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Proof of an Algorithm to Compute Time-Optimal
Third Order Polynomial S-curve Trajectories

Marc Gouttefarde, Ghina Hassan, Ahmed Chemori1

I. INTRODUCTION

This research report deals with time-optimal third order
polynomial S-curve trajectories. Methods to generate time-
optimal S-curve trajectories have been previously proposed.
For instance, an algorithm to optimize an objective function
composed of two terms, the execution time and the jerk, has
been developed in [1]. A binary search method to optimize
the S-curve velocity profile has been introduced in [2].

In the present work, a new algorithm is introduced and
proved. This algorithm computes the maximum velocity and
acceleration of a 3rd order polynomial S-curve trajectory such
the total time of the S-curve trajectory is minimized for a
given desired displacement. Upper bound constraints on the
S-curve maximum velocity and acceleration are taken into
account. The resulting optimization problem is solved by
analyzing in detail the Karush-Kuhn-Tucker (KKT) conditions.
This mathematical analysis allows to figure out and prove
the validity of the proposed algorithm. While the analysis is
slightly tedious, the obtained algorithm is very efficient and,
to the best of our knowledge, it has never been proposed.

II. MINIMUM-TIME S-CURVE TRAJECTORY

A. Polynomial S-Curve Motion Profile

The third order polynomial S-curve is considered in this
report. As shown in Figure 1, the motion profile of the
third order polynomial S-curve consists of seven segments,
among which the first three and the last three constitute the
acceleration and deceleration phases, respectively, and the
fourth segment constitutes the constant velocity stage. The jerk
is defined as the following function of time:

j(t) =



J, t0 ≤ t ≤ t1, t6 ≤ t ≤ t7

0, t1 ≤ t ≤ t2, t3 ≤ t ≤ t4, t5 ≤ t ≤ t6

−J, t2 ≤ t ≤ t3, t4 ≤ t ≤ t5

(1)

where J is the maximum jerk value and the time instants ti are
shown in Figure 1. The acceleration, velocity and displacement
as functions of time can be deduced by integration of (1) with
appropriate initial and final conditions.

Referring to Figure 1, d j = t1− t0 is the time needed to
increase the acceleration from zero to the maximum acceler-
ation A and to decrease the acceleration from the maximum
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Fig. 1. Third order polynomial S-Curve model.

value A to zero, i.e., it is the time during which jerk stays
constant at the maximum jerk value J. Besides, da = t2− t1
corresponds to the time during which the acceleration profile
remains constant and equal to the maximum acceleration A
and dv = t4 − t3 corresponds to the time during which the
velocity profile remains constant and equal to V . Note that
the symmetrical S-curve has been adopted in the present study
(i.e. the acceleration and deceleration phases are symmetrical)
and that d j, da and dv are all greater than or equal to zero.
The three time intervals can be written as follows:

d j =
A
J

da =
V
A
− A

J

dv =
P
V
− V

A
− A

J

(2)

A and V are the maximum velocity and acceleration achieved
for a given displacement P. Both A and V should be less than
or equal to the corresponding maximum actuator capabilities.
The total time to travel a distance P is expressed as follows:

T = 4d j +2da +dv (3)

B. Minimization Problem Formulation

In this report, the proof of a new algorithm to optimize
the values of the acceleration A and velocity V is provided.
For a given displacement P and taking into account upper
bound constraints on maximum acceleration and velocity, i.e.,
A ≤ Amax and V ≤ Vmax, this algorithm efficiently computes
the values of A and V of a 3rd order polynomial S-curve



trajectory with minimum total time T . By substitution of the
three time intervals (2) in the total time (3), the function T to
be minimized is expressed as follows:

T =
P
V
+

V
A
+

A
J

(4)

Let us define x = (x1,x2), where x1 = V , x2 = A, as well as
x1max =Vmax and x2max = Amax. Hence, the objective function
is:

f (x) = T =
P
x1

+
x1

x2
+

x2

J
(5)

The minimization problem of finding the minimum-time S-
curve trajectory is then formulated as follows:

min
x

f (x) subject to



C1(x) = da =
x1

x2
− x2

J
≥ 0

C2(x) = dv =
P
x1
− x1

x2
− x2

J
≥ 0

C3(x) = x1max− x1 ≥ 0
C4(x) = x2max− x2 ≥ 0
C5(x) = x1 > 0
C6(x) = x2 > 0

(6)

C. Algorithm to Compute the Minimum-Time S-Curve Trajec-
tory

The KKT first-order necessary optimality conditions of the
optimization problem (6) yield 11 cases: One case of no active
constraint, four cases of two active constraints (C1, C2, C3
or C4) and six cases of two active constrains (C1 = C2 = 0,
C1 = C3 = 0, etc.), being given that the constraints C5 and
C6 are always inactive since V = x1 > 0 and A = x2 > 0. A
detailed analysis of these 11 cases (cf. Section III) shows that
the following four are impossible at a (local) optimal solution:
• No active constraint
• One active constraint C1 = 0
• One active constraint C4 = 0
• Two active constraints C1 =C4 = 0.

It also shows that, at a local optimal solution:
• One active constraint C2 = 0 ⇐⇒ two active constraints

C1 =C2 = 0
• One active constraint C3 = 0 ⇐⇒ two active constraints

C1 =C3 = 0
• The case of two active constraints C2 =C3 = 0 turns out

to be a particular case of the case one active constraint
C3 = 0.

Hence, out of the 11 cases, only four of them needs to be con-
sidered to determine the optimal solutions of the optimization
problem (4):
• One active constraint C2 = 0
• One active constraint C3 = 0
• Two active constraints C2 =C4 = 0
• Two active constraints C3 =C4 = 0.

As detailed in the Section III, further analyzing these
four cases lead to Algorithm 1 which allows to efficiently
determine the values of V and A yielding the minimum-time
polynomial S-curve trajectory.

Algorithm 1 Minimum-Time S-Curve Trajectory
Input: P, J, Vmax, Amax
Output: A and V yielding the minimum total time T

1: if (J2P≤ 2A3
max) then

2: if (JP2 ≤ 4V 3
max) then

3: V = 3
√

JP2

4 and A = 3
√

J2P
2

4: else
5: V =Vmax and A =

√
JVmax

6: end if
7: else
8: if (

√
JVmax ≤ Amax) then

9: V =Vmax and A =
√

JVmax
10: else
11: A = Amax

12: V =
−A2

max+
√

A4
max+4J2PAmax
2J

13: if (V >Vmax) then
14: V =Vmax
15: end if
16: end if
17: end if

III. PROOF OF ALGORITHM 1

The KKT first-order necessary conditions [3] for
x∗ = (x∗1,x

∗
2) to be a local solution to the optimization

problem (6) can be stated as follows.
First-order necessary conditions: There is a Lagrange mul-

tiplier vector λ ∗, with components λ ∗i , 1≤ i≤ 6, such that the
following conditions are satisfied:

∇xL (x∗,λ ∗) = 0 (7)
Ci(x∗) ≥ 0, 1≤ i≤ 6 (8)

λ
∗
i ≥ 0, 1≤ i≤ 6 (9)

λ
∗
i Ci(x∗) = 0, 1≤ i≤ 6 (10)

where the constraints Ci(x) are defined in (6) and ∇xL (x,λ )
is the gradient with respect to x of the Lagrangian function
L (x,λ ) defined as:

L (x,λ ) = f (x)−
6

∑
i=1

λiCi(x) (11)

The first-order necessary conditions stated above in (7)
to (10) are valid if the functions f (x) and Ci(x) are contin-
uously differentiable and the so-called Linear Independence
Constraint Qualification (LICQ) holds at x∗ [3]. According to
the definitions of f (x) and Ci(x), the continuous differentiabil-
ity condition is true for problem (6). The fact that the LICQ
holds is proved in Section III-P.

The well-known method to use the first-order necessary
conditions to find local optimal solutions x∗ consists in dis-
tinguishing all the possible cases of sets of active constraints
which allows the determination of x∗ and of the Lagrange
multiplier vector λ ∗.

A constraint Ci(x) is defined as being active if Ci(x) = 0.
According to (10), for a given i, either Ci(x∗) is active, i.e.
Ci(x) = 0, or λ ∗i = 0. Since C5(x) = x1 = V > 0 and C6(x) =



x2 = A > 0, C5(x) and C6(x) are never active, and according
to (10), λ5 = 0 and λ6 = 0 at a local optimal solution. Then,
only four constraints can be active, C1(x) to C4(x), and the
problem (6) having two variables, x1 and x2, the following 11
cases of possible active constraint sets must be studied:
• No active constraint (one case)
• Four cases of one active constraint
• Six cases of two active constraints

These relatively small number of possible active constraint
sets and the rather simple expressions of the functions f (x)
and Ci(x) make the analysis of each of these eleven cases
possible, as detailed in the following subsections.

A. Preliminaries: Expressions of the gradients
In (7), the gradient with respect to x of the Lagrangian

function L (x,λ ) in (11) is given by:

∇xL (x,λ ) = ∇x f (x)−
4

∑
i=1

λi∇xCi(x) (12)

where the summation is taken for i = 1 to 4 since, as pointed
above, λ5 = 0 and λ6 = 0 at a local optimal solution. According
to (5) and (6), the gradients in (12) are as follows:

∇x f (x) =


∂ f
∂x1

∂ f
∂x2

=


1
x2
− P

x2
1

1
J
− x1

x2
2

=


x2

1−Px2

x2
1x2

x2
2− Jx1

Jx2
2

 (13)

∇xC1(x) =


∂C1

∂x1

∂C1

∂x2

=


1
x2

−1
J
− x1

x2
2

=


1
x2

−x2
2− Jx1

Jx2
2


(14)

∇xC2(x) =


−P
x2

1
− 1

x2

x1

x2
2
− 1

J

=


−Px2− x2

1

x2
1x2

Jx1− x2
2

Jx2
2

 (15)

∇xC3(x) =
[
−1
0

]
(16)

∇xC4(x) =
[

0
−1

]
(17)

B. Case 1: No active constraint
According to (10), λ ∗i = 0 for i = 1 . . .4 if there is no active

constraint at a local optimal solution x∗. Then, (7) yields:

∇xL (x∗,λ ∗) = ∇x f (x∗) = 0

⇐⇒

 x∗21 −Px∗2 = 0

x∗22 − Jx∗1 = 0

⇐⇒

 x∗31 = JP2

x∗32 = J2P
(18)

However, the constraint C2(x) is:

C2(x) =
P
x1
− x1

x2
− x2

J
=

J
(
Px2− x2

1
)
− x1x2

2

Jx1x2
(19)

so that, with (18), the fact that C2(x) is not active leads to:

C2(x∗)> 0 ⇐⇒ J
(
Px∗2− x∗21

)
− x∗1x∗22 > 0

⇐⇒ −x∗1x∗22 > 0 (20)

where the second equivalence comes from Px∗2−x∗21 = 0 which
is a consequence of (18). The inequality (20) is impossible
since x∗1 > 0 and x∗2 > 0 according to constraints C5 and C6.
Consequently, this first case of no active constraint is not
feasible and is discarded.

C. Case 2: One active constraint C1(x) = 0

According to (10), we have λ ∗i = 0 for i = 2, . . . ,4. Hence,
x∗1, x∗2 and λ ∗1 can be determined from the following equation
system obtained from (7) and C1(x∗) = 0:

∇xL (x∗,λ ∗) = ∇x f (x∗)−λ ∗1 ∇xC1(x∗) = 0

C1(x∗) =
x∗1
x∗2
− x∗2

J
= 0

(21)

From (13) and (14), the system (21) is equivalent to:
x∗21 −Px∗2−λ ∗1 x∗21 = 0

x∗22 − Jx∗1 +λ ∗1
(
x∗22 + Jx∗1

)
= 0

Jx∗1− x∗22 = 0

(22)

This second equation system yields λ ∗1 = 0, x∗31 = JP2 and
x∗32 = J2P. From these values of x∗1 and x∗2, it follows that,
similarly to Case 1 detailed in the previous subsection, the
constraint C2 is not feasible which discards Case 2.

D. Case 3: One active constraint C2(x) = 0

When the only active constraint is C2, (10) gives λ ∗i = 0 for
all i 6= 2, and x∗1, x∗2 and λ ∗2 can then be determined from:

∇xL (x∗,λ ∗) = ∇x f (x∗)−λ ∗2 ∇xC2(x∗) = 0

C2(x∗) =
J
(
Px∗2− x∗21

)
− x∗1x∗22

Jx∗1x∗2
= 0

(23)

which, from (13) and (15), is equivalent to:
x∗21 −Px∗2 +λ ∗2

(
Px∗2 + x∗21

)
= 0

x∗22 − Jx∗1−λ ∗2
(
Jx∗1− x∗22

)
= 0

J
(
Px∗2− x∗21

)
− x∗1x∗22 = 0

(24)

The second equation of this system can be written(
x∗22 − Jx∗1

)
(1+λ ∗2 ) = 0 which implies x∗22 = Jx∗1 since λ ∗2 ≥ 0

according to (9). Then, the third equation of (24) gives
x∗32 =

(
J2P
)
/2, which in turn leads to x∗31 =

(
JP2
)
/4 and

λ ∗2 = 1/2.
Since λ ∗2 = 1/2 > 0 and λ ∗i = 0 for all i 6= 2, (9) is true. For

the first order necessary conditions to be all true, it remains to
verify that (8) is satisfied for i = 1, 2 and 3, i.e., C1(x∗)≥ 0,
C3(x∗)≥ 0 and C4(x∗)≥ 0.



C1(x∗)≥ 0 is equivalent to Jx∗1−x∗22 ≥ 0 which is true since
x∗22 = Jx∗1. Finally, since x∗31 =

(
JP2
)
/4 and x∗32 =

(
J2P
)
/2,

C3(x∗)≥ 0 and C4(x∗)≥ 0 yield the two following conditions
on J, P, x1max =Vmax and x2max = Amax:

x∗1 ≤ x1max⇐⇒ JP2 ≤ 4V 3
max (25)

x∗2 ≤ x2max⇐⇒ J2P≤ 2A3
max (26)

To conclude this third case, if the two conditions (25)
and (26) are verified, the following vector is a local minimum
candidate:

x∗ =


3

√
JP2

4

3

√
J2P

2

 (27)

E. Case 4: One active constraint C3(x) = 0

When the only active constraint is C3, (10) gives λ ∗i = 0 for
all i 6= 3 and C3(x∗) = x1max−x∗1 = 0 gives x∗1 = x1max =Vmax.
Moreover, (7) is ∇x f (x∗)−λ ∗3 ∇xC3(x∗) = 0, i.e.:{

x∗21 −Px∗2 +λ ∗3 x∗21 x2 = 0
x∗22 = Jx∗1

(28)

With x∗1 = Vmax and the second equation of (28), after some
calculations, the first equation of (28) leads to:

λ
∗
3 =

P
√

J−
√

Vmax
3

V 2
max
√

J
(29)

Then, since λ ∗3 ≥ 0 according to (9), the following condition
must hold:

√
Vmax

3 ≤ P
√

J ⇐⇒ V 3
max ≤ JP2 (30)

For the first order necessary conditions to be true, it remains
to verify that (8) is satisfied for i = 1, 2 and 4, i.e., C1(x∗)≥ 0,
C2(x∗) ≥ 0 and C4(x∗) ≥ 0. First, since x∗22 = Jx∗1, we have
C1(x∗) = 0 so that C1(x∗)≥ 0, and C2(x∗)≥ 0 is equivalent to
x∗31 ≤ JP2/4, i.e., from x∗1 = Vmax, the following condition is
obtained:

V 3
max ≤

JP2

4
(31)

Note that condition (31) implies condition (30) so that only
(31) is to be retained. Finally, C4(x∗)≥ 0, x∗22 = Jx∗1 and x∗1 =
Vmax yields the following condition:

√
JVmax ≤ Amax (32)

To summarize this fourth case, if the two conditions (31)
and (32) are verified, the following vector is a local minimum
candidate:

x∗ =

[
Vmax√
JVmax

]
(33)

F. Case 5: One active constraint C4(x) = 0

When the only active constraint is C4, (10) gives λ ∗i = 0 for
all i 6= 4 and C4(x∗) = x2max−x∗2 = 0 gives x∗2 = x2max = Amax.
Moreover, (7) is ∇x f (x∗)−λ ∗4 ∇xC4(x∗) = 0 which is a system
of two equations. The first equation of this system yields
x∗21 = Px∗2. Then, according to (19), C2(x∗) ≥ 0 is equivalent
to −x∗1x∗22 ≥ 0 which is impossible since x∗1 > 0 and x∗2 > 0. In
conclusion, this fifth case is not feasible and is thus discarded.

G. Case 6: Two active constraints C1(x) =C2(x) = 0

When only C1 and C2 are active, C3(x∗)> 0 and C4(x∗)> 0
imply with (10) that λ ∗3 = 0 and λ ∗4 = 0. Then, x∗1, x∗2, λ ∗1 and
λ ∗2 have to be determined. The determination of λ ∗1 and λ ∗2
shall be done to verify that (9) is satisfied.

First, the x∗1 and x∗2 are calculated from the following system
of two equations obtained from C1(x∗) =C2(x∗) = 0:{

Jx∗1− x∗22 = 0
J
(
Px∗2− x∗21

)
− x∗1x∗22 = 0

(34)

whose solution is:

x∗ =


3

√
JP2

4

3

√
J2P

2

 (35)

Then, Eq. (7) with λ ∗3 = 0 and λ ∗4 = 0 is used to determine
λ ∗1 and λ ∗2 :

∇x f (x∗)−λ
∗
1 ∇xC1(x∗)−λ

∗
2 ∇xC2(x∗) = 0

⇐⇒

{
x∗21 −Px∗2−λ ∗1 x∗21 +λ ∗2

(
Px∗2 + x∗21

)
= 0

x∗22 − Jx∗1 +λ ∗1
(
x∗22 + Jx∗1

)
−λ ∗2

(
Jx∗1− x∗22

)
= 0

⇐⇒

[
−x∗21 Px∗2 + x∗21

x∗22 + Jx∗1 x∗22 − Jx∗1

][
λ ∗1
λ ∗2

]
=

[
Px∗2− x∗21

Jx∗1− x∗22

]
With the expressions of x∗ in (35), the determinant of the
matrix in the last equation is equal to

(
−3J2P2

)
/2. and the

equation system possesses a unique solution. Once solved, e.g.
with Cramer’s rule, it yields λ ∗1 = 0 and λ ∗2 = 1/3 which verify
(9).

It remains to verify (8), i.e., C3(x∗) ≥ 0 and C4(x∗) ≥ 0
which leads to the two following conditions:

JP2 ≤ 4V 3
max and J2P≤ 2A3

max (36)

To conclude on this sixth case, if conditions (36) are true,
x∗ in (35) is a local minimum candidate. Moreover, it appears
that Case 6 is equivalent to Case 3 since x∗ in (35) is the same
as x∗ in (27) and conditions (36) are the same as those in (25)
and (26) (which is a consequence of x∗ being the same).

H. Case 7: Two active constraints C1(x) =C3(x) = 0

C1(x∗) = 0 and C3(x∗) = 0 give:

x∗ =

[
Vmax√
JVmax

]
(37)



Moreover, C2(x∗)> 0 and C4(x∗)> 0 imply with (10) that
λ ∗2 = 0 and λ ∗4 = 0, and (7) yields the following equation
system in λ ∗1 and λ ∗3

∇x f (x∗)−λ
∗
1 ∇xC1(x∗)−λ

∗
3 ∇xC3(x∗) = 0

⇐⇒

{
x∗21 −Px∗2−λ ∗1 x∗21 +λ ∗3

(
x∗21 x∗2

)
= 0

x∗22 − Jx∗1 +λ ∗1
(
x∗22 + Jx∗1

)
= 0

With (37), the second equation yields λ ∗1 = 0 and then the first
equation gives λ ∗3 =

(
Px∗2− x∗21

)
/
(
x∗21 x∗2

)
. With (37), for (9)

to be true, i.e. λ ∗3 ≥ 0, the following condition must hold:

V 3
max ≤ JP2 (38)

It remains to verify that (8) is satisfied for i = 2 and i =
4, i.e., C2(x∗) ≥ 0 and C4(x∗) ≥ 0, which leads to the two
following conditions:

V 3
max ≤

JP2

4
and

√
JVmax ≤ Amax (39)

where the first condition in (39) is stronger than (38), i.e., (39)
implies (38).

To conclude on case 7, if conditions (39) are true, x∗ in (37)
is a local minimum candidate. Moreover, it turns out that Case
7 is equivalent to Case 4 since x∗ in (37) is the same as
x∗ in (33) and conditions (39) are the same as those in (31)
and (32) (which is a consequence of x∗ being the same).

I. Case 8: Two active constraints C1(x) =C4(x) = 0
C1(x∗) = 0 and C4(x∗) = 0 give:

x∗ =

 A2
max

J
Amax

 (40)

Moreover, C2(x∗) > 0 and C3(x∗) > 0 imply with (10) that
λ ∗2 = 0 and λ ∗3 = 0, and (7) yields the following equation
system in λ ∗1 and λ ∗4 :

∇x f (x∗)−λ
∗
1 ∇xC1(x∗)−λ

∗
4 ∇xC4(x∗) = 0

⇐⇒

{
x∗21 −Px∗2−λ ∗1 x∗21 = 0

x∗22 − Jx∗1 +λ ∗1
(
x∗22 + Jx∗1

)
+λ ∗4 Jx∗22 = 0

From the first equation and (40), we have:

λ
∗
1 =

x∗21 −Px∗2
x∗21

= 1− J2P
A3

max
(41)

and, from the second equation:

λ
∗
4 =

Jx∗1− x∗22 −λ ∗1
(
x∗22 + Jx∗1

)
Jx∗22

=−2
J

λ
∗
1 (42)

since, according to (40), Jx∗1− x∗22 = 0 and x∗22 + Jx∗1 = 2x∗22 .
Eq. (42) and (9) imply that λ ∗1 = λ ∗4 = 0 so that (41) gives:

J2P = A3
max (43)

However, C2(x∗)≥ 0, which must hold true according to (8),
leads to:

J
(
Px∗2− x∗21

)
− x∗1x∗22 ≥ 0

=⇒ JPAmax−2
A4

max

J
≥ 0

=⇒ J2P
2
≥ A3

max

which is impossible in view of (43). In conclusion, Case 8 is
impossible and thus discarded.

J. Case 9: Two active constraints C2(x) =C3(x) = 0

C3(x∗) = 0 means that x∗1 =Vmax while C2(x∗) = 0 yields a
second-order polynomial equation in x∗2. The latter equation
can be solved to obtain two solutions for x∗2, but it is better to
first consider (7). Since, with (10), C1(x∗)> 0 and C4(x∗)> 0
imply that λ ∗1 = 0 and λ ∗4 = 0, (7) yields:

∇x f (x∗)−λ
∗
2 ∇xC2(x∗)−λ

∗
3 ∇xC3(x∗) = 0

⇐⇒

{
x∗21 −Px∗2 +λ ∗2

(
x∗21 +Px∗2

)
+λ ∗3

(
x∗21 x∗2

)
= 0

x∗22 − Jx∗1 +λ ∗2
(
x∗22 − Jx∗1

)
= 0

(44)

The second equation implies that either x∗22 = Jx∗1 or λ ∗2 =−1.
Since λ ∗2 ≥ 0 according to (9), λ ∗2 = −1 is not possible so
that x∗22 = Jx∗1, i.e., x∗2 =

√
JVmax. Then, with x∗1 = Vmax and

x∗2 =
√

JVmax, C2(x∗) = 0 is equivalent to:

V 3
max =

JP2

4
(45)

Going back to the equation system (44), note that in the
second equation, since x∗22 = Jx∗1, λ ∗2 is undetermined so that
any λ ∗2 ≥ 0 satisfies this equation and (9) as well. Now, let
us verify if there exist λ ∗2 ≥ 0 and λ ∗3 ≥ 0 such that the first
equation of (44) is verified. With x∗1 =Vmax and x∗2 =

√
JVmax,

this first equation is equivalent to:

λ
∗
3 =

P
√

JVmax−V 2
max−λ ∗2

(
P
√

JVmax +V 2
max
)

V 2
max
√

JVmax
(46)

so that λ ∗3 ≥ 0 if and only if:

λ
∗
2 ≤

P
√

JVmax−V 2
max

P
√

JVmax +V 2
max

(47)

Since λ ∗2 must be non-negative, (47) is possible if and only if:

P
√

JVmax−V 2
max ≥ 0⇐⇒ JP2 ≥V 3

max (48)

which, according to (45), is true. Hence, taking λ ∗2 equal to
the right-hand side of the inequality (47), we have λ ∗2 ≥ 0 and
λ ∗3 in (46) is also non-negative which proves that there exist
λ ∗2 ≥ 0 and λ ∗3 ≥ 0 such that (44) is verified.

Finally, the inequalities C1(x∗) ≥ 0 and C4(x∗) ≥ 0 should
be verified for (8) to be true. First, we have C1(x∗) = 0 since
x∗22 = Jx∗1. Second, C4(x∗)≥ 0 is x∗2 ≤ Amax which yields:

√
JVmax ≤ Amax (49)

To conclude Case 9, if conditions (45) and (49) are verified,
the following vector is a local minimum candidate:

x∗ =

[
Vmax√
JVmax

]
(50)

Comparing (45) with (31), (49) with (32) and (50) with (33),
Case 9 appears to be a particular case of Case 4 where (31)
is verified as an equality.



K. Case 10: Two active constraints C2(x) =C4(x) = 0

C4(x∗) = x2max − x∗2 = 0 gives x∗2 = x2max = Amax while
C2(x∗) = 0 yields the following quadratic equation in x∗1:

Jx∗21 + x∗22 x∗1− JPx∗2 = 0 (51)

The discriminant of this equation is:

∆ = x∗2
(
x∗32 +4J2P

)
> 0 (52)

and (51) possesses the following two solutions:

x∗1 =
−x∗22 ±

√
∆

2J
(53)

Since x∗1 > 0 according to (6), the only possible solution is:

x∗1 =
−x∗22 +

√
∆

2J
=
−A2

max +
√

A4
max +4J2PAmax

2J
(54)

since the other one is negative. Note that x∗1 in (54) is positive
because −x∗22 +

√
∆ > 0, i.e., x∗42 < ∆ which can be deduced

from (52) and 4J2P > 0.
Now, let us determine the Lagrange multipliers λ ∗2 and

λ ∗4 and establish the conditions for λ ∗2 and λ ∗4 to be non-
negative and thus to satisfy (9). Since, with (10), C1(x∗) > 0
and C3(x∗)> 0 imply that λ ∗1 = 0 and λ ∗3 = 0, (7) yields:

∇x f (x∗)−λ
∗
2 ∇xC2(x∗)−λ

∗
4 ∇xC4(x∗) = 0

⇐⇒

{
x∗21 −Px∗2 +λ ∗2

(
x∗21 +Px∗2

)
= 0

Jx∗1− x∗22 +λ ∗2
(
Jx∗1− x∗22

)
= λ ∗4

(55)

Since x∗21 +Px∗2 > 0, we have from the first equation:

λ
∗
2 =

Px∗2− x∗21

Px∗2 + x∗21
(56)

With the expression of x∗1 in (54), one can verify that
Px∗2−x∗21 ≥ 0 is equivalent to ∆≥ x∗42 which is true according
to (52) and 4J2P> 0. Consequently, λ ∗2 in (56) is non-negative.
Besides, from the second equation of (55), we have:

λ
∗
4 =

(
Jx∗1− x∗22

)
(1+λ

∗
2 ) (57)

Since λ ∗2 ≥ 0, λ ∗4 ≥ 0 is equivalent to Jx∗1−x∗22 ≥ 0. With (54)

and (52), the latter inequality is equivalent to x∗32 ≤
J2P

2
.

Hence, λ ∗4 ≥ 0 leads to the following condition:

A3
max ≤

J2P
2

(58)

Finally, the inequalities C1(x∗) ≥ 0 and C3(x∗) ≥ 0 should
be verified for (8) to be true. C1(x∗) ≥ 0 is equivalent to
Jx∗1− x∗22 ≥ 0 i.e. to λ ∗4 ≥ 0 which is verified if (58) is true.
C3(x∗)≥ 0 is:

x∗1 =
−A2

max +
√

A4
max +4J2PAmax

2J
≤Vmax (59)

To conclude Case 10, if conditions (58) and (59) are verified,
the following vector is a local minimum candidate:

x∗ =

 −A2
max +

√
A4

max +4J2PAmax

2J
Amax

 (60)

L. Case 11: Two active constraints C3(x) =C4(x) = 0

In this last case, the two active constraints C3(x)=C4(x)= 0
yield directly the following local minimum candidate:

x∗ =

[
Vmax

Amax

]
(61)

Since, with (10), C1(x∗) > 0 and C2(x∗) > 0 imply that
λ ∗1 = 0 and λ ∗2 = 0, (7) gives:

∇x f (x∗)−λ
∗
3 ∇xC3(x∗)−λ

∗
4 ∇xC4(x∗) = 0

⇐⇒


λ ∗3 =

Px∗2− x∗21

x∗21 x∗2

λ ∗4 =
Jx∗1− x∗22

Jx∗22

(62)

so that, with (61), the following equality should hold for (9)
to be true:

λ
∗
3 ≥ 0⇐⇒ Px∗2− x∗21 ≥ 0⇐⇒ PAmax ≥V 2

max (63)

and also:

λ
∗
4 ≥ 0⇐⇒ Jx∗1− x∗22 ≥ 0⇐⇒ JVmax ≥ A2

max (64)

Finally, the inequalities C1(x∗) ≥ 0 and C2(x∗) ≥ 0 should
be verified for (8) to hold. C1(x∗) ≥ 0 is equivalent to
Jx∗1− x∗22 ≥ 0, i.e., to (64). C2(x∗)≥ 0 is equivalent to:

J
(
Px∗2− x∗21

)
− x∗1x∗22 ≥ 0⇐⇒ JPAmax− JV 2

max ≥VmaxA2
max
(65)

In summary, if the inequalities (63), (64) and (65) are
satisfied, x∗ in (61) is a local minimum candidate.

M. Synthesis of the 11 cases and Algorithm 2

Let us now summarize all the 11 cases:
• Cases 1, 2, 5 and 8 are impossible in the sense that they

do not verify the KKT first-order necessary conditions.
• Case 6 is equivalent to Case 3 and Case 7 is equivalent

to Case 4.
• Case 9 is a particular case of Case 4.

Hence, only four cases, namely Cases 3, 4, 10 and 11, need
to be considered to find (local) solutions x∗ = (x∗1,x

∗
2) to the

optimization problem (6).
In order to ease the analysis of the relationships between

these cases, the conditions to be fulfilled for each one of these
four cases are summarized below.

Conditions for Case 3:

JP2 ≤ 4V 3
max (66)

J2P≤ 2A3
max (67)

Conditions for Case 4:

4V 3
max ≤ JP2 (68)

JVmax ≤ A2
max (69)

Conditions for Case 10:

2A3
max ≤ J2P (70)



JPAmax− JV 2
max ≤VmaxA2

max (71)

where (71) is equivalent (59) as can be shown with some ele-
mentary calculations. Moreover, again after some calculations,
it turns out that (70) and (71) imply that:

A2
max ≤ JVmax (72)

Conditions for Case 11:

V 2
max ≤ PAmax (73)

A2
max ≤ JVmax (74)

VmaxA2
max ≤ JPAmax− JV 2

max (75)

Note that, from (74) and (75), we have:

2A3
max ≤ J2P (76)

Indeed, the sum of (76) and (74) multiplied by Vmax gives
2VmaxAmax ≤ JP. Using the latter inequality and multiply-
ing (74) by 2Amax lead to (76).

Carefully analyzing all these conditions leads to the follow-
ing relationships between the four remaining cases (Cases 3,
4, 10 and 11) and in turn to Algorithm 1.

Let us first assume that condition (67) of Case 3 is satisfied
as a strict inequality. Then, Cases 10 and 11 are not possible
because of (70) and (76), respectively, and there are two
possibles cases:
• If (66) of Case 3 is verified (as a strict inequality), Case

4 is not possible because of (68). The only possible case
is Case 3 which means that the sole local minimum
candidate is x∗ in (27) which corresponds to line 3 of
Algorithm 1.

• If (66) of Case 3 is not verified, Case 3 is not possible
and condition (68) of Case 4 is verified. Case 4 is then the
only possible case provided that condition (69) is true. It
turns out that (67) and (68) imply that condition (69) is
verified. Indeed, (67) is equivalent to:

3

√
J4P2

4
≤ A2

max (77)

(68) is equivalent to:

3

√
4

JP2 ≤
1

Vmax
(78)

and (77) and (78) imply that:

3√J3 ≤ A2
max

Vmax
⇐⇒ JVmax ≤ A2

max (79)

which is (69). Hence, Case 4 is the only possible case
meaning that the sole local minimum candidate is x∗

in (33) which corresponds to line 5 of Algorithm 1.
Let us now assume that condition (67) of Case 3 is not

satisfied. Case 3 is then not possible and:
• If (69) is satisfied (as a strict inequality), Cases 10 and

11 are not possible because of (72) and (74), respectively.
Moreover, since (67) is not satisfied, we have:

2A3
max < J2P⇐⇒ Amax <

3

√
J2P

2
(80)

and using the latter in (69) (satisfied as a strict inequality)
yields:

J <
A2

max

Vmax
<

1
Vmax

3

√
J4P2

4
(81)

which implies that:

Vmax <
3

√
JP2

4
⇐⇒V 3

max <
JP2

4
(82)

i.e. (68) is satisfied. The two conditions for Case 4
are then satisfied and Case 4 is the only possible case
meaning that the unique local minimum candidate is x∗

in (33) which corresponds to line 9 of Algorithm 1.
• If (69) is not satisfied, Case 4 is not possible and the only

possible cases are Cases 10 and 11. Let us then consider
the two following complementary situations:

– If (71) is satisfied (as a strict inequality), Case 11
is not possible because of (75). Case 10 is possible
since (70) is true because (67) is not satisfied. Case
10 is then the only possible case and the unique local
minimum candidate is x∗ in (60) which corresponds
to lines 11 and 12 of Algorithm 1.

– If (71) is not satisfied, Case 10 is not possible but
Case 11 is then feasible. Indeed (75) is true since (71)
is not satisfied, (74) is true since (69) is not satisfied,
and (73) is true since it turns out to be implied by
(75). The latter result comes from the fact that (75)
is equivalent to:

VmaxA2
max + JV 2

max ≤ JPAmax (83)

which implies that:

JV 2
max ≤ JPAmax⇐⇒V 2

max ≤ PAmax (84)

the latter inequality being (73). Hence, Case 11 is
the only possible case and the unique local minimum
candidate is x∗ in (61) which corresponds to lines 11
and 14 of Algorithm 1.

Algorithm 2 summarizes the above analysis. It is exactly
the same as Algorithm 1 which proves that the latter is
correct. Note that line 12 of Algorithm 2 corresponds to
lines 11 and 12 of Algorithm 1 as can be seen from the
expression of x∗ in (60). Moreover, line 14 of Algorithm 2
corresponds to lines 11 and 14 of Algorithm 1 since, with V =
−A2

max+
√

A4
max+4J2PAmax
2J as calculated at line 12 of Algorithm 1,

the condition V >Vmax at line 13 of Algorithm 1 means that
(59) is not satisfied. Hence, since (59) and (71) are equivalent
(as can be shown with some elementary calculations), (71)
is also not satisfied which corresponds to the condition for
line 14 of Algorithm 2.

It is important to note that, according to the above analysis,
Algorithm 1 and Algorithm 2 computes in fact the global
minimum of the minimization problem (6).

N. Particular cases

For the proof to be complete, it remains to be shown that
Algorithm 2, and hence Algorithm 1, is correct in a number of



Algorithm 2 Minimum-Time S-Curve Trajectory Rewritten
1: if (67) then
2: if (66) then
3: x∗ in (27) % Case 3
4: else
5: x∗ in (33) % Case 4
6: end if
7: else
8: if (69) then
9: x∗ in (33) % Case 4

10: else
11: if (71) then
12: x∗ in (60) % Case 10
13: else
14: x∗ in (61) % Case 11
15: end if
16: end if
17: end if

particular cases. The latter were overlooked at various places
in the proof presented in Section III-M where conditions (66),
(67), (69) and (71) were supposed to be verified as strict
inequalities. In fact, the particular cases to be considered to
complete the proof are the following ones:

• (67) and (66) satisfied as equalities;
• (67) satisfied as an equality and (66) satisfied as a strict

inequality;
• (67) satisfied as an equality and (66) not satisfied;
• (67) not satisfied and (69) satisfied as an equality;
• (67) and (69) not satisfied and (71) satisfied as an equality.

First particular case: (67) and (66) satisfied as equalities

J2P = 2A3
max (85)

JP2 = 4V 3
max (86)

These two equalities imply that (27) (line 3 of Algorithm 2)
is:

x∗ =


3

√
JP2

4

3

√
J2P

2

=


Vmax

Amax

 (87)

Now, let us consider x∗ in (33) (line 5 of Algorithm 2):

x∗ =

[
Vmax√
JVmax

]
=

[
Vmax

Amax

]
(88)

To show that the second equality in the previous equa-

tion holds, consider P =
2A3

max

J2 from (85) and P2 =
4V 3

max

J
from (86). Then, we have:

4A6
max

J4 =
4V 3

max

J
⇐⇒ Amax =

√
JVmax (89)

Next, (60) (line 12 of Algorithm 2) is:

x∗ =

 −A2
max +

√
A4

max +4J2PAmax

2J
Amax

=

[
Vmax

Amax

]
(90)

since, with J2P = 2A3
max in (85):

−A2
max +

√
A4

max +4J2PAmax

2J
=
−A2

max +
√

A4
max +8A4

max

2J

=
−A2

max +
√

9A4
max

2J

=
A2

max

J
=Vmax (91)

where the last equality is obtained from (89).
Hence, in this first particular case, it turns out that x∗ in

(27), (33) and (60) are all equal to x∗ in (61), i.e, all possible
local minima are equal. Then, Algorithm 2 necessarily
computes the optimal value x∗ = [Vmax,Amax]

T at line 3.

Second particular case: (67) satisfied as an equality and
(66) satisfied as a strict inequality

J2P = 2A3
max (92)

JP2 < 4V 3
max (93)

First, note that Case 3 is possible since both (67) and
(66) are satisfied and Case 4 is not possible since (68) is
not satisfied. Moreover, Algorithm 2 computes x∗ at line 3
according to (27):

x∗ =


3

√
JP2

4
3

√
J2P

2

=


3

√
JP2

4

Amax

 (94)

where 3

√
JP2

4
<Vmax since JP2 < 4V 3

max.
Now, let us check whether or not Cases 10 and 11 are

possible and, if they are, verify that x∗ in (94) also corresponds
to their minimum.

The first condition for Case 10 to be possible is (70). This
condition is verified since J2P = 2A3

max. The second condition
for Case 10 is (71) which can equivalently be written as:

VmaxA2
max + JV 2

max ≥ JPAmax (95)

Since Vmax >
3

√
JP2

4
and J2P = 2A3

max, one can write:

VmaxA2
max + JV 2

max > A2
max

3

√
JP2

4
+ J

3

√
J2P4

16

=
3

√
J4P2

4
3

√
JP2

4
+ J

3

√
J2P4

16

=
3

√
J5P4

16
+

3

√
J5P4

16

= 2
3

√
J5P4

16
=

3

√
J5P4

2
= JP

3

√
J2P

2



Hence, VmaxA2
max + JV 2

max > JP 3

√
J2P

2
= JPAmax, i.e., (95) is

verified as a strict inequality so that (71) is also verified as
a strict inequality and Case 10 is possible. Furthermore, the
minimum x∗ in Case 10 is given in (60):

x∗ =

 −A2
max +

√
A4

max +4J2PAmax

2J
Amax

=

 A2
max

J
Amax

 (96)

where the second equality is from (91). Since J2P = 2A3
max,

we have:
3

√
JP2

4
=

3

√
J
4

4A6
max

J4 =
A2

max

J
(97)

so that the minimum x∗ of Case 10 is equal to the minimum
x∗ of Case 3 given in (94).

Finally, Case 11 is not possible because (71) is verified as
a strict inequality and, hence, (75) is not verified.

Summarizing, only Cases 3 and 10 are possible, the
minimum x∗ of these two cases are equal and Algorithm 2
indeed computes this x∗ at line 3.

Third particular case: (67) satisfied as an equality and (66)
not satisfied

J2P = 2A3
max (98)

JP2 > 4V 3
max (99)

In this particular case, Case 3 is not possible since (66) is
not satisfied and Algorithm 2 computes x∗ at line 5 according
to (33):

x∗ =

[
Vmax√
JVmax

]
(100)

First, note that Case 4 is possible since (68) is true since
J2P = 2A3

max. Moreover, (69) is also verified since:

J2P = 2A3
max⇐⇒ A2

max =
3

√
J4P2

4
= J

3

√
JP2

4
(101)

and:

JP2 > 4V 3
max⇐⇒Vmax <

3

√
JP2

4
(102)

imply that:

JVmax < J
3

√
JP2

4
= A2

max (103)

Furthermore, let us examine Cases 10 and 11. Case 10
is not feasible since (71) is not verified. Indeed, in the
previous paricular case, it was shown that J2P = 2A3

max and
JP2 < 4V 3

max leads to (71) being verified as a strict inequality,
i.e., JPAmax− JV 2

max <VmaxA2
max. Then, the same reasoning

allows to conclude that J2P = 2A3
max and JP2 > 4V 3

max imply
JPAmax− JV 2

max >VmaxA2
max i.e. (71) is not verified in the

present particular case. Besides, Case 11 is also not feasible
since A2

max > JVmax from (103) so that (74) is not true.
Hence, only Case 4 is possible and the corresponding

minimum x∗ is indeed computed at line 5 of Algorithm 2.

Fourth particular case: (67) not satisfied and (69) satisfied
as an equality

J2P > 2A3
max (104)

JVmax = A2
max (105)

First, note that Case 3 is not possible since (67) is not
satisfied and that Algorithm 2 computes x∗ at line 9 according
to (33):

x∗ =

[
Vmax√
JVmax

]
=

[
Vmax

Amax

]
(106)

which is also the minimum x∗ of Case 11 as given in (61) and
where the second equality in (106) comes from (105). Then,
let us check whether or not Cases 4, 10 and 11 are possible.

Case 4 is possible since (69) is truce according to (105).
Moreover, (104) and (105) imply that:

4V 3
max = 4

A6
max

J3 <
4
J3

J4P2

4
= JP2 (107)

so that (68) is satisfied.
Case 10 is not possible since (71) is not satisfied. Indeed,

with (105), we have:

VmaxA2
max + JV 2

max =
2A4

max

J
(108)

and (104) then implies that:

2A4
max

J
< J2P

Amax

J
= JPAmax (109)

so that:

VmaxA2
max + JV 2

max < JPAmax⇐⇒ JPAmax− JV 2
max >VmaxA2

max
(110)

Case 11 turns out to be possible since (110) shows that (75)
is true and (74) is satisfied according to (105). Moreover, (104)
and (105) imply that:

V 2
max =

A4
max

J2 <
Amax

J2
J2P

2
=

AmaxP
2

< PAmax (111)

i.e. (73) is satisfied.
In conclusion of this fourth particular case, only Cases 4

and 11 are possible, their minimum x∗ are equal and indeed
computed by Algorithm 2 at line 9.

Fifth particular case: (67) and (69) not satisfied and (71)
satisfied as an equality

J2P > 2A3
max (112)

JVmax > A2
max (113)

JPAmax− JV 2
max =VmaxA2

max (114)

Cases 3 and 4 are then not possible since (67) and (69) are
not satisfied, respectively.

Case 10 is possible since (112) implies (70) and (71) is true
according to (114).

Then, about the feasibility of Case 11, it is not straightfor-
ward to verify whether or not (73) is true from (112), (113)
and (114). Fortunately, this verification is in fact not required.
Indeed, in the present particular case, Algorithm 2 computes



x∗ of Case 10 at line 12 and, as proved below, this x∗ is equal
to the one of Case 11, x∗ = [Vmax,Amax]

T . Hence, if Case 11
is not possible, Algorithm 2 computes x∗ of Case 10 which is
the only possible minimum and, if Case 11 is possible, x∗ of
Cases 10 and 11 are equal and Algorithm 2 indeed computes
this minimum at line 12.

It remains to prove that the x∗ of Case 10, which according
to (60) is:

x∗ =

 −A2
max +

√
A4

max +4J2PAmax

2J
Amax

 (115)

is equal to the one of Case 11 which is x∗ = [Vmax,Amax]
T , i.e.,

to prove that

−A2
max +

√
A4

max +4J2PAmax

2J
=Vmax (116)

To this end, let us consider (114) as a quadratic equation in
Vmax:

JV 2
max +A2

maxVmax− JPAmax = 0 (117)

whose two solutions are:

Vmax =
−A2

max±
√

A4
max +4J2PAmax

2J
(118)

The only possible solution for Vmax among those two is the
following one since the other one is negative:

Vmax =
−A2

max +
√

A4
max +4J2PAmax

2J
(119)

which shows that x∗ of Case 10 in (115) is equal to x∗ of Case
11.

O. Second-Order Sufficient Conditions

Algorithm 2 (and thus Algorithm 1) is based on the KKT
first-order necessary conditions. Hence, the vectors x∗ com-
puted in the various cases in Algorithm 2 are local minima
candidates and it remains to be verified that these vectors x∗

are indeed local minima. To this end, the following second-
order sufficient conditions can be used [3].

Second-Order Sufficient Conditions: Suppose that at some
feasible vector x∗, there exists a Lagrange multiplier vector λ ∗

satisfying the KKT conditions and that the Lagrangian Hessian
∇2

xxL (x∗,λ ∗) is positive definite. Then, x∗ is a strict local
minimum to the optimization problem (6).

From (12), the Lagrangian Hessian is:

∇
2
xxL (x,λ ) = ∇

2
xx f (x)−

4

∑
i=1

λi∇
2
xxCi(x) (120)

The individual Hessian matrices appearing in the above ex-
pression of ∇2

xxL are obtained from (13) to (17) as follows.

∇
2
xx f (x) =


∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2

=


2P
x3

1
− 1

x2
2

− 1
x2

2

2x1

x3
2


(121)

∇
2
xxC1(x) =


0 − 1

x2
2

− 1
x2

2

2x1

x3
2

 (122)

∇
2
xxC2(x) =


2P
x3

1

1
x2

2

1
x2

2
−2x1

x3
2

 (123)

∇
2
xxC3(x) = 0 (124)

∇
2
xxC4(x) = 0 (125)

Therefore, the Lagrangian Hessian is:

∇
2
xxL (x,λ ) =


(1−λ2)

2P
x3

1
(λ1−λ2−1)

1
x2

2

(λ1−λ2−1)
1
x2

2
(1−λ1 +λ2)

2x1

x3
2


(126)

Let us now verify the second-order sufficient conditions at
the local minimum candidate x∗ of Case 3 in (27), Case 4
in (33), Case 10 in (60) and Case 11 in (61).

In Case 3, we have λ ∗1 = 0, λ ∗2 = 1/2, x∗22 = Jx∗1 and:

x∗ =


x∗1

x∗2

=


3

√
JP2

4

3

√
J2P

2

 (127)

so that:

∇
2
xxL (x∗,λ ∗) =


P

x∗31
− 3

2x∗22

− 3
2x∗22

3x∗1
x∗32

 (128)

According to Sylvester’s criterion, since
P

x∗31
> 0, the Hes-

sian ∇2
xxL (x∗,λ ∗) is positive definite if and only if its de-

terminant is strictly positive. Being given that x∗22 = Jx∗1 and
with (127), the determinant is:

det
(
∇

2
xxL (x∗,λ ∗)

)
=

3P
x∗21 x∗32

− 9
4x∗42

(129)

=
3

x∗42

(
J2P
x∗32
− 3

4

)
(130)

=
3

x∗42

(
2J2P
J2P

− 3
4

)
(131)

=
3

x∗42

5
4
> 0 (132)



which is positive since x∗2 =
3

√
J2P

2
> 0. Hence, the second-

order sufficient conditions are satisfied and x∗ of Case 3, given
in (27) and computed at line 3 of Algorithm 2, is indeed a strict
local minimum.

In Case 4, we have λ ∗1 = λ ∗2 = 0, x∗22 = Jx∗1 and:

x∗ =

[
x∗1
x∗2

]
=

[
Vmax√
JVmax

]
(133)

so that:

∇
2
xxL (x∗,λ ∗) =


2P
x∗31

− 1
x∗22

− 1
x∗22

2x∗1
x∗32

 (134)

whose determinant is:

det
(
∇

2
xxL (x∗,λ ∗)

)
=

4P
x∗21 x∗32

− 1
x∗42

(135)

=
4J2P
x∗42 x∗32

− 1
x∗42

(136)

=
1

x∗42

(
4J2P
x∗32
−1
)

(137)

=
1

x∗42

(
4J2P√
J3V 3

max
−1

)
(138)

Since x∗2 > 0, this determinant is positive if 4J2P >
√

J3V 3
max

and hence if 16JP2 >V 3
max. The latter inequality is true since

it is a consequence of (68):

JP2 ≥ 4V 3
max⇐⇒ 16JP2 ≥ 64V 3

max (139)

Hence, det
(
∇2

xxL (x∗,λ ∗)
)
> 0 and since

2P
x∗31

> 0, Sylvester’s

criterion implies that ∇2
xxL (x∗,λ ∗) is positive definite. The

second-order sufficient conditions are thus satisfied and x∗

of Case 4, given in (33) and computed at lines 5 and 9 of
Algorithm 2, is a strict local minimum.

In Case 10, we have λ ∗1 = 0 and:

λ
∗
2 =

Px∗2− x∗21

Px∗2 + x∗21
(140)

x∗ =

[
x∗1
x∗2

]
=

 −A2
max +

√
A4

max +4J2PAmax

2J
Amax

 (141)

With λ ∗1 = 0, the Hessian in (126) becomes:

∇
2
xxL (x∗,λ ∗) =


(1−λ ∗2 )

2P
x∗31

−(1+λ ∗2 )
1

x∗22

−(1+λ ∗2 )
1

x∗22
(1+λ ∗2 )

2x∗1
x∗32

 (142)

and with the expression of λ ∗2 in (140):

∇
2
xxL (x∗,λ ∗) =

1
Px∗2 + x∗21


4P
x∗1

−2P
x∗2

−2P
x∗2

4Px∗1
x∗22

 (143)

Referring to Section III-K, x∗1 > 0 and x∗2 > 0 so that

Px∗2 + x∗21 > 0 and
4P
x∗1

> 0 hold. Then, according to Sylvester’s

criterion, ∇2
xxL (x∗,λ ∗) is positive definite if and only if the

determinant of the matrix in (143) is positive. This determinant
is positive since it is calculated as follows:∣∣∣∣∣∣∣∣∣∣

4P
x∗1

−2P
x∗2

−2P
x∗2

4Px∗1
x∗22

∣∣∣∣∣∣∣∣∣∣
=

16P2

x∗22
− 4P2

x∗22
(144)

=
12P2

x∗22
(145)

Hence, the second-order sufficient conditions are satisfied and
x∗ of Case 10, given in (60) and computed at line 12 of
Algorithm 2, is a strict local minimum.

Finally, in Case 11, we have λ ∗1 = 0 and λ ∗2 = 0 and:

x∗ =

[
x∗1
x∗2

]
=

[
Vmax

Amax

]
(146)

so that:

∇
2
xxL (x∗,λ ∗) =


2P
x∗31

− 1
x∗22

− 1
x∗22

2x∗1
x∗32

 (147)

whose determinant is:

det
(
∇

2
xxL (x∗,λ ∗)

)
=

4P
x∗21 x∗32

− 1
x∗42

(148)

=
1

x∗32

(
4P
x∗21
− 1

x∗2

)
(149)

=
1

A3
max

(
4P

V 2
max
− 1

Amax

)
(150)

=
1

A3
max

4PAmax−V 2
max

V 2
maxAmax

(151)

This determinant is positive since PAmax ≥ V 2
max according

to (73). Hence, the second-order sufficient conditions are
satisfied and x∗ of Case 11, given in (61) and computed at
line 14 of Algorithm 2, is a strict local minimum.

P. LICQ

In the KKT first-order necessary conditions stated at the
beginning of Section III, the LICQ should hold. As defined in
Definition 12.4 of [3], the LICQ holds at a given x∗ if the set
of active constraint gradients are linearly independent at x∗.

For completeness of the proof of Algorithm 2 (and thus of
Algorithm 1), let us verify that the LICQ holds at the local
minimum x∗ of Case 3 in (27), Case 4 in (33), Case 10 in (60)
and Case 11 in (61).

For Cases 3 and 4, only one constraint is active, C2(x) = 0
and C3(x) = 0, respectively. Hence, the LICQ holds at x∗ of
Case 3 if ∇xC2(x∗) in (15) is nonzero which is necessarily the
case since −Px2−x2

1 is strictly negative for any x. The LICQ



holds at x∗ of Case 4 if ∇xC3(x∗) in (16) is nonzero which is
always the case.

In Case 10, there are two active constraints,
C2(x) =C4(x) = 0. From (15) and (17), ∇xC2(x) and
∇xC4(x) are easily seen to be linearly independent whatever
x so that the LICQ holds.

Finally, in Case 11, there are two active constraints,
C3(x) =C4(x) = 0, and, according to (16) and (17), ∇xC3(x)
and ∇xC4(x) are trivially linearly independent whatever x so
that the LICQ holds.
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