
HAL Id: lirmm-03271568
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271568v1

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Packing Arc-Disjoint Cycles in Tournaments
Stéphane Bessy, Marin Bougeret, Ramaswamy Krithika, Abhishek Sahu,

Saket Saurabh, Jocelyn Thiebaut, Meirav Zehavi

To cite this version:
Stéphane Bessy, Marin Bougeret, Ramaswamy Krithika, Abhishek Sahu, Saket Saurabh, et al.. Pack-
ing Arc-Disjoint Cycles in Tournaments. Algorithmica, 2021, 83 (5), pp.1393-1420. �10.1007/s00453-
020-00788-2�. �lirmm-03271568�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271568v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Packing Arc-Disjoint Cycles in Tournaments
Stéphane Bessy
Université de Montpellier, LIRMM, CNRS, Montpellier, France
bessy@lirmm.fr

Marin Bougeret
Université de Montpellier, LIRMM, CNRS, Montpellier, France
bougeret@lirmm.fr

R. Krithika
Indian Institute of Technology Palakkad, India
krithika@iitpkd.ac.in

Abhishek Sahu
The Institute of Mathematical Sciences, HBNI, Chennai, India
asahu@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Bergen, Norway
saket@imsc.res.in

Jocelyn Thiebaut
Université de Montpellier, LIRMM, CNRS, Montpellier, France
thiebaut@lirmm.fr

Meirav Zehavi
Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

Abstract
A tournament is a directed graph in which there is a single arc between every pair of distinct
vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity
of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of
size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these
problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in
Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the
linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of
arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results
seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show
that the problem of determining if a tournament has a cycle packing and a feedback arc set of the
same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they
can be solved in 2O(k log k)nO(1) time and 2O(k)nO(1) time respectively. Moreover, they both admit
a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2o(

√
k)nO(1)

time under the Exponential-Time Hypothesis.
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1 Introduction

Given a (directed or undirected) graph G and a positive integer k, the Disjoint Cycle
Packing problem is to determine whether G has k (vertex or arc/edge) disjoint (directed
or undirected) cycles. Packing disjoint cycles is a fundamental problem in Graph Theory
and Algorithm Design with applications in several areas. Since the publication of the classic
Erdős-Pósa theorem in 1965 [21], this problem has received significant scientific attention in
various algorithmic realms. In particular, Vertex-Disjoint Cycle Packing in undirected
graphs is one of the first problems studied in the framework of parameterized complexity.
In this framework, each problem instance is associated with a non-negative integer k called
parameter, and a problem is said to be fixed-parameter tractable (FPT) if it can be solved in
f(k)nO(1) time for some computable function f , where n is the input size. For convenience,
the running time f(k)nO(1) is denoted as O?(f(k)). A kernelization algorithm is a polynomial-
time algorithm that transforms an arbitrary instance of the problem to an equivalent instance
of the same problem whose size is bounded by some computable function g of the parameter
of the original instance. The resulting instance is called a kernel and if g is a polynomial
function, then it is called a polynomial kernel. A decidable parameterized problem is FPT if
and only if it has a kernel (not necessarily of polynomial size). Kernelization typically involves
applying a set reduction rules to the given instance to produce another instance. A reduction
rule is said to be safe if it is sound and complete, i.e., applying it to the given instance
produces an equivalent instance. In order to classify parameterized problems as being FPT
or not, the W-hierarchy is defined: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. It is believed that the
subset relations in this sequence are all strict, and a parameterized problem that is hard for
some complexity class above FPT in this hierarchy is said to be fixed-parameter intractable.
Further details on parameterized algorithms we refer to recent books [16, 19, 24, 26].

Vertex-Disjoint Cycle Packing in undirected graphs is FPT with respect to the
solution size k [10, 36] but has no polynomial kernel unless NP ⊆ coNP/poly [11]. In contrast,
Edge-Disjoint Cycle Packing in undirected graphs admits a kernel with O(k log k)
vertices (and is therefore FPT) [11]. On directed graphs, these problems have many practical
applications (for example in biology [12, 18]) and they have been extensively studied [7, 34].
It turns out that Vertex-Disjoint Cycle Packing and Arc-Disjoint Cycle Packing
are equivalent and are W[1]-hard [33, 42]. Therefore, studying these problems on a subclass
of directed graphs is a natural direction of research. Tournaments form a mathematically
rich subclass of directed graphs with interesting structural and algorithmic properties [6, 38].
Tournaments have several applications in modeling round-robin tournaments and in the
study of voting systems and social choice theory [29, 31].

Feedback Vertex Set and Feedback Arc Set are two well-explored algorithmic
problems on tournaments. A feedback vertex (arc) set is a set of vertices (arcs) whose deletion
results in an acyclic graph. Given a tournament, MinFAST and MinFVST are the problems
of obtaining a feedback arc set and feedback vertex set of minimum size, respectively. We refer
to the corresponding decision version of the problems as FAST and FVST. The optimization
problems MinFAST and MinFVST have numerous practical applications in the areas of
voting theory [17], machine learning [15], search engine ranking [20] and have been intensively
studied in various algorithmic areas. MinFAST and MinFVST are NP-hard [3, 13] while
FAST and FVST are FPT when parameterized by the solution size k [4, 23, 25, 31]. Further,
FAST has a kernel with O(k) vertices and FVST has a kernel with O(k1.5) vertices [9, 35].
Surprisingly, the duals (in the linear programming sense) of MinFAST and MinFVST
have not been considered in the literature until recently. Any tournament that has a cycle
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also has a triangle [7]. Therefore, if a tournament has k vertex-disjoint cycles, then it also
has k vertex-disjoint triangles. Thus, Vertex-Disjoint Cycle Packing in tournaments
is just packing vertex-disjoint triangles. This problem is NP-hard [8]. A straightforward
application of the colour coding technique [5] shows that this problem is FPT and a kernel
with O(k2) vertices is an immediate consequence of the quadratic element kernel known for
3-Set Packing [1]. Recently, a kernel with O(k1.5) vertices was shown for this problem
using interesting variants and generalizations of the popular expansion lemma [35].

A tournament that has k arc-disjoint cycles need not necessarily have k arc-disjoint
triangles. This observation hints that packing arc-disjoint cycles could be significantly
harder than packing vertex-disjoint cycles. It also hints that packing arc-disjoint cycles and
arc-disjoint triangles in tournaments could be problems of different complexities. This is the
starting point of our study. Subsequently, we refer to a set of pairwise arc-disjoint cycles
as a cycle packing and a set of pairwise arc-disjoint triangles as a triangle packing. Given
a tournament, MaxACT and MaxATT are the problems of obtaining a maximum set of
arc-disjoint cycles and triangles, respectively. We refer to the corresponding decision version
of the problems as ACT and ATT. Formally, given a tournament T and a positive integer k,
ACT (resp. ATT) is the task of determining if T has k arc-disjoint cycles (resp. triangles).
From a structural point of view, the problem of partitioning the arc set of a directed graph
into a collection of triangles has been studied for regular tournaments [44], almost regular
tournaments [2] and complete digraphs [28]. In this work, we study the classical complexity
of MaxACT and MaxATT and the parameterized complexity of ACT and ATT with
respect to the solution size (i.e. the number k of cycles/triangles) as parameter.

Our main contributions.
We prove that MaxATT and MaxACT are NP-hard (Theorems 5 and 7). As a
consequence, we also show that ACT and ATT do not admit algorithms with O?(2o(

√
k))

running time under the Exponential-Time Hypothesis (Theorem 10). Moreover, deciding
if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete
(Theorem 9).
A tournament T has k arc-disjoint cycles if and only if T has k arc-disjoint cycles each of
length at most 2k + 1 (Theorem 11).
ACT can be solved in O?(2O(k log k)) time (Theorem 17) and admits a kernel with O(k)
vertices (Theorem 16).
ATT can be solved inO?(2O(k)) time and admits a kernel withO(k) vertices (Theorem 18).

2 Preliminaries

We denote the set {1, 2, . . . , n} of consecutive integers from 1 to n by [n].

Directed Graphs. A directed graph D (or digraph) is a pair consisting of a finite set V (D) of
vertices of D and a set A(D) of arcs of D, which are ordered pairs of elements of V (D). For a
vertex v ∈ V (D), its out-neighbourhood, denoted byN+(v), is the set {u ∈ V (D) : vu ∈ A(D)}
and its out-degree, denoted by d+(x), is |N+(v)|. For a set F of arcs, V (F ) denotes the
union of the sets of endpoints of arcs in F . Given a digraph D and a subset X of vertices,
we denote by D[X] the digraph induced by the vertices in X. Moreover, we denote by D \X
the digraph D[V (D) \X] and say that this digraph is obtained by deleting X from D.

MFCS 2019
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Paths and Cycles. A path P in a digraph D is a sequence (v1, . . . , vk) of distinct vertices
such that for each i ∈ [k − 1], vivi+1 ∈ A(D). The set {v1, . . . , vk} is denoted by V (P ) and
the set {vivi+1 : i ∈ [k − 1]} is denoted by A(P ). A cycle C in D is a sequence (v1, . . . , vk)
of distinct vertices such that (v1, . . . , vk) is a path and vkv1 ∈ A(D). The length of a path
or cycle X is the number of vertices in it. A cycle on three vertices is called a triangle. A
digraph is called a directed acyclic graph if it has no cycles. A feedback arc set (FAS) is
a set of arcs whose deletion results in an acyclic graph. For a digraph D, let minfas(D)
denote the size of a minimum FAS of D. Any directed acyclic graph D has an ordering
σ(D) = (v1, . . . , vn) called topological ordering of its vertices such that for each vivj ∈ A(D),
i < j holds. Given an ordering σ and two vertices u and v, we write u <σ v if u is before v
in σ.

Tournaments. A tournament T is a digraph in which for every pair u, v of distinct vertices
either uv ∈ A(T ) or vu ∈ A(T ) but not both. In other words, a tournament T on n vertices
is an orientation of the complete graph Kn. A tournament T can alternatively be defined by
an ordering σ(T ) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T ) (which will
be denoted A(T ) as the considered ordering is not ambiguous), where each arc a ∈ A(T ) is of
the form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we define V (T ) = {vi : i ∈ [n]}
and A(T ) = A(T ) ∪ A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is the set
of forward arcs of T in the given ordering σ(T ). The pair (σ(T ),A(T )) is called a linear
representation of the tournament T . A tournament is called transitive if it is a directed acyclic
graph and a transitive tournament has a unique topological ordering. Given two tournaments
T1, T2 defined by σ(Tl) and A(Tl) with l ∈ {1, 2}, we denote by T = T1T2 the tournament
called the concatenation of T1 and T2, where V (T ) = V (T2) ∪ V (T2), σ(T ) = σ(T1)σ(T2) is
the concatenation of the two sequences, and A(T ) = A(T1) ∪A(T2).

3 NP-hardness of MaxACT and MaxATT

This section contains our main results. We prove the NP-hardness of MaxATT using a
reduction from 3-SAT(3). Here, 3-SAT(3) denotes the specific case of 3-SAT where each
clause has at most three literals, and each literal appears at most two times positively and
exactly one time negatively. In the following, denote by F the input formula of an instance
of 3-SAT(3). Let n be the number of its variables and m be the number of its clauses. We
may suppose that n ≡ 3 (mod 6). If it is not the case, we can add up to 5 unused variables
x with the trivial clause x ∨ x. This operation guarantees us we keep the hypotheses of
3-SAT(3). We can also assume that m+ 1 ≡ 3 (mod 6). Indeed, if it not the case, we add
6 new unused variables x1, . . . , x6 with the 6 trivial clauses xi ∨ xi, and the clause x1 ∨ x2.
This padding process keep both the 3-SAT(3) structure and n ≡ 3 (mod 6). From F we
construct a tournament T which is the concatenation of two tournaments Tv and Tc defined
below.

In the following, let f be the reduction that maps an instance F of 3-SAT(3) to a
tournament T we describe now.

The variable tournament Tv. For each variable vi of F , we define a tournament Vi of
order 6 as follows: σi(Vi) = (ri, x̄i, x1

i , si, x
2
i , ti) and Aσ(Vi) = {siri, tix1

i }. Figure 1 is a
representation of one variable gadget Vi. One can notice that the minimum FAS of Vi
corresponds exactly to the set of its backward arcs. We now define V (Tv) be the union
of the vertex sets of the Vis and we equip Tv with the order σ1σ2 . . . σn. Thus, Tv has 6n
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ri x̄i x1
i

si x2
i ti

Figure 1 The variable gadget Vi. Only backward arcs are depicted, so all the remaining arcs are
forward arcs.

vertices. We also add the following backward arcs to Tv. Since n ≡ 3 (mod 6), there is an
edge-disjoint (undirected) triangle packing of Kn covering all its edges with triangles that
can be computed in polynomial time [32]. Let {u1, . . . , un} be an arbitrary enumeration of
the vertices of Kn. Using a perfect triangle packing ∆Kn of Kn, we create a tournament
TKn

such that σ′(TKn
) = (u1, . . . , un) and Aσ′(TKn

) = {ukui : (ui, uj , uk) is a triangle of
∆Kn

with i < j < k}. Now we set Aσ(Tv) = {xy : x ∈ V (Vi), y ∈ V (Vj) for i 6= j and
ujui ∈ Aσ′(TKn

)}∪
⋃n
i=1Aσ(Vi). In some way, we “blew up” every vertex ui of TKn

into our
variable gadget Vi.

The clause tournament Tc. For each of them clauses cj of F , we define a tournament Cj of
order 3 as follows: σ(Cj) = (c1j , c2j , c3j ) and Aσ(Cj) = ∅. In addition, we have a (m+1)th tour-
nament denoted by Cm+1 and defined by σ(Cm+1) = (c1m+1, c

2
m+1, c

3
m+1) and Aσ(Cm+1) =

{c3m+1c
1
m+1}, that is Cm+1 is a triangle. We call this triangle the dummy triangle , and its ver-

tices the dummy vertices. We now define Tc such that σ(Tc) is the concatenation of each order-
ing σ(Cj) in the natural order, that is σ(Tc) = (c11, c21, c31, . . . , c1m, c2m, c3m, c1m+1, c

2
m+1, c

3
m+1).

So Tc has 3(m+ 1) vertices. Since m+ 1 ≡ 3 (mod 6), we use the same trick as above to
add arcs to Aσ(Tc) coming from a perfect packing of undirected triangles of Km+1. Once
again, we “blew up” every vertex uj of TKm+1 into our clause gadget Cj .

The tournament T . To define our final tournament T let us begin with its ordering σ
defined by σ(T ) = σ(Tv)σ(Tc). Then we construct Avc(T ) the backward arcs between Tc
and Tv. For any j ∈ [m], if the clause cj in F has three literals, that is cj = `1 ∨ `2 ∨ l3, then
we add to Avc(T ) the three backward arcs c3jzu where u ∈ [3] and such that zu = x̄iu when
`u = v̄iu , and zu ∈ {x1

iu
, x2
iu
} when `u = viu in such a way that for any i ∈ [n], there exists a

unique arc a ∈ Avc(T ) with h(a) = x1
i . Informally, in the previous definition, if x1

iu
is already

“used” by another clause, we chose zu = x2
iu
. Such an orientation will always be possible since

each variable occurs at most two times positively and once negatively in F . If the clause cj
in F has only two literals, that is cj = `1 ∨ `2, then we add in Avc(T ) the two backward arcs
c2jzu where u ∈ [2] and such that zu = x̄iu when `u = v̄iu and zu ∈ {x1

iu
, x2
iu
} when `u = viu

in such a way that for any i ∈ [n], there exists a unique arc a ∈ Avc(T ) with h(a) = x1
i .

Finally, we add in Avc(T ) the backward arcs cum+1x̄i for any u ∈ [3] and i ∈ [n]. These arcs
are called dummy arcs. We set Aσ(T ) = Aσ(Tv) ∪Aσ(Tc) ∪Avc(T ). Notice that each x̄i has
exactly four arcs a ∈ Aσ(T ) such that h(a) = x̄i and t(a) is a vertex of Tc. To finish the
construction, notice also that T has 6n+3(m+1) vertices and can be computed in polynomial
time. Figure 2 is an example of the tournament obtained from a trivial 3-SAT(3) instance.

Now, we move on to proving the correctness of the reduction. First of all, observe that in
each variable gadget Vi, there are only four triangles: let δ1

i , δ2
i , δ3

i and δ4
i be the triangles

(ri, x̄i, si), (ri, x1
i , si), (x1

i , si, ti) and (x1
i , x

2
i , ti), respectively. Moreover, notice that there are

only three maximal triangle packings of Vi which are {δ1
i , δ

3
i }, {δ1

i , δ
4
i } and {δ2

i , δ
4
i }. We call

these packings ∆>i , ∆>′

i and ∆⊥i , respectively.

MFCS 2019
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r1 x̄1 x1
1
s1 x2

1 t1 r2 x̄2 x1
2
s2 x2

2 t2 r3 x̄3 x1
3
s3 x2

3 t3 c11 c21 c31 c12 c22 c32

c13 c23 c33

Figure 2 Example of reduction obtained when F = {c1, c2} where c1 = v̄1 ∨ v2 ∨ v̄3 and
c2 = v1 ∨ v̄2 ∨ v3. Forward arcs are not depicted. In addition to the depicted backward arcs, we
have the 36 backward arcs from V3 to V1, and the 9 backward arcs from C3 to C1.

Given a triangle packing ∆ of T and a subset X of vertices, we define for any x ∈ X
the ∆-local out-degree of the vertex x, denoted d+

X\∆(x), as the remaining out-degree
of x in T [X] when we remove the arcs of the triangles of ∆. More formally, we set:
d+
X\∆(x) = |{xa : a ∈ X,xa ∈ A[X], xa /∈ A(∆)}|.

I Remark 1. Given a variable gadget Vi, we have:
(i) d+

Vi\∆>
i

(x1
i ) = d+

Vi\∆>
i

(x2
i ) = 1 and d+

Vi\∆>
i

(x̄i) = 3,
(ii) d+

Vi\∆>′
i

(x1
i ) = 1, d+

Vi\∆>′
i

(x2
i ) = 0 and d+

Vi\∆>′
i

(x̄i) = 3,
(iii) d+

Vi\∆⊥
i

(x1
i ) = d+

Vi\∆⊥
i

(x2
i ) = 0 and d+

Vi\∆⊥
i

(x̄i) = 4,
(iv) none of x̄ix1

i , x̄ix2
i , x̄iti belongs to ∆>i or ∆⊥i .

Informally, we want to set the variable xi to true (resp. false) when one of the locally-
optimal ∆>′

i or ∆>i (resp. ∆⊥i ) is taken in the variable gadget Vi in the global solution. Now
given a triangle packing ∆ of T , we partition ∆ into the following sets:

∆V,V,V = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Vk with i < j < k},
∆V,V,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Ck with i < j},
∆V,C,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Cj , c ∈ Ck with j < k},
∆C,C,C = {(a, b, c) ∈ ∆ : a ∈ Ci, b ∈ Cj , c ∈ Ck with i < j < k},
∆2V,C = {(a, b, c) ∈ ∆ : a, b ∈ Vi, c ∈ Cj},
∆V,2C = {(a, b, c) ∈ ∆ : a ∈ Vi, b, c ∈ Cj},
∆3V = {(a, b, c) ∈ ∆ : a, b, c ∈ Vi},
∆3C = {(a, b, c) ∈ ∆ : a, b, c ∈ Ci}.

Notice that in T , there is no triangle with two vertices in a variable gadget Vi and its
third vertex in a variable gadget Vj with i 6= j since all the arcs between two variable gadgets
are oriented in the same direction. We have the same observation for clauses.
In the two next lemmas, we prove some properties concerning the solution ∆, which imply
the result of Lemma 4.

I Lemma 2. There exists a triangle packing ∆v (resp. ∆c) which uses exactly the arcs between
distinct variable gadgets (resp. clause gadgets). Therefore, we have |∆V,V,V | ≤ 6n(n− 1) and
|∆C,C,C | ≤ 3m(m+ 1)/2 and these bounds are tight.

Proof. First recall that the tournament Tv is constructed from a tournament TKn
which

admits a perfect packing of n(n − 1)/6 triangles. Then we replaced each vertex ui in
TKn

by the variable gadget Vi and kept all the arcs between two variable gadgets Vi
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and Vj in the same orientation as between ui and uj . Let uiujuk be a triangle of the
perfect packing of TKn

. We temporally relabel the vertices of Vi, Vj and Vk respectively by
{fi, i ∈ [6]}, {gi, i ∈ [6]} and {hi, i ∈ [6]} and consider the tripartite tournament K6,6,6 given
by V (K6,6,6) = {fi, gi, hi, i ∈ [6]} and A(K6,6,6) = {figj , gihj , hifj : i, j ∈ [6]}. Then it is
easy to check that {(fi, gj , hi+j (mod 6)) : i, j ∈ [6]} is a perfect triangle packing of K6,6,6.
Since every triangle of TKn becomes a K6,6,6 in Tv, we can find a triangle packing ∆v which
use all the arcs between disjoint variable gadgets. We use the same reasoning to prove that
there exists a triangle packing ∆c which use all the arcs available in Tc between two distinct
clause gadget. J

I Lemma 3. For any triangle packing ∆ of the tournament T , we have:
(i) |∆V,V,V |+ |∆C,C,C | ≤ 6n(n− 1) + 3m(m+ 1)/2,
(ii) |∆2V,C |+ |∆V,2C |+ |∆V,C,C |+ |∆V,V,C | ≤ |Avc(T )|,
(iii) |∆3V | ≤ 2n,
(iv) |∆3C | ≤ 1.
Therefore in total we have |∆| ≤ 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+ 1.

Proof. Let ∆ be a triangle packing of T . Recall that we have: |∆| = |∆V,V,V |+ |∆V,V,C |+
|∆V,C,C |+ |∆C,C,C |+ |∆2V,C |+ |∆V,2C |+ |∆3V |+ |∆3C |. First, inequality (i) comes from
Lemma 2. Then, we have |∆2V,C | + |∆V,2C | + |∆V,C,C | + |∆V,V,C | ≤ |Avc(T )| since every
triangle of these sets consumes one backward arc from Tc to Tv. We have |∆3V | ≤ 2n since
we have at most 2 disjoint triangles in each variable gadget. Finally we also have |∆3C | ≤ 1
since the dummy triangle is the only triangle lying in a clause gadget. J

I Lemma 4. F is satisfiable if and only if there exists a triangle packing ∆ of size
6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+ 1 in the tournament T .

As 3-SAT(3) is NP-hard [39, 43], this implies the following theorem.

I Theorem 5. MaxATT is NP-hard.

As mentioned in the introduction, packing arc-disjoint cycles is not necessarily equivalent
to packing arc-disjoint triangles. Thus, we need to establish the following lemma to transfer
the previous NP-hardness result to MaxACT.

I Lemma 6. Given a 3-SAT(3) instance F , and T the tournament constructed from F

with the reduction f , we have a triangle packing ∆ of T of size 6n(n− 1) + 3m(m+ 1)/2 +
2n+ |Avc(T )|+ 1 if and only if there is a cycle packing O of the same size.

The previous lemma and Theorem 5 imply the following theorem.

I Theorem 7. MaxACT is NP-hard.

Let us now define two special cases Tight-ATT (resp. Tight-ACT) where, given a
tournament T and a linear ordering σ with k backward arcs, where k = minfas(T ), the goal
is to decide if there is a triangle (resp. cycle) packing of size k. We call these special cases
the “tight” versions of the classical packing problems because as the input admits an FAS
of size k, any triangle (or cycle) packing has size at most k. We have the following result,
directly implying the NP-hardness of Tight-ATT and Tight-ACT.

I Lemma 8. Let T be a tournament constructed by the reduction f , and k be the threshold
value defined in Lemma 4. Then, we have k = minfas(T ) and we can construct (in polynomial
time) an ordering of T with k backward arcs.
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I Theorem 9. Tight-ATT and Tight-ACT are NP-hard.

Finally, the size s of the required packing in Lemma 4 satisfies s = O((n+m)2). Under
the Exponential-time Hypothesis, the problem 3-SAT cannot be solved in 2o(n+m) [16, 30].
Then, using the linear reduction from 3-SAT to 3-SAT(3) [43], we also get the following
result.

I Theorem 10. Under the Exponential-time Hypothesis, ATT and ACT cannot be solved
in O?(2o(

√
k)) time.

In the framework of parameterizing above guaranteed values [37], the above results imply
that ACT parameterized below the guaranteed value of the size of a minimal feedback arc
set is fixed-parameter intractable.

4 Parameterized Complexity of ACT

The classical Erdős-Pósa theorem for cycles in undirected graphs states that for each non-
negative integer k, every undirected graph either contains k vertex-disjoint cycles or has a
feedback vertex set consisting of f(k) = O(k log k) vertices [21]. An interesting consequence
of this theorem is that it leads to an FPT algorithm for Vertex-Disjoint Cycle Packing
(see [36] for more details).

Analogous to these results, we prove an Erdős-Pósa type theorem for tournaments and
show that it leads to an O?(2O(k log k)) time algorithm and a linear vertex kernel for ACT.
First we obtain the following result.

I Theorem 11. Let k and r be positive integers such that r ≤ k. A tournament T contains
a set of r arc-disjoint cycles if and only if T contains a set of r arc-disjoint cycles each of
length at most 2k + 1.

Proof. The reverse direction of the claim holds trivially. Let us now prove the forward
direction. Let C be a set of r arc-disjoint cycles in T that minimizes

∑
C∈C |C|. If every

cycle in C is a triangle, then the claim trivially holds. Otherwise, let C be a longest cycle in
C and let ` denote its length. Let vi, vj be a pair of non-consecutive vertices in C. Then,
either vivj ∈ A(T ) or vjvi ∈ A(T ). In any case, the arc e between vi and vj along with A(C)
forms a cycle C ′ of length less than ` with A(C ′) \ {e} ⊂ A(C). By our choice of C, this
implies that e is an arc in some other cycle Ĉ ∈ C. This property is true for the arc between
any pair of non-consecutive vertices in C. Therefore, we have

(
`
2
)
− ` ≤ `(k − 1) leading to

` ≤ 2k + 1. J

This result essentially shows that it suffices to determine the existence of k arc-disjoint
cycles in T each of length at most 2k + 1 in order to determine if (T, k) is an yes-instance
of ACT. This immediately leads to a quadratic Erdős-Pósa bound. That is, for every
non-negative integer k, every tournament T either contains k arc-disjoint cycles or has an
FAS of size O(k2). Next, we strengthen this result to arrive at a linear bound.

We will use the following lemma known from [14] in order to prove Theorem 131. For a
digraph D, let Λ(D) denote the number of non-adjacent pairs of vertices in D. That is, Λ(D)
is the number of pairs u, v of vertices of D such that neither uv ∈ A(D) nor vu ∈ A(D).

1 The authors would like to thank F. Havet for pointing out that Lemma 12 was a consequence of a result
by Chudnovsky et al. [14], as well for an improvement of the constant in Theorem 13.
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I Lemma 12. [14] Let D be a triangle-free digraph in which for every pair u, v of distinct
vertices, at most one of uv or vu is in A(D). Then, we can compute an FAS of size at most
Λ(D) in polynomial time.

I Theorem 13. For every non-negative integer k, every tournament T either contains k
arc-disjoint triangles or has an FAS of size at most 5(k−1) that can be obtained in polynomial
time.

Proof. Let C be a maximal set of arc-disjoint triangles in T (that can be obtained greedily
in polynomial time). If |C| ≥ k, then we have the required set of triangles. Otherwise, let
D denote the digraph obtained from T by deleting the arcs that are in some triangle in
C. Clearly, D has no triangle and Λ(D) ≤ 3(k − 1). Let F be an FAS of D obtained in
polynomial time using Lemma 12. Then, we have |F | ≤ 3(k−1). Next, consider a topological
ordering σ of D − F . Each triangle of C contains at most 2 arcs which are backward in this
ordering. If we denote by F ′ the set of all the arcs of the triangles of C which are backward
in σ, then we have |F ′| ≤ 2(k− 1) and (D−F )−F ′ is acyclic. Thus F ∗ = F ∪F ′ is an FAS
of T satisfying |F ∗| ≤ 5(k − 1). J

Next, we show how to obtain a linear kernel for ACT. This kernel is inspired by the
linear kernelization described in [9] for FAST and uses Theorem 13. Let T be a tournament
on n vertices. First, we apply the following reduction rule.

I Reduction Rule 4.1. If a vertex v is in no cycle, then delete v from T .

This rule is clearly safe as our goal is to find k cycles and v cannot be in any of them.
To describe our next rule, we need to state a result by Bessy et al. [9]. An interval is a
consecutive set of vertices in a linear representation (σ(T ),A(T )) of a tournament T .

I Lemma 14 ([9]). Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule 4.1 is
not applicable. If |V (T )| ≥ 2|A(T )|+ 1, then there exists a partition J of V (T ) into intervals
(that can be computed in polynomial time) such that there are |A(T ) ∩ E| > 0 arc-disjoint
cycles using only arcs in E where E denotes the set of arcs in T with endpoints in different
intervals.

Our reduction rule that is based on this lemma is as follows.

I Reduction Rule 4.2. Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule
4.1 is not applicable. Let J be a partition of V (T ) into intervals satisfying the properties
specified in Lemma 14. Reverse all arcs in A(T ) ∩ E and decrease k by |A(T ) ∩ E| where E
denotes the set of arcs in T with endpoints in different intervals.

I Lemma 15. Reduction Rule 4.2 is safe.

Proof. Let T ′ be the tournament obtained from T by reversing all arcs in A(T )∩E. Suppose
T ′ has k − |A(T ) ∩ E| arc-disjoint cycles. Then, it is guaranteed that each such cycle is
completely contained in an interval. This is due to the fact that T ′ has no backward arc
with endpoints in different intervals. Indeed, if a cycle in T ′ uses a forward (backward) arc
with endpoints in different intervals, then it also uses a back (forward) arc with endpoints in
different intervals. It follows that for each arc uv ∈ E, neither uv nor vu is used in these
k − |A(T ) ∩ E| cycles. Hence, these k − |A(T ) ∩ E| cycles in T ′ are also cycles in T . Then,
we can add a set of |A(T ) ∩ E| cycles obtained from the second property of Lemma 14 to
these k − |A(T ) ∩ E| cycles to get k cycles in T . Conversely, consider a set of k cycles in
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T . As argued earlier, we know that the number of cycles that have an arc that is in E is at
most |A(T ) ∩E|. The remaining cycles (at least k − |A(T ) ∩E| of them) do not contain any
arc that is in E, in particular, they do not contain any arc from A(T ) ∩ E. Therefore, these
cycles are also cycles in T ′. J

Thus, we have the following result.

I Theorem 16. ACT admits a kernel with O(k) vertices.

Proof. Let (T, k) denote the instance obtained from the input instance by applying Reduction
Rule 4.1 exhaustively. From Lemma 13, we know that either T has k arc-disjoint triangles or
has an FAS of size at most 5(k − 1) that can be obtained in polynomial time. In the first
case, we return a trivial yes-instance of constant size as the kernel. In the second case, let F
be the FAS of size at most 5(k − 1) of T . Let (σ(T ),A(T )) be the linear representation of T
where σ(T ) is a topological ordering of the vertices of the directed acyclic graph T − F . As
V (T − F ) = V (T ), |A(T )| ≤ 5(k − 1). If |V (T )| ≥ 10k − 9, then from Lemma 14, there is a
partition of V (T ) into intervals with the specified properties. Therefore, Reduction Rule 4.2
is applicable (and the parameter drops by at least 1). When we obtain an instance where
neither of the Reduction Rules 4.1 and 4.2 is applicable, it follows that the tournament in
that instance has at most 10k vertices. J

Finally, we show that ACT can be solved in O?(2O(k log k)) time. The idea is to reduce
the problem to the following Arc-Disjoint Paths problem in directed acyclic graphs:
given a digraph D on n vertices and k ordered pairs (s1, t1), . . . , (sk, tk) of vertices of D, do
there exist arc-disjoint paths P1, . . . , Pk in D such that Pi is a path from si to ti for each
i ∈ [k]? On directed acyclic graphs, Arc-Disjoint Paths is known to be NP-complete [22],
W[1]-hard [42] with respect to k as parameter and solvable in nO(k) time [27]. Despite
its fixed-parameter intractability, we will show that we can use the nO(k) algorithm and
Theorems 13 and 16 to describe an FPT algorithm for ACT.

I Theorem 17. ACT can be solved in O?(2O(k log k)) time.

Proof. Consider an instance (T, k) of ACT. Using Theorem 16, we obtain a kernel I = (T̂ , k̂)
such that T̂ has O(k) vertices. Further, k̂ ≤ k. By definition, (T, k) is an yes-instance if
and only if (T̂ , k̂) is an yes-instance. Using Theorem 13, we know that T̂ either contains
k̂ arc-disjoint triangles or has an FAS of size at most 5(k̂ − 1) that can be obtained in
polynomial time. If Theorem 13 returns a set of k̂ arc-disjoint triangles in T̂ , then we declare
that (T, k) is an yes-instance.

Otherwise, let F̂ be the FAS of size at most 5(k̂ − 1) returned by Theorem 13. Let
D denote the (acyclic) digraph obtained from T̂ by deleting F̂ . Observe that D has O(k)
vertices. Suppose T̂ has a set C = {C1, . . . , Ck̂} of k̂ arc-disjoint cycles. For each C ∈ C, we
know that A(C) ∩ F̂ 6= ∅ as F̂ is an FAS of T̂ . We can guess that subset F of F̂ such that
F = F̂ ∩A(C). Then, for each cycle Ci ∈ C, we can guess the arcs Fi from F that it contains
and also the order πi in which they appear. This information is captured as a partition F of
F into k̂ sets, F1 to F

k̂
and the set {π1, . . . , πk̂} of permutations where πi is a permutation

of Fi for each i ∈ [k̂]. Any cycle Ci that has Fi ⊆ F contains a (v, x)-path between every
pair (u, v), (x, y) of consecutive arcs of Fi with arcs from A(D). That is, there is a path
from h(π−1

i (j)) and t(π−1
i ((j + 1) mod |Fi|)) with arcs from D for each j ∈ [|Fi|]. The total

number of such paths in these k̂ cycles is O(|F |) and the arcs of these paths are contained in
D which is a (simple) directed acyclic graph.
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The number of choices for F is 2|F̂ | and the number of choices for a partition F =
{F1, . . . , Fk̂} of F and a set X = {π1, . . . , πk̂} of permutations is 2O(|F̂ | log |F̂ |). Once such a
choice is made, the problem of finding k̂ arc-disjoint cycles in T̂ reduces to the problem of
finding k̂ arc-disjoint cycles C = {C1, . . . , Ck̂} in T̂ such that for each 1 ≤ i ≤ k̂ and for each
1 ≤ j ≤ |Fi|, Ci has a path Pij between h(π−1

i (j)) and t(π−1
i ((j + 1) mod |Fi|)) with arcs

from D = T̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in D and
can be solved in |V (D)|O(r) time using the algorithm in [27]. Therefore, the overall running
time of the algorithm is O?(2O(k log k)) as |V (D)| = O(k) and r = O(k). J

5 Parameterized Complexity of ATT

It is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]
for packing subgraphs of bounded size, and in particular for ATT. Moreover, using matching
techniques, we also provide a kernel with a linear number of vertices.

In this section, we provide an FPT algorithm and a linear vertex kernel for ATT. First, it
is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]
for packing subgraphs of bounded size.

I Theorem 18. ATT can be solved in O?(2O(k)) time.

Proof. Consider an instance I = (T, k) of ATT. Let n denote |V (T )| and m denote |A(T )|.
Let F denote the family of colouring functions c : A(T )→ [3k] of size 2O(k) log2m that can
be computed in O?(2O(k)) time using 3k-perfect family of hash functions [41]. For each
colouring function c in F , we colour A(T ) according to c and find a triangle packing of size
k whose arcs use different colours. We use a standard dynamic programming routine to
finding such a triangle packing. Clearly, if I is an yes-instance and C is a set of k arc-disjoint
triangles in T , there is a colouring function in F that colours the 3k arcs in these triangles
with distinct colours and our algorithm will find the required triangle packing. Given a
colouring c ∈ F , we first compute for every set of 3 colours {a, b, c} whether the arcs coloured
with a, b or c induce a triangle using 3 different colours or not. Then, for every set S of
3(p+ 1) colours with p ∈ [k − 1], we recursively test if the arcs coloured with the colours in
S induce p+ 1 arc-disjoint triangles whose arcs use all the colours of S. This is achieved by
iterating over every subset {a, b, c} of S and checking if there is a triangle using colours a, b
and c and a collection of p arc-disjoint triangles whose arcs use all the colours of S \ {a, b, c}.
For a given S, we can find this collection of triangles in O(p3) = O(k3) time. Therefore, the
overall running time of the algorithm is O?(2O(k)). J

Next, we show that ATT has a linear vertex kernel.

I Theorem 19. ATT admits a kernel with O(k) vertices.

Proof. Let X be a maximal collection of arc-disjoint triangles of a tournament T obtained
greedily. Let VX denote the vertices of the triangles in X and AX denote the arcs of VX .
Let U be the remaining vertices of V (T ), i.e., U = V (T ) \ VX . If |X | ≥ k, then (T, k) is
an yes-instance of ATT. Otherwise, |X | < k and |VX | < 3k. Moreover, notice that T [U ] is
acyclic and T does not contain a triangle with one vertex in VX and two in vertices in U
(otherwise X would not be maximal).

Let B be the (undirected) bipartite graph defined by V (B) = AX ∪ U and E(B) =
{au : a ∈ AX , u ∈ U such that (t(a), h(a), u) forms a triangle in T}. Let M be a maximum
matching of B and A′ (resp. U ′) denote the vertices of AX (resp. U) covered by M . Define
A′ = AX \A′ and U ′ = U \ U ′.

MFCS 2019



27:12 Packing Arc-Disjoint Cycles in Tournaments

We now prove that (VX ∪ U ′, k) is a linear kernel of (T, k). Let C be a maximum sized
triangle packing that minimizes the number of vertices of U ′ belonging to a triangle of C. By
previous remarks, we can partition C into CX ∪ F where CX are the triangles of C included
in T [VX ] and F are the triangles of C containing one vertex of U and two vertices of VX . It
is clear that F corresponds to a union of vertex-disjoint stars of B with centres in U . Denote
by U [F ] the vertices of U clause gadget g to a triangle of F . If U [F ] ⊆ U ′ then (VX ∪ U ′, k)
is immediately a kernel. Suppose there exists a vertex x0 such that x0 ∈ U [F ] ∩ U ′.

We will build a tree rooted in x0 with edges alternating between F and M . For this let
H0 = {x0} and construct recursively the sets Hi+1 such that

Hi+1 =
{
NF (Hi) if i is even,
NM (Hi) if i is odd,

where, given a subset S ⊆ U , NF (S) = {a ∈ AX : ∃s ∈ S s.t. (t(a), h(a), s) ∈ F and as /∈M}
and given a subset S ⊆ AX , NM (S) = {u ∈ U : ∃a ∈ AX s.t. au ∈M}. Notice that Hi ⊆ U
when i is even and that Hi ⊆ AX when i is odd, and that all the Hi are distinct as F is a
union of disjoint stars and M a matching in B. Moreover, for i ≥ 1 we call Ti the set of edges
between Hi and Hi−1. Now we define the tree T such that V (T ) =

⋃
iHi and E(T ) =

⋃
i Ti.

As Ti is a matching (if i is even) or a union of vertex-disjoint stars with centres in Hi−1 (if i
is odd), it is clear that T is a tree.

For i being odd, every vertex of Hi is incident to an edge of M otherwise B would contain
an augmenting path for M , a contradiction. So every leaf of T is in U and incident to an
edge of M in T and T contains as many edges of M than edges of F . Now for every arc
a ∈ AX ∩ V (T ) we replace the triangle of C containing a and corresponding to an edge of F
by the triangle (t(a), h(a), u) where au ∈M (and au is an edge of T ). This operation leads
to another collection of arc-disjoint triangles with the same size as C but containing a strictly
smaller number of vertices in U ′, yielding a contradiction.

Finally VX ∪U ′ can be computed in polynomial time and we have |VX ∪U ′| ≤ |VX |+|M | ≤
2|VX | ≤ 6k, which proves that the kernel has O(k) vertices. J

6 Concluding Remarks

In this work, we studied the classical and parameterized complexity of packing arc-disjoint
cycles and triangles in tournaments. We showed NP-hardness, fixed-parameter tractability
and linear kernelization results. An interesting problem could be to find subclasses of
tournaments where these problems are polynomial-time solvable. For instance, we show
in the full version of the paper that it is the case for sparse tournaments, that is for
tournaments which admit an FAS that is a matching. This class of tournaments is worthy of
attention for these packing problems as packing vertex-disjoint triangles (and hence cycles)
in sparse tournaments is NP-complete [8]. To conclude, observe that very few problems on
tournaments are known to admit an O?(2

√
k)-time algorithm when parameterized by the

standard parameter k [40] - FAST is one of them [4, 23]. To the best of our knowledge,
outside bidimensionality theory, there are no packing problems that are known to admit such
subexponential algorithms. In light of the 2o(

√
k) lower bound shown for ACT and ATT, it

would be interesting to explore if these problems admit O?(2O(
√
k)) algorithms.
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