
HAL Id: lirmm-03290255
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03290255v1

Submitted on 19 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On investigating Metamodel Inaccurate Structures
Elyes Cherfa, Soraya Mesli Kesraoui, Chouki Tibermacine, Régis Fleurquin,

Salah Sadou

To cite this version:
Elyes Cherfa, Soraya Mesli Kesraoui, Chouki Tibermacine, Régis Fleurquin, Salah Sadou. On inves-
tigating Metamodel Inaccurate Structures. SAC 2020 - 35th Annual ACM Symposium on Applied
Computing, Mar 2020, Brno, Czech Republic. pp.1642-1649, �10.1145/3341105.3374035�. �lirmm-
03290255�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03290255v1
https://hal.archives-ouvertes.fr


On investigating Metamodel Inaccurate Structures

ABSTRACT
Metamodeling allows to capture domain knowledge through the
definition of its structure (concepts and relations between them)
and its constraints (logical expressions) often written in OCL. The
OCL constraints added to a metamodel are of two types: 1) domain-
related constraints: they differ from one domain to another and are
expressed based on the knowledge of experts; and 2) those that are
added to the majority of metamodels to precise some inaccurate
structures that may cause problems when instantiating models.
We call these structures Metamodel Inaccurate Structures (MIS).
In this paper, we performed an empirical study in order to point
out the metamodel inaccurate structures. As a first step, a study is
conducted on a set of OCL constraints taken from the UML meta-
model to investigate the relation between structure and constraints.
Then, to confirm our findings, we realised a quantitative analysis
in order to count the occurrences of constraints that complete in-
accurate structures. We believe that our results can help designers
in the quest of creating or refactoring metamodels and specifying
constraints that precisely capture domain knowledge to ensure
consistency of the derived artifacts.

KEYWORDS
Metamodeling, OCL, MOF, Well-Formedness Rules, Metamodel
Inaccurate Structure, MDE, Empirical Study

ACM Reference Format:
. 2020. On investigating Metamodel Inaccurate Structures. In Proceedings of
ACM SAC Conference (SAC’20). ACM, New York, NY, USA, Article 4, 9 pages.
https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
In Model-Driven Engineering (MDE), a metamodel represents the
abstract syntax of a Domain-SpecificModeling Language (DSML) [26].
A metamodel structure captures core domain concepts, and relation-
ships between them. Considering the difficulty or the impossibility
to express some information in a diagrammatic way, textual con-
straints, also called Well-Formedness Rules (WFR), are specified on
metamodels to restrict the scope of some defined concepts. This
ensures the semantic correctness of the generated model instances.
Consequently, one can benefit from the full power of model-driven
engineering only if the metamodel is precise enough to adequately
describe both the syntactical and semantic parts of the intended
domain.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/xx.xxx/xxx_x

Currently, most metamodels present in repositories (such as
OMG [16]) include only a description of the structural part [15].
WFRs are rarely included, and sometimes the set of WFRs is roughly
specified and hence does not prevent all semantic inaccuracies. This
is mainly due to the fact that WFR elicitation is performed manu-
ally, which is a time-consuming and error-prone task. Simplifying
this tough procedure was the objective of many works. Several
approaches have been explored, in particular using metamodel
structure and a set of correct and incorrect models to generate OCL
constraints( [11, 15]). Other approaches have directly targeted the
OCL language in order to identify constraint patterns allowing to
specify most of OCL constraints( [4, 6, 7, 18, 19, 34]). One can notice
that some OCL constraints are recurrent regardless the represented
domain. We believe that some metamodel structures are at the root
of the need of these constraints.

Thus, this work aims to investigate the role of some metamodel
structures in the existence of certain OCL constraints. Our objec-
tive is to point out the structures that are generally constrained.
For this, we studied metamodels that already include OCL con-
straints. We analyse manually each constraint with its metamodel
targeted structure to identify structures that cause the inaccuracy,
and which led to the definition of the constraint. It is important to
emphasize that depending on the targeted domain, the presence of
these structures does not automatically imply inaccuracies. How-
ever, it indicates a potential problem that should be inspected by
the metamodel designer to check whether it is a real one, hence the
suggested name "Metamodel Inaccurate Structure" (MIS). We also
believe that the Unified Modeling Language (UML) metamodel is
the most suitable metamodel that we can rely on in our study to
identify these MISs.

The rest of the paper is organized as follows. In Section 2, an
illustrative example of Metamodel Inaccurate Structures is provided.
Section 3 presents the experimental design. In Section 4, we report
the results of our analysis. Section 5 depicts the threats to validity of
our findings. Before concluding the paper in Sections 7, we describe
some related work in Section 6.

2 ILLUSTRATIVE EXAMPLE
As described in [15], a metamodel is defined as the composition of:
i) a domain structure, which encompasses the core concepts and
attributes that define the domain as well as relationships between
these concepts. ii) well-formedness rules, which are additional con-
straints applied on concepts. These restrict the way the structural
elements can be instantiated and assembled to form a valid model
with respect to the domain semantic. In our study, we used meta-
models that are formalised with the Meta-Object Facility (MOF),
and well-formedness rules with the Object Constraint Language
(OCL).

To precisely draw the distinction between the two kind of con-
straints mentioned above, we use an example (see Fig. 1) taken from
the UML metamodel (Activity Diagrams).

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x


SAC’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 1: UML Activity diagram structure

Generalization (Inheritance) allows to group common elements
(associations, attributes, and operations) from different classes shar-
ing some abstract definitions, and merge them into one class. Con-
sequently, classes in need of these properties inherit from another
class (holding these properties) without any local redefinition. Gen-
eralization allows to simplify metamodel structure and avoid re-
dundancies. However, merging properties from different classes
into one class often leads to some loss of precision. This is because
while merging many properties into one, the widest multiplicity
range is taken to include all the multiplicities. For instance, in
Fig. 1(taken from the UML metamodel [17]), the three concrete
subclasses InitialNode, FinalNode, and JoinNode are indirectly asso-
ciated to ActivityEdge class through the associations incoming and
outgoing (both having a multiplicity of [0..*]) that defined in the
super-class ActivityNode. With respect to UML semantics, to get
a correct UML activity diagram instance, the following invariant
must be respected:

(1) A JoinNode must have only one outgoing ActivityEdge.
(2) An InitialNode in an activity diagram can not have incoming

ActivityEdges.
(3) A FinalNode does not have outgoings.

Given the metamodel structure, the listed rules are not explicit. To
avoid the loss of information caused by the generalization, three
solutions are possible. The first one consists in refactoring the meta-
model to avoid generalization when it is possible. This solution will
have an impact on the metamodel’s complexity and maintainability
aspects. The second solution consists in specializing the association
in subclasses. In fact, this solution is the best alternative from a
model perspective, although it makes the metamodel more compli-
cated. The third solution, and the most recommended, is to refine
the semantics of the metamodel through OCL constraints, without
refactoring the metamodel structure. For instance, to enrich the
UML metamodel semantics the above constraints were expressed
in OCL as follows:
WFR1: A JoinNode has only one outgoing ActivityEdge.

context JoinNode inv :
outgoing − > size() = 1

WFR2: An InitialNode has no incoming ActivityEdges.
context InitialNode inv :

incoming − > isEmpty()
WFR3: A FinalNode has no outgoing ActivityEdges.

context FinalNode inv :
outgoing − > isEmpty()

Even if we assume that OCL constraint specification process can
be carried out by metamodel designer having domain knowledge,
the need of specifying OCL constraints in this kind of situations is
structurally discernible. Indeed, by looking only at the structure,
without having domain-knowledge, we can wonder whether or
not the domain semantics is fully expressed diagrammatically. In
our example, the multiplicity of associations incoming and outgoing
attracts the attention. This leads us to wonder if all subclasses of the
class ActivityNode really need such a large level of multiplicity. This
is why we refer to this kind of structures as "metamodel inaccurate
structures".

Conversely, the existence of certain constraints can not be guessed
just by looking at the structure of the metamodel without know-
ing precisely its semantics. For example, consider the following
constraint:

WFR4: If one of the incoming ActivityEdges of a JoinNode is an
ObjectFlow, then its outgoing ActivityEdge must be an ObjectFlow.
Otherwise its outgoing ActivityEdge must be a ControlFlow.

Clearly, this constraint reflects a domain-specific semantics and
can in no way be suspected by the simple analysis of the structure
of the metamodel. So, we can not consider the structure related to
this constraint as a metamodel inaccurate structure.

3 EXPERIMENTAL DESIGN
We believe that the best way to point out metamodel inaccurate
structures is to analyse already existing metamodels having OCL
constraints. By studying where the constraints have been added,
and why these constraints are added, we will be able to conclude if
we face a MIS or not.

3.1 Research Questions
The study aims at addressing the following two research questions
(RQs):

• RQ1: What are the structures that are often completed with
OCL constraints to complete their semantics? This research
question aims at identify structures that are often completed
with OCL constraints. Specifically, we want to characterize
metamodel fragments that are not enough precise to fully
capture all semantic details, and that can lead to interpreta-
tion ambiguities, i.e. from these structures, it is possible to
create artifacts that do respect metamodel structure but do
not represent domain.
To do so, we have established the following process:

(1) Starting from a metamodel with well defined OCL con-
straints, for each OCL constraint identify its targeted meta-
model fragment Si .

(2) Manually analyse each identified metamodel fragment Si ,
by four metamodeling experts, in order to conclude if the
structure by itself suggests the need for an OCL constraint
to precise the semantics of the domain.



On investigating Metamodel Inaccurate Structures SAC’20, March 30-April 3, 2020, Brno, Czech Republic

(3) Generalize the definition of the metamodel fragment in
order to obtain a characterization of the corresponding
MEBS.

• RQ2:What is the proportion of the constraints that are applied
to complete the identified metamodel inaccurate structures?
This question aims at investigating the frequency of OCL
constraints related to each MIS and whether they are present
in most of metamodels, or they are just related to the domain
of one of the studied metamodels. To do so, we classified
the OCL constraints by MIS, and then quantified each set of
constraints to get the number of OCL constraints related to
each MIS.

3.2 Data
Since we rely on existing metamodels to characterize our meta-
model inaccurate structures set, metamodel choice is extremely
important for the quality of the findings, especially the set of OCL
constraints that need to be as complete as possible. Nonetheless,
finding metamodels refined with OCL constraints is tough. Indeed,
most metamodels present in repositories ([31] for example) do not
include well-formedness rules, and in some cases, constraints are
expressed in natural language.

Source metamodel Nb of Constraints
UML 2.4 450
SysML 1.5 21
ODM 1.1 19

OMG CWM 1.1 96
Diagram Definition 16
SAD3 8

Research Project CPFSTool 27
ER2RE 59
RBAC 34

Industry SAM 82
Table 1: metamodels for BS identification

At the end, we collected five metamodels fromOMG [16] and five
from ReMoDD repository [1]. Table 1 details the list of metamodels,
with the number of OCL constraints for each.

4 ANALYSIS OF THE RESULTS
This section reports our analysis of the results that we achieved
is the study. This aims at answering the two research questions
formulated in Section 2.

4.1 What are the structures that are often
completed with OCL constraints to
complete their semantics?

In the following, we present each identified MIS in a separate sub-
section. The title of the subsection is the name of theMIS. As already
said, a fragment of the metamodel is suspected of being an MIS
when experts are brought to ask a question about it. Thus, for each
identified MIS we give the formulated question.

4.1.1 Attribute Value Restriction. In MOF, there is no means to
specify the accurate values that an attribute can take in diagram-
matic way. As a consequence, the attribute may take all the possible
values depending on its type (i.e. Integer can take a value from
N). However, some values are not correct with respect to domain
semantics. The only way to restrict the attribute value is to write
OCL constraints that specify the correct values range according
to the domain, and hence exclude the incorrect values to avoid
semantic inconsistencies. This MIS is related to the question: does
the default attribute definition domain match the definition domain
dictated by the semantics of the domain?

Figure 2: Attribute Value Restriction

As illustrated in Figure 2, a Classifier contains an attribute is-
Abstract that indicates if the Classifier is abstract or no. A subset
of Classifiers related to CreateObjectAction should be abstract. The
following OCL constraint is then specified.
WFR: The classifier cannot be abstract [17].

context CreateObjectAction inv :
not classifier.isAbstract

4.1.2 Enumeration Literals Restriction. AnEnumeration is a DataType
whose values are enumerated in the model as literals [17]. Thus, an
Enumeration attribute can take as value one of the literals. If we
can find several attributes with the same enumeration type, it is
possible that the set of literals defined in the Enumeration is the
union of the literals that each attribute may take. In this case, it is
necessary to specify the subset of literals that each attribute may
take in its class with an OCL constraint. While finding multiple
attributes having the same enumeration type, one can ask the fol-
lowing question: do the Enumeration attributes accept all the listed
literals in the Enumeration?

Figure 3: Enumeration Literals Restriction

For instance, in Figure 3, both PackageableElement and Pack-
ageImport classes contain a VisibilityKind attribute. Thus, each of
the two attributes may take as value one of the literals of the visibil-
ityKind enumeration (public, private, protected, package). However,
following the UML semantic, PackageImport visibility can not be



SAC’20, March 30-April 3, 2020, Brno, Czech Republic

protected nor package.WFR: The visibility of a PackageImport is
either public or private [17].

context PackageImport inv :
visibility = VisibilityKind::public or visibility =

VisibilityKind::private

4.1.3 Inherited Optional Attribute. We did notice that often on big
metamodels, some attributes in superclass are defined as optional
(having [0..1] bounds). Indeed, in some subclasses the inherited
attribute is mandatory and must be always specified, and in other
subclasses the same attribute should not exist. In this case, an
OCL constraint should be written in order to specify the accurate
attribute bounds. For thisMIS, onemight ask the following question:
is there a subclass where this attribute is mandatory and must
always be specified? or ambiguous, and must be excluded?

Figure 4: Inherited Optional Attribute

As illustrated in Figure 4, the optional attribute name defined
in NamedElement is mandatory in the sub-class Actor in UseCase
diagram. Hence, the following WFR is specified.
WFR: An Actor must have a name [17].

context Actor inv :
name − > notEmpty()

4.1.4 Inherited AssociationMultiplicity Restriction. When the super-
class contains an association, its subclasses inherit it with the same
multiplicity value. Association multiplicity specified in super-class
generally encompass all the possible multiplicity values that the
association can take in each sub-class. Necessarily, the inherited
multiplicity value then may exceed the accurate value that each
sub-class is supposed to have. To specify the correct association
multiplicity in sub-classes if it is needed, one needs to specify OCL
constraints that reduce the association multiplicity range. In this
case, do subclasses inherit the associationwith the samemultiplicity
as specified in the superclass?

As illustrated in Fig 7, An ActivityNode has incomings. Based on
the metamodel structure, all ActivityNodes (InitialNode, FinalNode,
JoinNode, ForkNode) can have 0 to * incomings. However, UML
domain semantics depicts that each Node has its specific number
of incomings. For instance, a ForkNode must have one incoming
ActivityEdge. The following WFR is then specified.
WFR: A ForkNode has one incoming ActivityEdge [17].

context ForkNode inv :
incoming − > size() = 1

4.1.5 Inherited Attribute Value Restriction. In general, in hierar-
chies, the attribute value range in super-class is not specified, or
specified widely through OCL constraints to include all the possi-
ble values that the attribute can take in sub-classes. Consequently,
to avoid prohibited attribute values with respect to application-
domain, OCL constraints restricting the wide values range are
specified in sub-classes. The question that we might ask is: are
there values in the space of possible values that the attribute should
not take?

Figure 5: Attribute Value Restriction

Taken the UML structure in Fig 5, the aggregation of an Extensio-
nEnd may take as value one of the three AggregationKind literals,
namely none, shared, or composite. With respect to UML semantic,
it must take composite literal. The following WFR is then specified
to avoid semantic incorrect values.
WFR: The aggregation of an ExtensionEnd is composite [17].

context ExtensionEnd inv :
self.aggregation = AggregationKind::composite

4.1.6 Inherited Operation Value Restriction. Operations defined
in superclass describe common subclasses behaviors. Sometimes,
these behaviors may change from a sub-class to another, and need
to be more specific in sub-classes. This is done through OCL con-
straints defined in sub-classes having more specific behavior. We
have noticed two types of operations on UML. The first type con-
cerns operations that have classes as their type, and hence returns
a set of objects. The second type concerns operations that assess
system-state, sometimes based on a set of parameters. The latter
operation type is often constrained on a subset of sub-classes in-
stances or to specify the desired result that the operation should
return for the given parameters (i.e. the desired system state).

In Figure 6, operation is(Integer,Integer) stateswhether the bounds
of the multiplicityElement equals the entered operation parameters.
Here, multiplicity of the OutputPin that results from CreateLinkOb-
jectAction must be [1..1]. An OCL constraint specifying this condi-
tion is then expressed as depicted below.

WFR: The multiplicity of the OutputPin is 1..1 [17].
context CreateLinkObjectAction inv :

result.is(1,1)

4.1.7 Type Relation. Given two classes A and B linked with an
association "x", where one or both classes have subclasses, it is
possible to create models where not only A instances are linked



On investigating Metamodel Inaccurate Structures SAC’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 6: Inherited Operation Value Restriction

with B instances through "x", but also all the possible associations
that link A and its subclasses instances with B and its subclasses
instances. In some cases, some relationship combinations do not
exist in the represented domain, and need to be restricted in the
metamodel. Consequently, Restricting nonexistent relations with

Figure 7: Type Relation

OCL constraints becomes a mandatory step to make metamodel
more precise. Based on MM structure in Figure 7 taken from UML
Activities MM, InitialNode outgoing ActivityEdges can be of type
ControlFlow or ObjectFlow, which is incorrect with respect to UML
semantics. In fact, an InitialNode outgoings can be of type Con-
trolFlow only. The following WFR will then complement the struc-
ture to specify the type.
WFR: All the outgoing ActivityEdges from an InitialNode must be
ControlFlows [17].

context InitialNode inv :
outgoing − > forAll (oclIsKindOf (ControlFlow))

4.1.8 Cycles Restriction. In metamodel context, a cycle is a succes-
sion of associations and operations wherein a class is reachable from
itself. More subtle cycles can also be present, which link a class to its
superclass through some navigations (associations and operations
that have class as their type). Presence of cycles does not allows
auto-association only, but also diamond configurations [35]. Model
developers need to be aware of that and need to assess whether
these associations are valid with respect to their application domain.
Otherwise, OCL constraints that prevent from auto-associations
need to be defined.

The cycle constraints are applied to:

Figure 8: Indirect reflexive association

(1) restrict the reflexive navigation size, or specify whether auto-
association must be accepted or not;

(2) compare the attribute value of a class instance with attribute
value of its related class instances through the reflexive nav-
igation;

(3) specify an attribute value in the class instances that are
related with the "self" class through the reflexive navigation;

(4) restrict an operation result in the related class instances
through the reflexive navigation.

Given a cycle, one can ask the following questions:
(1) can a class instance be associated to itself?
(2) do the class instances that are related to "self" through the

reflexive navigation have some specificities that must be
specified?

For example, according to Figure 8, a constraint is applied to an
Element. Accordingly, since the Constraint is an Element, it is pos-
sible to apply a constraint to itself. Restricting this indirect cycle
becomes then necessary.WFR: A Constraint cannot be applied to
itself [17].

context Constraint inv :
not constrainedElement − > includes(self)

4.1.9 Different Paths Relation. Starting from a class A, if we find
two distinct navigation successions that lead to the same class B, it
is possible that there is a semantic link between them that needs to
be made more precise. The model designer needs to make this link
explicit by adding OCL constraint to avoid semantic ambiguities.
Given this MIS, OCL constraints are written to link the two collec-
tions that are obtained from the two navigations with sets operators
(inclusion, exclusion, equality, difference), or linking their size. The
question related to this MIS is: what is the link between the two
distinct paths that link two classes?

As illustrated in Fig. 9, starting from LinkEndData class, it is
possible to arrive to InputPin by passing directly through value as-
sociation, or passing byQualifierValue through qualifier association,
then value association. Diagrammatically, the link between the two
navigations is not explicit. Hence, the following OCL constraint is
written to define the link between these two navigations.
WFR: The value InputPin is not also the qualifier value InputPin [17]
.



SAC’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 9: Different Paths Relation

context LinkEndData inv :
value − > excludesAll(qualifier.value)

4.2 What is the proportion of the contraints
that are applied to complete the identified
metamodel inaccurate structures?

After characterizing a set of MIS from the studied metamodel, we
need to ensure that these structures typically need to be comple-
mented with constraints to fine-tune their semantics. The aim of
this section is to investigate whether the characterized MIS in one
of the studied metamodels are also present in the other ones, and
most importantly refined with OCL constraints to complete their
semantic. To do so, we evaluate the importance of our finding
from quantitative perspective by counting the occurrences of each
MIS-related constraint.

As shown in Fig. 10, we can see that the MIS-related constraints
proportion changes from one metamodel to another. For instance,
in Diagram Definition metamodel, we can see that the MIS-related
constraints exceeds 90%, while on SAM metamodel, they represent
only 17% of the total number of specified OCL contraints. On av-
erage, the MIS-related constraints proportion approximates 53%.
Table 2 the occurrences of MIS-related constraints. We can see that
414 constraints out of 812 have been added to complete the semantic
over these metamodel inaccurate structures, which represents 53%
of all the expressed constraints of the studied metamodels. We did
notice that some MIS are more refined with OCL constraints than
other ones. For instance, the attribute value restriction MIS and the
paths are refined in seven out of the ten metamodels. Conversely,
the enumeration MIS was found with OCL constraints only in the
UML metamodel.

Considering the impossibility to precise in diagrammatic way
the values set or range that the attribute may take to respect do-
main semantic, OCL constraints that are used to restrict the value
of attributes are very frequent. Also, Different Paths Relation MIS is
the most constrained MIS in our list. This is because the absence
of constraints that explicit the link between some paths can lead
to major inconsistencies that should not appear in a well-formed
artifact. For this reason, expliciting all the links between the related
concepts must be carried out by metamodel designers through OCL
constraints. When it comes to Cycles, they have been pointed out

previously in many work( [5, 35]) mostly for the inconsistencies
they lead to. Deciding whether the cycles cause semantic incon-
sistencies remains mandatory. The occurrence of Type Relation,
Inherited Optional Attribute, Inherited Operation Value Restriction,
Inherited Attribute Value Restriction, Inherited Association Multi-
plicity Restriction MISs depends on the presence or absence of the
inheritance structures. Since almost all the MIS that we previously
identified previously are present in at least two metamodels with
OCL constraints, we can be sure that their presence in metamodels
presents often a lack of precision that must be completed with OCL
constraints. Hence, more attention needs to be given by metamodel
designers during design or refactoring to complete their semantics
if they are not enough accurate. We note that the presence of a
MIS in a metamodel does not necessarily mean that this structure
does not encompass all semantic it should have. Then, metamodel
designer intervention is the only meant to confirm whether it lacks
semantic, and hence if constraints need to be expressed to complete
semantic. We decided to keep Enumeration literals restriction MIS
because we believe that it is not possible to define the set of literals
that an attribute of type enumeration can take unless using OCL
language.

5 THREATS TO VALIDITY
As for any experimental evaluation, some threats could affect the
validity of our findings. For the internal validity, we believe that
manually analysing metamodel fragments to find out if they lead
to doubt about the existence of OCL constraints is subjective, and
depends on the experience of those who analyse. For instance,
a designer who has already worked on completing metamodel
semantics with OCL constraints will find out more metamodel
inaccurate structures than an inexperienced designer or a student.
To avoid that, each designer conducted the analysis individually in
order to create his/her metamodel inaccurate structures set, then,
we proceeded to a vote to decide about each MIS to obtain at the
end the presented metamodel inaccurate structures list.

Another threat that could affect the validity of our findings is
the data. Indeed, we relied on metamodels that are already refined
with OCL constraints. For certain metamodels, the set of OCL con-
straints might not be complete. We believe that studying many
other metamodels is necessary to complete the set of metamodel
inaccurate structures. To mitigate this threat, we have analyzed 10
different metamodels.

6 RELATEDWORK
The related research is presented in three different perspectives.
The first one concerns the assistance in the specification of OCL
constraints through OCL patterns. The second perspective is related
to the assistance of constraints co-evolution and refactoring. Finally,
the last perspective concerns the automatic generation of OCL con-
straints. The first type of assistance is done through OCL patterns.
To the best of our knowledge, the closest work to ours are [33–35]
where a method and tools have been provided to develop concise
and consistent constraint specifications, and hence assist precise
modeling. First, limitations of expressiveness of graphical modeling
languages have been captured as "anti-patterns". Then, OCL con-
straint patterns that correct these anti-patterns have been proposed.



On investigating Metamodel Inaccurate Structures SAC’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 10: MIS-related constraints proportion for each MM

UML SysML ODM CWM DD SAD3 CPFSToolER2RE RBAC SAM Total
Type Relation 3 1 14 13 0 0 0 0 0 0 59

Attrib Value Rest 7 0 0 1 15 2 6 13 0 7 51
Enum Lit Rest 2 0 0 0 0 0 0 0 0 0 2

Inh Optional Attr Rest 3 0 3 0 0 0 0 0 0 0 6
Inh Asso Multip Rest 6 0 0 6 0 0 1 0 0 0 67
Inh Attr Value Rest 12 1 0 1 0 0 4 0 0 0 18
Inh Oper Value Rest 23 0 0 0 0 0 0 0 0 1 24
Cycles Restriction 18 6 0 17 0 0 0 0 3 0 44
Different Paths Rest 84 8 0 4 0 0 12 22 7 6 143

Total 240 16 17 42 15 2 23 35 10 14 414
MIS-constraints proportion 53% 76% 89% 44% 94% 25% 85% 59% 29% 17% 53%

Table 2: MIS associated with OCL constraints occurrences

The idea behind the anti-patterns in this paper is to point out almost
all the situations where OCL constraints can be used. Conversely,
we characterize only the structures that lead to a doubt about the
expressiveness. Also, a tool that assists designers in expressing con-
straints has been developed. It implements OCL patterns but does
not automatically detect all the anti-patterns occurrences. Then,
the metamodel designer is the one who needs to precise where the
constraints need to be specified. In our case, MIS indicates the exact
fragment potentially needing a constraint, and the designer will
have to decide whether the MIS occurrence give place to a lack of
expressiveness or not. We think that this work is complementary
with ours.

Constraint patterns have been introduced first for object-oriented
programming in [23], then adapted to conceptual models and meta-
models. For instance, authors of [29, 30] revealed types of con-
straints relevant for design of well-formed conceptual models in
form of taxonomy. This was done through analysis of the most
important conceptual modeling methods to identify the situations

where these constraints should be used. Then, in [10] they did de-
fine a profile that extends the set of UML predefined constraints
with some types of constraints that are used very frequently in
conceptual schemes. Also, the work in [6, 7] aim at adapting some
existing constraint patterns to increase the efficiency of testing
and debugging processes. Furthermore, the collection of published
constraint patterns has been extended in [18]. Authors of [4] have
done an empirical analysis on metamodels with well-formedness
rules aiming at understanding how metamodelers articulate both
languages, and asserting metamodeling practices in the previous
ten years. To conclude, a set of OCL constraint patterns have been
identified in [5]. In the contrary of our work, their work was more
focused on analysing OCL constraints and their structure, while
we used constraints just to capture the targeted MOF structure, and
we analysed MOF structures.

The co-evolution of OCL constraints that follows the evolution
of metamodels was the center of attention of many research work.



SAC’20, March 30-April 3, 2020, Brno, Czech Republic

We may distinguish semi-automatic co-evolution methods. For in-
stance, Hassam et al. [20, 21], Khelladi et al. [24, 25] and Kusel et
al. [27] propose semi-automatic co-evolution approaches of OCL
expressions. On the other hand, other work propose fully auto-
mated methods. For example, Cabot et al. [3], Demuth et al. [13, 14],
or Markovic et al. [28] proposed an approach in which they for-
malize the most important refactoring rules for class diagrams and
classify them with respect to their impact on annotated OCL con-
straints. Batot et al. [2] propose an automatic two-steps process to
automatically co-evolve metamodels and OCL constraints using
genetic algorithm. For refactoring constraints written in OCL, both
Correa et al. [8, 9] proposed specifications to improve the under-
standability of OCL constraints. On the other side, [32] conducted
a literature survey, collecting and categorizing several refactoring
types, and were implemented as a tool for refactoring. Then Hong
et al. [22] proposed an automated search-based OCL constraints
refactoring approach.While all the work that co-evolve and refactor
OCL constraints rely on metamodel and the existing constraints set
to perform updates, we rely only on metamodel structure only. Our
approach can be used to add new constraints that did not appear
on metamodel old version, but can not be used to evolve existing
ones. Many researches have been conducted to Faunes et al. [15]
propose an automatic approach to retrieve OCL constraints from a
set of valid and invalid model examples and metamodel structure
using genetic algorithm. In the same context, Dang et al. [11, 12]
infer business rules from user scenarios and OCL patterns using
CSP. The major difference between our work and both mentioned
above is that we do rely only on metamodel structure, while both
use correct and incorrect model examples to extract and exploit
all the information that could be extracted to specify them in form
of constraints. Automatic inference is a great solution if the set of
examples is enough wide and diverse to capture (almost) all the
concepts bounds and limits in the space of possible. Otherwise,
the generated constraints would not be significant and would be
too specific to the used models. We believe that both automatic
and manual solutions are efficient, but the choice depends on the
context.

7 CONCLUSION
In this paper, a set of metamodel inaccurate structures has been
pointed out, which are metamodel structures that are often refined
with OCL constraints because they are not enough accurate to pre-
cisely capture domain semantic. To do so, an analysis has been done
using a set of OCL constraints taken from 10 metamodels to identify
these low-accuracy structures, and four metamodel experts have
studied each constrained structure in the metamodel. Consequently,
a set of metamodel inaccurate structures have been proposed. To
ensure that these structures can be found in any other metamodel,
further study was carried out to quantify each metamodel inac-
curate structure (MIS) occurrence in each of the ten metamodels.
We believe that this work could help designers while creating and
refactoring metamodels in detecting low-expressive structures that
may imply inconsistencies in generated artifacts if not refined with
OCL constraints. The main contribution of this work is to point-out
the MISs, and also to give quantitative evidences about their impact
in metamodels.

We are aware that our dataset does not contain all the possible
MISs. So, as a future work we will investigate further metamodels
and OCL constraints hopping to discover others MISs. We also
envisage to complete this work by assisting metamodel designers
with an adequate tool. Indeed, we intend to create a tool that auto-
matically identifies MISs and suggests possible OCL constraints, or
refactor these structures to structurally avoid these inaccuracies.

REFERENCES
[1] [n. d.]. The Repository for Model-Driven Development.

http://remodd.org/.
[2] E. Batot, W. Kessentini, H. Sahraoui, and M. Famelis. 2017. Heuristic-Based

Recommendation for Metamodel — OCL Coevolution. In 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). 210–220. https://doi.org/10.1109/MODELS.2017.25

[3] Jordi Cabot and Jordi Conesa. 2004. Automatic integrity constraint evolution due
to model subtract operations. In International Conference on Conceptual Modeling.
Springer, 350–362.

[4] Juan Cadavid, Benoit Combemale, and Benoit Baudry. 2012. Ten years of Meta-
Object Facility: an analysis of metamodeling practices. Ph.D. Dissertation. INRIA.

[5] Juan José Cadavid Gómez. 2012. Assistance à la méta-modélisation précise. Ph.D.
Dissertation. Rennes 1.

[6] Dan Chiorean, Vladiela Petraşcu, and Ileana Ober. 2010. Testing-oriented im-
provements of OCL specification patterns. In 2010 IEEE International Conference
on Automation, Quality and Testing, Robotics (AQTR), Vol. 2. IEEE, 1–6.

[7] Dan Chiorean, Vladiela Petrascu, and Ileana Ober. 2012. MDE-driven OCL Speci-
fication Patterns. Journal of Control Engineering and Applied Informatics 14, 1
(2012), 83–92.

[8] A. Correa. 2009. Refactoring to improve the understandability of specifications
written in object constraint language. IET Software 3 (April 2009), 69–90(21). Issue
2. https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2008.0022

[9] Alexandre Correa and Cláudia Werner. 2007. Refactoring object constraint
language specifications. Software & Systems Modeling 6, 2 (01 Jun 2007), 113–138.
https://doi.org/10.1007/s10270-006-0023-y

[10] Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós, and Ernest Teniente.
2006. Facilitating the Definition of General Constraints in UML. In Model Driven
Engineering Languages and Systems, Oscar Nierstrasz, Jon Whittle, David Harel,
and Gianna Reggio (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 260–
274.

[11] Duc-HanhDang and Jordi Cabot. 2013. Automating inference of ocl business rules
from user scenarios. In 2013 20th Asia-Pacific Software Engineering Conference
(APSEC), Vol. 1. IEEE, 156–163.

[12] Duc-Hanh Dang and Jordi Cabot. 2015. On Automating Inference of OCL Con-
straints from Counterexamples and Examples. In Knowledge and Systems Engi-
neering. Springer, 219–231.

[13] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed. 2012. Auto-
matically generating and adapting model constraints to support co-evolution of
design models. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ACM, 302–305.

[14] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed. 2013. Sup-
porting the co-evolution of metamodels and constraints through incremental
constraint management. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 287–303.

[15] Martin Faunes, Juan Cadavid, Benoit Baudry, Houari Sahraoui, and Benoit Combe-
male. 2013. Automatically searching for metamodel well-formedness rules in
examples and counter-examples. In International Conference on Model Driven
Engineering Languages and Systems. Springer, 187–202.

[16] Object Management Group. [n. d.].
https://www.omg.org/.

[17] Object Management Group. [n. d.]. Unified Modeling Language 2.5.
https://www.omg.org/spec/UML/2.5/, year = 2015.

[18] Ali Hamie. 2013. Constraint specifications using patterns in OCL. International
Journal on Computer Science and Information Systems 8, 1 (2013).

[19] Muhammad Hammad, Tao Yue, Shuai Wang, Shaukat Ali, and Jan F Nygård.
2017. IOCL: An interactive tool for specifying, validating and evaluating OCL
constraints. Science of Computer Programming 149 (2017), 3–8.

[20] Kahina Hassam, Salah Sadou, and Régis Fleurquin. 2010. Adapting ocl constraints
after a refactoring of their model using an mde process. In 9th edition of the
BElgian-NEtherlands software eVOLution seminar (BENEVOL 2010). 16–27.

[21] K. Hassam, S. Sadou, V. L. Gloahec, and R. Fleurquin. 2011. Assistance System for
OCL Constraints Adaptation during Metamodel Evolution. In 2011 15th European
Conference on Software Maintenance and Reengineering. 151–160. https://doi.org/
10.1109/CSMR.2011.21

http://remodd.org/
https://doi.org/10.1109/MODELS.2017.25
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2008.0022
https://doi.org/10.1007/s10270-006-0023-y
https://www.omg.org/
https://www.omg.org/spec/UML/2.5/
https://doi.org/10.1109/CSMR.2011.21
https://doi.org/10.1109/CSMR.2011.21


On investigating Metamodel Inaccurate Structures SAC’20, March 30-April 3, 2020, Brno, Czech Republic

[22] Lu Hong, Shuai Wang, Tao Yue, Jan F Nygard, et al. 2017. Automated refactoring
of OCL constraints with search. IEEE Transactions on Software Engineering (2017).

[23] Bruce Horn. 1992. Constraint patterns as a basis for object oriented programming.
In Proc. ACM OOPSLA. 218–233.

[24] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, and Marie-
Pierre Gervais. 2016. Detecting complex changes and refactorings during (meta)
model evolution. Information Systems 62 (2016), 220–241.

[25] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, and Marie-
Pierre Gervais. 2016. Metamodel and constraints co-evolution: A semi automatic
maintenance of ocl constraints. In International Conference on Software Reuse.
Springer, 333–349.

[26] Anneke Kleppe. 2008. Software language engineering: creating domain-specific
languages using metamodels. Pearson Education.

[27] Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsammer, Werner Retschitzeg-
ger, Johannes Schoenboeck, Wieland Schwinger, and Manuel Wimmer. 2015.
Systematic co-evolution of OCL expressions. 11th APCCM 27 (2015), 30.

[28] Slaviša Marković and Thomas Baar. 2005. Refactoring OCL annotated UML class
diagrams. In International Conference On Model Driven Engineering Languages
And Systems. Springer, 280–294.

[29] Elita Miliauskaitė and Lina Nemuraitė. 2005. Representation of integrity con-
straints in conceptual models. Information technology and control 34, 4 (2005).

[30] Elita Miliauskaite and Lina Nemuraite. 2005. Taxonomy of integrity constraints
in conceptual models. In IADIS virtual multi conference on computer science and
information systems. 247–254.

[31] NaoMod. [n. d.]. Metamodel zoos.
https://naomod.github.io/.

[32] Jan Reimann, Claas Wilke, Birgit Demuth, Michael Muck, and Uwe A. 2012. Tool
Supported OCL Refactoring Catalogue. In Proceedings of the 12th Workshop on
OCL and Textual Modelling (OCL ’12). ACM, New York, NY, USA, 7–12. https:
//doi.org/10.1145/2428516.2428518

[33] Michael Wahler, David Basin, Achim D Brucker, and Jana Koehler. 2010. Efficient
analysis of pattern-based constraint specifications. Software & Systems Modeling
9, 2 (2010), 225–255.

[34] Michael Wahler, Jana Koehler, and Achim D Brucker. 2007. Model-driven con-
straint engineering. Electronic Communications of the EASST 5 (2007).

[35] Michael S Wahler. 2008. Using patterns to develop consistent design constraints.
Ph.D. Dissertation. ETH Zurich.

https://naomod.github.io/
https://doi.org/10.1145/2428516.2428518
https://doi.org/10.1145/2428516.2428518

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Experimental Design
	3.1 Research Questions
	3.2 Data

	4 Analysis Of The Results
	4.1 What are the structures that are often completed with OCL constraints to complete their semantics?
	4.2 What is the proportion of the contraints that are applied to complete the identified metamodel inaccurate structures?

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

