N

HAL

open science

A gentle introduction to Girard’s Transcendental Syntax

Boris Eng, Thomas Seiller

» To cite this version:

Boris Eng, Thomas Seiller. A gentle introduction to Girard’s Transcendental Syntax. 5th International
Workshop on Trends in Linear Logic and Applications (TLLA 2021), Jun 2021, Rome (virtual), Italy.

lirmm-03271496

HAL 1d: lirmm-03271496
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271496

Submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271496
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

A gentle introduction to Girard’s Transcendental
Syntax

Boris Eng* Thomas Seillerf

Abstract

We present a gentle introduction to the technical content of Girard’s Tran-
scendental Syntax suggesting a new framework for the proof theory of linear
logic and an alternative understanding of proof-nets. In this framework, we
investigate the emergence of logic from a model of computation related to
tiling models and logic programs.

1 Introduction

Girard’s Transcendental Syntax is the successor of his Geometry of Interaction
programme with the ambition of establishing a new framework for proof theory. In
this context, logic is grounded on a model of computation related to logic program-
ming and tiling models. Proofs do not come as primitive and elementary objects
anymore but as particular computational objects together with a certificate assert-
ing their logical correctness and the soundness of their computational behaviour
through cut-elimination. The other usual definitions of logic such as formulas and
truth are also reconstructed computationally. The Transcendental Syntax provides
a toolbox for a study of proof theory in a more general setting where computation
is central.

2 Contributions

The original papers [[Girl7,|Girl6al (Girl6b! |Gir20] presenting the programme give
conceptual directions and sketch the outlines for a reconstruction of logic starting
from linear logic’s proof-nets. However, no true technical development exists yet.
Hence, we propose an attempt at formalising the Transcendental Syntax and make
its novelties and relationship with other works explicit. In particular,

*LIPN — Université Sorbonne Paris Nord
TCNRS

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

o we formally define the stellar resolution; the model of computation on which
the Transcendental Syntax is based on and prove that it can simulate cut-
elimination and logical correctness for MLL(+MIX). We are also working
on extensions to Intuitionistic MELL and beyond. Moreover, we make ex-
plicit two notions of type/formula in logic. One is inspired from the logi-
cal correctness of proof-structures where formulas are simply labels and the
other one is inspired from realisability theory [KCHMO9, [Kle45]] where for-
mulas are descriptions of computational behaviours. Both are expressed in
the stellar resolution.

e We also relate the stellar resolution to tiling models such as flexible tiles or
the abstract tile assembly models, two generalisations of Wang tiles used in
DNA computing. This suggests new ideas of typing and implicit computa-
tional complexity analysis for tiling-based computation.

3 Technical development

Stellar Resolution The stellar resolution is the model of computation the Tran-
scendental Syntax uses as ground for logic. It is basically a graph-theoretic refor-
mulation of Robinson’s resolution with first-order disjunctive clauses [R™65]. It
can be related to other resolution-based models [Kow735, Sic76], disjunctive logic
programs [Min94] or to answer set programming [Gel08]] but it seems that is has
never been used as a logic-free and query-free model of computation.

() - “’ff)__/,,:?f{ c.<y>

We define rays as either first-order terms with a polarised head function symbol
called its colour (e.g. +a(x) has a as colour) or an unpolarised first-order term
(e.g. xor g(x)). A star is a finite multiset of rays ¢ = [ry,...,r,] which can be
illustrated as a kind of tile with flexible arms. A constellation is a (potentially
infinite) multiset of stars written as a sum ® = @; + ... + ¢, when it is finite.

It is possible to non-deterministically construct sorts of tilings called diagrams
by connecting occurrences of stars along matchable rays of opposite polarity (e.g.
+a(x) and —a(f(y)) can have equal underlying terms with x — f(y)). Diagrams
can be evaluated by a step-by-step contraction of links with Robinson’s resolu-
tion rule [R765]. The execution Ex(®) of a constellation computes all the possi-
ble “correct” diagrams and evaluates them in order to form a new constellation.
By “correct”, we usually mean that we exclude diagrams for which the term uni-
fication fails and diagrams with free polarised rays because they corresponds to
incomplete/unfinished computations.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

Structure Vehicle Test 1 Test 2
ax
—ax——)
A B AL BL A B AL Bt | A B A+ Bt
N/ N N/ , N/ N
® 3 ax ® DL ® Nr
| I —ax F 1 | | | |
A®B AL Bt A B At Bt A®B At Bt A®B At Bt

Figure 1: A proof-structure decomposed into a vehicle and its tests.

This model of computation embodies the old intuition of a theory of interac-
tion behind logic and programming [Abr08] by defining logic from computational
interaction between entities of the same kind.

Geometry of Interaction The Geometry of Interaction sees proofs as general
mathematical objects where computation (cut-elimination) is primitive. Nowadays,
it refers to a lot of notions such as categorial frameworks for linear logic [HS06,
AHSO2[] or token machines [DR99]] but in our case, we refer to Girard’s original
Geometry of Interaction expressed with operator algebras [Gir89].

The stellar resolution can actually be understood as a generalisation of Girard’s
flows [Gir95, Bagl4]], Seiller’s interaction graphs [Seil6] but also partitions used
as a model for MLL [[AM20]].

Logical correctness as interactive testing Proof-structures are general hyper-
graphs linking formulas. Their dynamics (cut-elimination) corresponds to an edge
contraction following logical rules represented by their hyperedges.

A proof-structure is made of two independent components. The %/® cut-
elimination is basically a rewiring pushed to the conclusions of axioms, hence only
the axioms are related to the computational side of proofs. The upper part, made of
axioms, is called vehicle. The logical content is contained in the bottom part (basi-
cally a syntax tree of conclusion formulas). It is called the formar and is constituted
of several fests which are hypergraphs corresponding to Danos-Regnier switching
graphs [DR&9]]. The Danos-Regnier correctness criterion states that the connexion
between the vehicle and any test of the format should be connected and acyclic
in order to be called logically correct (Figure [I). In the Transcendental Syntax,
we would like to have a broader notion of logical correctness as a certification for
constellations which represent a very general idea of computation.

A stellar reconstruction The hyperedges of proof-nets induce a polarity oppos-
ing input and output which can easily be represented with stars. For instance, an ax-
iom between atoms - X, X+ is represented as the binary star [-+c.py (x), +¢.py. (x)]
but if a ray is not related to a cut then we keep it uncoloured (e.g. +c.px(x) be-
comes px (x)). A cut on X and X is translated as [—c.px (x), —c.py. (x)].

The cut rule merges a constellation representing a vehicle @y and a constel-
lation d¢ representing cuts. Their execution Ex(®Py W ®¢) naturally computes the

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

maximal paths alternating between axioms and cuts which corresponds to the cut-
elimination procedure, as expected from the Geometry of Interaction.

The translation is designed in order to reproduce the shape of proof-structures,
hence tests t1,...,# will be translated into constellations &;, & ...®;, such that P,
forms a tiling preserving the shape of #;. The correctness criterion for a proof-
structure . corresponds to the execution Ex(®y W P,,) = [pa, (x),..., pa, (x)] be-
tween a vehicle and a test #; where A1, ..., A, are the conclusions of .. This is only
possible when ®y W @, represents a connected and acyclic switching graph. Since
constellations are way more general than proof-structures, we can imagine a more
general notion of logical correctness.

Two notions of type in logic It is possible to make explicit two notions of type
or formula. In order to do so, we have to choose a relation of orthogonality L
between constellations representing what we consider a sound interaction. We
usually choose the relation in order to capture logical correctness.

e The first kind of typing corresponds to a notion of primitive types. We define
(finitely many) tests @4 := Py, ...,P, corresponding to a certification for a
label A. A constellation @ is of type A when for each test ®;, @1 P’. This
generalises the correctness criterion for proof-structures.

e The second kind of typing corresponds to the model of linear logic used
in ludics [GirO1] and geometry of interaction which is close to realisability
models. In this context, types (called conducts) are descriptions of compu-
tational behaviours. We define a pre-conduct as a set of constellations A and
A as the set of constellations orthogonal to A (the good partners for A). A
conduct is defined as a pre-conduct closed by biorthogonal, i.e. A = A+
(they are the good partners or their good partners). In particular, we can
usually consider infinitely many types and subtypes.

e We then require that these two notions are related by an adequacy lemma (as
in realisability models) stating that the testing for A is sufficient to ensure
membership in A (the conduct corresponding to A). In other words, the tests
ensure the expected behaviour. This can also be understood as the inclusion
(®4)* CA.

4 Results

We showed standard properties for stellar resolution, ensuring a sound computa-
tional behaviour. The Turing-completeness follows from an encoding inspired by
logic programming with Horn clauses.

Theorem 1 (Confluence). Let ® be a constellation. The steps of its execution
Ex(®) can be done in any order with no effect on the result. All results will be
equivalent up to renaming of variables.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

Proposition 2 (Turing-completeness). The stellar resolution can simulate non-
deterministic Turing machines.

We showed that it can simulate both cut-elimination and logical correctness.

Lemma 3 (Simulation of dynamics). Let % be a proof-structure such that % re-
duces to .7 by cut-elimination. We have:

Ex(®% W dG') = Ex(PY wdY)

where ®% and ' are respectively the encoding of the vehicle and cuts of % in

the stellar resolution.

Theorem 4 (Stellar correctness criterion). A proof-structure . is an MLL proof-
net if and only if for all switchings ¢. We have:

EX(?S)f” H'J(I)?;t L_Hq)ttseg,t(p) = [pAl (x)) -y PA, (x)]

where Ay, ...,A, are the conclusions of . and CIDE;ST(P is the encoding of the test for
the switching @ in the stellar resolution.

We finally showed soundness and completeness in MLL(+MIX) for a class
of constellations representing proofs called proof-like (as in classical realisability
models).

Theorem 5 (Full soundness). Let . be an MLL(+MIX) proof-net of conclusion
FT. The constellation Ex(®% & ®Y') is proof-like and member of the conduct
corresponding to - T,

Theorem 6 (Full completeness). If a constellation ® is proof-like and member
of the conduct corresponding to - T, there exists an MLL(+MIX) proof-net % of
conclusion = T such that its vehicle is ®.

5 Current, future and related works

Extension to box-free intuitionistic MELL The cut-elimination has already
been studied in the Geometry of Interaction and only requires binary stars [Gir95,
Bagl4]. The correctness criterion (already sketched by Girard [Girl7]]) relies on
the mechanisms of stellar resolution which are not present with proof-structures.
However, it still has the usual and known drawbacks of proof-nets.

Extension to predicate logic A sketch for a reconstruction of predicate logic is
suggested in the third paper of Transcendental Syntax [Girl6b]. Terms are encoded
as multiplicative formulas and equality as linear equivalence. In the Transcenden-
tal Syntax, predicate logic is considered as part of second order logic because of its
implicit quantifications. This may open a new understanding of descriptive com-
plexity where predicate logic is central.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

Extension to second order The Transcendental Syntax treats the existential wit-
ness in 3X.A as a constellation part of the vehicle [Girl6b]. In some sense, we
consider it as “part of the answer”, hard coded in the proof. A proof becomes a
pair (®y WDy, Pr) where Py, is a sort of test corresponding to the formula car-
ried by the existential witness.

Relation with tiling models The stellar resolution generalises the flexible tiling
model [JMO06, UMO3] but also the abstract tile assembly model [Win98]| by repre-
senting both a tile set and its environment as constellations. This opens the possi-
bility of typing or analysis of computational behaviour/complexity for tiling-based
models. Interestingly, a reverse encoding seems to hold: few works suggest the
possibility of encoding the dynamics of logic programming, resolution and Horn
clauses from DNA computing [Kob99, RKS09, RPdMS14]].

Implicit Complexity Theory The model of flows, which can be seen as a restric-
tion of stellar resolution to binary stars, has already been used to characterise com-
plexity classes [BPO1,/AB14,IABS16]]. Since the stellar resolution is more general,
we can expect a broader complexity analysis. From the generalisation of flexible
tiles, our model might be related to non-deterministic complexity [JMOO| but also
be related to new complexity methods inspired from Seiller’s works [SeilS].

References

[AB14] Clément Aubert and Marc Bagnol. Unification and logarithmic space.
In Rewriting and Typed Lambda Calculi, pages 77-92. Springer,
2014.

[AbrO8] Samson Abramsky. Information, processes and games. J. Benthem
van & P. Adriaans (Eds.), Philosophy of Information, pages 483-549,
2008.

[ABS16] Clément Aubert, Marc Bagnol, and Thomas Seiller. Unary resolu-
tion: Characterizing ptime. In International Conference on Founda-

tions of Software Science and Computation Structures, pages 373—
389. Springer, 2016.

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geom-
etry of interaction and linear combinatory algebras. Mathematical
Structures in Computer Science, 12(5):625-665, 2002.

[AM20] Matteo Acclavio and Roberto Maieli. Generalized connectives for
multiplicative linear logic. In 28th EACSL Annual Conference on
Computer Science Logic (CSL 2020). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2020.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

[Bagl4] Marc Bagnol. On the resolution semiring. PhD thesis, Aix-Marseille
Université, 2014.

[BPO1] Patrick Baillot and Marco Pedicini. Elementary complexity and
geometry of interaction. Fundamenta Informaticae, 45(1-2):1-31,
2001.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives.

Archive for Mathematical logic, 28(3):181-203, 1989.

[DR99] Vincent Danos and Laurent Regnier. Reversible, irreversible and op-
timal A-machines. Theoretical Computer Science, 227(1-2):79-97,
1999.

[GelO08] Michael Gelfond. Answer sets. Foundations of Artificial Intelligence,
3:285-316, 2008.

[Gir89] Jean-Yves Girard. Geometry of interaction I: interpretation of system
f. In Studies in Logic and the Foundations of Mathematics, volume
127, pages 221-260. Elsevier, 1989.

[Gir95] Jean-Yves Girard. Geometry of interaction III: accommodating the
additives. London Mathematical Society Lecture Note Series, pages
329-389, 1995.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical structures in computer science, 11(3):301,
2001.

[Girl6a] Jean-Yves Girard. Transcendental syntax II: non-deterministic case.
2016.

[Girl6b] Jean-Yves Girard. Transcendental syntax III: equality. 2016.

[Girl7] Jean-Yves Girard. Transcendental syntax I: deterministic case. Math-
ematical Structures in Computer Science, 27(5):827-849, 2017.

[Gir20] Jean-Yves Girard. Transcendental syntax IV: logic without systems.
2020.

[HS06] Esfandiar Haghverdi and Philip Scott. A categorical model for the ge-

ometry of interaction. Theoretical Computer Science, 350(2-3):252—
274, 2006.

[IMO5] Natasa Jonoska and Gregory L McColm. A computational model for
self-assembling flexible tiles. In International Conference on Uncon-
ventional Computation, pages 142—156. Springer, 2005.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)

https://hal.archives-ouvertes.fr/TLLA2021
Distributed under a Creative Commons Attribution - Non commercial 4.0 International License:

[JMO6]

[IMO09]

[KCHMO9]

[Kle45]

[Kob99]

[Kow75]

[Min94]

[RT65]

[RKS09]

[RPdMS14]

[Seil6]

[Seil8]

[Sic76]

[Win98]

NataSa Jonoska and Gregory L McColm. Flexible versus rigid tile
assembly. In International Conference on Unconventional Computa-
tion, pages 139-151. Springer, 2006.

Natasa Jonoska and Gregory L. McColm. Complexity classes for
self-assembling flexible tiles. Theoretical Computer Science, 410(4-
5):332-346, 2009.

JL Kirivine, PL Curien, H Herbelin, and PA Melliés. Interactive mod-
els of computation and program behavior. 2009.

Stephen Cole Kleene. On the interpretation of intuitionistic number
theory. The journal of symbolic logic, 10(4):109-124, 1945.

Satoshi Kobayashi. Horn clause computation with dna molecules.
Journal of Combinatorial Optimization, 3(2):277-299, 1999.

Robert Kowalski. A proof procedure using connection graphs. Jour-
nal of the ACM (JACM), 22(4):572-595, 1975.

Jack Minker. Overview of disjunctive logic programming. Annals of
Mathematics and Artificial Intelligence, 12(1-2):1-24, 1994.

John Alan Robinson et al. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23—41, 1965.

Tom Ran, Shai Kaplan, and Ehud Shapiro. Molecular implementation
of simple logic programs. Nature Nanotechnology, 4(10):642-648,
2000.

Alfonso Rodriguez-Patén, Ifiaki Sainz de Murieta, and Petr Sosik.
Dna strand displacement system running logic programs. Biosystems,
115:5-12, 2014.

Thomas Seiller. Interaction graphs: Full linear logic. In 2016 31st An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1-10. IEEE, 2016.

Thomas Seiller. Interaction graphs: Non-deterministic automata.
ACM Transactions on Computational Logic (TOCL), 19(3):1-24,
2018.

Sharon Sickel. A search technique for clause interconnectivity
graphs. IEEE Transactions on Computers, (8):823-835, 1976.

Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, Cite-
seer, 1998.

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Contributions
	Technical development
	Results
	Current, future and related works

