALL one can for instance define the type of natural numbers as µX .111⊕X , of
lists of type A as µX .111⊕ (A⊗X) and of streams of type A as νX .A⊗X .

We consider proofs to be potentially non-well-founded derivation trees: they
are not necessarily finite as we can for instance consider the formula µX .X and
apply the rule µR an infinite number of times. Among non well-founded proof-
objects we distinguish the regular derivation trees that we call circular pre-proofs.
These trees can then be represented in a compact manner, see Figure 2. One prob-
lem with such a proof-system is to determine whether or not infinite derivations are
indeed proofs. Indeed, if every infinite derivation is accepted as a proof, it would
be possible to prove any formula F, as shown in Figure 3.

To answer this problem, µMALL comes with a validity criterion for deriva-
tions. It roughly says that a derivation is valid if, in every infinite branch of the
derivation, there exists an infinite number of rules µL. The intuition is that since
µX .A formulas represent least fixed points, their objects are finite. An infinite num-
ber of rule µR would mean producing an infinite object, which is not possible. On
the other hand, we can explore an arbitrarily large object as input with the rule µL.
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...
µR` µX .X
µR` µX .X

 
` µX .X

µR` µX .X

Figure 2: Circular representation of pre-
proofs.

...
µR` µX .X

...
µL

µX .X ` F
cut

` F
Figure 3: Degenerated proof.

This criterion can be understood in a more operational way as a requirement for
productivity.

3 Our language

Our language is based on the one presented in [SVV18]. We build on the reversible
part of the paper by extending the language to support both a more general rewrit-
ing system and inductive and coinductive types. Terms and types are presented
in Table 2, while typing derivations, based on µMALL, can be found in Tables 3
and 4. In the typing rules, ∆ is a context of term-variable and their type while Ψ is
a context of iso-variable, the semi-colon is just a separator between those two dif-
ferent context. Notice that Ψ is not linear but this is harmless since isos represent
close computation. The language consists of the following pieces.

Basic type. They are first-order and typed with base types. The constructors injl
and injr represent the choice between either the left or right-hand side of a type of
the form A⊕B; the constructor 〈,〉 builds pairs of elements (with the corresponding
type constructor ⊗); fold represent inductive structure of the types µX .A. In this
works in progress, we do not look at co-inductive type. A value can serve both as
a result and as a pattern in the clause of an iso. Generalized patterns are used as
special patterns: vg : A can match any value of type A. Terms are expressions at
“surface-level”: applying an iso always gives a term, whereas it is an expression
only when the argument is a generalized pattern.

Isos. An iso is a function of type A↔ B, acting on base type, defined as a set of
clauses (pair of expressions) of the form {e1 ↔ e′1 | . . . | en ↔ e′n}. The tokens
ei and e′i in the clauses are expressions. In order to apply an iso to a term, the iso
must be of type A↔B and the term of type A. In the typing rules of isos, the context
∆i correspond to the free-variable of the expressions ei and ei’, they must therefore
contain the same free-variable. The OD predicate (taken from [SVV18] and not de-
scribed in this paper) syntactically enforces the exhaustivity and non-overlapping
conditions that the left-hand-side and right-hand-side of clauses should satisfy. Ex-
haustivity for an iso {e1 ↔ e′1 | . . . | en ↔ e′n} of type A↔ B means that the
expressions on the left (resp. on the right) of the clauses describe all possible val-
ues for the type A (resp. the type B). Non-overlapping means that two expressions
cannot match the same value. For instance, the left and right injections injl e and
injr e′ are non-overlapping while a pattern vg is always exhaustive. The construc-
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(Base types) A,B ::= 111 | A⊕B | A⊗B | µX .A

(Isos) α ::= A↔ B

(Values) v ::= () | x | injl v | injr v | 〈v1,v2〉 | fold v

(Generalized pattern) vg ::= () | x | 〈vg,vg〉 | ω vg | letvg = vg in vg |
fold vg

(Expressions) e ::= vg | injr e | injl e | 〈e,e〉 |
fold e | letvg = vg in e

(Isos) ω ::= {e1 ↔ e′1 | . . . | en ↔ e′n} |
µ f .ω | f | inv ω

(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
fold t | ω t | letvg = vg in t

Table 2: Terms and types

tion µg.ω represents the creation of a recursive function, rewritten as ω[g := µg.ω]
by the operational semantics. The typing rule for µg.ω has a productivity criterion.
Indeed, since we can write non-terminating isos (such as µ f .{x↔ f x}), produc-
tivity is important to ensure that we work with total functions. We do not fully
details the productivity criterion in this extended abstract, but it simply check that
each recursive call is made on a smaller argument, similar as to what is done in
the Coq proof assistant. These checks are crucial to make sure that our isos are
indeed bijections in the mathematical sense. The construction inv ω corresponds
to the inversion of the iso ω . If ω is of type A↔ B then inv ω is of type B↔ A.
The inversion of an iso of the form {e1 ↔ e′1 | . . . | en ↔ e′n} will simply be
swapping the expression on each clauses : {e′1↔ e1 | . . . | e′n↔ en}.

Finally, our language is equipped with a rewrite system (→) on terms. The
evaluation of an iso applied to an argument works with pattern-matching. The non-
overlapping and exhaustivity conditions guarantee subject-reduction (see Prop. 3).

Example 1. Encoding of the isomorphism map(ω) in our language, where [ ] is
the empty list and :: is the list construction. The iso map(ω) is of type ([A]↔ [B])
where [A] is the type of lists of type A. This iso is parametrize with an iso of type
A↔ B which is applied to each element of the list given as argument:

µg.
{

[ ] ↔ [ ]
h :: t ↔ (ω h) :: (g t)

}
: ([A]↔ [B]).

Remark 2. In our example, the left and right-hand side of the ↔ respect both
the criteria of exhaustivity —every-value of each type is being covered by at least
one expression— and non-overlapping —no two expressions cover the same value.
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/0;Ψ `e () : 111 x : A;Ψ `e x : A
∆;Ψ `e t : A

∆;Ψ `e injl t : A⊕B
∆;Ψ `e t : B

∆;Ψ `e injr t : A⊕B

∆1;Ψ `e t1 : A ∆2;Ψ `e t2 : B
∆1,∆2;Ψ `e 〈t1, t2〉 : A⊗B

∆;Ψ `e t : A[X ← µX .A]
∆;Ψ `e fold t : µX .A

Ψ `ω ω : A↔ B ∆;Ψ `e t : A
∆;Ψ `e ω t : B

Γ;Ψ`e vg1 : A ∆1;Ψ `e vg2 : A Γ,∆2;Ψ `e t : B
∆1,∆2;Ψ `e letvg1 = vg2 in t : B

Table 3: Typing of terms and expressions

∆1;Ψ `e e1 : A . . . ∆n;Ψ `e en : A ODA{e1, . . . ,en}
∆1;Ψ `e e′1 : B . . . ∆n;Ψ `e e′n : B ODB{e′1, . . . ,e′n}

Ψ `ω {e1 ↔ e′1 | . . . | en ↔ e′n} : A↔ B.

Ψ `ω ω : T⊥

Ψ `ω inv ω : T Ψ, f : α `ω f : α Ψ, f : α⊥ `ω f : α

Ψ, f : A↔ B `ω ω : A↔ B µ f .ω is productive

Ψ `ω µ f .ω : A↔ B

Table 4: Typing of isos

The iso is therefore a bijection. In order to achieve higher-order, we need the λ -
abstractions to be applied, otherwise we can’t guarantee productivity.

Proposition 3. The language features subject reduction: If ` t : A and t→ t ′ then
we have ` t ′ : A. Moreover, it enjoys confluence: Let→∗ be the reflexive, transitive
closure of →. If t →∗ t1 and t →∗ t2 then there exists t3 such that t1 →∗ t3 and
t2→∗ t3.

Subject reduction is shown by a simple induction on the reduction while con-
fluence is shown by using a parallel rewrite system.

Every well-typed isos is indeed an isomorphism. This is shown by induction:
first on the length of the reduction, then on ω .

Theorem 4. For all ω : A↔ B, v : A and u : B then ((inv ω) ◦ω) v→∗ v and
(ω ◦inv ω) u→∗ u.

We can encode any Primitive Recursive Function, using the language RPP of
Recursive Primitive Permutation [LM17]:

Theorem 5. Let f be a Primitive Recursion Function, there exists well-typed iso
ω that simulate it.
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111R` 111 ⊕1
R` 111⊕ (A⊗ [A])

µR
` [A]

111L
111 ` [A]

πω

A ` A
id

A ` A
cut

A ` A

†

[A] ` [A]
id

[A] ` [A]
cut

[A] ` [A]
⊗R

A, [A] ` A⊗ [A]
⊕2

RA, [A] ` 111⊕ (A⊗ [A])
µR

A, [A] ` [A]
⊗L

A⊗ [A] ` [A]
⊕L

111⊕ (A⊗ [A]) ` [A]
µL

[A] `† [A]

Figure 4: Proof corresponding to Example 7 where the † represent the loop.

4 Towards Curry-Howard

An iso `ω : A↔ B corresponds to both a computation sending a value of type A to
a result of type B and a computation sending a value of type B to a result of type A.
We can mechanically translate such an iso to a pair of derivations π,π⊥ in µMALL,
where π is a proof of A ` B and π⊥ is a proof of B ` A. This mechanical translation
constructs circular pre-proofs, as discussed in Section 2. We however still need to
show that the obtained derivations respect the validity criterion for circular proof.

Once proven, we would obtain a static correspondence between programs and
proofs. We would however still need to show that this entails a dynamic correspon-
dence between the evaluation procedure of our language and the cut-elimination
procedure of µMALL. For that, we would need to make sure that the proofs we
obtain are indeed isomorphisms, meaning that if we cut the aforementioned proofs
π and π⊥, performing the cut-elimination procedure would give either the identity
on A or the identity on B.

Conjecture 6. Validity of proofs. If ` ω : A↔ B then the µMALL derivations
π : A ` B and π⊥ : B ` A of ω are valid.
Isomorphism of proofs. Provided that the above holds, we moreover have

A ` A id  ∗

π⊥

B ` A
π

A ` B
A ` A

cut

π

A ` B
π⊥

B ` A
B ` B

cut
 ∗ B ` B id

Simulation of evaluation. Provided that t is a value and v is a normal form, if
ω t→∗ v, if π is the proof corresponding to ω t, and if π ′ is the proof corresponding
to v, then π →∗ π ′ with the cut-elimination procedure.

The difficulty lies in the fact that the µMALL validity criterion is not complete:
not every productive derivation are valid one. This make the relation between the
productivity of terms and the validity of derivations non-trivial.

Example 7. Consider the iso map(ω) from Example 1 and a proof πω which cor-
respond to the parametrize iso ω . The derivation obtain from map(ω) is shown in
Figure 4, notice that this derivation is indeed valid according to µMALL criterion.

7

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/


From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
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5 Conclusion and Future Work

We presented a first-order, linear, reversible language with inductive types together
with an interpretation of programs into derivations in the logic µMALL. This work
is still in progress: We still need to show that the produced µMALL derivations
are indeed proofs and that they are isomorphisms. After completing the proofs of
our current conjectures, we want to extend our language to linear combinations
of terms and coinductive constructions in order to study purely quantum recursive
types and generalized quantum loops: in [SVV18], lists are the only recursive type
which is captured and recursion is terminating. The logic µMALL would help
providing a finer understanding of termination and non-termination, which could
in return helps us in defining notions of recursion in pure quantum computation.
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