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I. INTRODUCTION

This research report deals with time-optimal third order polynomial S-curve trajectories. Methods to generate timeoptimal S-curve trajectories have been previously proposed. For instance, an algorithm to optimize an objective function composed of two terms, the execution time and the jerk, has been developed in [START_REF] Gasparetto | A technique for time-jerk optimal planning of robot trajectories[END_REF]. A binary search method to optimize the S-curve velocity profile has been introduced in [START_REF] Li | Optimizing s-curve velocity for motion control[END_REF].

In the present work, a new algorithm is introduced and proved. This algorithm computes the maximum velocity and acceleration of a 3rd order polynomial S-curve trajectory such the total time of the S-curve trajectory is minimized for a given desired displacement. Upper bound constraints on the S-curve maximum velocity and acceleration are taken into account. The resulting optimization problem is solved by analyzing in detail the Karush-Kuhn-Tucker (KKT) conditions. This mathematical analysis allows to figure out and prove the validity of the proposed algorithm. While the analysis is slightly tedious, the obtained algorithm is very efficient and, to the best of our knowledge, it has never been proposed.

II. MINIMUM-TIME S-CURVE TRAJECTORY

A. Polynomial S-Curve Motion Profile

The third order polynomial S-curve is considered in this report. As shown in Figure 1, the motion profile of the third order polynomial S-curve consists of seven segments, among which the first three and the last three constitute the acceleration and deceleration phases, respectively, and the fourth segment constitutes the constant velocity stage. The jerk is defined as the following function of time:

j(t) =                J, t 0 ≤ t ≤ t 1 ,t 6 ≤ t ≤ t 7 0, t 1 ≤ t ≤ t 2 ,t 3 ≤ t ≤ t 4 ,t 5 ≤ t ≤ t 6 -J, t 2 ≤ t ≤ t 3 ,t 4 ≤ t ≤ t 5 ( 1 
)
where J is the maximum jerk value and the time instants t i are shown in Figure 1. The acceleration, velocity and displacement as functions of time can be deduced by integration of (1) with appropriate initial and final conditions. Referring to Figure 1, d j = t 1t 0 is the time needed to increase the acceleration from zero to the maximum acceleration A and to decrease the acceleration from the maximum 1 Marc Gouttefarde, Ghina Hassan and Ahmed Chemori are with LIRMM, Univ Montpellier, CNRS, Montpellier, France, {marc.gouttefarde}@lirmm.fr value A to zero, i.e., it is the time during which jerk stays constant at the maximum jerk value J. Besides, d a = t 2t 1 corresponds to the time during which the acceleration profile remains constant and equal to the maximum acceleration A and d v = t 4t 3 corresponds to the time during which the velocity profile remains constant and equal to V . Note that the symmetrical S-curve has been adopted in the present study (i.e. the acceleration and deceleration phases are symmetrical) and that d j , d a and d v are all greater than or equal to zero. The three time intervals can be written as follows:

d j = A J d a = V A - A J d v = P V - V A - A J (2) 
A and V are the maximum velocity and acceleration achieved for a given displacement P. Both A and V should be less than or equal to the corresponding maximum actuator capabilities. The total time to travel a distance P is expressed as follows:

T = 4d j + 2d a + d v (3) 

B. Minimization Problem Formulation

In this report, the proof of a new algorithm to optimize the values of the acceleration A and velocity V is provided. For a given displacement P and taking into account upper bound constraints on maximum acceleration and velocity, i.e., A ≤ A max and V ≤ V max , this algorithm efficiently computes the values of A and V of a 3rd order polynomial S-curve trajectory with minimum total time T . By substitution of the three time intervals (2) in the total time (3), the function T to be minimized is expressed as follows:

T = P V + V A + A J (4) 
Let us define x = (x 1 , x 2 ), where x 1 = V , x 2 = A, as well as x 1max = V max and x 2max = A max . Hence, the objective function is:

f (x) = T = P x 1 + x 1 x 2 + x 2 J (5)
The minimization problem of finding the minimum-time Scurve trajectory is then formulated as follows:

min x f (x) subject to                          C 1 (x) = d a = x 1 x 2 - x 2 J ≥ 0 C 2 (x) = d v = P x 1 - x 1 x 2 - x 2 J ≥ 0 C 3 (x) = x 1max -x 1 ≥ 0 C 4 (x) = x 2max -x 2 ≥ 0 C 5 (x) = x 1 > 0 C 6 (x) = x 2 > 0 (6)

C. Algorithm to Compute the Minimum-Time S-Curve Trajectory

The KKT first-order necessary optimality conditions of the optimization problem (6) yield 11 cases: One case of no active constraint, four cases of two active constraints (C 1 , C 2 , C 3 or C 4 ) and six cases of two active constrains (C 1 = C 2 = 0, C 1 = C 3 = 0, etc.), being given that the constraints C 5 and C 6 are always inactive since V = x 1 > 0 and A = x 2 > 0. A detailed analysis of these 11 cases (cf. Section III) shows that the following four are impossible at a (local) optimal solution:

• No active constraint

• One active constraint C 1 = 0 • One active constraint C 4 = 0 • Two active constraints C 1 = C 4 = 0.
It also shows that, at a local optimal solution:

• One active constraint C 2 = 0 ⇐⇒ two active constraints

C 1 = C 2 = 0 • One active constraint C 3 = 0 ⇐⇒ two active constraints C 1 = C 3 = 0 • The case of two active constraints C 2 = C 3 = 0 turns out
to be a particular case of the case one active constraint C 3 = 0. Hence, out of the 11 cases, only four of them needs to be considered to determine the optimal solutions of the optimization problem (4):

• One active constraint

C 2 = 0 • One active constraint C 3 = 0 • Two active constraints C 2 = C 4 = 0 • Two active constraints C 3 = C 4 = 0.
As detailed in the Section III, further analyzing these four cases lead to Algorithm 1 which allows to efficiently determine the values of V and A yielding the minimum-time polynomial S-curve trajectory.

Algorithm 1 Minimum-Time S-Curve Trajectory Input: P, J, V max , A max Output: A and V yielding the minimum total time T

1: if (J 2 P ≤ 2A 3 max ) then 2: if (JP 2 ≤ 4V 3 max ) then 3: V = 3 JP 2 4 and A = 3 J 2 P 2 4: else 5: V = V max and A = √ JV max 6: end if 7: else 8: if ( √ JV max ≤ A max ) then 9: V = V max and A = √ JV max 10:
else 11:

A = A max 12: V = -A 2 max + √ A 4 max +4J 2 PA max 2J 13: if (V > V max ) then 14: V = V max 15: end if 16:
end if 17: end if

III. PROOF OF ALGORITHM 1

The KKT first-order necessary conditions [START_REF] Nocedal | Numerical Optimization[END_REF] for

x * = (x * 1 , x * 2 )
to be a local solution to the optimization problem (6) can be stated as follows.

First-order necessary conditions: There is a Lagrange multiplier vector λ * , with components λ * i , 1 ≤ i ≤ 6, such that the following conditions are satisfied:

∇ x L (x * , λ * ) = 0 (7) C i (x * ) ≥ 0, 1 ≤ i ≤ 6 (8) λ * i ≥ 0, 1 ≤ i ≤ 6 (9) λ * i C i (x * ) = 0, 1 ≤ i ≤ 6 ( 10 
)
where the constraints C i (x) are defined in (6) and ∇ x L (x, λ ) is the gradient with respect to x of the Lagrangian function L (x, λ ) defined as:

L (x, λ ) = f (x) - 6 ∑ i=1 λ i C i (x) (11) 
The first-order necessary conditions stated above in (7) to (10) are valid if the functions f (x) and C i (x) are continuously differentiable and the so-called Linear Independence Constraint Qualification (LICQ) holds at x * [START_REF] Nocedal | Numerical Optimization[END_REF]. According to the definitions of f (x) and C i (x), the continuous differentiability condition is true for problem (6). The fact that the LICQ holds is proved in Section III-P.

The well-known method to use the first-order necessary conditions to find local optimal solutions x * consists in distinguishing all the possible cases of sets of active constraints which allows the determination of x * and of the Lagrange multiplier vector λ * .

A constraint C i (x) is defined as being active if C i (x) = 0. According to (10), for a given i, either

C i (x * ) is active, i.e. C i (x) = 0, or λ * i = 0. Since C 5 (x) = x 1 = V > 0 and C 6 (x) =
x 2 = A > 0, C 5 (x) and C 6 (x) are never active, and according to (10), λ 5 = 0 and λ 6 = 0 at a local optimal solution. Then, only four constraints can be active, C 1 (x) to C 4 (x), and the problem (6) having two variables, x 1 and x 2 , the following 11 cases of possible active constraint sets must be studied:

• No active constraint (one case)

• Four cases of one active constraint • Six cases of two active constraints These relatively small number of possible active constraint sets and the rather simple expressions of the functions f (x) and C i (x) make the analysis of each of these eleven cases possible, as detailed in the following subsections.

A. Preliminaries: Expressions of the gradients

In (7), the gradient with respect to x of the Lagrangian function L (x, λ ) in ( 11) is given by:

∇ x L (x, λ ) = ∇ x f (x) - 4 ∑ i=1 λ i ∇ x C i (x) (12) 
where the summation is taken for i = 1 to 4 since, as pointed above, λ 5 = 0 and λ 6 = 0 at a local optimal solution. According to (5) and ( 6), the gradients in (12) are as follows:

∇ x f (x) =       ∂ f ∂ x 1 ∂ f ∂ x 2       =       1 x 2 - P x 2 1 1 J - x 1 x 2 2       =       x 2 1 -Px 2 x 2 1 x 2 x 2 2 -Jx 1 Jx 2 2       (13) 
∇ x C 1 (x) =       ∂C 1 ∂ x 1 ∂C 1 ∂ x 2       =       1 x 2 - 1 J - x 1 x 2 2       =       1 x 2 -x 2 2 -Jx 1 Jx 2 2       (14) ∇ x C 2 (x) =       -P x 2 1 - 1 x 2 x 1 x 2 2 - 1 J       =       -Px 2 -x 2 1 x 2 1 x 2 Jx 1 -x 2 2 Jx 2 2       (15) ∇ x C 3 (x) = -1 0 (16) ∇ x C 4 (x) = 0 -1 (17) 

B. Case 1: No active constraint

According to (10), λ * i = 0 for i = 1 . . . 4 if there is no active constraint at a local optimal solution x * . Then, (7) yields:

∇ x L (x * , λ * ) = ∇ x f (x * ) = 0 ⇐⇒    x * 2 1 -Px * 2 = 0 x * 2 2 -Jx * 1 = 0 ⇐⇒    x * 3 1 = JP 2 x * 3 2 = J 2 P (18)
However, the constraint C 2 (x) is:

C 2 (x) = P x 1 - x 1 x 2 - x 2 J = J Px 2 -x 2 1 -x 1 x 2 2 Jx 1 x 2 (19)
so that, with (18), the fact that C 2 (x) is not active leads to:

C 2 (x * ) > 0 ⇐⇒ J Px * 2 -x * 2 1 -x * 1 x * 2 2 > 0 ⇐⇒ -x * 1 x * 2 2 > 0 ( 20 
)
where the second equivalence comes from Px * 2 -x * 2 1 = 0 which is a consequence of (18). The inequality (20) is impossible since x * 1 > 0 and x * 2 > 0 according to constraints C 5 and C 6 . Consequently, this first case of no active constraint is not feasible and is discarded.

C. Case 2: One active constraint C 1 (x) = 0
According to (10), we have λ * i = 0 for i = 2, . . . , 4. Hence, x * 1 , x * 2 and λ * 1 can be determined from the following equation system obtained from (7) and C 1 (x * ) = 0:

     ∇ x L (x * , λ * ) = ∇ x f (x * ) -λ * 1 ∇ x C 1 (x * ) = 0 C 1 (x * ) = x * 1 x * 2 - x * 2 J = 0 (21)
From ( 13) and (14), the system (21) is equivalent to:

         x * 2 1 -Px * 2 -λ * 1 x * 2 1 = 0 x * 2 2 -Jx * 1 + λ * 1 x * 2 2 + Jx * 1 = 0 Jx * 1 -x * 2 2 = 0 (22) 
This second equation system yields λ * 1 = 0, x * 3 1 = JP 2 and x * 3 2 = J 2 P. From these values of x * 1 and x * 2 , it follows that, similarly to Case 1 detailed in the previous subsection, the constraint C 2 is not feasible which discards Case 2.

D. Case 3: One active constraint C 2 (x) = 0 When the only active constraint is C 2 , (10) gives λ * i = 0 for all i = 2, and x * 1 , x * 2 and λ * 2 can then be determined from:

     ∇ x L (x * , λ * ) = ∇ x f (x * ) -λ * 2 ∇ x C 2 (x * ) = 0 C 2 (x * ) = J Px * 2 -x * 2 1 -x * 1 x * 2 2 Jx * 1 x * 2 = 0 (23)
which, from ( 13) and ( 15), is equivalent to:

         x * 2 1 -Px * 2 + λ * 2 Px * 2 + x * 2 1 = 0 x * 2 2 -Jx * 1 -λ * 2 Jx * 1 -x * 2 2 = 0 J Px * 2 -x * 2 1 -x * 1 x * 2 2 = 0 (24)
The second equation of this system can be written

x * 2 2 -Jx * 1 (1 + λ * 2 ) = 0 which implies x * 2 2 = Jx * 1 since λ * 2 
≥ 0 according to (9). Then, the third equation of (24) gives x * 3 2 = J 2 P /2, which in turn leads to x * 3 1 = JP 2 /4 and λ * 2 = 1/2. Since λ * 2 = 1/2 > 0 and λ * i = 0 for all i = 2, (9) is true. For the first order necessary conditions to be all true, it remains to verify that (8) is satisfied for i = 1, 2 and 3, i.e.,

C 1 (x * ) ≥ 0, C 3 (x * ) ≥ 0 and C 4 (x * ) ≥ 0. C 1 (x * ) ≥ 0 is equivalent to Jx * 1 -x * 2 2 ≥ 0 which is true since x * 2 2 = Jx * 1 .
Finally, since x * 3 1 = JP 2 /4 and x * 3 2 = J 2 P /2, C 3 (x * ) ≥ 0 and C 4 (x * ) ≥ 0 yield the two following conditions on J, P, x 1max = V max and x 2max = A max :

x * 1 ≤ x 1max ⇐⇒ JP 2 ≤ 4V 3 max (25) x * 2 ≤ x 2max ⇐⇒ J 2 P ≤ 2A 3 max (26)
To conclude this third case, if the two conditions (25) and ( 26) are verified, the following vector is a local minimum candidate:

x * =       3 JP 2 4 3 J 2 P 2       (27) E. Case 4: One active constraint C 3 (x) = 0
When the only active constraint is C 3 , (10) gives λ * i = 0 for all i = 3 and

C 3 (x * ) = x 1max -x * 1 = 0 gives x * 1 = x 1max = V max . Moreover, (7) is ∇ x f (x * ) -λ * 3 ∇ x C 3 (x * ) = 0, i.e.: x * 2 1 -Px * 2 + λ * 3 x * 2 1 x 2 = 0 x * 2 2 = Jx * 1 (28)
With x * 1 = V max and the second equation of (28), after some calculations, the first equation of (28) leads to:

λ * 3 = P √ J - √ V max 3 V 2 max √ J (29) 
Then, since λ * 3 ≥ 0 according to (9), the following condition must hold:

√ V max 3 ≤ P √ J ⇐⇒ V 3 max ≤ JP 2 (30) 
For the first order necessary conditions to be true, it remains to verify that (8) is satisfied for i = 1, 2 and 4, i.e.,

C 1 (x * ) ≥ 0, C 2 (x * ) ≥ 0 and C 4 (x * ) ≥ 0. First, since x * 2 2 = Jx * 1 , we have C 1 (x * ) = 0 so that C 1 (x * ) ≥ 0, and C 2 (x * ) ≥ 0 is equivalent to x * 3
1 ≤ JP 2 /4, i.e., from x * 1 = V max , the following condition is obtained:

V 3 max ≤ JP 2 4 ( 31 
)
Note that condition (31) implies condition (30) so that only (31) is to be retained. Finally,

C 4 (x * ) ≥ 0, x * 2 2 = Jx * 1 and x * 1 = V max yields the following condition: √ JV max ≤ A max (32) 
To summarize this fourth case, if the two conditions (31) and (32) are verified, the following vector is a local minimum candidate:

x * = V max √ JV max (33) 
F. Case 5: One active constraint C 4 (x) = 0 When the only active constraint is C 4 , (10) gives λ * i = 0 for all i = 4 and

C 4 (x * ) = x 2max -x * 2 = 0 gives x * 2 = x 2max = A max . Moreover, (7) is ∇ x f (x * ) -λ * 4 ∇ x C 4 (x * ) = 0 which is a system of two equations. The first equation of this system yields x * 2 1 = Px * 2 . Then, according to (19), C 2 (x * ) ≥ 0 is equivalent to -x * 1 x * 2 2 ≥ 0 which is impossible since x * 1 > 0 and x * 2 > 0.
In conclusion, this fifth case is not feasible and is thus discarded. shall be done to verify that (9) is satisfied. First, the x * 1 and x * 2 are calculated from the following system of two equations obtained from

C 1 (x * ) = C 2 (x * ) = 0: Jx * 1 -x * 2 2 = 0 J Px * 2 -x * 2 1 -x * 1 x * 2 2 = 0 ( 34 
)
whose solution is:

x * =       3 JP 2 4 3 J 2 P 2       (35) 
Then, Eq. ( 7) with λ * 3 = 0 and λ * 4 = 0 is used to determine λ * 1 and λ * 2 :

∇ x f (x * ) -λ * 1 ∇ x C 1 (x * ) -λ * 2 ∇ x C 2 (x * ) = 0 ⇐⇒ x * 2 1 -Px * 2 -λ * 1 x * 2 1 + λ * 2 Px * 2 + x * 2 1 = 0 x * 2 2 -Jx * 1 + λ * 1 x * 2 2 + Jx * 1 -λ * 2 Jx * 1 -x * 2 2 = 0 ⇐⇒ -x * 2 1 Px * 2 + x * 2 1 x * 2 2 + Jx * 1 x * 2 2 -Jx * 1 λ * 1 λ * 2 = Px * 2 -x * 2 1 Jx * 1 -x * 2 2
With the expressions of x * in (35), the determinant of the matrix in the last equation is equal to -3J 2 P 2 /2. and the equation system possesses a unique solution. Once solved, e.g. with Cramer's rule, it yields λ * 1 = 0 and λ * 2 = 1/3 which verify (9).

It remains to verify (8), i.e., C 3 (x * ) ≥ 0 and C 4 (x * ) ≥ 0 which leads to the two following conditions:

JP 2 ≤ 4V 3 max and J 2 P ≤ 2A 3 max (36)
To conclude on this sixth case, if conditions (36) are true, x * in (35) is a local minimum candidate. Moreover, it appears that Case 6 is equivalent to Case 3 since x * in (35) is the same as x * in (27) and conditions (36) are the same as those in (25) and (26) (which is a consequence of x * being the same).

H. Case 7: Two active constraints C

1 (x) = C 3 (x) = 0 C 1 (x * ) = 0 and C 3 (x * ) = 0 give: x * = V max √ JV max (37)
Moreover, C 2 (x * ) > 0 and C 4 (x * ) > 0 imply with (10) that λ * 2 = 0 and λ * 4 = 0, and (7) yields the following equation system in λ * 1 and λ * 3 37), the second equation yields λ * 1 = 0 and then the first equation gives λ

∇ x f (x * ) -λ * 1 ∇ x C 1 (x * ) -λ * 3 ∇ x C 3 (x * ) = 0 ⇐⇒ x * 2 1 -Px * 2 -λ * 1 x * 2 1 + λ * 3 x * 2 1 x * 2 = 0 x * 2 2 -Jx * 1 + λ * 1 x * 2 2 + Jx * 1 = 0 With (
* 3 = Px * 2 -x * 2 1 / x * 2 1 x * 2 .
With (37), for (9) to be true, i.e. λ * 3 ≥ 0, the following condition must hold:

V 3 max ≤ JP 2 (38)
It remains to verify that (8) is satisfied for i = 2 and i = 4, i.e., C 2 (x * ) ≥ 0 and C 4 (x * ) ≥ 0, which leads to the two following conditions:

V 3 max ≤ JP 2 4 and √ JV max ≤ A max ( 39 
)
where the first condition in (39) is stronger than (38), i.e., (39) implies (38).

To conclude on case 7, if conditions (39) are true, x * in (37) is a local minimum candidate. Moreover, it turns out that Case 7 is equivalent to Case 4 since x * in (37) is the same as x * in (33) and conditions (39) are the same as those in (31) and (32) (which is a consequence of x * being the same).

I. Case 8: Two active constraints C 1 (x) = C 4 (x) = 0 C 1 (x * ) = 0 and C 4 (x * ) = 0 give: x * =   A 2 max J A max   (40)
Moreover, C 2 (x * ) > 0 and C 3 (x * ) > 0 imply with (10) that λ * 2 = 0 and λ * 3 = 0, and (7) yields the following equation system in λ * 1 and λ * 4 :

∇ x f (x * ) -λ * 1 ∇ x C 1 (x * ) -λ * 4 ∇ x C 4 (x * ) = 0 ⇐⇒ x * 2 1 -Px * 2 -λ * 1 x * 2 1 = 0 x * 2 2 -Jx * 1 + λ * 1 x * 2 2 + Jx * 1 + λ * 4 Jx * 2
2 = 0 From the first equation and (40), we have:

λ * 1 = x * 2 1 -Px * 2 x * 2 1 = 1 - J 2 P A 3 max (41)
and, from the second equation:

λ * 4 = Jx * 1 -x * 2 2 -λ * 1 x * 2 2 + Jx * 1 Jx * 2 2 = - 2 J λ * 1 (42) since, according to (40), Jx * 1 -x * 2 2 = 0 and x * 2 2 + Jx * 1 = 2x * 2 2 .
Eq. ( 42) and (9) imply that λ * 1 = λ * 4 = 0 so that (41) gives:

J 2 P = A 3 max (43)
However, C 2 (x * ) ≥ 0, which must hold true according to (8), leads to:

J Px * 2 -x * 2 1 -x * 1 x * 2 2 ≥ 0 =⇒ JPA max -2 A 4 max J ≥ 0 =⇒ J 2 P 2 ≥ A 3 max
which is impossible in view of (43). In conclusion, Case 8 is impossible and thus discarded.

J. Case 9: Two active constraints C 2 (x) = C 3 (x) = 0 C 3 (x * ) = 0 means that x * 1 = V max while C 2 (x * ) = 0 yields a second-order polynomial equation in x * 2 .
The latter equation can be solved to obtain two solutions for x * 2 , but it is better to first consider (7). Since, with (10), C 1 (x * ) > 0 and C 4 (x * ) > 0 imply that λ * 1 = 0 and λ * 4 = 0, (7) yields:

∇ x f (x * ) -λ * 2 ∇ x C 2 (x * ) -λ * 3 ∇ x C 3 (x * ) = 0 ⇐⇒ x * 2 1 -Px * 2 + λ * 2 x * 2 1 + Px * 2 + λ * 3 x * 2 1 x * 2 = 0 x * 2 2 -Jx * 1 + λ * 2 x * 2 2 -Jx * 1 = 0 (44)
The second equation implies that either

x * 2 2 = Jx * 1 or λ * 2 = -1. Since λ * 2 ≥ 0 according to (9), λ * 2 = -1 is not possible so that x * 2 2 = Jx * 1 , i.e., x * 2 = √ JV max . Then, with x * 1 = V max and x * 2 = √ JV max , C 2 (x * ) = 0 is equivalent to: V 3 max = JP 2 4 ( 45 
)
Going back to the equation system (44), note that in the second equation, since x * 2 2 = Jx * 1 , λ * 2 is undetermined so that any λ * 2 ≥ 0 satisfies this equation and (9) as well. Now, let us verify if there exist λ * 2 ≥ 0 and λ * 3 ≥ 0 such that the first equation of (44) is verified. With x * 1 = V max and x * 2 = √ JV max , this first equation is equivalent to:

λ * 3 = P √ JV max -V 2 max -λ * 2 P √ JV max +V 2 max V 2 max √ JV max (46) 
so that λ * 3 ≥ 0 if and only if:

λ * 2 ≤ P √ JV max -V 2 max P √ JV max +V 2 max ( 47 
)
Since λ * 2 must be non-negative, (47) is possible if and only if:

P √ JV max -V 2 max ≥ 0 ⇐⇒ JP 2 ≥ V 3 max (48)
which, according to (45), is true. Hence, taking λ * 2 equal to the right-hand side of the inequality (47), we have λ * 2 ≥ 0 and λ * 3 in ( 46) is also non-negative which proves that there exist λ * 2 ≥ 0 and λ * 3 ≥ 0 such that (44) is verified. Finally, the inequalities C 1 (x * ) ≥ 0 and C 4 (x * ) ≥ 0 should be verified for (8) to be true. First, we have

C 1 (x * ) = 0 since x * 2 2 = Jx * 1 . Second, C 4 (x * ) ≥ 0 is x * 2 ≤ A max which yields: √ JV max ≤ A max (49) 
To conclude Case 9, if conditions (45) and (49) are verified, the following vector is a local minimum candidate:

x * = V max √ JV max (50) 
Comparing ( 45) with (31), ( 49) with ( 32) and ( 50) with (33), Case 9 appears to be a particular case of Case 4 where (31) is verified as an equality.

K. Case 10: Two active constraints

C 2 (x) = C 4 (x) = 0 C 4 (x * ) = x 2max -x * 2 = 0 gives x * 2 = x 2max = A max while C 2 (x * ) = 0 yields the following quadratic equation in x * 1 : Jx * 2 1 + x * 2 2 x * 1 -JPx * 2 = 0 (51)
The discriminant of this equation is:

∆ = x * 2 x * 3 2 + 4J 2 P > 0 (52)
and (51) possesses the following two solutions:

x * 1 = -x * 2 2 ± √ ∆ 2J (53) 
Since x * 1 > 0 according to (6), the only possible solution is:

x * 1 = -x * 2 2 + √ ∆ 2J = -A 2 max + A 4 max + 4J 2 PA max 2J ( 54 
)
since the other one is negative. Note that x * 1 in ( 54) is positive because -x * 2 2 + √ ∆ > 0, i.e., x * 4 2 < ∆ which can be deduced from (52) and 4J 2 P > 0.

Now, let us determine the Lagrange multipliers λ * 2 and λ * 4 and establish the conditions for λ * 2 and λ * 4 to be nonnegative and thus to satisfy (9). Since, with (10), C 1 (x * ) > 0 and C 3 (x * ) > 0 imply that λ * 1 = 0 and λ * 3 = 0, (7) yields:

∇ x f (x * ) -λ * 2 ∇ x C 2 (x * ) -λ * 4 ∇ x C 4 (x * ) = 0 ⇐⇒ x * 2 1 -Px * 2 + λ * 2 x * 2 1 + Px * 2 = 0 Jx * 1 -x * 2 2 + λ * 2 Jx * 1 -x * 2 2 = λ * 4 ( 55 
)
Since x * 2 1 + Px * 2 > 0, we have from the first equation:

λ * 2 = Px * 2 -x * 2 1 Px * 2 + x * 2 1 ( 56 
)
With the expression of x * 1 in (54), one can verify that

Px * 2 -x * 2 1 ≥ 0 is equivalent to ∆ ≥ x * 4
2 which is true according to (52) and 4J 2 P > 0. Consequently, λ * 2 in (56) is non-negative. Besides, from the second equation of (55), we have: 54) and (52), the latter inequality is equivalent to x * 3 2 ≤ J 2 P 2 . Hence, λ * 4 ≥ 0 leads to the following condition:

λ * 4 = Jx * 1 -x * 2 2 (1 + λ * 2 ) (57) Since λ * 2 ≥ 0, λ * 4 ≥ 0 is equivalent to Jx * 1 -x * 2 2 ≥ 0. With (
A 3 max ≤ J 2 P 2 (58)
Finally, the inequalities C 1 (x * ) ≥ 0 and C 3 (x * ) ≥ 0 should be verified for (8) to be true.

C 1 (x * ) ≥ 0 is equivalent to Jx * 1 -x * 2 2 ≥ 0 i.e. to λ * 4 ≥ 0 which is verified if (58) is true. C 3 (x * ) ≥ 0 is: x * 1 = -A 2 max + A 4 max + 4J 2 PA max 2J ≤ V max (59) 
To conclude Case 10, if conditions (58) and (59) are verified, the following vector is a local minimum candidate:

x * =   -A 2 max + A 4 max + 4J 2 PA max 2J A max   (60) 
L. Case 11: Two active constraints C 3 (x) = C 4 (x) = 0

In this last case, the two active constraints C 3 (x) = C 4 (x) = 0 yield directly the following local minimum candidate:

x * = V max A max (61) 
Since, with (10), C 1 (x * ) > 0 and C 2 (x * ) > 0 imply that λ * 1 = 0 and λ * 2 = 0, (7) gives:

∇ x f (x * ) -λ * 3 ∇ x C 3 (x * ) -λ * 4 ∇ x C 4 (x * ) = 0 ⇐⇒            λ * 3 = Px * 2 -x * 2 1 x * 2 1 x * 2 λ * 4 = Jx * 1 -x * 2 2 Jx * 2 2 ( 62 
)
so that, with (61), the following equality should hold for (9) to be true:

λ * 3 ≥ 0 ⇐⇒ Px * 2 -x * 2 1 ≥ 0 ⇐⇒ PA max ≥ V 2 max ( 63 
)
and also:

λ * 4 ≥ 0 ⇐⇒ Jx * 1 -x * 2 2 ≥ 0 ⇐⇒ JV max ≥ A 2 max (64)
Finally, the inequalities C 1 (x * ) ≥ 0 and C 2 (x * ) ≥ 0 should be verified for (8) to hold.

C 1 (x * ) ≥ 0 is equivalent to Jx * 1 -x * 2 2 ≥ 0, i.e., to (64). C 2 (x * ) ≥ 0 is equivalent to: J Px * 2 -x * 2 1 -x * 1 x * 2 2 ≥ 0 ⇐⇒ JPA max -JV 2 max ≥ V max A 2 max
(65) In summary, if the inequalities (63), (64) and (65) are satisfied, x * in (61) is a local minimum candidate.

M. Synthesis of the 11 cases and Algorithm 2

Let us now summarize all the 11 cases:

• Cases 1, 2, 5 and 8 are impossible in the sense that they do not verify the KKT first-order necessary conditions. • Case 6 is equivalent to Case 3 and Case 7 is equivalent to Case 4. • Case 9 is a particular case of Case 4. Hence, only four cases, namely Cases 3, 4, 10 and 11, need to be considered to find (local) solutions x * = (x * 1 , x * 2 ) to the optimization problem (6).

In order to ease the analysis of the relationships between these cases, the conditions to be fulfilled for each one of these four cases are summarized below.

Conditions for Case 3:

JP 2 ≤ 4V 3 max (66) J 2 P ≤ 2A 3 max (67)
Conditions for Case 4:

4V 3 max ≤ JP 2 (68) JV max ≤ A 2 max ( 69 
)
Conditions for Case 10:

2A 3 max ≤ J 2 P (70) JPA max -JV 2 max ≤ V max A 2 max (71)
where (71) is equivalent (59) as can be shown with some elementary calculations. Moreover, again after some calculations, it turns out that (70) and (71) imply that:

A 2 max ≤ JV max (72)
Conditions for Case 11:

V 2 max ≤ PA max (73) 
A 2 max ≤ JV max (74)

V max A 2 max ≤ JPA max -JV 2 max ( 75 
)
Note that, from (74) and (75), we have:

2A 3 max ≤ J 2 P (76)
Indeed, the sum of ( 76) and (74) multiplied by V max gives 2V max A max ≤ JP. Using the latter inequality and multiplying (74) by 2A max lead to (76). Carefully analyzing all these conditions leads to the following relationships between the four remaining cases (Cases 3, 4, 10 and 11) and in turn to Algorithm 1.

Let us first assume that condition (67) of Case 3 is satisfied as a strict inequality. Then, Cases 10 and 11 are not possible because of ( 70) and ( 76), respectively, and there are two possibles cases:

• If (66) of Case 3 is verified (as a strict inequality), Case 4 is not possible because of (68). The only possible case is Case 3 which means that the sole local minimum candidate is x * in (27) which corresponds to line 3 of Algorithm 1. • If (66) of Case 3 is not verified, Case 3 is not possible and condition (68) of Case 4 is verified. Case 4 is then the only possible case provided that condition (69) is true. It turns out that (67) and (68) imply that condition (69) is verified. Indeed, (67) is equivalent to:

3 J 4 P 2 4 ≤ A 2 max (77) (68) is equivalent to: 3 4 JP 2 ≤ 1 V max (78)
and ( 77) and (78) imply that:

3 √ J 3 ≤ A 2 max V max ⇐⇒ JV max ≤ A 2 max ( 79 
)
which is (69). Hence, Case 4 is the only possible case meaning that the sole local minimum candidate is x * in (33) which corresponds to line 5 of Algorithm 1. Let us now assume that condition (67) of Case 3 is not satisfied. Case 3 is then not possible and:

• If (69) is satisfied (as a strict inequality), Cases 10 and 11 are not possible because of ( 72) and (74), respectively. Moreover, since (67) is not satisfied, we have:

2A 3 max < J 2 P ⇐⇒ A max < 3 J 2 P 2 (80)
and using the latter in (69) (satisfied as a strict inequality) yields:

J < A 2 max V max < 1 V max 3 J 4 P 2 4 (81)
which implies that: 73) is true since it turns out to be implied by (75). The latter result comes from the fact that ( 75) is equivalent to:

V max < 3 JP 2 4 ⇐⇒ V 3 max < JP 2 4 ( 82 
V max A 2 max + JV 2 max ≤ JPA max ( 83 
)
which implies that:

JV 2 max ≤ JPA max ⇐⇒ V 2 max ≤ PA max ( 84 
)
the latter inequality being (73). Hence, Case 11 is the only possible case and the unique local minimum candidate is x * in (61) which corresponds to lines 11 and 14 of Algorithm 1. Algorithm 2 summarizes the above analysis. It is exactly the same as Algorithm 1 which proves that the latter is correct. Note that line 12 of Algorithm 2 corresponds to lines 11 and 12 of Algorithm 1 as can be seen from the expression of x * in (60). Moreover, line 14 of Algorithm 2 corresponds to lines 11 and 14 of Algorithm 1 since, with V =

-A 2 max + √ A 4 max +4J 2 PA max 2J
as calculated at line 12 of Algorithm 1, the condition V > V max at line 13 of Algorithm 1 means that (59) is not satisfied. Hence, since (59) and (71) are equivalent (as can be shown with some elementary calculations), (71) is also not satisfied which corresponds to the condition for line 14 of Algorithm 2.

It is important to note that, according to the above analysis, Algorithm 1 and Algorithm 2 computes in fact the global minimum of the minimization problem (6).

N. Particular cases

For the proof to be complete, it remains to be shown that Algorithm 2, and hence Algorithm 1, is correct in a number of Algorithm 2 Minimum-Time S-Curve Trajectory Rewritten end if 17: end if particular cases. The latter were overlooked at various places in the proof presented in Section III-M where conditions (66), (67), ( 69) and (71) were supposed to be verified as strict inequalities. In fact, the particular cases to be considered to complete the proof are the following ones:

• (67) and (66) satisfied as equalities;

• (67) satisfied as an equality and (66) satisfied as a strict inequality; • (67) satisfied as an equality and (66) not satisfied; • (67) not satisfied and (69) satisfied as an equality; • (67) and (69) not satisfied and (71) satisfied as an equality.

First particular case: (67) and (66) satisfied as equalities

J 2 P = 2A 3 max (85) JP 2 = 4V 3 max (86)
These two equalities imply that (27) (line 3 of Algorithm 2) is:

x * =       3 JP 2 4 3 J 2 P 2       =       V max A max       (87) 
Now, let us consider x * in (33) (line 5 of Algorithm 2):

x * = V max √ JV max = V max A max (88) 
To show that the second equality in the previous equation holds, consider P = 2A 3 max J 2 from (85) and P 2 = 4V 3 max J from (86). Then, we have:

4A 6 max J 4 = 4V 3 max J ⇐⇒ A max = √ JV max (89) 
Next, (60) (line 12 of Algorithm 2) is:

x * =   -A 2 max + A 4 max + 4J 2 PA max 2J A max   = V max A max (90) 
since, with J 2 P = 2A 3 max in (85):

-A 2 max + A 4 max + 4J 2 PA max 2J = -A 2 max + A 4 max + 8A 4 max 2J = -A 2 max + 9A 4 max 2J = A 2 max J = V max (91) 
where the last equality is obtained from (89). Hence, in this first particular case, it turns out that x * in (27), ( 33) and ( 60) are all equal to x * in (61), i.e, all possible local minima are equal. Then, Algorithm 2 necessarily computes the optimal value x * = [V max , A max ] T at line 3.

Second particular case: (67) satisfied as an equality and (66) satisfied as a strict inequality

J 2 P = 2A 3 max (92) JP 2 < 4V 3 max (93)
First, note that Case 3 is possible since both (67) and (66) are satisfied and Case 4 is not possible since (68) is not satisfied. Moreover, Algorithm 2 computes x * at line 3 according to (27):

x * =     3 JP 2 4 3 J 2 P 2     =     3 JP 2 4 A max     (94) 
where 3 JP 2 4 < V max since JP 2 < 4V 3 max . Now, let us check whether or not Cases 10 and 11 are possible and, if they are, verify that x * in (94) also corresponds to their minimum.

The first condition for Case 10 to be possible is (70). This condition is verified since J 2 P = 2A 3 max . The second condition for Case 10 is (71) which can equivalently be written as:

V max A 2 max + JV 2 max ≥ JPA max (95) 
Since V max > 3 JP 2 4 and J 2 P = 2A 3 max , one can write:

V max A 2 max + JV 2 max > A 2 max 3 JP 2 4 + J 3 J 2 P 4 16 = 3 J 4 P 2 4 3 JP 2 4 + J 3 J 2 P 4 16 = 3 J 5 P 4 16 + 3 J 5 P 4 16 = 2 3 J 5 P 4 16 = 3 J 5 P 4 2 = JP 3 J 2 P 2 Hence, V max A 2 max + JV 2 max > JP 3 J 2 P 2 = JPA max , i.e., (95) 
is verified as a strict inequality so that (71) is also verified as a strict inequality and Case 10 is possible. Furthermore, the minimum x * in Case 10 is given in (60):

x * =   -A 2 max + A 4 max + 4J 2 PA max 2J A max   =   A 2 max J A max   (96)
where the second equality is from (91). Since J 2 P = 2A 3 max , we have:

3 JP 2 4 = 3 J 4 4A 6 max J 4 = A 2 max J (97) 
so that the minimum x * of Case 10 is equal to the minimum x * of Case 3 given in (94). Finally, Case 11 is not possible because (71) is verified as a strict inequality and, hence, (75) is not verified.

Summarizing, only Cases 3 and 10 are possible, the minimum x * of these two cases are equal and Algorithm 2 indeed computes this x * at line 3.

Third particular case: (67) satisfied as an equality and (66) not satisfied

J 2 P = 2A 3 max (98) JP 2 > 4V 3 max (99) 
In this particular case, Case 3 is not possible since (66) is not satisfied and Algorithm 2 computes x * at line 5 according to (33):

x * = V max √ JV max (100) 
First, note that Case 4 is possible since (68) is true since J 2 P = 2A 3 max . Moreover, (69) is also verified since:

J 2 P = 2A 3 max ⇐⇒ A 2 max = 3 J 4 P 2 4 = J 3 JP 2 4 ( 101 
)
and:

JP 2 > 4V 3 max ⇐⇒ V max < 3 JP 2 4 ( 102 
)
imply that:

JV max < J 3 JP 2 4 = A 2 max (103)
Furthermore, let us examine Cases 10 and 11. Case 10 is not feasible since (71) is not verified. Indeed, in the previous paricular case, it was shown that J 2 P = 2A 3 max and JP 2 < 4V 3 max leads to (71) being verified as a strict inequality, i.e., JPA max -JV 2 max < V max A 2 max . Then, the same reasoning allows to conclude that J 2 P = 2A 3 max and JP 2 > 4V 3 max imply JPA max -JV 2 max > V max A 2 max i.e. ( 71) is not verified in the present particular case. Besides, Case 11 is also not feasible since A 2 max > JV max from (103) so that (74) is not true. Hence, only Case 4 is possible and the corresponding minimum x * is indeed computed at line 5 of Algorithm 2.

Fourth particular case: (67) not satisfied and (69) satisfied as an equality J 2 P > 2A 3 max (104)

JV max = A 2 max (105)
First, note that Case 3 is not possible since (67) is not satisfied and that Algorithm 2 computes x * at line 9 according to (33):

x * = V max √ JV max = V max A max (106) 
which is also the minimum x * of Case 11 as given in (61) and where the second equality in (106) comes from (105). Then, let us check whether or not Cases 4, 10 and 11 are possible. Case 4 is possible since (69) is truce according to (105). Moreover, (104) and (105) imply that:

4V 3 max = 4 A 6 max J 3 < 4 J 3 J 4 P 2 4 = JP 2 (107)
so that (68) is satisfied. Case 10 is not possible since (71) is not satisfied. Indeed, with (105), we have:

V max A 2 max + JV 2 max = 2A 4 max J (108) 
and (104) then implies that:

2A 4 max J < J 2 P A max J = JPA max (109) 
so that:

V max A 2 max + JV 2 max < JPA max ⇐⇒ JPA max -JV 2 max > V max A 2 max
(110) Case 11 turns out to be possible since (110) shows that (75) is true and (74) is satisfied according to (105). Moreover, (104) and (105) imply that:

V 2 max = A 4 max J 2 < A max J 2 J 2 P 2 = A max P 2 < PA max (111) 
i.e. (73) is satisfied. In conclusion of this fourth particular case, only Cases 4 and 11 are possible, their minimum x * are equal and indeed computed by Algorithm 2 at line 9.

Fifth particular case: (67) and (69) not satisfied and (71) satisfied as an equality

J 2 P > 2A 3 max (112) JV max > A 2 max (113) JPA max -JV 2 max = V max A 2 max ( 114 
)
Cases 3 and 4 are then not possible since (67) and (69) are not satisfied, respectively.

Case 10 is possible since (112) implies ( 70) and ( 71) is true according to (114).

Then, about the feasibility of Case 11, it is not straightforward to verify whether or not (73) is true from (112), ( 113) and (114). Fortunately, this verification is in fact not required. Indeed, in the present particular case, Algorithm 2 computes

x * of Case 10 at line 12 and, as proved below, this x * is equal to the one of Case 11, x * = [V max , A max ] T . Hence, if Case 11 is not possible, Algorithm 2 computes x * of Case 10 which is the only possible minimum and, if Case 11 is possible, x * of Cases 10 and 11 are equal and Algorithm 2 indeed computes this minimum at line 12.

It remains to prove that the x * of Case 10, which according to (60) is:

x * =   -A 2 max + A 4 max + 4J 2 PA max 2J A max   (115) 
is equal to the one of Case 11 which is x * = [V max , A max ] T , i.e., to prove that

-A 2 max + A 4 max + 4J 2 PA max 2J = V max (116) 
To this end, let us consider (114) as a quadratic equation in

V max : JV 2 max + A 2 max V max -JPA max = 0 (117)
whose two solutions are:

V max = -A 2 max ± A 4 max + 4J 2 PA max 2J (118) 
The only possible solution for V max among those two is the following one since the other one is negative:

V max = -A 2 max + A 4 max + 4J 2 PA max 2J (119) 
which shows that x * of Case 10 in (115) is equal to x * of Case 11.

O. Second-Order Sufficient Conditions

Algorithm 2 (and thus Algorithm 1) is based on the KKT first-order necessary conditions. Hence, the vectors x * computed in the various cases in Algorithm 2 are local minima candidates and it remains to be verified that these vectors x * are indeed local minima. To this end, the following secondorder sufficient conditions can be used [START_REF] Nocedal | Numerical Optimization[END_REF].

Second-Order Sufficient Conditions: Suppose that at some feasible vector x * , there exists a Lagrange multiplier vector λ * satisfying the KKT conditions and that the Lagrangian Hessian ∇ 2

xx L (x * , λ * ) is positive definite. Then, x * is a strict local minimum to the optimization problem (6).

From (12), the Lagrangian Hessian is:

∇ 2 xx L (x, λ ) = ∇ 2 xx f (x) - 4 ∑ i=1 λ i ∇ 2 xx C i (x) (120) 
The individual Hessian matrices appearing in the above expression of ∇ 2 xx L are obtained from (13) to (17) as follows.

∇ 2 xx f (x) =       ∂ 2 f ∂ x 2 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2       =       2P x 3 1 - 1 x 2 2 - 1 x 2 2 2x 1 x 3 2       (121) ∇ 2 xx C 1 (x) =       0 - 1 x 2 2 - 1 x 2 2 2x 1 x 3 2       (122) ∇ 2 xx C 2 (x) =       2P x 3 1 1 x 2 2 1 x 2 2 - 2x 1 x 3 2       (123) ∇ 2 xx C 3 (x) = 0 (124) ∇ 2 xx C 4 (x) = 0 (125)
Therefore, the Lagrangian Hessian is: In Case 3, we have λ * 1 = 0, λ * 2 = 1/2, x * 2 2 = Jx * 1 and:

∇ 2 xx L (x, λ ) =       (1 -λ 2 ) 2P x 3 1 (λ 1 -λ 2 -1) 1 x 2 2 (λ 1 -λ 2 -1) 1 x 2 2 (1 -λ 1 + λ 2 ) 2x 1 x 3 2       ( 
x * =       x * 1 x * 2       =       3 JP 2 4 3 J 2 P 2       (127) 
so that:

∇ 2 xx L (x * , λ * ) =       P x * 3 1 - 3 2x * 2 2 - 3 2x * 2 2 3x * 1 x * 3 2       (128)
According to Sylvester's criterion, since

P x * 3 1 > 0, the Hes- sian ∇ 2 xx L (x * , λ *
) is positive definite if and only if its determinant is strictly positive. Being given that x * 2 2 = Jx * 1 and with (127), the determinant is:

det ∇ 2 xx L (x * , λ * ) = 3P x * 2 1 x * 3 2 - 9 4x * 4 2 (129) = 3 x * 4 2 J 2 P x * 3 2 - 3 4 (130) = 3 x * 4 2 2J 2 P J 2 P - 3 4 (131) = 3 x * 4 2 5 4 > 0 (132) which is positive since x * 2 = 3 J 2 P 2 > 0.
Hence, the secondorder sufficient conditions are satisfied and x * of Case 3, given in ( 27) and computed at line 3 of Algorithm 2, is indeed a strict local minimum.

In Case 4, we have λ * 1 = λ * 2 = 0, x * 2 2 = Jx * 1 and:

x * = x * 1 x * 2 = V max √ JV max (133) 
so that:

∇ 2 xx L (x * , λ * ) =       2P x * 3 1 - 1 x * 2 2 - 1 x * 2 2 2x * 1 x * 3 2       (134) 
whose determinant is:

det ∇ 2 xx L (x * , λ * ) = 4P x * 2 1 x * 3 2 - 1 x * 4 2 (135) = 4J 2 P x * 4 2 x * 3 2 - 1 x * 4 2 (136) = 1 x * 4 2 4J 2 P x * 3 2 -1 (137) = 1 x * 4 2 4J 2 P J 3 V 3 max -1 (138) 
Since x * 2 > 0, this determinant is positive if 4J 2 P > J 3 V 3 max and hence if 16JP 2 > V 3 max . The latter inequality is true since it is a consequence of (68): In Case 10, we have λ * 1 = 0 and:

λ * 2 = Px * 2 -x * 2 1 Px * 2 + x * 2 1 (140) x * = x * 1 x * 2 =   -A 2 max + A 4 max + 4J 2 PA max 2J A max   (141) 
With λ * 1 = 0, the Hessian in (126) becomes:

∇ 2 xx L (x * , λ * ) =       (1 -λ * 2 ) 2P x * 3 1 -(1 + λ * 2 ) 1 x * 2 2 -(1 + λ * 2 ) 1 x * 2 2 (1 + λ * 2 ) 2x * 1 x * 3 2       (142) 
and with the expression of λ * 2 in (140):

∇ 2 xx L (x * , λ * ) = 1 Px * 2 + x * 2 1       4P x * 1 - 2P x * 2 - 2P x * 2 4Px * 1 x * 2 2       (143) 
Referring to Section III-K, x Hence, the second-order sufficient conditions are satisfied and x * of Case 10, given in (60) and computed at line 12 of Algorithm 2, is a strict local minimum. Finally, in Case 11, we have λ * 1 = 0 and λ * 2 = 0 and:

x * = x * 1 x * 2 = V max A max (146) 
so that: (149)

∇ 2 xx L (x * , λ * ) =       2P x * 3 1 - 1 x * 2 2 - 1 x * 2
= 1 A 3 max 4P V 2 max - 1 A max (150) = 1 A 3 max 4PA max -V 2 max V 2 max A max (151) 
This determinant is positive since PA max ≥ V 2 max according to (73). Hence, the second-order sufficient conditions are satisfied and x * of Case 11, given in (61) and computed at line 14 of Algorithm 2, is a strict local minimum.

P. LICQ

In the KKT first-order necessary conditions stated at the beginning of Section III, the LICQ should hold. As defined in Definition 12.4 of [START_REF] Nocedal | Numerical Optimization[END_REF], the LICQ holds at a given x * if the set of active constraint gradients are linearly independent at x * .

For completeness of the proof of Algorithm 2 (and thus of Algorithm 1), let us verify that the LICQ holds at the local minimum x * of Case 3 in (27), Case 4 in (33), Case 10 in (60) and Case 11 in (61).

For Cases 3 and 4, only one constraint is active, C 2 (x) = 0 and C 3 (x) = 0, respectively. Hence, the LICQ holds at x * of Case 3 if ∇ x C 2 (x * ) in ( 15) is nonzero which is necessarily the case since -Px 2x 2 1 is strictly negative for any x. The LICQ holds at x * of Case 4 if ∇ x C 3 (x * ) in ( 16) is nonzero which is always the case. In Case 10, there are two active constraints, C 2 (x) = C 4 (x) = 0. From (15) and (17), ∇ x C 2 (x) and ∇ x C 4 (x) are easily seen to be linearly independent whatever x so that the LICQ holds.

Finally, in Case 11, there are two active constraints, C 3 (x) = C 4 (x) = 0, and, according to ( 16) and (17), ∇ x C 3 (x) and ∇ x C 4 (x) are trivially linearly independent whatever x so that the LICQ holds.
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  126) Let us now verify the second-order sufficient conditions at the local minimum candidate x * of Case 3 in (27), Case 4 in (33), Case 10 in (60) and Case 11 in (61).

JP 2 ≥* 3 1> 0 ,

 230 4V 3 max ⇐⇒ 16JP 2 ≥ 64V 3 max (139) Hence, det ∇ 2 xx L (x * , λ * ) > 0 and since 2P x Sylvester's criterion implies that ∇ 2 xx L (x * , λ * ) is positive definite. The second-order sufficient conditions are thus satisfied and x * of Case 4, given in (33) and computed at lines 5 and 9 of Algorithm 2, is a strict local minimum.

  > 0 hold. Then, according to Sylvester's criterion, ∇ 2 xx L (x * , λ * ) is positive definite if and only if the determinant of the matrix in (143) is positive. This determinant is positive since it is calculated as follows:
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