
HAL Id: lirmm-03320961
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03320961

Submitted on 16 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiently Mining Large Gradual Patterns Using
Chunked Storage Layout

Dickson Odhiambo Owuor, Anne Laurent

To cite this version:
Dickson Odhiambo Owuor, Anne Laurent. Efficiently Mining Large Gradual Patterns Using Chunked
Storage Layout. ADBIS 2021 - 25th European Conference on Advances in Databases and Information
Systems, Aug 2021, Tartu, Estonia. pp.30-42, �10.1007/978-3-030-82472-3_4�. �lirmm-03320961�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03320961
https://hal.archives-ouvertes.fr


Efficiently mining large gradual patterns using
chunked storage layout

Dickson Odhiambo Owuor1 ID and Anne Laurent2 ID

1 SCES, Strathmore University, Nairobi, Kenya
dowuor@strathmore.edu

2 LIRMM Univ Montpellier, CNRS, Montpellier, France
anne.laurent@umontpellier.fr

Abstract. Existing approaches for extracting gradual patterns become
inefficient in terms of memory usage when applied on data sets with huge
numbers of objects. This inefficiency is caused by the contiguous nature of
loading binary matrices into main memory as single blocks when validat-
ing candidate gradual patterns. This paper proposes an efficient storage
layout that allows these matrices to be split and loaded into/from mem-
ory in multiple smaller chunks. We show how HDF5 (Hierarchical Data
Format version 5) may be used to implement this chunked layout and
our experiments reveal a great improvement in memory usage efficiency
especially on huge data sets.

Keywords: Binary Matrices· Gradual Patterns· HDF5· Memory Chunk
· Zarr.

1 Introduction

Gradual patterns may be described as linguistic rules that are applied on a data
set to extract correlations among its attributes [7,10]. For instance, given a data
set shown in Table 1 (which is a numeric data set with 3 attributes {age, games,
goals}), a linguistic gradual correlation may take the form: “the lower the age,
the more the goals scored.”

Table 1: Sample data set D1.

id age games goals

r1 30 100 2
r2 28 400 4
r3 26 200 5
r4 26 500 8

One major step in mining gradual patterns involves ranking tuples in the
order that fulfill a specific pattern. For example, in Table 1 the pattern “the

https://orcid.org/0000-0002-0968-5742
https://orcid.org/0000-0003-3708-6429


2 D. Owuor and A. Laurent

lower the age, the more the goals scored.” is fulfilled by at least 3 ordered tuples:
{r1→ r2→ r3}. For the reason that computing processors are natively designed
to operate on binary data, the approach of representing ordered rankings as
binary matrices yields high computational efficiency for mining gradual patterns
using the bitwise AND operator [2,7,10].

However, the same can not be said of these binary matrices in terms of main
memory usage. For instance, given a data set with n tuples and m attributes:

– for every attribute a in m, there may exist at least 2 frequent gradual items
- (a, ↑) and (a, ↓) and,

– for every gradual item, a binary matrix of size (n× n) must be loaded into
memory.

Consequently, a single bitwise AND operation loads and holds multiple n× n
binary matrices into memory. This problem becomes overpowering when dealing
with data sets with huge number of tuples. Most often, algorithms implemented
on this approach crash when applied on such data sets since they require to be
assigned an overwhelming amount of main memory at once (when performing
the bitwise AND operation).

In this paper, we propose an approach that advances the bitwise AND opera-
tion such that it operates on multiple smaller chunks of the binary matrices. This
approach allows efficient use of main memory while performing this operation
on huge binary matrices. In addition, we design GRAD-L algorithm that imple-
ments this proposed approach. Our experiment results show that our proposed
approach by far outperforms existing approaches especially when dealing with
huge data sets.

The remainder of this paper is organized as follows: we provide preliminary
definitions in Section 2; we review related approaches in Section 3; in Section 4,
we propose an approach that allows efficient use of main memory through chunk-
ing binary matrices for the bitwise AND operation; we analyze the performance
of our proposed approach in Section 5; we conclude and give future directions
regarding this work in Section 6.

2 Preliminary Definitions

For the purpose of putting forward our proposed approach for mining large grad-
ual patterns; in this section, we recall some definitions about gradual patterns
taken from existing literature [2,10].

Definition 1. Gradual Item. A gradual item g is a pair (a, v) where a is an
attribute of a data set and v is a variation such that: v ∈ {↑, ↓}, where ↑ denotes
an increasing variation and, ↓ denotes a decreasing variation.

Example 1. (age, ↓) is a gradual item that may be interpreted as: “the lower
the age.”

Definition 2. Gradual Pattern. A gradual pattern GP is a set of gradual
items i.e. GP = {(a1, v1), ..., (an, vn)}.



Efficiently mining large gradual patterns 3

Example 2. {(age, ↓), (goals, ↑)} is a gradual pattern that may be interpreted
as: “the lower the age, the more the goals scored.”

The quality of a gradual pattern is measured by frequency support which
may be described as: “the proportion of objects/tuples/rows in a data set that
fulfill that pattern.” For example, given the data set in Table 1, the pattern
GP = {(age, ↓), (goals, ↑)} is fulfilled by tuples {r1, r2, r3} (which is 3 out of 4
tuples). Therefore, the frequency support, sup(GP ), of this pattern is 0.75.

On that account, given a minimum support threshold σ, a gradual pattern
(GP ) is said to be frequent only if: sup(GP ) ≥ σ.

In the case of designing algorithms for mining gradual patterns from data
sets, many existing works apply 3 main steps [2,7,9,10]:

1. identify gradual item sets (or patterns) that become frequent if their fre-
quency support exceed a user-defined threshold,

2. ranking tuple pairs that fulfill the individual gradual items (of a candidate
item set) and representing the ranks as binary matrices and,

3. applying a bitwise AND operator on the binary matrices in order to identify
which gradual items may be joined to form a frequent gradual pattern.

For instance, given the data set in Table 1, we may identify 2 gradual pat-
terns: gp4 = {(age, ↓), (games, ↑)} and gp5 = {(games, ↑), (goals, ↑)}. These 2
patterns require 3 gradual items g1 = (age, ↓), g2 = (games, ↑), g3 = (goals, ↑)
whose binary matrices MG1

, MG2
and MG3

(after ranking tuples of correspond-
ing columns in Table 1) are shown in Table 2.

Table 2: Binary matricesMG1
,MG2

andMG3
for gradual items: (a) g1 = (age, ↓),

(b) g2 = (games, ↑), (c) g3 = (goals, ↑).
� r1 r2 r3 r4

r1 0 1 1 1
r2 0 0 1 1
r3 0 0 0 0
r4 0 0 0 0

(a)

� r1 r2 r3 r4

r1 0 1 1 1
r2 0 0 0 1
r3 0 1 0 1
r4 0 0 0 0

(b)

� r1 r2 r3 r4

r1 0 1 1 1
r2 0 0 1 1
r3 0 0 0 1
r4 0 0 0 0

(c)

[2,7] propose the theorem that follows in order to join gradual items to form
gradual patterns:

“Let gp12 be a gradual pattern generated by joining two gradual items g1 and
g2. The following matrix relation holds: MGP12

= MG1
AND MG2

”.

This theorem relies heavily on the bitwise AND operator which provides good
computational performance. For instance, we can apply a bitwise AND operation
on the binary matrices in Table 1 in order to find binary matrices MGP12

and
MGP23

for patterns gp12 and gp23 as shown in Table 3.



4 D. Owuor and A. Laurent

Table 3: Binary matrices MGP12 and MGP23 for gradual patterns: (a) gp12 =
{(age, ↓), (games, ↑)}, (b) gp23 = {(games, ↑), (goals, ↑)}.

� r1 r2 r3 r4

r1 0 1 1 1
r2 0 0 0 1
r3 0 0 0 0
r4 0 0 0 0

(a)

� r1 r2 r3 r4

r1 0 1 1 1
r2 0 0 0 1
r3 0 0 0 1
r4 0 0 0 0

(b)

As can be seen in Table 2 and Table 3, the total sum of ordered ranks
in the binary matrices is given by s = n(n − 1)/2 where n is the number of
columns/attributes. Therefore, the support of a gradual pattern gp is the ratio
of concordant rank count in the binary matrix to the sum s [7].

3 State of the Art

Scientific data is increasing rapidly every year, thanks to technological advances
in computing and storage efficiency [11,12]. Technologies such as HDF5 (Hier-
archical Data Format v5) and Zarr provide high performance software and file
formats that efficiently manage these huge volumes of data. For instance, [6] and
[14] describe two models whose efficiencies have been greatly improved by using
the Zarr and HDF5 data formats respectively.

According to [4], HDF53 is a technology suite that comprises a model, a
software library and a hierarchical file format for storing and managing data.
This suite is designed: (1) to support a wide variety of datatypes, (2) for fast
Input/Output processing and (3) for managing BigData. These similar features
are offered by Zarr4 technology suite.

(a) (b)

Fig. 1: (a) Contiguous storage layout and, (b) chunked storage layout.

One particular feature (provided by HDF5 and Zarr) that may be useful
in mining gradual patterns from huge data sets is the chunked storage layout

3 https://portal.hdfgroup.org/display/HDF5/HDF5
4 https://zarr.readthedocs.io/en/stable/index.html

https://portal.hdfgroup.org/display/HDF5/HDF5
https://zarr.readthedocs.io/en/stable/index.html


Efficiently mining large gradual patterns 5

shown in Figure 1b. This feature allows for a huge data set to be split into
multiple chunks which are stored separately in any order and any position within
the HDF5/Zarr file. Additionally, chunks can be compressed, written and read
individually, improving performance when dealing with such data sets [5].

Applying HDF5/Zarr chunked storage layout to binary matrices is one ap-
proach that may solve the problem (described in Section 1) of mining gradual
patterns from huge data sets. The chunked storage layout may be exploited to
allow the split of the bitwise AND operation (described in Section 1) on huge ma-
trices (generated by reading and ranking all data set tuples in one attempt) into
several repeated steps (where each step targets and loads manageable binary
chunks into main memory).

However, using this approach implies chunking and storing binary matrices
in secondary memory (i.e. HDF5/Zarr file) and, every repeated bitwise AND step
includes the process of reading binary matrices from a secondary memory to
main memory or/and writing updated binary matrices from the main memory
to a secondary memory.

According to [4], chunked storage layout presents a higher overhead than
contiguous storage layout when it comes to accessing and locating any element
in the data set. The read/write overhead further increases when the chunked data
set is compressed. Therefore, performance of the suggested approach of using a
HDF5 chunked storage layout for gradual pattern mining may be greatly slowed
down by the read/write overhead.

In the section that follows, we propose an approach that begins by chunking
data set tuple reads in order to produce chunked binary matrices (getting rid of
the need to store in HDF5/Zarr files).

4 Proposed Chunking Approach

In this section, we propose an approach for chunking binary matrices of gradual
items into multiple small matrices that can be loaded and held into main memory
piece-wisely in order to improve the memory usage efficiency. We modify the 3
main steps (described in Section 1) for mining gradual patterns as follows:

1. identify valid gradual patterns,
2. rank tuple pairs that fulfill the gradual items in the candidate gradual pat-

tern in chunks and represent them in multiple smaller binary matrices and,
3. apply a bitwise AND operator on the chunked binary matrices in a piecewise

manner.

4.1 Mapping Matrices into Chunked Layout

In the following, we use an example environment to expound on the steps of
the proposed chunking approach. For the purpose of painting a clearer picture
of this proposed approach, we use a sample data set (shown in Table 4a) to
demonstrate the modified steps.



6 D. Owuor and A. Laurent

Example 3. Let gp = {(age, ↓), (games, ↑)} be a candidate gradual pattern.
Using a user-defined chunk size (in this case we set the chunk size to 2) as shown
in Table 4b.

Table 4: (a) Sample data set D2, (b) data set D2 with its tuples chunked by a
size of 2.

id age games goals

r1 30 100 2
r2 28 400 4
r3 26 200 5
r4 25 500 8
r5 25 200 9
r6 24 500 1

(a)

id age games goals

r1 30 100 2
r2 28 400 4

r3 26 200 5
r4 25 500 8

r5 25 200 9
r6 24 500 1

chunk 1

chunk 2

chunk 3

(b)

Firstly, we read and rank tuples fulfilling gradual items g1 = (age, ↓) and
g2 = (games, ↑) using the chunks in a piecewise manner as shown in Table 5
and Table 6. Again in these two tables, we observe that the tuple rankings of
gradual items g1 = (age, ↓) and g2 = (games, ↑) are represented by a total of
18 (2 × 2) binary matrices. In the classical approach, these rankings would be
represented by 2 (6× 6) binary matrices (see Table 1 and Table 2 in Section 1).
Both approaches require the same size of memory to store all data in the binary
matrices (which is 72 in total). However, the classical approach maps this data
using a contiguous layout while, our proposed approach maps this data using a
chunked layout.

Table 5: Chunked binary matrices for ranked tuples in Table 4b that fulfill grad-
ual item g1 = (age, ↓).

� r1 r2

r1 0 1
r2 0 0

(a)

� r3 r4

r1 1 1
r2 1 1

(b)

� r5 r6

r1 1 1
r2 1 1

(c)

� r1 r2

r3 0 0
r4 0 0

(d)

� r3 r4

r3 0 1
r4 0 0

(e)

� r5 r6

r3 1 1
r4 0 1

(f)

� r1 r2

r5 0 0
r6 0 0

(g)

� r3 r4

r5 0 0
r6 0 0

(h)

� r5 r6

r5 0 1
r6 0 0

(i)



Efficiently mining large gradual patterns 7

Table 6: Chunked binary matrices for ranked tuples in Table 4b that fulfill grad-
ual item g2 = (games, ↑).

� r1 r2

r1 0 1
r2 0 0

(a)

� r3 r4

r1 1 1
r2 0 1

(b)

� r5 r6

r1 1 1
r2 0 1

(c)

� r1 r2

r3 0 1
r4 0 0

(d)

� r3 r4

r3 0 1
r4 0 0

(e)

� r5 r6

r3 0 1
r4 0 0

(f)

� r1 r2

r5 0 1
r6 0 0

(g)

� r3 r4

r5 0 1
r6 0 0

(h)

� r5 r6

r5 0 1
r6 0 0

(i)

Secondly, we perform a bitwise AND operation on the corresponding chunked
matrices of gradual items g1 = (age, ↓) and g2 = (games, ↑) in order to determine
if by joining them, the gradual pattern gp12 = {(age, ↓), (games, ↑)} is frequent
(this is shown in Table 7). It should be underlined that gradual items (i.e. g1
and g2) should have binary matrices that match in number and size. Similarly,
each matrix of one gradual item must be mapped to the corresponding matrix
of the other gradual item during an AND operation. For instance, the matrix in
Table 5(a) can only be mapped to the matrix in Table 6(a) during a bitwise AND

operation to obtain the matrix in Table 7(a), and so on.

Table 7: Binary matrices for gp12 = {(age, ↓), (games, ↑)} after performing bit-
wise AND operation on chunked matrices of g1 and g2.

� r1 r2

r1 0 1
r2 0 0

(a)

� r3 r4

r1 1 1
r2 0 1

(b)

� r5 r6

r1 1 1
r2 0 1

(c)

� r1 r2

r3 0 0
r4 0 0

(d)

� r3 r4

r3 0 1
r4 0 0

(e)

� r5 r6

r3 0 1
r4 0 0

(f)

� r1 r2

r5 0 0
r6 0 0

(g)

� r3 r4

r5 0 0
r6 0 0

(h)

� r5 r6

r5 0 1
r6 0 0

(i)

It is important to highlight that this chunked layout for binary matrices al-
lows a bitwise AND operation to be broken down into multiple repetitions instead
of a single operation as seen in the contiguous layout. This capability can be
exploited to allow at least 2 chunked matching matrices to be loaded and held in
main memory for every repeated AND operation. In this example, the bitwise AND
operation is repeated at least 9 times for each twin of corresponding matrices.



8 D. Owuor and A. Laurent

Again in Table 7, we observe that binary matrices at (d), (g) and (h) sum
up to 0; therefore, they are not significant in determining whether pattern gp12
is frequent. This phenomenon may be harnessed to increase the efficiency of
this approach by skipping less significant binary matrices during the repetitive
bitwise AND operation.

Lastly, let the user-defined support threshold be 0.5, then pattern gp12 =
{(age, ↓), (games, ↑)} is frequent since its support is 10/15 or 0.667 (see deriva-
tion for frequency support in Example 2 - Section 1).

4.2 GRAD-L Algorithm

In the following, we present GRAD-L (Gradual-Large) shown in Algorithm 1
which implements the approach described in Section 4.1.

Algorithm 1: GRAD-L (Gradual-Large)

Input : Data set D, minimum support σ, chunk size C
Output: gradual patterns GP

1 GP ← ∅;
2 GPc ← gen gp candidates();
3 for gp ∈ GPc do

; /* gp - gradual pattern */

4 Msum ← 0;
5 for gi ∈ gp do

; /* gi - gradual item */

6 Mbin ← chunk to matrix(gi,D,C);
7 if calc sum(Mbin) ≤ 0 then
8 Continue;
9 else

10 if gi is firstElement then
11 Mbin1 ←Mbin;
12 Break;

13 else
14 Mbin2 ←Mbin;
15 Mbin ←Mbin1 AND Mbin2;
16 Msum ←Msum+ calc sum(Mbin);

17 end for
18 sup← calc support(Msum);
19 if sup ≥ σ then
20 GP .append(gp);

21 end for
22 return GP ;

In this algorithm, first we use existing techniques to identify gradual pat-
tern candidates (line 2). Second, for each candidate we use its gradual items
user-defined chunk-size to build chunked binary matrices and perform a bitwise



Efficiently mining large gradual patterns 9

AND operation piece-wisely (lines 3− 13). Third, we determine if the candidate
pattern is frequent by comparing its support to the user-defined threshold.

4.3 Computational Complexity

In the following, we use the big-O notation [1,13] to analyze the computational
complexity of GRAD-L algorithm. For every gradual pattern candidate that
is generated: GRAD-L algorithm constructs multiple chunked binary matrices,
performs a bitwise AND operation on the chunked binary matrices and calculates
the frequency support of that candidate. We formulate the problem to and show
the computational complexity of GRAD-L algorithm.

Problem formulation. Given a dataset D with m attributes and n objects,
we can generate numerous gradual pattern candidates each having k gradual
items (where 2 ≥ k ≤ m). For each candidate, the classical GRAANK algo-
rithm (proposed in [7]) builds binary matrices for every gradual item as shown
in Table 2 (see Section 2). Next, a bitwise AND operation is performed on these
matrices and frequency support of the resulting matrix computed as shown in
Table 3 (see Section 2). Using the big-O notation, constructing the binary matri-
ces through GRAANK algorithm results in a complexity of O(k ·n2). The bitwise
AND operation and support computation have small complexities in comparison
to that of constructing binary matrices.

For the case of GRAD-L algorithm, a user-defined chunk-size (q× q) (where
q < n) is used to construct y binary matrices for every gradual item. There-
fore, the complexity of constructing binary matrices for every gradual pattern
candidate is O(k ·

∑y
1 q

2). Similarly, the bitwise AND operation and support com-
putation have small and almost constant complexities.

Search space size. It is important to mention that for every generated can-
didate, the classical GRAANK algorithm and the proposed GRAD-L algorithm
constructs binary matrices. Therefore, the complexity of x generated gradual
pattern candidates is O(x · k · n2) for GRAANK algorithm and O(x · k ·

∑y
1 q

2)
for GRAD-L algorithm.

5 Experiments

In this section, we present an experimental study of the computational and
memory performance of our proposed algorithm. We implement the algorithm for
GRAD-L approach described in Section 4 using Python Language. All the exper-
iments were conducted on a High Performance Computing (HPC) Meso@LR5

platform. We used one node comprising 14 cores of CPU and 128GB of RAM.

5.1 Source Code

The Python source code of the proposed algorithm is available at our GitHub
repository: https://github.com/owuordickson/large gps.git.

5 https://meso-lr.umontpellier.fr

https://github.com/owuordickson/large_gps.git
https://meso-lr.umontpellier.fr


10 D. Owuor and A. Laurent

5.2 Data Set Description

Table 8: Experiment data sets.
Data set #tuples #attributes Domain

Cargo 2000 (C2K) 3,942 98 Transport
Power Consump. (UCI) 2,075,259 9 Electrical

The ‘Cargo 2000’ data set, obtained from UCI Machine Learning Reposit-

ory (UCI-MLR) [8], describes 98 tracking and tracing events that span 5 months
of transport logistics execution. The ‘Power Consumption’ data set, obtained
from UCI-MLR [3], describes the electric power consumption in one household
(located in Sceaux, France) in terms of active power, voltage and global intensity
with a one-minute sampling rate between 2006 and 2010.

5.3 Experiement Resultts

In the following, we present our experimental results which show the computa-
tional and memory usage of our proposed algorithm (GRAD-L), HDF5-based
algorithm (GRAD-H5) and classical algorithm (GRAD) for mining gradual pat-
terns. Using these 3 algorithms, we perform test runs on C2K and UCI data sets
with minimum support threshold (σ) set to 0.1.

We split the UCI data set into 5 data sets whose number of tuples range from
10,000 (10K), 116,203 (116K), 523,104 (523K), 1,000,000 (1M) and 2,075,259
(2M). All the test runs were repeated several times and the results are available
at: https://github.com/owuordickson/meso-hpc-lr/tree/master/results/large gps/.

Computational Performance Results

Table 9 shows a result summary for computational run-time performance, num-
ber of extracted patterns and memory utilization of algorithms GRAD, GRAD-
H5 and GRAD-L. It is important to highlight that algorithms GRAD and
GRAD-H5 yield ‘Memory Error’ when executed on UCI data sets whose tuple
size is greater than 100,000 and 500,000 respectively (represented as ‘NaN’ in
Table 9). Figure 2 illustrates how run-time and memory usage breaks for GRAD
(due to ‘Memory Error’ ) grows exponentially for GRAD-H5 (due to read/write
overhead).

Computational run-time results show that GRAD-L (which implements our
proposed chunked layout for loading binary matrices into memory) is the fastest
of the 3 algorithms when executed in all the data sets. GRAD (which uses
contiguous layout to load and hold binary matrices into memory) is relatively
fast (compared to GRAD-H5) when executed on data set C2K and UCI 10K.
However, it yields ‘Memory Error’ for UCI data sets greater than 100K since

https://github.com/owuordickson/meso-hpc-lr/tree/master/results/large_gps/


Efficiently mining large gradual patterns 11

Table 9: Summary of experiment results.
Run-time (sec) No. of patterns Memory (KiB)

Data set Size Algorithm St.d. Mean St.d. Mean St.d. Mean

C2K 3.9K GRAD 24.125 702.536 0.000 2.000 2.044 172.089

GRAD-H5 12.162 3786.30 0.000 2.000 4.313 497.450

GRAD-L 0.653 15.821 0.894 1.400 38.643 501.200

UCI 10K GRAD 1.448 51.682 0.408 1.833 0.564 109.617

GRAD-H5 98.794 47.162 0.000 2.000 118.713 172.383

GRAD-L 0.630 5.017 0.516 1.333 1.089 291.350

UCI 116K GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 143.543 33209.50 0.000 2.000 0.566 427.600

GRAD-L 63.772 524.787 0.000 2.000 15.312 276.367

UCI 523K GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 1716.374 10947.60 1.000 1.000 22.228 287.800

UCI 1M GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 367.723 39460.3 0.577 1.667 1.386 350.400

UCI 2M GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 22113.287 162616.7 0.577 1.333 5.605 367.333

15K 116K 0.5M 1M 2M

1

2

3
·105

Size

R
u
n
-t

im
e

(s
ec

)

GRAD

GRAD-H5

GRAD-L

(a) UCI: #tuples=15K-2M

15K 116K 0.5M 1M 2M

200

400

600

800

1,000

Size

M
em

o
ry

(K
iB

)

GRAD

GRAD-H5

GRAD-L

(b) UCI: #tuples=15K-2M

Fig. 2: Plot of run-time and memory usage against size of UCI data set.

sizes of binary matrices in main memory increase exponentially within a very
short time and this exceeds the available memory. GRAD-H5 (which implements
HDF5-based approach for dealing with huge binary matrices) has the slowest
run-times of all the 3 algorithms. This may be attributed to read-write overhead
that occurs in all bitwise AND operations.

Memory usage results show that GRAD has better memory utilization on
data sets C2K and UCI 10K. However, GRAD-L has the best overall memory
utilization since it does not yield ‘Memory Error’ on any of the 6 data sets.
Number of patterns results show that almost all 3 algorithms extract similar
number of gradual patterns.



12 D. Owuor and A. Laurent

Consistent Gradual Patterns

This experiment reveals the consistent gradual patterns extracted by the 3 al-
gorithms from data sets C2K and UCI when minimum support threshold (σ) is
set to 0.1. The results are shown in Table 10.

Table 10: Consistent gradual patterns.
Data set Gradual patterns

C2K (3.9K) {(i2 rcs e, ↓), (o legid, ↑), (o dlv e, ↓)}, sup = 0.23

UCI (10K) {(Sub metering 3, ↑), (Global intensity, ↓)}, sup = 0.172

UCI (116K) {(V oltage, ↓), (Sub metering 1, ↑)}, sup = 0.109

UCI (523K) {(Global intensity, ↓), (Sub metering 2, ↑)}, sup = 0.16

UCI (1M) {(Global reactive power, ↓), (Global intensity, ↓)}, sup = 0.558

UCI (2M) {(Sub metering 3, ↑), (Sub metering 2, ↓)}, sup = 0.159

It is important to mention that for huge data sets, extracted gradual patterns
are of relatively low quality. For this reason, we chose a low minimum support
threshold (σ = 0.1) in order to extract gradual patterns from all the data sets.

6 Conclusion and Future Works

In this paper, we explore two different approaches to solve the problem of min-
ing gradual patterns from huge data sets (see Section 3 and Section 4). From
the experiment results (presented in Section 5), we conclude that GRAD-L al-
gorithm is the best performing algorithm (relative to GRAD and GRAD-H5
algorithms) both in terms of computational run-time and memory utilization.
This proves that our proposed chunking approach (described in Section 4) uti-
lizes main memory more efficiently than the classical approach (proposed in [7])
HDF5-based chunking approach (discussed in Section 3).

Future work may involve extensive experimentation on the GRAD-L ap-
proach with the aim of improving its memory usage efficiency even further. In
addition to this, other future work may entail integrating the GRAD-L approach
into data lake environments that hold numerous huge data sets. A good example
of such an environment is OREME6 which is a scientific research observatory
that holds a huge collection of large scientific data sets.

Acknowledgements

This work has been realized with the support of the High Performance Comput-
ing Platform: MESO@LR7, financed by the Occitanie / Pyrénées-Méditerranée
Region, Montpellier Mediterranean Metropole and Montpellier University.

6 https://data.oreme.org/
7 https://meso-lr.umontpellier.fr

https://data.oreme.org/
https://meso-lr.umontpellier.fr


Efficiently mining large gradual patterns 13

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2009)

2. Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large
databases. In: Advances in Intelligent Data Analysis VIII. pp. 297–308. Springer-
Verlag, Berlin, Heidelberg (2009). https://doi.org/10/dvzk9c

3. Dua, D., Graff, C.: UCI machine learning repository (2019), http://archive.ics.uci.
edu/ml

4. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
hdf5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases. p. 36–47. AD ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1966895.1966900

5. Howison, M.: Tuning hdf5 for lustre file systems (2010), https://www.osti.gov/
biblio/1050648

6. Krijnen, T., Beetz, J.: An efficient binary storage format for ifc building mod-
els using hdf5 hierarchical data format. Automation in Construction 113, 103134
(2020). https://doi.org/https://doi.org/10.1016/j.autcon.2020.103134

7. Laurent, A., Lesot, M.J., Rifqi, M.: Graank: Exploiting rank correlations for ex-
tracting gradual itemsets. In: Proceedings of the 8th International Conference
on Flexible Query Answering Systems. pp. 382–393. FQAS ’09, Springer-Verlag,
Berlin, Heidelberg (2009). https://doi.org/10/dn7jd7

8. Metzger, A., Leitner, P., Ivanović, D., Schmieders, E., Franklin, R., Carro, M.,
Dustdar, S., Pohl, K.: Comparing and combining predictive business process mon-
itoring techniques. IEEE Transactions on Systems, Man, and Cybernetics: Systems
45(2), 276–290 (2015)

9. Negrevergne, B., Termier, A., Rousset, M.C., Méhaut, J.F.: Paraminer: a generic
pattern mining algorithm for multi-core architectures. Data Mining and Knowledge
Discovery 28(3), 593–633 (2014). https://doi.org/10.1007/s10618-013-0313-2

10. Owuor, D., Laurent, A., Orero, J.: Mining fuzzy-temporal gradual patterns. In:
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1–
6. IEEE, New York, NY, USA (june 2019). https://doi.org/10.1109/FUZZ-
IEEE.2019.8858883

11. Owuor, D., Laurent, A., Orero, J., Lobry, O.: Gradual pattern mining tool on
cloud. Extraction et Gestion des Connaissances: Actes EGC’2021 (2021)

12. Owuor, D.O., Laurent, A., Orero, J.O.: Exploiting IoT data crossings for grad-
ual pattern mining through parallel processing. In: ADBIS, TPDL and EDA 2020
Common Workshops and Doctoral Consortium. pp. 110–121. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10/f3rg

13. Vaz, R., Shah, V., Sawhney, A., Deolekar, R.: Automated big-o analysis of algo-
rithms. In: 2017 International Conference on Nascent Technologies in Engineering
(ICNTE). pp. 1–6 (Jan 2017). https://doi.org/10.1109/ICNTE.2017.7947882

14. Xu, H., Wei, W., Dennis, J., Paul, K.: Using cloud-friendly data format in earth
system models. In: AGU Fall Meeting Abstracts. pp. IN13C–0728 (Dec 2019)

https://doi.org/10/dvzk9c
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1966895.1966900
https://www.osti.gov/biblio/1050648
https://www.osti.gov/biblio/1050648
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103134
https://doi.org/10/dn7jd7
https://doi.org/10.1007/s10618-013-0313-2
https://doi.org/10.1109/FUZZ-IEEE.2019.8858883
https://doi.org/10.1109/FUZZ-IEEE.2019.8858883
https://doi.org/10/f3rg
https://doi.org/10.1109/ICNTE.2017.7947882

