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,is article introduces the design and control performance of a lightweight, flexible, 4-degree-of-freedom (DOF) parallel robot for
percutaneous biopsy guided by computed tomography (CT). At present, the CT guidance method allows surgeons to quickly
locate the lesion area; however, it is necessary to manually adjust the position of the puncture needle for insertion. In this paper, a
three-dimensional assisted method is used to infer the control input required to reach the target point through the kinematic
model of the robot. A Kalman filter is designed to estimate model parameters and obtain a more accurate model. To further
improve the control performance of the robot system, a model-based control method—the model predictive control (MPC)
controller—is used to increase the accuracy of the needle position in the developed robot system. In this way, medical efficiency is
improved while reducing the burden on the surgeon.

1. Introduction

,e surgeries have been advanced in the past decades thanks
to novel surgical techniques [1], such as laparoscopy sur-
geries, in which a surgeon can operate a surgery through tiny
holes on a human body for removing pathological tissue.
However, the hand-hold tools still make the operation hard
to be performed due to limited ergonomics and accuracy.
Meanwhile, the surgeons may feel fatigued when operating
for long time during the surgery. In order to improve the
quality of surgical operation, the robot assistant technique
has been introduced into the operation room which has
eased the burden of the surgeon during the surgery [2–4].
Nowadays, the robotic systems have been developed and
used for various surgeries such as biopsy, brachytherapy, and
tumor ablation [5–7].

Before performing a minimally invasive surgical (MIS)
task, the coordinates of the robot are usually registered to the
medical image coordinate system, so that the robot is
controlled by analysis of the lesion’s position for further

operations. According to the characteristics of MIS, the pose
of the robot end-effector before needle insertion during
surgery becomes very important. ,e needle positioning
system of the surgical assistant robot can be independent of
the insertion action [8–10]. ,e surgeon can guide the ro-
bot’s needle to the insertion position of the lesion on the
basis of the medical image through image guidance [11–16]
and then manually insert the needle into the lesion area.
Medical imaging, acting as a real-time feedback tool for the
needle pose, is crucial in the process of needle positioning
and control. In current needle-guided systems, CT
[11–13, 17, 18] is often used. Today’s commercially available
minimally invasive robotic systems (MIRS) maintain and
expand the flexibility of the surgeon’s hand [19–22]. Nav-
arro-Alarcon et al. [12] developed a 3-DOF needle driver for
biopsy. ,e positioning and insertion of the needle are
achieved through three interfaces, the first two of which are
aligned to the target, and the third is inserted. Koseki et al.
[23] established a cooperative manipulation structure which
uses the optical linear encoder to measure the needle
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position. However, manual remote operation control re-
quires multiple scans using CT to obtain accurate targets.
,e robot-assisted positioning approach can locally record
the workspace and medical images of the robot system to
reduce the risk of cancer induced by repeated CTscans [24].
,is approach poses challenges to the compatibility and size
of the robot system.

In the development of a surgical robot, another major
problem is the network system in the remote operating
system, which is caused by long distance or wireless link
[23–27]. Sampling and delay are involved in this problem,
which is a challenge for remote controlling of the robot. ,e
solution to the delay problem in remote is discussed in
[28–31]. However, the local optimizer on the slave side of the
robot will also cause a delay [32, 33]. ,is part of the delay
will also affect the remote operating system following the
feedback signal. Dong et al. [34] modified standard functions
to improve the response speed. Norizuki and Uchimura [35]
embedded the MPC controller into the remote operating
system to reduce the impact of the optimizer’s delay in the
system.

In order to improve the quality of the surgery, the ac-
curacy of the needle pose becomes crucial.,e needle pose is
affected by the robot control system and medical images.
However, factors such as friction in the design of the robot
structure and noise in the feedback of medical images are
inevitable, which makes it difficult to accurately control the
needle positioning [36, 37]. ,us, the closed-loop control
method becomes a good solution [38, 39]. In this paper,
firstly, as shown in Figure 1, a novel light-weighted puncture
robotic system is provided. A surgeon controls the medical
robot through the master in the remote system. ,e medical
robot can provide feedback of the end-effector pose and
force to the surgeon. ,e size of the designed robot is 16 cm
high, 37.6 cm long, and 37.6 cm wide. In addition, the robot
is controlled by four motors, which leads to the coupling of
robot control. Due to the characteristics of the robot
structure, specific constraints are proposed to decouple the
kinematics. Finally, we develop a related needle positioning
system on this robotic platform, which uses anMPC strategy
to achieve the robotic local closed-loop control of the needle
tip position. ,is approach not only solves the problem of
the time delay (TD) of the needle positioning system in local,
but also reduces the cost and time of personnel training
required for the operation of the robotic needle positioning
system.

,e structure of the paper is organized as follows: in
Section 2, the overall robotic system design is introduced,
including the derivation of constrained kinematic decou-
pling approach. Section 3 introduces model parameter es-
timation. Section 4 describes MPC control method. In
Section 5, the experiments and the analysis of the experi-
mental results are introduced. We conclude this article in
Section 6.

In our previous work [40], we have designed a remote
system which contains a master and a slave robot (see
Figure 1). A surgeon can control the slave robot through the
master side, and during a task, the desired position of the
end-effector can be marked and recorded. ,e end-effector

position of the slave robot is updated via medical imaging or
other sensors, and such position feedback is sent to master.
,ere are many ways to solve the remote communication
scheme between the master and slave robots [28–31].
However, when the slave robot uses the optimized control
method to improve the control effect, a delay will occur in
the slave robot, which will affect the use of the remote
operating system. ,us, the local controller design of the
slave robot needs to be considered.

Because the robotic control system is a multi-input
multioutput (MIMO) system, the controller selected for the
slave robot should be able to adapt to theMIMO system.,e
proposed slave robot control system can be seen in
Figure 2(a). ,e surgeon uses CT to mark the target lesion
area or trajectory in the robot workspace. ,e surgical robot
obtains the control trajectory which serves as the reference
input for the MPC controller through kinematic model. ,e
MPC controller optimizes the current control input to the
surgical robot according to the reference trajectory and the
reference state of the surgical robot. Furthermore, in order to
improve the control performance, the state-space model of
the robot required by the MPC controller should be accu-
rate. In this paper, according to the structure of the surgical
robot, the kinematics model is divided into a linear part and
a nonlinear part. ,e linear part uses the model parameter
estimator to identify the model parameters, and the non-
linear part is linearized using the Taylor formula. As shown
in Figure 2(b), the model parameter estimator of the linear
part is composed of an order judger and a parameter esti-
mator. ,e order judger is used to judge the order of the
linear system. ,e Kalman filter is selected as the parameter
estimator to estimate the parameters of the linear system.

2. Kinematic Modeling

In this section, the modeling process of surgical robot ki-
nematics will be described.,e robotic kinematic is analyzed
for the establishment of model parameter estimator and
MPC controller. A suitable kinematics model is constructed
by analyzing the mechanical structure of the parallel
puncture needle robot [40]. Figure 3 shows the three-di-
mensional mechanical structure and sectional structure of
the surgical robot. ,e blocks, i.e., block-a and block-b, can
be moved by controlling the angle of four motors. When the
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Figure 1: Surgical assistant robot remote operating system.

2 Complexity



positions of the two blocks change, the position and in-
sertion direction of the puncture needle will change ac-
cordingly. Among this structure, the vertical distance d

between the two blocks and the length h of the puncture
needle below the block-b are both constant.

In order to obtain a suitable kinematics model, the
coordinate relationship as shown in Figure 4 is established.
,e fixed world coordinate system is at the initial center
position of block-b. wTa is the coordinate system of block-a,
which is used to describe the moving distance of block-a.
Similarly, the value of the coordinate system wTb is the
moving distance of block-b. Coordinate system wTe indi-
cates the position of the tip of the puncture needle.

2.1. Forward Kinematic. ,e purpose of forward kinematics
is to obtain the position of the tip of the puncture needle xe,
ye, and ze, and the forward kinematics of the surgical robot
can be obtained using geometric theorem. As shown in
Figure 4, firstly, the rotation of the motor will drive the
block. ,e moving distance of the two blocks xa, xb, ya, and
yb will change the angle of the puncture needle θ.

xa � ρβa1, (1)

θ � arctan

�������������������

ya − yb( 􏼁
2

+ xa − xb( 􏼁
2

􏽱

d
⎛⎜⎜⎝ ⎞⎟⎟⎠, (2)

α � arctan
xa − xb

ya − yb

􏼠 􏼡, (3)

where ρ is the pitch of the screw connected to the block; β is
the rotation angle of themotor, and the relationship between
the rotation angle of other motors and its block coordinates
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Figure 2: (a) ,e overall control framework of the surgical robot positioning system. (b) A schematic of the model parameter estimator of
the linear part of the kinematics model.
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Figure 3: ,e three-dimensional mechanical structure and sec-
tional structure of the surgical robot. It uses two parallel blocks to
control the insertion direction and position of the same puncture
needle.
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Figure 4: ,e surgical robot’s coordinate relationship of the ki-
nematic model. Define the world coordinate system and the co-
ordinate system of each joint to describe the kinematics model.
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is similar; α is the angle generated by two blocks on the X-Y
plane; next, for coordinate system wTb􏼈 􏼉, the change in the
position of the tip of the puncture needle Δx, Δy, and Δz can
be described by θ, α, and the constant length of the needle h:

Δx � h · sin(θ) · sin(α), (4)

Δy � h · sin(θ) · cos(α), (5)

Δz � h · cos(θ). (6)

Finally, the position of the puncture needle’s tip xe, ye,
and ze relative to the fixed world coordinate system can be
obtained as follows:

xe � Δx + xb, (7)

ye � Δy + yb, (8)

ze � Δz. (9)

2.2. Inverse Kinematic. ,e surgical robot is a parallel
structure; hence, there is a coupling relationship between the
control inputs. To address this problem, constraints are first
defined to decouple the kinematic model. From the point of
view of the positioning range of the puncture needle, it is
better to have a larger range that the puncture needle can
reach in a limited space. ,us, the first constraint is that the
two blocks should move in opposite directions. On the other
hand, from the view of the lesion area marked by surgeon, it
can be seen that the position of the tip of the puncture needle
in the X-Y plane is of more significance. In order to obtain a
feasible solution for the motor control input, the second
constraint is defined. ,at is, when block-a moves to the
limit position and still cannot reach the lesion area, block-b
is then moved. ,e inverse kinematics model is constructed
using geometric theorem based on the constraints:

xb, yb􏼂 􏼃 � [0, 0]

s.t. − η≤xt, yt ≤ η,
(10)

and

xa, ya􏼂 􏼃 � −2sgn xt( 􏼁, −2sgn yt( 􏼁􏼂 􏼃

s.t. xt, yt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ − η,

(11)

where η is the largest distance that the tip of the puncture
needle can reach when only block-a is in motion; xt and yt

are the lesion’s target point coordinates marked by the
surgeon. However, no complete feasible solution can be
obtained yet.,en, the solution of the coordinates of block-a
within the limit η is discussed:

xa

ya

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−d · sgn xt( 􏼁tan(arcsin(θ))sin arctan
xt

yt

􏼠 􏼡􏼠 􏼡

−d · sgn yt( 􏼁tan(arcsin(θ))cos arctan
xt

yt

􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where θ is the angle between the block and puncture needle:

θ � arccos
−zt

h
􏼒 􏼓. (13)

So far, a feasible solution within the limit η from
equations (10) and (12) is obtained:

xa

ya

xb

yb
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−d · sgn xt( 􏼁tan(arcsin(θ))sin arctan
xt

yt

􏼠 􏼡􏼠 􏼡

−d · sgn yt( 􏼁tan(arcsin(θ))cos arctan
xt

yt

􏼠 􏼡􏼠 􏼡

0

0
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s.t. − η≤ xt, xt ≤ η.

(14)

Finally, the feasible solution in the other case will be
analyzed to obtain the complete feasible solution. When the
lesion area exceeds the limit η, the coordinate values of
block-a are fixed. ,erefore, according to the angle θ be-
tween the block and the puncture needle, the relationship
between xb and xb can be acquired:

�������������������

xa − xb( 􏼁
2

+ ya − yb( 􏼁
2

􏽱

� d · tan(θ), (15)

xa − xb

ya − yb

�
xt − xb

yt − yb

. (16)

,e solution of coordinate value of block-b can be ac-
quired by equations (15) and (16):

xb

yb

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−EB −
���������������
EB

2
− 4 · EA · EC

􏽰

2 · EA

E − 2 · xa − xt( 􏼁

ya − yt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where E, EA, EB, and EC are known parameters as follows:

E �
h
2

− z
2
t + x

2
a − y

2
t + y

2
a

2
,

EA �
xa − xt( 􏼁

2

ya − yt( 􏼁
2 + 1,

EB �
2 d ya − yt( 􏼁 xa − xt( 􏼁 − 2 ya − yt( 􏼁

2
xt − 2E xa − xt( 􏼁

ya − yt( 􏼁
2 ,

EC �
ya − yt( 􏼁

2
x
2
t + y

2
t − h

2
+ z

2
t􏼐 􏼑 − 2 dE ya − yt( 􏼁

ya − yt( 􏼁
2 .

(18)

,en, the feasible solution that exceeds the limit η is
obtained by equations (11) and (17):
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xb
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�

−2sgn xt( 􏼁

−2sgn yt( 􏼁

−EB −
���������������
EB

2
− 4 · EA · EC

􏽰

2 · EA

E − 2 · xa − xt( 􏼁

ya − yt
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s.t. xt, yt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ − η.

(19)

Now, the complete solution of the kinematic model of
the surgical robot has been obtained by equations (14) and
(19).,e correspondingmotor control angle can be obtained
through the lesion area marked by the surgeon.

3. Model Parameter Estimation

After the desired control input is obtained, it cannot, in fact,
directly act on the robotic controller. In order to make the
state-space model of the robot closer to the actual model, the
transmission process of the surgical robot will be divided
into two parts for modeling.,e first part is the linear system
model of the block movement, and the second part is the
nonlinear system model of the puncture needle movement.
,e determinant ratio is used to estimate the order of the

linear system model, and a Kalman filter is established to
estimate the linear systemmodel parameters. Taylor formula
is used to linearize the nonlinear system model into the
controller.

3.1. Linear Part. Firstly, the linear system model is a MIMO
system; however, each input corresponds to only one output.
,us, the MIMO system is equivalent to four single-input
single-output (SISO) systems. ,e order and parameters of
the SISO system are considered:

y(k) + a1y(k − 1) + · · · + any(k − n) � b0u(k) + e(k),

(20)

where e(k) is the Gaussian white noise with mean zero, u(k)

is the input signal, and y(k) is the output signal. ,e input
and output signals at each moment are known, but pa-
rameters are unknown. ,en, input signal and output signal
are used to construct determinants for comparison to obtain
the ratio DR∗(􏽢n):

DR
∗
(􏽢n) �

det H∗(􏽢n)􏼂 􏼃

det H∗(􏽢n + 1)􏼂 􏼃
, (21)

where 􏽢n is the estimated order andH∗ is a matrix composed
of input and output and has the following relationship:

H∗􏽢n �

y(􏽢n) y(􏽢n − 1) · · · y(1) u(􏽢n) u(􏽢n − 1) · · · u(1)

y(􏽢n + 1) y(􏽢n) · · · y(2) u(􏽢n + 1) u(􏽢n) · · · u(2)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

y(􏽢n + L − 1) y(􏽢n + L − 2) · · · y(L) u(􏽢n + L − 1) u(􏽢n + L − 2) · · · u(L)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H∗(􏽢n) �
1
L
H∗􏽢nH
∗
􏽢n,

(22)

where L is the sampling length of the signal. 􏽢n gradually
increases from one. If only DR∗(􏽢n) has a significant growth
compared to DR∗(􏽢n − 1), 􏽢n is the estimated order.

Next, a Kalman filter is designed to dynamically identify
the system’s unknown parameters ai(i � 1, 2, . . . , n) and b0.
,e Kalman filter is usually used to optimally estimate the
state value of the state-space equation, which is composed of
the unknown parameters:

X(k + 1) � ΦX(k) + ΓW(k),

Y(k) � H(k)X(k) + V(k),
􏼨 (23)

where both V(k) and W(k) are noise matrix composed of
Gaussian white noise with zero mean. Γ is the process noise
drive matrix. X(k) is the state matrix at the k-th sampling
moment.Φ is the state transition matrix at the k-th sampling
moment. Y(k) is the output matrix at the k-th sampling
moment. And we assume that the variances of the two noises

are Q and R. ,en, the update equation of Kalman filter can
be derived based on Euclidean theorem:

􏽢X(k + 1 | k) � Φ􏽢X(k | k),

􏽢X(k + 1 | k + 1) � 􏽢X(k + 1 | k) + K(k + 1)(Y(k + 1)

−H􏽢X(k + 1 | k)),

K(k + 1) � K(k + 1 | k)HT HP(k + 1 | k)HT
+ R􏽨 􏽩

−1
,

P(k + 1 | k) � ΦP(k | k)ΦT
+ ΓQΓT,

P(k + 1 | k + 1) � In − K(k + 1)H􏼂 􏼃P(k + 1 | k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where 􏽢X(k | k) is the optimal estimate at the k-th sampling
moment, P(k | k) is the error covariance of the current
sampling time, and K(k + 1 | k) is the gain of the Kalman
filter, which is used to update the values of 􏽢X(k | k) and
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P(k | k). In this paper, the estimated state matrix with un-
known parameters is constructed:

x1(k) � a1(k),

x2(k) � a2(k),

⋮

xn(k) � an(k),

xn+1(k) � b0(k).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

,en the system’s state equation is obtained as follows:

X(k + 1) � X(k) + W(k), (26)

where X(k) is composed of xi(k)(i � 1, 2, . . . , n + 1). We
use the observed input and output data to construct the
matrix H(k) and state equation:

H(k) � [−y(k − 1), −y(k − 2), . . . , −y(k − n), u(k)],

X(k + 1) � X(k) + W(k),

y(k) � H(k)X(k) + e(k).
􏼨

(27)

Finally, state equation (28) can be updated by equation
(25) to obtain the actual system parameters. ,e SISO
systems of four motors are combined to obtain the MIMO
system of the linear part:

A �

0 1 0 · · · 0

0 0 1 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

BT
� 0 0 · · · 0 b0􏼂 􏼃, (29)

C � 0 0 · · · 0 1􏼂 􏼃, (30)

X(k + 1) �

Axa
0 0 0

0 Aya
0 0

0 0 Axb
0

0 0 0 Ayb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X(k)

+

Bxa
0 0 0

0 Bya
0 0

0 0 Bxb
0

0 0 0 Byb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k),

(31)

Y(k) �

Cxa
0 0 0

0 Cya
0 0

0 0 Cxb
0

0 0 0 Cyb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X(k), (32)

where the linear part’s MIMO system is expressed by re-
writing the state equations (32) and (33); X(k) consists of

samples of the output y before the k-th time step; Axa
, Axb

,
Aya

, and Ayb
are composed of each motor model parameter

matrix A; similarly, other parameters of the MIMO system
can also be expressed by equations (30) and (31).

3.2.Nonlinear Part. ,e nonlinear part of the systemmainly
represents the relationship between the rotation of the
puncture needle and the coordinates of the block. ,e re-
lationship between them through equations (2)–(9) can be
obtained as follows:

xe, ye, ze( 􏼁 � f xa, ya, xb, yb( 􏼁, (33)

where f is their nonlinear mapping. ,en, a first-order
expansion of Taylor’s formula is performed for f to obtain
the following linear relationship:

xe, ye, ze􏼂 􏼃
T

� Jf

xa − xar

ya − yar

xb − xbr

yb − ybr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ σ, (34)

Jf �

zfxt

zxa

zfxt

zya

zfxt

zxb

zfxt

zyb

zfyt

zxa

zfyt

zya

zfyt

zxb

zfyt

zyb

zfzt

zxa

zfzt

zya

zfzt

zxb

zfzt

zyb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

where Yr(k) � [xar, yar, xbr, ybr]
T is the target reference

values obtained by the inverse kinematics model, σ is an
infinitesimal quantity, and Jf is the linearized Jacobian
matrix. Finally, the complete input and output linear system
model of the surgical robot can be obtained through
equations (33) and (35) as follows:

X(k + 1) � AsX(k) + Bsu(k), (36)

xe, ye, ze􏼂 􏼃
T

� Jf CsX(k) − Yr(k)􏼂 􏼃, (37)

where

As �

Axa
0 0 0

0 Aya
0 0

0 0 Axb
0

0 0 0 Ayb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

Bs �

Bxa
0 0 0

0 Bya
0 0

0 0 Bxb
0

0 0 0 Byb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (39)
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Cs �

Cxa
0 0 0

0 Cya
0 0

0 0 Cxb
0

0 0 0 Cyb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

4. Model Predictive Control

Model predictive control (MPC) is now a well-known
model-based control strategy, and it has gone through a
period of development [41–43]. Taking the state-space
model as an example, MPC uses the state of the model at the
current time and the target state to estimate the control
sequences at the next time under constraints. Compared
with proportional-integral-derivative (PID) controller, MPC
can predict the future behavior of the system. ,e optimal
future control sequences are estimated by the known data.
,ese sequences are evaluated at each sample time by the
optimizer with constraints.

MPC consists of three components [44]: (1) a loss
function, (2) constraints in the form of equality and in-
equality, and (3) initial conditions. ,e purpose of the loss
function is to minimize the distance between the target state
and the state at the current time [45], thereby minimizing
the energy required by the control system. ,e equality
constraints consist of the system’s state equations. ,e limits
on the state variables are considered as the inequality
constraints. If all constraints are linear, the problem forms a
convex set. Meanwhile, if the control system is also convex,
MPC can be solved as a convex optimization problem.
Similarly, the MPC can be solved as a quadratic problem if
the control system is a quadratic problem.

MPC uses the system’s model to predict the future
control sequences [46]. As shown in Figure 5, the optimizer
in MPC is to get the best control input. ,e linear time-
invariant system will be considered in the discrete time
domain as shown in equation (37). However, in equation
(37), the state and input variables are added by two matrices
to obtain the final output. To comprehensively consider the
state and input variables, equations (37) and (38) are re-
written as follows:

ξ(k + 1) � Amξ(k) + BmΔu(k), (41)

xe, ye, ze􏼂 􏼃
T

+ JfYr(k) � Cmξ(k), (42)

where

ξ(k) �
X(k)

u(k − 1)
􏼢 􏼣, (43)

Δu(k) � u(k) − u(k − 1), (44)

Am �
As Bs

0 I4nx4
􏼢 􏼣, (45)

Bm �
Bs

I4x4
􏼢 􏼣, (46)

Cm � Cs, 0􏼂 􏼃. (47)

Equations (42) and (43) are state-space equations that
consider both state and input variables. We mainly discuss
the optimization problem of equation (42), namely, the state
space. ,is equation can make predictions about the future
state, that is, the prediction step required for optimization
can be obtained:

Yξ � Ψξ(k) + ΘΔU(k), (48)

where

Yξ � ξ(k + 1), ξ(k + 2), . . . , ξ k + Np􏼐 􏼑􏽨 􏽩
T
, (49)

Ψ � Am,A2
m, . . . ,ANp

m􏼔 􏼕
T

, (50)

Θ �

Bm 0 0 · · · 0
AmBm Bm 0 · 0
A2

mBm AmBm Bm · · · 0
⋮ ⋮ ⋮ ⋱ ⋮

A
Np−1
m Bm A

Np−2
m Bm A

Np−3
m Bm · · · A

Np−Nc

m Bm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(51)

where Np is the predicted step size of the system and Nc is
the control step size of the system. Next, the reference
trajectory ξr � [Xr, ur]

T is used to construct the following
loss function:

Jξ � Yξ − Yξr
􏽨 􏽩

T
Qξ Yξ − Yξr

􏽨 􏽩, (52)

where Qξ is the weight matrix. Considering that the control
input cannot change too much within a period of time, the
following loss function is constructed:

Ju � ΔUTPuΔU, (53)

where Pu is the weight matrix. And the objective function to
be optimized can be obtained by equations (53) and (54),
which can be seen as a quadratic programming problem:

J � Jξ + Ju

� [Ψξ + ΘΔU]
TQξ[Ψξ + ΘΔU] − YT

ξr
QξYξr

+ ΔUTPuΔU

� [Ψξ]
TQξ[Ψξ] − YT

ξr
QξYξr

+[ΘΔU]
TQξ[ΘΔU]

+ 2[Ψξ]
TQξ[ΘΔU] + ΔUTPuΔU

� ΔUT ΘQξΘ + Pu􏽨 􏽩ΔU + 2[Ψξ]
TQξ[ΘΔU].

(54)

Finally, the constraints of the control variable ΔU of the
loss function to construct a standard form of quadratic
programming will be set:
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min
ΔU

J

s.t. lb≤ΔU≤ ub,
(55)

where lb and ub are the lower and upper bounds of the
variable ΔU. ,en, the best control sequences can be ob-
tained by equation (45).

5. Simulation Setup and Results

,is section mainly describes the simulated experimental
settings and experimental results about this article. ,is
article uses MATLAB to build a remote subsystem, which
contains the MPC controller and parameter identification
system. Under the function of the parameter identification
system, the MPC controller obtains the robotic kinematics
model realistically and outputs the optimal control se-
quence. In the first place, as shown in Figure 2, there is
actually a TD when the MPC controller is applied to the
system; thus, in the experiment, a delay system will be
considered for comparison. We will, in addition, divide it
into two experiments: (1) order and parameter identification
of the system’s linear part and (2) performance of MPC
controller and PID controller in delay system.

5.1. Model Identification Experiment. Above all, only the
model identification of the linear part of the system is
considered. And the order needs to be identified through
offline data. ,e system’s order can be obtained by equation
(21). In this paper, the system’s order 􏽢n � 2, the pitch of the
screw ρ � 0.02, and the largest movement distance of the
block η � 2. Next, the Kalman filter is designed to identify
the system parameters. ,e state equation of the system is
rewritten to identify the parameters of the system, and the
result is represented by H in equation (28). ,e results of
parameter identification are shown in Figure 6.

It can be seen from Figure 6 that the three parameters
can stabilize at a certain value a1 � 0.0125, a2 � −0.0257,
and b � 1.818 within the step size. However, it is not known
whether a system composed of stable parameters can ap-
proximate the real system. ,us, as shown in Figure 7, the
output of the actual system is compared with the output of
the identified model. ,e figure shows the target curve, the
output curve of the identification model, and the error curve

between them. ,e value of the error curve floats above and
below zero.

5.2. MPC Performance. First, the model of the linear part of
the control system can be obtained by equation (28), and the
parameters of the model are obtained in the previous ex-
periment, which contains the effective length of the needle
h � 0.05m and the distance between blocks d � 0.03m. And
the linearized model of the nonlinear part of the control
system can be obtained by equation (35). ,en, the two
models are combined by equation (37) to obtain a complete
model of the control system. In addition, in order to
comprehensively consider the control input and system
state, the state-space equation of the control system is re-
written by equations (42) and (43). Finally, the prediction
equation (49) required by the MPC controller is obtained by
equation (42), which is used for rolling optimization in the
MPC controller. ,e constraints of quadratic programming
lb � −0.002 and ub � 0.002 are constraints on the difference
values of control sequence. ,e optimizer of the MPC
controller outputs the optimal control sequence through
equation (55). In this paper, traditional PID controller is
designed to compare with the MPC controller. In fact, as the
controller takes time to run, there is a delay in the output of
the controller, which is equivalent to the control delay
system.,us, we set different TDs in the control system. We
set the weight matrixQξ and Pu in the MPC controller as the
identity matrix and the parameters of the PID controller
Kp � 13, Ki � 2, and Kd � 0.

Figure 8 shows the Y-axis motion trajectory of block-a,
which illustrates that with increase in the delay time, the
response time of the system also increases and the desired
trajectory can be tracked by theMPC controller. As the delay
increases, the response speed of the system also becomes
slower, and the output of the MPC controller will produce
2% overshoot. However, the PID controller does not per-
form well in the case of TD.,e output of the PID controller
diverges when TD� 250ms, making the system unstable.
When TD� 150ms, the PID controller makes the system
gradually stable, but the setting time ts � 4 s and the 10%
overshoot exceed the constraints of the surgical robot.

,en, the output of the position of the tip of the puncture
needle will be analyzed. As shown in Figure 9, in the open-
loop state without controller, the output value of the system

Robot

Reference
trajectory

Estimated
model Optimizer

Predicted
data

Model predictive control

Past input
Past state

Future
input

Errors

Figure 5: MPC controller internal rolling optimization process. ,e optimizer optimizes the current control input to obtain the optimal
control input at the next step.
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has a large fluctuation around the desire trajectory. ,e
closed-loop system formed by the MPC controller can track
the desired trajectory with TD, which will produce 2%
overshoot in the delay system. However, the closed-loop
system formed by the PID controller is sensitive to TD.
When there is a large TD in the system, it will produce a
larger overshoot than theMPC controller and even make the
system unstable.

Finally, in order to more clearly show the advantages of
the MPC controller, a differential operation is performed
on the state value of the sine wave shown in Figure 8
to obtain the distance from the target value shown
in Figure 10. In the figure, the output of the MPC controller
applied to the delay system produces phase shifts at dif-
ferent distances relative to the expected value. However,

when the PID controller acts on a nondelayed system, phase
shift occurs. As the delay increases, even the output di-
verges. ,e above experimental results show that the effect
of MPC controller is better than that of the PID controller.
,e error variance is shown in Table 1, the desired error
variance is zero, and the closer to the ideal error variance,
the more ideal the system’s outputs are. ,e error variance
of the MPC controller in the TD system is smaller than the
error variance generated by the PID controller. And when
TD � 0, the error variance generated by the MPC controller
is even smaller than the error variance generated by the
nondelay system with noise. From the result, we can get
that for the parallel mechanism robot involved in this
article, MPC has a superior control effect because MPC can
control the MIMO system.
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6. Conclusion and Future Work

We introduced a surgical robotic puncture needle posi-
tioning platform that can improve the efficiency of biopsy.
Kinematic analysis of the platform illustrates that the
puncture needle can work in the working space through
multiple angles that can be obtained by decoupling the
robotic kinematic. In this paper, two constraints are defined
for decoupling the kinematic, which ensure the robotic
largest workspace. ,e designed MPC controller makes the
control flow of the positioning device form a closed loop.
And the state equation of the MPC controller needed is
divided into two parts: linear part and nonlinear part. In
order to guarantee the simulation of robotic system closer to
the reality, the Kalman filter system parameters identifica-
tion approach is used to obtain the system’s parameters in
the linear part. In the nonlinear part, Taylor formula is used
to linearize the system, and the linearization system only
contains a Jacobian matrix. Next, the two parts of the system
are combined into a complete robot system state equation.
In simulation, the closed-loop control significantly improves
the stability of robot needle positioning. And the perfor-
mance of MPC controller is better than that of the PID
controller. Finally, the system is open source in Github
(https://github.com/tKsome/MPC-Puncture-Robot) to re-
duce the amount of development time for other researchers
involved in the control of themedical roboticMIMO system.
,e system is flexible and may be useful for most image-
based intervention procedures. In future work, we will test
the performance of the proposed approach on the real-work
robotic platform. Furthermore, a force control strategy will
be proposed such that a force feedback can be provided to
the surgeon through remote operation.
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