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Geometry of Interaction for ZX-Diagrams

Kostia Chardonnet* Benoı̂t Valiron† Renaud Vilmart‡

Abstract

ZX-Calculus is a versatile graphical language for quantum computation
equipped with an equational theory. Getting inspiration from Geometry of
Interaction, in this paper we propose a token-machine-based asynchronous
model of pure ZX-Calculus We also show how to connect this new semantics
to the usual standard interpretation of ZX-diagrams. This model allows us
to have a new look at what ZX-diagrams compute, and give a more local,
operational view of the semantics of ZX-diagrams.

1 Introduction

Quantum computing is a model of computation where data is stored on the state of
particles governed by the law of quantum physics. The theory is well established
enough to have allowed the design of quantum algorithms or quantum program-
ming languages. One of the fundamental properties of quantum objects is to have a
dual interpretations. In the first one, the quantum object is understood as a particle:
with a definite, localized point in space, distinct from the other particles. Light can
be for instance regarded as a set of photons. In the other interpretation, the object is
understood as a wave: it is “spread-out” in space, possibly featuring interference.
This is for instance the interpretation of light as an electromagnetic wave.

The standard model of computation uses quantum bits (qubits) for storing in-
formation and quantum circuits [NC02] for describing quantum operations with
quantum gates, the quantum version of Boolean gates. In this model, on one hand
quantum bits are intuitively seen as tokens flowing inside the wires of the circuit.
On the other hand, the state of all of the quantum bits of the memory is mathe-
matically represented as a vector in a (finite dimensional) Hilbert space: the set of
quantum bits is a wave flowing in the circuit, from the inputs to the output, while
the computation generated by the list of quantum gates is a linear map from the
Hilbert space of inputs to the Hilbert space of outputs. Although the pervasive
model for quantum computation, quantum circuits’ operational semantics is only
given in an intuitive manner. A quantum circuit informally describes a series of
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“gate applications”, akin to some sequential, low-level assembly language where
quantum gates are opaque black-boxes.

Quantum circuits do not feature any native formal operational semantics giving
rise to abstract reasoning, equational theory or well-founded rewrite system. To be
able to reason on quantum circuits, until recently the only choice was to rely on
the unitary-matrix semantics of circuits. However, because the dimension of the
matrix corresponding to a circuit is exponential on the number of qubits involved,
this solution is very expensive and limited to simple cases.

To bring some scalability to the approach, a recent proposal is sum-over-path
semantics [Amy18, CBB+]. Still based on the original mathematical representation
of state-as-a-vector, the sum-over-path of a quantum circuit model the action of the
circuit using a few simple constructs: a Boolean operation as action on the basis
states, and a so-called phase polynomial, bringing to circuits a formal flavor of
wave-style semantics.

The main line of work formalizing a token-based operational semantics for
quantum circuits [LFVY16] is based on Geometry of Interaction (GoI) [Gir89].
Among its many instantiations, GoI can be seen as a procedure to intepret a proof-
net [Gir96] —graphical representation of proofs of linear logic [Gir87]— as a
token-based automaton [DR99]. The flow of a token inside a proof-net character-
izes an invariant of the proof —its computational content. This framework is used
in [LFVY16] to formalize the notion of qubits-as-tokens flowing inside a higher-
order term representing a quantum computation —that is, computing a quantum
circuit. However, in [LFVY16], quantum gates are still regarded as black-boxes,
and tokens are purely classical objects requiring synchronicity: to fire, a two-qubit
gate needs its two arguments to be ready.

In recent years, an alternative model of quantum computation with better for-
mal properties has however emerged: the ZX calculus [CD11]. Originally mo-
tivated by a categorical interpretation of quantum theory, the ZX-Calculus is a
graphical language that represents linear maps as special kinds of graphs called
diagrams. The calculus comes with a well-defined equational theory making it
possible to reason on quantum computation by means of local graph rewriting.
Unlike the quantum circuit framework, ZX-Calculus also comes with a small set
of canonical generators with a well-defined semantics.

Reasoning about ZX can therefore be done in two ways: with the linear op-
erator semantics (aka matrix semantics), or through graph rewriting. This graph-
ical language has been shown to be amenable to many extensions and is being
used in a wide spectrum of applications ranging from quantum circuit optimiza-
tion [DKPVDW20], verification [Hil11] or error-correction [dBH20].

As a summary, despite their ad-hoc construction, quantum circuits can be seen
from two perspectives: computation as a flow of particles (i.e. tokens), and as a
wave passing through the gates. On the other hand, although ZX-Calculus is a
well-founded language, it still misses such a perspective.

In this paper, we aim at providing ZX with a particle-style semantics, similarly
to what has been done for quantum circuits.
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Following the idea of applying a token machine to proof-nets in order to study
its computational content, we present in this paper a token machine for the ZX-
Calculus. We show how it links to the standard interpretation of ZX-diagrams.
While the standard interpretation of ZX-diagrams proceeds with conventional graph
rewriting, the tokens flowing inside the diagram do not modify it, and the compu-
tation emerges from their ability to enter into superposition. We derive two per-
spectives on this phenomenon: one purely token-based and one based on a sum-
over-path interpretation.

2 The ZX-Calculus

The ZX-Calculus is a powerful graphical language for reasoning about quantum
computation introduced by Bob Coecke and Ross Duncan [CD11]. A term in this
language is a graph —called a string diagram— built from a core set of primitives.
In the standard interpretation of ZX-Calculus, a string diagram is interpreted as a
matrix. The language is equipped with an equational theory preserving the standard
interpretation.

2.1 Pure Operators
The so-called pure ZX-diagrams are gen-
erated from a set of primitives, given
on the right: the Identity, Swap, Cup,
Cap, Green-spider and H-gate, with
n,m ∈ N,α ∈ R,ei,e′i ∈ E :

e0 ,
e0 e1

, e0 e1, e0 e1,

...e1 en

e′1 e′m
...

α ,

e0

e1


We shall be using the following labeling convention: wires (edges) are labeled with
ei, taken from an infinite set of labels E . We take for granted that distinct wires
have distinct labels. The real number α attached to the green spiders is called the
angle. ZX-diagrams are read top-to-bottom: dangling top edges are the input edges
and dangling edges at the bottom are output edges. For instance, Swap has 2 input
and 2 output edges, while Cup has 2 input edges and no output edges. By abuse
of notation a green node with no explicit parameter holds the angle 0. We write
E (D) for the set of edge labels in the diagram D, and I (D) (resp. O(D)) for the
list of input edges (resp. output edges) of D. ZX-primitives can be composed either
sequentially or in parallel :

D2 ◦D1 :=

...

...

...
D2

D1
D1⊗D2 :=

...

...
D1

...

...
D2

We write ZX for the set of all ZX-diagrams. Notice that when composing
diagrams with ( ◦ ), we “join” the outputs of the top diagram with the inputs
of the bottom diagram. This requires that the two sets of edges have the same
cardinality. The junction is then made by relabeling the input edges of the bottom
diagram by the output labels of the top diagram.
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2.2 Standard Interpretation

In the standard interpretation [CD11], wires are interpreted with the two-dimensional
Hilbert space, with orthonormal basis written as {|0〉 , |1〉}, in Dirac notation [NC02].
Vectors of the form |.〉 (called “kets”) are considered as columns vector, and there-
fore |0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, and α |0〉+ β |1〉 =

(
α

β

)
. Horizontal juxtaposition of

wires is interpreted with the Kronecker, or tensor product. The tensor product of
spaces V and W whose bases are respectively {vi}i and {w j} j is the vector space
of basis {vi⊗w j}i, j, where vi⊗w j is a formal object consisting of a pair of vi and
w j. We denote |x〉⊗ |y〉 as |xy〉. In the interpretation of spiders, we use the no-
tation |0m〉 to represent an m-fold tensor of |0〉. As a shortcut notation, we write
|φ〉 for column vectors consisting of a linear combinations of kets. Shortcut no-
tations are also used for two very useful states: |+〉 := |0〉+|1〉√

2
and |−〉 := |0〉−|1〉√

2
.

Dirac also introduced the notation “bra” 〈x|, standing for a row vector. So for
instance, α 〈0|+ β 〈1| is (α β ). If |φ〉 = α |0〉+ β |1〉, we then write 〈φ | for the
vector α 〈0|+β 〈1| (with (.) the complex conjugation). The notation for tensors of
bras is similar to the one for kets. For instance, 〈x|⊗ 〈y| = 〈xy|. Using this nota-
tion, the scalar product is transparently the product of a row and a column vector:〈
φ ψ

〉
, and matrices can be written as sums of elements of the form |φ〉〈ψ|. For

instance, the identity on C2 is
(

1 0
0 1

)
=
(

1 0
0 0

)
+
(

0 0
0 1

)
=
(

1
0

)
( 1 0)+

(
0
1

)
( 0 1) =

|0〉〈0|+ |1〉〈1|. For more information on how Hilbert spaces, tensors, compositions
and bras and kets work, we invite the reader to consult e.g. [NC02].

We are now ready to define the standard interpretation, where a diagram D
with n inputs and m has for interpretation a map JDK : C2n → C2m

. It is defined
inductively as follows.

u

wwww
v

...

...

...
D2

D1

}

����
~

=

u

v
...

...
D2

}

~◦

u

v
...

...
D1

}

~

u

v
...

...
D1

...

...
D2

}

~ =

u

v
...

...
D1

}

~⊗

u

v
...

...
D2

}

~

r z
= idC2 = |0〉〈0|+ |1〉〈1|

r z
= ∑

i, j∈{0,1}
| ji〉〈i j|

r z
=

r z†
= |00〉 + |11〉

r z
= |+〉〈0|+ |−〉〈1|

u

v α

n...

...
m

}

~ = |0m〉〈0n|+ eiα |1m〉〈1n|

2.3 Properties and structure

We list several definitions and known results of ZX-Calculus. See e.g. [Vil19] for
more information.

Universality. ZX-diagrams are universal in the sense that for any linear map
f : n→ m, there exists a diagram connected D of ZX such that JDK = f .

The price to pay for universality is that different diagrams can possibly rep-
resent the same quantum operator. There exists however a way to deal with this
problem: an equational theory. Several equational theories have been designed for
various fragments of the language [Bac14, JPV18].
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Completeness. The ability to transform a diagram D1 into a diagram D2 using the
rules of some axiomatization zx is denoted zx ` D1 = D2. The axiomatization is
said to be complete whenever any two diagrams representing the same operator are
axiomativally equivalent. Formally: JD1K = JD2K ⇐⇒ zx ` D1 = D2

3 A Token Machine for ZX-diagrams

Inspired by the Geometry of Interaction [Gir89] and the associated notion of to-
ken machine [DR99] for proof nets [Gir96], we define here a first token machine
on pure ZX-diagrams. The token consists of an edge of the diagram, a direction
(either going up, noted ↑, or down, noted ↓) and a bit (state). The idea is that,
starting from an input edge the token will traverse the graph and duplicate itself
when encountering an n-ary green node into each of the input / output edges of
the node. Notice that it is not the case for token machines for proof-nets where
the token never duplicates itself. This duplication is necessary to make sure we
capture the whole linear map encoded by the ZX-diagram. Due to this duplication,
two tokens might collide together when they are on the same edge and going in
different directions. The result of such a collision will depend on the states held
by both tokens. For a cup, cap or identity diagram, the token will simply traverse
it. As for the Hadamard node the token will traverse it and become a superposition
of two tokens with opposite states. Therefore, as tokens move through a diagram,
some may be added, multiplied together, or annihilated.

Definition 1 (Tokens and Token States). Let D be a ZX-diagram. A token in D is
a triplet (e,d,b) ∈ E (D)×{↓,↑}×{0,1}. We shall omit the commas and simply
write (e d b). The set of tokens on D is written tk(D). A token state s is then a
multivariate polynomial over C, evaluated in tk(D). We define tkS(D) :=C[tk(D)]
the algebra of multivariate polynomials over tk(D).

In the token state t = ∑i αi t1,i · · · tni,i, where the tk,i’s are tokens, the components
αi t1,i · · · tni,i are called the terms of t.

A monomial (e1 d1,b1) · · ·(en dn,bn) encodes the state of n tokens in the process
of flowing in the diagram D. A token state is understood as a superposition —a
linear combination— of multi-tokens flowing in the diagram.

3.1 Diffusion and Collision Rules

The tokens in a ZX-diagram D are meant to move inside D. The set of rules pre-
sented in this section describes an asynchronous evolution, meaning that given a
token state, we will rewrite only one token at a time. The synchronous setting is
discussed in Section 4.

Definition 2 (Asynchronous Evolution). Token states on a diagram D are equipped
with two transition systems: (1) a collision system ( c), whose effect is to anni-
hilate tokens; (2) a diffusion sub-system ( d), defining the flow of tokens within
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e0 (e0 ↓ x)(e0 ↑ x) c 1 (Positive Collision)

e0 (e0 ↓ x)(e0 ↑ ¬x) c 0 (Negative Collision)
e0 e1 (eb ↓ x) d (e¬b ↑ x) ( -diffusion)
e0 e1 (eb ↑ x) d (e¬b ↓ x) ( -diffusion)

(ek ↓ x) d eiαx
∏
i6=k

(ei ↑ x)∏
j
(e′j ↓ x)

(e′k ↑ x) d eiαx
∏
j 6=k

(e′j ↓ x)∏
i
(ei ↑ x)

(e0 ↓ x) d (−1)x 1√
2
(e1 ↓ x)+

1√
2
(e1 ↓ ¬x)

(e1 ↑ x) d (−1)x 1√
2
(e0 ↑ x)+

1√
2
(e0 ↑ ¬x)

...e1 en

e′1 e′m
...

α

e0

e1

( -Diffusion)

(
...
... -Diffusion)

Table 1: Asynchronous token-state evolution, for all x,b ∈ {0,1}

D. In Table 1, each rule corresponds to the interaction with the primitive diagram
constructor on the left-hand-side. Variables x and b span {0,1}, and ¬ stands for
the negation. In the green-spider rules, eiαx stands for the the complex number
cos(αx)+ isin(αx) and not an edge label.

We aim at a transition system marrying both collision and diffusion steps.
However, for consistency of the system, the order in which we apply them is im-
portant, as one can always rewrite a token inside a cycle and get a non-terminating
run or end up having two tokens on the same edge that do not collide.

We therefore set a rewriting strategy as follow:

Definition 3 (Collision-Free). A token state s of tkS(D) is called collision-free if
whenever s′ ∈ tkS(D), s 6 c s′

Definition 4 (Token Machine Rewriting System). We define a transition system 
as exactly one d rule followed by all possible c rules. In other words, t u iff
∃t ′, t d t ′ ∗c u and u is collision-free.

3.2 Strong Normalization and Confluence

The token machine Rewrite System of Definition 4 ensures that the collisions that
can happen always happen. The system does not a priori forbid two tokens on the
same edge, provided that they have the same direction. However this is something
we want to avoid as there is no good intuition behind it: We want to link the token
machine to the standard interpretation, which is not possible if two tokens can
appear on the same edge.
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In the paper, we show that, under a notion of well-formedness characterizing
token uniqueness on each edge, the Token State Rewrite System ( ) is strongly
normalizing and confluent. Also, with a notion of cycle-balanceness characterizing
the behavior of tokens inside a cycle in the graph,  terminates. We do not give
the details in this extended-abstract.

3.3 Semantics and Structure of Normal Forms

In this section, we discuss the structure of normal forms, and relate the system to
the standard interpretation presented in Section 2.

Proposition 5 (Single-Token Input). Let D : n→ m be a connected ZX-diagram
with I (D) = [ai]0<i≤n and O(D) = [bi]0<i≤m, 0 < k≤ n and x ∈ {0,1}, such that:

JDK◦ (idk−1⊗|x〉⊗ idn−k) =
2m+n−1

∑
q=1

λq
∣∣y1,q, ...,ym,q

〉〈
x1,q, ...,xk−1,q,xk+1,q, ...,xn,q

∣∣
Then: (ak ↓ x) ∗

2m+n−1

∑
q=1

λq ∏
i
(bi ↓ yi,q)∏

i 6=k
(ai ↑ xi,q)

This proposition conveys the fact that dropping a single token in state x on wire
ak gives the same semantics as the one obtained from the standard interpretation
on the ZX-diagram, with wire ak connected to the state |x〉.

Proposition 5 can be made more general by considering multiple input tokens.
Thanks to all of that, we can show that we can start evaluating not only on a sin-
gle or even multiple input wires, but in fact on any wire in the ZX-diagram, as
long as we respect well-formedness and cycle-balancedness. But we need to be
careful about collisions. For that to hold, we need to rewrite each part of the sum
independently before computing the sum.

Theorem 6 (Arbitrary Wire Initialisation). Let D be a connected ZX-diagram, with
I (D) = [ai]1≤i≤n, O(D) = [bi]1≤i≤m, and e∈ E (D) 6= /0 such that (e ↓ x)(e ↑ x) ∗

tx for x ∈ {0,1} with tx a normal form. Then:

JDK=
2m+n

∑
q=1

λq
∣∣y1,q . . .ym,q

〉〈
x1,q . . .xn,q

∣∣ =⇒ t0+ t1 =
2m+n

∑
q=1

λq ∏
i
(bi↓yi,q)∏

i
(ai↑xi,q)

4 Conclusion and Future Work

Since quantum circuits can be mapped to ZX-diagrams, our token machines induce
a notion of asynchronicity for quantum circuits. This contrasts with token machine
defined in [LFVY16] where some form of synchronicity is enforced.

The presented token machine works for pure quantum processes, i.e without
any interaction with the environment. Since our machine is very general, a easy
and natural extension to mixed processes is possible, to represent measurements.
A wave-style semantic as also been studied.
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We plan to further extend this token machine to handle recursion, something
that doesn’t exists in a operational form in the ZX-Calculus. We also plan to look
at ways to detect if a diagram is unitary and to strengthen the relationship between
Quantum Computation and Linear Logic.
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