
HAL Id: lirmm-03271511
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271511

Submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Probabilistic logic programming with multiplicative
modules

Roberto Maieli

To cite this version:
Roberto Maieli. Probabilistic logic programming with multiplicative modules. 5th International
Workshop on Trends in Linear Logic and Applications (TLLA 2021), Jun 2021, Rome (virtual), Italy.
�lirmm-03271511�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271511
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

Probabilistic logic programming with multiplicative
modules

Roberto Maieli∗

Abstract

This paper illustrates a simple idea on how to interpret undecompsable
generalized multiplicative modules of linear logic as probabilistic methods of
a logic prgramming language. These new modules/methods allow to express
kinds of propagation of probability distribution inside Bayesian Networks
that cannot be expressed by standard Prolog-like programming languages.

1 Logic programming with multiplicative modules

In the logic programming paradigm, a program execution is interpreted by the pro-
cess of proof construction. A state of a computation is represented by a (cut-free)
proof which may be partial, i.e. with open branches, or, equivalently, containing
non-logical axioms. A program is defined by means of a set of rules (or methods)
which can be applied to an open branch of a proof to close it (by an axiom) or
to expand it with new branches. The standard methods of an abstract logic pro-
gramming language (typically, Prolog-like) are represented as H : −B1, . . . ,Bn≥0
where the head H is produced once the body is satisfied, i.e. for each i ∈ {1, . . . ,n}
the clause Bi is satisfied. Following Andreoli [2], we may use bipoles (a kind
of ”modules”) of the pure multiplicative fragment of Linear Logic (MLL, [4, 3])
to represent a ”multi-head” extension of methods defined as follows: the body is
given by the MLL proof structure representing the formula tree of the clause set (a
conjunctive normal form formula) connected to a bundle of axiom links – one for
each conclusion in the head of the method – by a⊗-link. The conclusion of this⊗-
link is called the method name or the method handle. An instance of bipole is given
in Fig.1 where X = {a,b,c,d,h1,h2} is called the border of the represented bipole
β ; any proper subset of the border is called a restriction of the border; in particu-
lar, {a,b,c,d} (resp., {h1,h2}) is the special restriction of X called the body/input
border (resp., the head/output border) of the bipole. Methods with empty body are
called facts (see e.g. γ in Fig.1).

Given a set of methods/bipoles U , and a goal G (i.e. a set of atoms, a1, ...,an)
a logic program 〈U ,G〉 is interpreted by the MLL bipolar proof structure built

∗Department of Mathematics and Physics, ”Roma TRE” University - maieli@uniroma3.it

1

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

Figure 1: (from left to right) a Prolog-like method (resp., a fact) together with its
interpreting MLL formula (below) and the corresponding Andreoli’s bipole in two
”graphical syntaxes” inspired to proof structures (O=On,J =⊗n).

⊗

O

O

1 2

3

4

⊗

7

65

Oβ

⊗

π

bipolar net

expansion

expansion

β3

β2

β1

0

Figure 2: three ways to perform the bipolar proof construction: by net expansion
(on top l.h.s.), by sequential expansion (in the middle side) and by composition of
orthogonal behaviors (on the bottom side); graphs of incidence on the top r.h.s..

on U having G as conclusion/output. A bipolar proof structure or bipolar net is
built by juxtaposing/expanding bipoles through the common border; formally, the
definition is given by induction: a single bipole is a bipolar net, then a bipolar proof
structure π can be extended by a bipole β if (i) the output of β is included in the
input of π and (ii) the gluing of π with β (the composition π ◦ β) is s.t. every
Danos-Regnier switching1 of π ◦β is acyclic (AC). E.g., the bipolar net π on the
l.h.s. of Fig.2 is incrementally built starting by the expansion of bipole β1 with
bipole β2, the result of which is finally expanded with bipole β3. This graphical
construction on nets sequentializes in the derivation on the middle top side of Fig.2.

More abstractly, a MLL bipolar net π can be described by the set of partitions
of its border B= I∪O induced by all Danos-Regnier switchings of π; actually each

1A graph mutilation of one of the two premises of each O-link.

2

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

switching decomposes π into a constant number of connected components; fixed a
switching, the elements of B belonging to a same connected component constitute
a class or block of the partition of B induced by this switching. The set of partitions
induced by all switchings of π is called behavior of the net π , denoted as Bπ . E.g.,
the behavior of the net β (a bipole, indeed) of Fig.1 is given by the following set
of partitions over the border B = I∪O where I = {a,b,c,d} and O = {h1,h2} (we
omit the method name ”β” which is the handle of the method; it does not play any
”gluing role” in the expansion since it is not consumed by the expansion process):

Bβ = {{(a,c,h1,h2),(b),(d)},{(a,d,h1,h2),(b),(c)},
{(b,c,h1,h2),(a),(d)},{(b,d,h1,h2),(a),(c)}}.

Then, the correctness of the expansion step of a bipolar net π by a bipole β

is guaranteed by the orthogonality of the respective behaviors restricted to their
common border. We say that a MLL bipolar net π can be expanded by a bipole
β iff (i) the (head) output H of β is included in the (body) input I of π and (ii)
their respective behaviors, restricted to their common border H, are orthogonal,
i.e. (Bπ)

↓H ⊥ (Bβ)
↓H . In general two partitions sets P,Q on the same set X are or-

thogonal, P⊥Q, iff they are pointwise orthogonal that is, p⊥ q, ∀p∈P and ∀q∈Q
where the ”orthogonality p⊥ q” is defined by a topological condition: the bipartite
graph obtained by linking together classes (or blocks) of each partition sharing an
element is acyclic and connected (ACC) see also [4, 5, 1]. E.g., {(1,2),(3)} is both
orthogonal to {(1,3),(2)} and {(1),(2,3)} but it is not orthogonal to {(1,2,3)} as
illustrated in the rightmost h.s. of Fig.2. Thus, the bipolar net π in the l.h.s. of
Fig.2 is completely defined by its behavior Bπ with respect to its input border
I = {1,2,3,4}; similarly, bipole β = β3 is completely defined by its behavior Bβ

over its border {1,4,5,6,7} as in the bottom middle side of Fig.2. Now, since the
head H = {1,4} of β is included in the input {1,2,3,4} of π and the restricted be-
haviors, (Bπ)

↓H and (Bβ)
↓H , are orthogonal (i.e., {(1,4)} ⊥ {(1),(4)}), we can

expand π by β and get the net π ◦β with the behavior Bπ◦β as in Fig.2.
This abstraction suggests a new syntax for module/nets, based on behaviors

(partitions sets of a border) allowing us to generalize the notion of bipolar nets
exiting the standard MLL realm. A multiplicative module is a triple µ : 〈I =
{i1, ..., in≥0},O = {o1, ...,om≥1},Bµ〉 where I is an input set, O is an output set
with I ∩O = /0 and Bµ is a set of partitions (the behavior of µ) over the border
B = I∪O with n,m≥ 1. All partitions in Bµ have the same size, moreover Bµ is
such that its orthogonal is not empty. A multiplicative bipole is a special case of
module β : 〈I = {i1, ..., in},O = {o1, ...,om},Bµ〉 such that in each partition of Bβ

the output set O belongs to a single block (called, head block/class), with n,m≥ 1
(this is the ”trigger” of the method).

Let µ be a multiplicative module with behavior Bµ and border X and let β be a
multiplicative bipole with behavior Bβ over Y . If (i) the output O of β is included
in the input I of µ and (ii) the restrictions (Bµ)

↓O and (Bβ)
↓O are orthogonal then,

we can expand (by a bipolar expansion) µ with β through the border O and get
the new multiplicative net µ ◦β s.t.:

3

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

• the input border results by the union of the two input borders except O (the
trigger of the expansion);

• the output border is that one of µ;

• the behavior B(µ◦β) is built as follows: for every pair of partitions, p ∈
Bµ and q ∈Bβ , if χ is the head class (containing the trigger O) of q and
σ1, ...,σm are the m classes of p containing separately the m elements of O
then, we get the new partition r ∈B(µ◦β) consisting of:

1. the class λ obtained by merging χ together with σ1, ...,σm;
2. the remaining classes of p and q.

A multiplicative (bipolar) net is a multiplicative module built by only com-
posing multiplicative bipoles via bipolar expansion. We say that a multiplicative
net µ is MLL-definable or MLL-decomposable, iff the behavior of µ is also the
behavior of some MLL bipolar net.

2 Extending the paradigm with ”unfoldable” modules

Programming with general multiplicative nets takes the advantage of extending
Andreoli’s proof construction paradigm by introducing new methods which cannot
be expressed in the standard MLL setting: these methods are not MLL definable or
decomposable by the focused (positive/negative) alternation of connectives ⊗/O.
Nevertheless, it is possible to build new multiplicative modules simply by taking
the intersection of the behaviors of a family of bipoles having the same output bor-
der and the same “logical skeleton”, that is the same logical structure up to cyclic
permutation of the input border. Using specific generalized connectives (tipically,
”undecomposable Girard connectives” [4, 5, 1]), we may define special multiplica-
tive methods which behave either as intersection of a set of MLL bipoles or as an
union of pairs of MLL bipoles. How we will see in next sections, these new links
are able to model specific instances of “additive” computational behaviors (e.g.,
slices) and allow us to define an ”unfolding” operation.

We illustrate how to unfold a net by MLL slices by means of an example.
Consider e.g., the following multiplicative module γ equipped with the behavior
Bγ below (on the l.h.s.). It is not difficult to convince that this behavior does not
correspond to the behavior of any MLL proof structure. Neverthless, this behavoir
can be seen as obtained by the sum (an union) of the behaviors of the two pairs of
concurrent bipoles below, γ1 = (α1,α2) and γ2 = (α ′1,α

′
2) (their omitted method

names can be easily interpreted as γ1 = α1Oα2 and γ2 = α ′1Oα ′2):
i1 i2

γ

o1 o2 o3 o4 α1 :
⊗

i1

o1 o2

⊗

i2

o3 o4 : α2 α ′1 :
⊗

i1

o2 o3

⊗

i2

o4 o1 : α ′2
Bγ = { {(i1,o1,o2),(i2,o3,o4)},

{(i1,o2,o3),(i2,o4,o1)}, } = {Bγ1 = {{(i1,o1,o2),(i2,o3,o4)}} ∪ Bγ2 = {{(i1,o2,o3),(i2,o4,o1)}}}

4

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

Dually, consider the module β with the behavior Bβ as below (on the l.h.s.). Ob-
serve that this behavior, restricted to the input Iβ = {i1, i2, i3, i4}, is orthogonal to
the behavior of γ restricted to the output Oγ = {o1,o2,o3,o4}, once we assume the
following correspondence between the indexes of Iβ and Oγ : i1 = o1, i2 = o2, i3 =
o3, i4 = o4. As before, it is not difficult to convince that Bβ is not the behavior
of any MLL proof structure, nevertheless, it can be obtained by the intersection
of the behaviors of two MLL bipoles, β1 and β2, whose input borders are, re-
spectively obtained by the cyclic permutation of the sequence (i1, i2, i3, i4), that is
Bβ = Bβ1 ∩Bβ2 , as illustrated below (β contains the first undecomposable con-
nective discovered by Girard [4], denoted by G⊥4 , thus the method name of β is
G⊥4 (i1, i2, i3, i4)⊗o⊥5 ⊗o⊥6).

⊗
ax

ax

o5 o6

i1 i2 i3 i4
body

head

G⊥4

G⊥4 (i1, i2, i3, i4)⊗o⊥5 ⊗o⊥6

⊗

O O
ax

ax

i1 i2 i3 i4

bipole
β1

o5 o6(i1Oi2)⊗ (i3Oi4)⊗o⊥5 ⊗o⊥6

⊗

O O
ax

ax

i2 i1i4i3

(i2Oi3)⊗ (i4Oi1)⊗o⊥5 Oo⊥6

bipole
β2

o5 o6

Bβ = { {(i1, i3,o5,o6),(i2),(i4)},
{(i2, i4,o5,o6),(i1),(i3)} } =

Bβ1 : {{(i1, i3,o5,o6),(i2),(i4)},{(i2, i4,o5,o6),(i1),(i3)},{(i1, i4,o5,o6),(i2),(i3)},{(i2, i3, i4,o5),(i1),(i4)}}
∩

Bβ2 : {{(i1, i3,o5,o6),(i2),(i4)},{(i2, i4,o5,o6),(i1),(i3)},{(i1, i2,o5,o6),(i3),(i4)},{(i3, i4,o5,o6),(i1),(i2)}}

Multiplicative bipoles like γ (resp., β) are called unfoldable bipoles and {γi,γ2}
(resp., {β1,β2}) is the unfolding trace (or the unfolding family) of γ (resp., β).

Now, assume we built a multiplicative net T which contains an expansion step
of a bipole β by a bipole γ as in the T2 module enclosed by a blue dashed line in
Fig.3 (on the l.h.s.). We may unfold T2 by two modules, T ′2 and T ′′2 , and get two
correct nets, T ′ = T1 ◦T ′2 and T ′′ = T1 ◦T ′′2 , as in the middle and r.h.s. of Fig.3.

T :

⊗
ax

ax

i1 i2

γ

β

o6o5

o1 o2 o3 o4

T1

T2

→

{
T ′ :

α1 α2

β1

o1 o2 o3 o4

T1

o6o5

i1 i2

T ′2

and T ′′ :

α ′2α ′1

β2

o2 o3 o4 o1

o5 o6

i1 i2 T1

T ′′2 }

Figure 3: The unfolding of the T1 ◦T2 net by T1 ◦T ′2 and T1 ◦T ′′2 nets.

3 Probabilistic logic programming with modules

In the MLL case, it appears ”natural” [6] to associate, respectively, a conditional
probability to a MLL method/bipole and an a-priori probability to a MLL fact
represented as in the following figure, with the implicit assumption that we inter-
pret E0 = [h1, ...,hn] and E1 = [a1

1, ...,a
1
k]⊗ ·· ·⊗Em = [am

1 , ...,a
m
k] as independent

observable events Ei with 1≤ i≤ m.

5

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

hn...

...

a1
1 am

1 ...a
m
km... a1

k1

E0

h1 hn...
E0

E1 En...

h1

Note that in general, the probability of the product of two independent events is
equal to the product of the probabilities of these events, p(A∩B) = p(A).p(B) or,
in general, for m (independent) events, E1, ...,Em, we get

p(
m

∏
i=1

Ei) =
m

∏
i=1

P(Ei).

Thus, in case β is a MLL fact ”E0 = [h1, ...,hn] : −” we may associate an a-priori
probability to β as p(β) = p(E0) otherwise, in case β is a MLL method/bipole
”E0 :−E1, ...,Em” we associate a conditional probability p(β) = p(E0|∏m

i=1 Ei) to
the MLL bipole β . Now, since MLL bipoles are special cases of general unfoldable
multiplicative bipoles we extend probabilities to unfoldable bipoles as follows.

Definition 1 (probability distribution of unfoldable bipoles). Let β be a mul-
tiplicative unfoldable bipole with border I = {i1, ..., in}]O = {o1, ...,om}and be-
havior Bβ ; let β1, ...,βk be the unfolding trace (or family of MLL bipoles) s.t.⋃k

i=1 βi = Bβ . We call a probability distribution for β a (finite) set of real val-
ues, Pβ (O|I) = {v1, ...,vk≥1}, with 0 < vi ∈R≤ 1 and k is the size (cardinality) of
the trace of the unfolding family of β , built as follows:

• If β is a MLL bipole then (the trace of β is the singleton {β} so) P (O|I) =
{p(β)} where p(β) is a real number s.t. 0 < p(β) ≤ n; in particular, if
β is a method with I 6= /0 then p(β) is the conditional probability p(O|I),
otherwise, in case β is a fact (i.e., I = /0) then we associate to β an a-priori
probability p(O).

• Otherwise, β is an unfoldable multiplicative bipole whose trace β1, ...,βk
has size k ≤ 2 then we associate to each element of the trace βi a prob-
ability value p(βi) (i.e. a real number) s.t. 0 < p(βi) ≤ n with the con-
dition that in case that

⋃k
i=1 βi = Bβ then ∑

k
i=1p(βi) = 1; thus P(O|I) =

{p(βi) | βi is in the trace of β}.

Now, how do we propagate/compose probability information while building a a
net? There are two directions of the information flow in our net construction model:

1. net expansion ↑: the first direction consists in the bottom-up construction
of the net, by module expansions;

2. info propagation ↓: the second direction intervenes when the net construc-
tion is successfully completed; in fact, if successful, we can invert the di-
rection of the information and propagate (by composition) the probability

6

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

information starting from the top (that is, the a-priori probabilities associ-
ated to the axiom-bipoles/facts) towards to the bottom (via composition of
the conditional probabilities associated to the bipoles/methods). It is in the
information propagation phase that the unfolding plays its decisive role.

We show by an example, inspired to Bayes’ Theorem, how the unfolding of the net
allows to propagate alternative distributions of probabilities.

3.1 An example inspired to Bayes’ Theorem

In probability theory and statistics, Bayes’ Theorem describes the probability of an
event, based on prior knowledge of conditions that might be related to this event.
It is used to calculate the probability of a cause which triggered the observed event
and also in Machine Learning for training Naive Bayesian Classificators.
Bayes’ Theorem: let A1, ...,An be independent events and a distinct event E then

p(Ai|E) =
p(E|Ai)P(Ai)

p(E)
=

p(E|Ai)p(Ai)

∑
n
i=1p(E|Ai)p(Ai)

where:

• p(Ai) is the a-priori probability of Ai, where ”a priori” means that it does not
account for any information about the event E; we assume Σn

i=1p(Ai) = 1;

• p(E|Ai) is the conditional probability of E given Ai is true;

• p(Ai|E) is a conditional probability: the likelihood of event Ai occurring
given that E is true (i.e., the a-posteriori probability of Ai given E is true);

• p(E) = Σn
i=1p(E|Ai)P(Ai) is the absolute probability of E.

The theorem describes how opinions in observing Ai are enriched by observing the
event E. Let us use it in our syntax. Assume we built by bottom-up expansion the
net T on the l.h.s. of Fig. 3. For the sake of simplicity, assume that module γ is
a ”multi-facts” that is, a multi-facts or concurrent facts (i.e., its input set {i1, i2} is
empty). We know that T is unfoldable, since both γ and β are so then assume that
the trace of γ is γ1 = (α1Oα2) and γ2 = (α ′1,Oα ′2) and the trace of β is β1 and β

as in Fig.3. According to Definition 1, we may assign a probability distribution to
the traces of γ and β as follows:

• (a-priori probabilities): Pγ(O|I) = {p(γ1 = (α1Oα2)),p(γ2 = (α ′1Oα ′2))}
where p(γ1) = 2/5 denotes e.g. the a-priori probability that ”a student is
female” (p(F)) while p(γ2) = 3/5 denotes e.g. the a-priori probability that
”a student is male” (p(M)). Their sum, p(γ1)+p(γ2) = 1, satisfies Def. 1.

• (conditional probabilities): Pβ (O|I) = {p(β1),p(β2)} where p(β1) denotes
e.g. the conditional probability that ”a female student wears pants” p((o5,o6)|
(i1, i2, i3, i4)) = p(P|F) = 1/2 while p(β2) is the conditional probability that
a ”a male student wears pants” p((o5,o6)|(i2, i3, i4, i1)) = p(P|M) = 1.

7

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

From the proceedings of Trends in Linear Logic and Applications 2021 (TLLA 2021, eds E. Pimentel, Ch. Retoré)
https://hal.archives-ouvertes.fr/TLLA2021

Distributed under a Creative Commons Attribution - Non commercial 4.0 International License

Let us ”translate” the MLL bipoles occurring in the trace of T in to the correspond-
ing Prolog-like program (4 facts and 2 methods) as follows:

α1 : [1,2] :−. α2 : [3,4] :−. β1 : [5,6] :−[1,2], [3,4]
α ′1 : [2,3] :−. α ′2 : [4,1] :−. β2 : [5,6] :−[2,3], [4,1].

Now, let us consider the following pair of independent events {F,M} where:
- F = (F1⊗F2) with F1 = [1,2],F2 = [3,4] is the event F=”a female student”;
- M = (M1⊗M2) with M1 = [2,3],M2 = [4,1] is the event M=”a male student”,
- E = [5,6] is the event E=”a student wears pants”.

We then associate the following a-priori probability distribution:
- p(F) = p(F1).p(F2) = p(γ1) = 2/5 and
- p(M) = p(M1).p(M2) = p(γ2) = 3/5 (clearly, p(F)+p(M) = 1).

Finally, we associate the conditional probabilities to the set of methods as follows:
- p(E|F = (F1⊗F2)) = p(β1) associated to bipole β1
- p(E|M = (M1⊗M2)) = p(β2) associated to bipole β2

From which we can calculate the absolute probability that a student wears trousers:
p(E) = ∑

2
i=1p(E|Ei)p(Ei), for E1 = F and E2 = M.

The unfolding of the net T1 ◦T2 of Fig. 3, allows to propagate the probabilities
information top-down and so to calculate, via the Bayes’ Theorem, the a-posterior
probability that ”a student wearing trousers is female” p(F |E) (resp., ”a student
wearing trousers is male”, p(M|E)) by using T ′2 (resp., by using T ′′2).

p(F |E) = p(E|F)p(F)

p(E)
= 1/4 p(M|E) = p(E|M)p(M)

p(E)
= 3/4.

Thus the Naive Bayesian Classificator, trained on this model, will classify next
student wearing pants as ”male” since p(M|E)> p(F |E).

References

[1] Acclavio, M. and Maieli, R.: Generalized Connectives for Multiplicative
Linear Logic. In LIPIcs, Vol. 152, Proc. of CSL200 Conference. 3, 4

[2] Andreoli, J.-M.: Focussing proof-nets construction as a middleware
paradigm. LNCS, vol. 2392, pp. 501-516, Springer, Heidelberg (2002). 1

[3] Danos, V. and Regnier, L.: The structure of multiplicatives. Archive for
Mathematical Logic, vol. 28, pg. 181-203, Springer-Verlag, 1989. 1

[4] Girard, J.-Y.: Multiplicatives. Rendiconti del Seminario Matematico
dell’Università e Policlinico di Torino, pp. 11–33, 1987. 1, 3, 4, 5

[5] Maieli, R.: Non decomposable connectives of linear logic. In APAL, Vol.
170, Issue 11, November 2019. 3, 4

[6] Nguembang Fadja, A. and and Riguzzi, F.: Probabilistic Logic Program-
ming in Action. LNCS, vol. 10344, Springer 2015. 5

8

 https://hal.archives-ouvertes.fr/TLLA2021
https://creativecommons.org/licenses/by-nc/4.0/

	Logic programming with multiplicative modules
	Extending the paradigm with "unfoldable" modules
	Probabilistic logic programming with modules
	An example inspired to Bayes' Theorem

