
HAL Id: lirmm-03322561
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03322561

Submitted on 19 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Side Journey To Titan
Thomas Roche, Victor Lomné, Camille Mutschler, Laurent Imbert

To cite this version:
Thomas Roche, Victor Lomné, Camille Mutschler, Laurent Imbert. A Side Journey To Titan: Re-
vealing and Breaking NXP’s P5x ECDSA Implementation on the Way. USENIX Security 2021 - 30th
USENIX Security Symposium, Aug 2021, Virtual, Canada. pp.231-248. �lirmm-03322561�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03322561
https://hal.archives-ouvertes.fr

A Side Journey To Titan
Revealing and Breaking NXP’s P5x ECDSA Implementation on the Way

Thomas Roche1, Victor Lomné1, Camille Mutschler1,2, and Laurent Imbert2

1NinjaLab, Montpellier, France
2LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Abstract
The Google Titan Security Key is a FIDO U2F hardware
device proposed by Google (available since July 2018) as
a two-factor authentication token to sign in to applications
such as your Google account. In this paper, we present a side-
channel attack that targets the Google Titan Security Key ’s
secure element (the NXP A700x chip) by the observation
of its local electromagnetic radiations during ECDSA signa-
tures. This work shows that an attacker can clone a legitimate
Google Titan Security Key. As a side observation, we identi-
fied a novel correlation between the elliptic curve group order
and the lattice-based attack success rate.

1 Introduction

Hardware security keys for two-factor authentication are the
recommended alternatives to SMS-based or app-based two-
factor authentication using a smartphone. These security keys
are based on the FIDO U2F standard initially developed by
Google and Yubico and now administered by the FIDO Al-
liance. Security-wise, their strength resides in the use of se-
cure microcontrollers (or secure elements) for the manipula-
tion of cryptographic secret keys. The secure element must
safely generate, store and use a user-unique secret to prove
its legitimacy to a remote server during login in. The FIDO
U2F standard is based on ECDSA signature over the NIST
P-256 elliptic curve [29].

In this paper we study the security of the Google Titan
Security Key [12] and show that its secure element, the NXP
A700x chip, is susceptible to side-channel attack (through the
observation of its local ElectroMagnetic – EM – activity).
This allows, given physical access to a Google Titan Security
Key during about 10 hours, to retrieve a user-specific secret
key (there is one key for each remote account) and therefore
to clone the security key.

To understand the NXP ECDSA implementation, find a
vulnerability and design a key-recovery attack, we had to
make a quick stop on Rhea (NXP J3D081 JavaCard smart-
card). This product looks very much like the NXP A700x chip

and uses the same cryptographic library. Rhea, as an open
JavaCard platform, gives us more control to study the ECDSA
implementation.

The vulnerability allows an attacker, using a non-
supervised machine learning mechanism, to gather several
bits randomly scattered over the ephemeral key of the ECDSA
signature scheme. She can then use a lattice-based attack to
exploit this information in a key-recovery attack using a few
thousands of ECDSA observations. Contrary to most lattice-
based attacks with partial knowledge of the nonces reported
in the literature, the known bits are not the leading bits of the
nonces.

Surprisingly, the attack is much more efficient than ex-
pected in terms of data complexity. This observation led us
to a finding of independent interest, relating the success rate
of these attacks to the order of the elliptic curve. We believe
that this observation opens new directions in the theoreti-
cal understanding of (Extended) Hidden Number Problem
solvers.

The vulnerability was acknowledged by Google and the
chip manufacturer NXP (we assigned CVE-2021-3011). It is
present in few other security keys and various NXP JavaCards
products1 (all based on similar secure elements).

The contributions presented in this paper include:

• a teardown / PCB analysis of the Google Titan Security
Key, and the identification of an NXP open Javacard prod-
uct that shares a very similar secure element, presented
in Section 2;
• the use of side-channel analysis to reverse-engineer the

implementation of the cryptographic primitives and to
reveal their countermeasures (see Section 3);
• the discovery of a previously unknown vulnerability

in the (previously unknown) implementation (see Sec-
tion 4);
• the exploitation of this vulnerability with a custom

lattice-based attack to fully recover an ECDSA private
1The full list of identified products is here: https://ninjalab.io/a-

side-journey-to-titan/

https://ninjalab.io/a-side-journey-to-titan/
https://ninjalab.io/a-side-journey-to-titan/

key from the Google Titan Security Key (see Section 5);

• an original observation that seems to link together the
success rate of lattice-based attacks on ECDSA and the
order of the elliptic curve, and its consequences regard-
ing the success rate of lattice-based attacks on structured-
order elliptic curves such as NIST P-256 (see Section 6);

• several countermeasures that could be implemented in
order to mitigate the proposed attack (see Section 7).

2 Preliminaries

In this Section, we introduce the public information available
for the FIDO U2F protocol and the physical analysis of the
Google Titan Security Key. We also present the preparation
process for EM based side-channel analysis.

2.1 Product Description

The Google Titan Security Key is a hardware FIDO U2F
(universal second factor) device. It provides a complement
to the login/password authentication mechanism, in order to
sign in to a Google account, or any other web applications
supporting the FIDO U2F protocol.

The Google Titan Security Key is available in three versions,
as depicted in Figure 1.

Figure 1: Google Titan Security Key - Left: version with
micro-USB, NFC and BLE interfaces - Middle: version with
USB type A and NFC interfaces - Right: version with USB
type C interface

2.2 FIDO U2F Protocol

The FIDO U2F protocol, when used with a hardware FIDO
U2F device like the Google Titan Security Key, works in
two steps: registration and authentication. Three parties
are involved: the relying party (e.g. the Google server), the
client (e.g. a web browser) and the U2F device. Let us briefly
summarize how the different messages are constructed and
exchanged. For more details, see [9].

Registration

1. The FIDO client first contacts the relying party to ob-
tain a challenge. It then constructs the registration
request message, made of the challenge and applica-
tion parameters and sends it to the U2F device.

2. The U2F device creates a new ECDSA keypair
in response to the registration request message,
and answers the registration response message,
which contains the user’s public key, a key handle (which
may contains the encrypted private key), an attestation
certificate, and an ECDSA signature on P-256 over the
application and challenge parameters, the key handle
and the public key.

3. Finally, the FIDO client sends the registration
response message back to the relying party, which
stores the different fields for later authentications.

Authentication

1. The FIDO client contacts the relying party to ob-
tain a challenge and constructs the authentication
request message, made of a control byte (specifying
whether or not the U2F device should enforce user pres-
ence), the challenge parameter, the application parameter
and a key handle. Then sends it to the U2F device.

2. If the U2F device succeeds to process/sign the
authentication request message, it answers the
authentication response message, made of a user
presence byte indicating whether user presence was veri-
fied or not, a counter on 4 bytes that is incremented each
time the U2F device performs an U2F authentication
and an ECDSA signature on P-256 (over the application
parameter, the user presence byte, the counter and the
challenge parameter).

3. Finally, the FIDO client sends the authentication
response message back to the relying party, which
can then verify the ECDSA signature using the public
key obtained during registration.

2.3 An Attack Scenario on FIDO U2F
From the study of the FIDO U2F protocol, one can imagine
the following attack scenario that requires the adversary to get
physical access to the victim’s U2F device during a limited
time frame without the victim noticing (step 2):

1. the adversary steals the login and password of a victim’s
application account protected with FIDO U2F (e.g. via a
phishing attack);

2. thanks to the stolen victim’s login and password (for
a given application account), the adversary can get the

corresponding client data and key handle. She can then
send many authentication requests to the U2F device
while performing side-channel measurements2;

3. the adversary quietly returns the U2F device to the vic-
tim;

4. the adversary performs a side-channel attack on the mea-
surements, and succeeds in extracting the ECDSA pri-
vate key linked to the victim’s application account;

5. the adversary can sign in to the victim’s application
account without the U2F device, and without the victim
noticing. In other words the adversary created a clone
of the U2F device for the victim’s application account.
This clone will give access to the application account as
long as the legitimate user does not revoke its second
factor authentication credentials.

Note that the relying party might use the counter value
to detect cloned U2F devices and then limit (but not totally
remove) the attack impact (see Section 7.2 for more details).

2.4 Google Titan Security Key Teardown
Once plugged into a computer’s USB port, lsusb outputs:
Bus 001 Device 018: ID 096e:0858 Feitian
Technologies, Inc.

As a matter of fact, the company who designed the Google
Titan Security Key is Feitian [8]. Indeed Feitian proposes
generic FIDO U2F security keys, with customization for cas-
ing, packaging and related services.

2.4.1 Removing the Casing

We first performed a teardown of the USB type A version of
the Google Titan Security Key. The plastic casing is made
of two parts which are strongly glued together. We used a
hot air gun in order to soften the white plastic and we easily
separated the two casing parts with a scalpel.

If done carefully, this easy procedure allows to preserve
intact the Printed Circuit Board (PCB). An interesting future
work could be to find a way to open the Google Titan Security
Key casing without damaging the two plastic parts, so that it
can be re-assembled after the attack.

2.4.2 PCB Analysis

In Figure 2, we display the back of the Google Titan Security
Key PCB, where the different circuits are soldered. The Inte-
grated Circuit (IC) package markings allow to guess the IC
references:

2it might be limited to several billions of requests, the counter being
encoded on 4 bytes

• the first IC (in green in Figure 2) is a general pur-
pose microcontroller from NXP, the LPC11u24 from
the LPC11U2x family [30]. It acts as a router between
the USB and NFC interfaces and the secure element;

• the second IC (in red in Figure 2) is a secure authenti-
cation microcontroller also from NXP, the A7005a from
the A700x family [25]. It acts as the secure element, gen-
erating and storing cryptographic secrets and performing
cryptographic operations (we validated this hypothesis
by probing electric signals between the two ICs while
processing an authentication request message).

Figure 2: Google Titan Security Key PCB, with annotated
main parts

2.4.3 NXP A7005a Package Opening

Opening the NXP A7005a epoxy package necessitated a wet
chemical attack. We protected the PCB with some aluminium
tape and dropped some hot fuming nitric acid on the NXP
A7005a package until the die was revealed (see [11, Chapter
2] for a survey on IC package opening techniques).

The result is shown in Figure 3. With the device still alive,
we can then proceed with the EM side-channel measurements.

2.5 Matching the Google Titan Security Key
with other NXP Products

The FIDO U2F protocol does not allow to extract the ECDSA
secret key of a given application account from a U2F device.
This is a limitation of the protocol which, for instance, makes
it impossible to transfer the user credentials from one security
key to another. If a user wants to switch to a new hardware
security key, a new registration (i.e. a new ECDSA key pair)
is required for every application account.

From a security point of view, this limitation is also a
strength as it prevents creating a clone and represents an
obstacle for side-channel reverse-engineering. With no con-
trol whatsoever on the secret key, understanding the details
of a highly secured implementation (let alone attacking) can

Figure 3: Google Titan Security Key PCB, with NXP A7005a
die visible after wet chemical attack of its package

prove cumbersome. We had to find a workaround to study the
implementation in a more convenient setting.

2.5.1 NXP A700x Datasheet Analysis

The NXP A700x public datasheet [25] provides the following
interesting informations:

• it runs the NXP’s JavaCard Operating System called
JCOP, in version JCOP 2.4.2 R0.9 or R1 (JavaCard ver-
sion 3.0.1 and GlobalPlatform version 2.1.1);

• technological node is 140 µm;

• CPU is Secure_MX51;

• 3-DES and AES hardware co-processors;

• public-key cryptographic co-processor is NXP FameXE;

• RSA available up to 2048 bits and ECC available up to
320 bits.

The NXP A7005a RSA and ECC key length limitations,
JCOP version and technological node indicate that this is not
a very recent chip.

2.5.2 Similarities with other NXP Products

With the information gathered from the NXP A700x datasheet
and its IC optical analysis, we tried to identify similar NXP
products for which we could have more control on the ECDSA
operations. In fact, several NXP JavaCard platforms share the
NXP A700x’s characteristics. They are all based on NXP P5x
chips.

The NXP P5x secure microcontroller family is the first
generation of NXP secure elements, also called SmartMX
family [31]. It has the exact same characteristics as the NXP

A700x. Furthermore the NXP P5x secure microcontroller fam-
ily is Common Criteria (CC) and EMVCo certified (last CC
certification found in 2015).

We went through the public data that can be found on-
line and figured out that several NXP JavaCard smartcards
are based on P5x chips. Thanks to BSI and NLNCSA CC
public certification reports3, we were able to compile a (non-
exhaustive) list of NXP JavaCard smartcards based on P5x
chips.

We selected the product NXP J3D081 (CC certification re-
port BSI-DSZ-CC-0860-2013) since its characteristics were
the closest to those of NXP A700x (JCOP 2.4.2 R2, JavaC-
ard 3.0.1 and GlobalPlatform 2.2.1). We named it Rhea, in
reference to the second largest moon of Saturn, right after
Titan.

Open JavaCard products, like Rhea, are generic platforms
that allow developers to load their own applications (a JavaC-
ard applet) on the smartcard. The JavaCard OS takes care
of low level interactions with the hardware and offers high
level APIs for the applets. Hence, an applet needs to comply
with the JavaCard OS API independently of the underlying
hardware.

On Rhea, the JavaCard OS happens to follow JavaCard
3.0.1 specifications [32]. We developed and loaded a custom
JavaCard applet allowing us to freely control the JavaCard
ECDSA signature engine on Rhea. At this point, we were able
to upload the long term ECDSA secret keys of our choice,
perform ECDSA signatures and verifications.

2.6 Side-Channel Observations
2.6.1 Side-Channel Setup

In order to perform EM side-channel measurements, we used
the following side-channel analysis hardware setup (global
cost is about US $12,000):

• Langer ICR HH 500-6 near-field EM probe with an hor-
izontal coil of diameter 500µm and a frequency band-
width ranging from 2MHz to 6GHz [20];

• Thorlabs PT3/M 3 axes (X-Y-Z) manual micro-
manipulator with a precision of 10µm [37];

• Pico Technology PicoScope 6404D oscilloscope, with
a 500MHz frequency bandwidth, sampling rate up to
5GSa/s, 4 channels and a shared channel memory of 2G
samples [34].

For triggering the side-channel measurements, we pro-
ceeded as follows:

• for the side-channel measurements performed on Rhea,
we used a modified commercial smartcard reader where

3https://www.bsi.bund.de/EN/Topics/Certification/
certified_products/Archiv_reports.html

https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html
https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html

Figure 4: EM Probe Positions on Titan (left) and Rhea (right)

Figure 5: Titan ECDSA Signature EM Trace

we tapped the I/O line so we could trigger on the sending
of the APDU command;

• for the side-channel measurements performed on Titan,
we used the triggering capabilities of our oscilloscope to
trigger on a pattern present at the beginning of the EM ac-
tivity of the command processing the authentication
request message.

2.6.2 First Side-Channel Observations on Titan and
Rhea

Figure 4 depicts the spatial position of the EM probe above
the die of the Google Titan Security Key NXP A7005a and the
die of Rhea. In Figures 5 and 6, we give the EM activities ob-
served during Titan’s authentication request message
ECDSA signature, and during the processing of the APDU
command launching the ECDSA signature available in the
JavaCard cryptographic API of Rhea.

The similarities between EM activities on Titan and Rhea
confirm our hypothesis that the implementations are very
similar. Note that the spatial probe positioning is sensitive
to get a clear signal with sharp peaks, but the picture taken
for Rhea (Figure 4 left) proved sufficient to replay the probe
positioning on Titan.

3 Reverse-Engineering the ECDSA Algo-
rithm

The reverse-engineering of the ECDSA signature and verifi-
cation algorithms presented in this section was conducted on
Rhea as we had full control on the inputs, in particular the
private key d.

3.1 ECDSA Signature Algorithm
3.1.1 Basics about the ECDSA Signature Algorithm

Let us briefly recall the ECDSA signature algorithm and in-
troduce the necessary notations. We work on an elliptic curve
E defined over the finite field Fp, and denote by G(x,y) a point
on E of large prime order q. The ECDSA signature algo-
rithm [17] takes as inputs the hash of the message m to be
signed h = H(m), and a secret key d. It outputs a pair (r,s)
computed as follows:

1. randomly pick a nonce k in Z/qZ
2. scalar multiplication4 Q(x,y) = [k]G(x,y)

3. denote by r the x-coordinate of Q : r = Qx

4. compute s = k−1(h+ rd) mod q

Observe that since Rhea allows us to choose the secret key
d, we can easily compute the nonce value k used to produce
any signature (r,s) for any given message h = H(m).

3.1.2 Matching the Algorithm to the Side-Channel
Traces

Figure 6 presents a full EM trace of the ECDSA signature at
sampling rate 2.5GSa/s. (The whole execution time is approx-
imatively 73ms.) Our first goal was to identify the different
steps of the ECDSA algorithm on the trace.

After an initialization phase, where ECDSA inputs are
processed and stored, the first step is to randomly generate the
nonce k and the z coordinate of G in projective coordinates.
The call to a pseudo-random number generator (PRNG) is
clear in the identified area: there are 48 calls to the PRNG
to generate a 256-bit random and the PRNG re-initializes
itself every 60 calls. There must also be at least two modular
multiplications in this step to get G in projective coordinates.
Also, the nonce k is recoded in the form required by the scalar
multiplication algorithm (we give more details in Section 3.3).

The next block corresponds to the scalar multiplication
itself. This is the longest operation in ECDSA and its stable
iterative process stands out clearly.

The last four blocks are composed of two modular inver-
sions (z−1 mod p to get r = Qx and k−1 mod q), the hash of

4In a secure implementation, this is usually done on randomized projective
coordinates G(x,y)→G(xz mod p,yz mod p,z) with z a fresh random from Fp (see
e.g. [6]).

Init

k,z← $

encode k
G(x,y) → G(xz,yz,z) [k]G(xz,yz,z) 1

z

H(m)

1
k

k−1(h+ rd)

Figure 6: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256)

the message m and the final computation of s with two mod-
ular multiplications and one addition. We infer the ordering
depicted in Figure 6 but we do not have strong arguments to
show that these operations are actually performed in this order.
It is worth mentioning that the overall process is pretty similar
to what was observed in [26]. The authors were working on
a P5 chip with an older version of the NXP cryptographic
library.

3.1.3 Studying the Scalar Multiplication Algorithm

In side-channel analysis, there are many ways to attack an
ECDSA implementation. In fact, any leakage inside one of the
previously mentioned operations involving the nonce or the
secret key could potentially lead to an attack. In the literature,
the most studied operation is the scalar multiplication. Let us
have a closer look.

By observing many signature traces, we observed that the
scalar multiplication step takes approximatively 43 ms, and
more importantly that each scalar multiplication consists of
exactly 128 iterations (i.e. the repetition of the same sig-
nal pattern). Figure 7 displays a single iteration at sampling
rate 5GSa/s. We observed that some parts of the traces vary
slightly from one iteration to another (probably due to a ran-
dom delay countermeasure). The iteration length is then not
perfectly stable but it takes roughly 340µs, which corresponds
to about 1.7M samples at sampling rate 5GSa/s.

We concluded for a constant time algorithm based on some
sort of Double&Add Always implementation. In particular,
the implementation does not skip the leading zero bits of the
scalar as in [5], or more recently [16, 24]. In order to find a
vulnerability we needed a better understanding of the imple-
mentation. To this end, we analyzed the ECDSA signature
verification algorithm.

Iteration i

Figure 7: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Scalar Multiplication Single Iteration

3.2 ECDSA Signature Verification Algorithm
As mentioned before, one great advantage of working on Rhea
is the possibility to run the ECDSA signature verification al-
gorithm which does not involve any secret. Countermeasures
are therefore useless and developers often downgrade or sup-
press them in order to reduce the execution time. For reverse
engineering however, such a countermeasure downgrade is a
windfall. It provides the opportunity to learn a lot about the
implementation and its countermeasures.

The core of an ECDSA signature verification is a double-
scalar multiplication of the form [k1]G+ [k2]P, where G is
the curve base point and P the signatory’s public key. It in-
stantly appeared that this operation was implemented as two
separate scalar multiplications (followed by a final point addi-
tion), whose traces looked similar to those observed for the
signature algorithm. Our analysis revealed however that it is
not constant time: the Double&Add Always implementation
is replaced by a simple Double&Add implementation and the
leading zero bits of the scalar are skipped. Also, an expen-
sive pre-computation step is visible before one of the two
scalar multiplications. This pre-computation step looks like a
scalar multiplication where the scalar is a power of 2 (i.e. it is
made of Double operations only). Finally, the manipulation of
the point at infinity can be easily spotted in the side-channel
signal.

These observations on the verification algorithm led us to
draw the following hypothesis for the signature algorithm:

• each iteration is constituted of a Double and a Add oper-
ation;
• each iteration handles two bits of the scalar, starting with

the most significant bit;
• the scalar is not blinded;
• the point at infinity is never manipulated;
• the scalar multiplication requires the pre-computed value
[2dl/2e]G (where l is the bit-length of the scalar) that is
hard coded into the chip.

3.3 High-Level NXP Scalar Multiplication Al-
gorithm

There are many ways to implement a scalar multiplication
algorithm but the costly pre-computation observed in the
previous section, together with the number of subsequent
iterations and the fact that there is a single doubling operation
for each addition clearly suggests a comb method (see [21])
of width 2.

To compute [k]G, the scalar k = (k1, . . . ,kl)2 of even length
l5 is first encoded as k̃ = (k̃1, . . . , k̃l/2) where k̃i is a 2-bit
value obtained by concatenation of ki and kl/2+i such that
k̃i = 2ki + kl/2+i.

A comb implementation of width 2, requires the pre-
computation of the curve points G1 = G, G2 = [2l/2]G1 and
G3 = G1 +G2 = [2l/2 +1]G1.

From the above analysis, our first and best guess for the
scalar multiplication algorithm is given in Algorithm 1.

Algorithm 1: Scalar Multiplication Algorithm used in
Signature Operation

Input :(k̃1, . . . , k̃129), the encoded scalar
Input :G0,G1,G2,G3,G4, the pre-computed points
Output : [k]G

S← G1
for i← 2 to 129 do

S← [2]S
if k̃i > 0 then

S← S+Gk̃i

else
Dummy← S+G0

if k̃1 = 0 then
S← S−G4

else
Dummy← S−G4

Return :S

In Algorithm 1, Dummy represents a register or memory
address which will not be read and therefore stores useless
computation results, G0 is any point on the elliptic curve,
G1 = G (the elliptic curve base point), G2 = [2129]G1, G3 =
G1 +G2 and G4 = [2128]G1.

Since G0 is solely used for the dummy additions, it could be
any point on the curve, it could even change over time. Most
likely G0 ∈ {G1,G2,G3,G4}, since these points are already
computed.

In Algorithm 1, the binary form of k is of length l = 258.
This means that at least two extra leading zero bits are added
to k. The purpose of this trick is to ensure that k̃1 is either
0 or 1. In the former case however, the initialization of S
should be the point at infinity. In order to avoid this, k̃1 is

5k may be padded with 0s if necessary

forced to value 1. It is corrected by the last operations in
Algorithm 1 assuming the point G4 is also stored during the
pre-computation step (in addition to G2 and G3). This process
is confirmed by the presence of an Add operation following
the scalar multiplication sequence of Double&Add iterations.

4 A Side-Channel Vulnerability

As explained in the previous section, each signature on Rhea
allows us to deduce the nonce k from the chosen private key d.
Therefore, we could look for statistical dependencies between
the side-channel traces and the nonce values, more exactly
the encoded digits k̃i.

The research of sensitive leakage is a tedious task where
many interdependent parameters have strong influence and
should be set correctly for success. In the next section, we
investigate these parameters and show how we eventually
managed to find a sensitive leakage. Section 4.1 sums-up
several months of work tainted with failed attempts and disil-
lusionment. The details given in Sections 4.1.1 to 4.1.3 can be
skipped at first-reading. Section 4.2 provides precise informa-
tion about the sensitive leakage. Section 4.3 shows how that
leakage helped to better understand the scalar multiplication
implementation.

4.1 Searching for Sensitive Leakage
Our statistical side-channel analysis started by the acquisition
of the EM radiations of the Rhea chip during 1000 ECDSA
executions (we eventually needed 4000 acquisitions for the
attack to be successful). Each trace was then split into 128 sub-
traces corresponding to the point doubling and point addition
operations inside the main loop of Algorithm 1. We thus
ended-up with 1000×128 sub-traces (one per iteration).

As mentioned in Section 3.1.3, the sub-traces are not per-
fectly synchronized (certainly due to a random delay counter-
measure). This means that, at time sample t, two sub-traces
do not exactly capture the EM signal related to the same un-
derlying computations. They have to be re-aligned in order
for us to estimate any statistical dependency between the EM
signal and the encoded nonce digits.

4.1.1 Preliminary Acquisition Setup

This whole process necessitate to choose some acquisition
parameters:

• choice of EM probe: we started with a Langer ICR HH
250-75 near-field EM probe with an horizontal coil of
diameter 250 µm and a frequency bandwidth ranging
from 0.5 MHz to 2 GHz [19].

• EM probe position: we selected a position where the
Double and Add operations were easily distinguishable
and the EM signal had a large amplitude.

Double Add

Figure 8: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Scalar Multiplication Single Iteration

• sampling rate: we choose the highest sampling rate given
by our oscilloscope (5 GSamples/s). The drawback is
that we then had to handle large traces: about 1.7M
samples per sub-trace.

4.1.2 Traces re-alignment

Let us now see how we managed to re-align our 1000×128
sub-traces. In Figure 8, we display a sub-trace with 8 identi-
fied sections (in orange) where the execution time seems to
randomly vary from one sub-trace to another. Over all sub-
traces, we observed that the length of these sections vary by
a factor of 2. Our hypothesis is that an elementary random
delay countermeasure is applied (by repeating or not some of
the computations). The rest of the sub-traces, i.e. the 8 inter-
leaved sections, show a small jitter which very likely comes
from the internal clock natural jitter.

These observations led us to try to re-align each of the 16
sections independently. We started with the orange sections
showing a random delay countermeasure assuming that they
were more likely to hide worthwhile information. As we shall
see next, this was clearly not our best bet.

We decided to skip the first section as it was not clear if it
was the start of the current iteration or the end of the preceding
one. Unfortunately, for each of the seven other orange sections,
the SNR analysis resulting from the 1000× 128 re-aligned
sections did not show any significant leakage.

We then considered the 8 other sections without random
delay countermeasure. In each of these sections, the signal
is mostly composed of small consecutive EM peaks that we
detected and re-aligned. However, the peak detection was too
noisy. Some peaks were overlooked and some signal inter-
ferences were erroneously identified as signal peaks. Again,
these re-alignments did not give us any interesting results.

At this point, we had more questions than answers: is the
acquisition setup correct? Was our trace re-alignment proce-
dure correct? Do we have enough traces to observe a sensitive
leakage? Was there any sensitive leakage at all?

We modified the EM probe position and adapted some
previous re-alignments (those that seemed to give the best
SNR results) with no success.

In a last attempt, we focused our attention on the two or-
ange sections at the beginning of the Double and the Add
operations. These parts of the traces reflect the activity of
the crypto library which sets the different register addresses
before launching the operations. We finally captured a weak
sensitive leakage located on a large EM signal peak (one of
the peaks with large amplitude that we can see on Figure 8
at the very beginning of the Add operation). Note that we did
not explicitly exploited these peaks during our first attempts
because we based our re-alignment procedure on the peaks
belonging to the random delay countermeasure.

This first positive result lead us to perform a last experiment
relying on the systematic detection of the EM signal peaks
with large amplitude over the whole sub-trace. It turned out
that four of these peaks (located during the Double operation)
bear a strong sensitive leakage, much stronger than the weak
leakage observed before. In Figure 9, we show the area where
a sensitive leakage was eventually detected. Figure 10 focuses
on the four signal peaks that bear the sensitive leakage inside
that area.

Double Add

k̃i

Figure 9: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Sensitive Leakage Area

k̃i

Figure 10: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - Sensitive Leakage

Inputs random messages, constant key

operations 4000

Length 100 ms

Sampling rate 5G Sa/s

Samples/trace 500 M

Channel conf. DC 50 ohms, ±50 mV

File size 2 TB

Acq. time ≈ 4 hours

Table 1: SCA acquisition parameters for Rhea

4.1.3 Final Acquisition Setup

Based on this success, we checked various EM probe positions
and even changed our EM probe itself (for the Langer ICR
HH 500-6, see Section 2.6.1) to improve the signal strength.
The final acquisition setup details are provided in Table 1. A
picture of the probe position is shown in Figure 4.

4.2 A Sensitive Leakage
Figure 11 (first sub-figure) depicts 1000 superposed traces
after re-alignment, where only 400 samples were kept around
each of the four identified signal peaks. As mentioned before,
to evaluate the statistical relations between the re-aligned
traces and the encoded scalar digits, we computed the Signal-
To-Noise Ratio (SNR). As stated in [22]: "The SNR is quan-
tifying how much information is leaking from a point of a
power trace. The higher the SNR, the higher is the leakage".
More precisely, each of the 4000×128 re-aligned traces are
classified with respect to the corresponding 2-bit digit k̃i. We
then end up with four sets of traces. For each set s and at
each time sample t, we estimated the traces mean µs(t) and
variance vs(t). The SNR computed independently for each
time sample t is obtained by:

SNR(t) =
Var(µs(t))
E(vs(t))

,

where Var(µs(t)) is the estimated variance over the four esti-
mated means and E(vs(t)) is the estimated mean of the four
estimated variances.

In the second sub-figure of Figure 11, we plotted the SNR
results for the four sets (k̃i ∈ {0,1,2,3}). The best SNR value
is ≈ 0.53. Clearly the amplitude of the side-channel traces is
strongly related to the sensitive values k̃i

6.

6If the side-channel traces amplitude at time sample t is not related to
encoded nonce digits, the respective SNR value should tends toward 0 as the
number of traces increases (as the signal variance (Var(µs(t))) itself tends to
0). This is what happens for most of the traces time samples (see Figure 11,
second sub-figure). However, at some specific time samples (where SNR

SNR for k̃i ∈ {0,1,2,3}

SNR for k̃i ∈ {1,2,3}

Figure 11: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - SNR results (y-axis range [0,0.7])

Our first guess on the scalar multiplication algorithm (Al-
gorithm 1) did not completely disclose the value taken by
G0, apart from the fact that it is not the point at infinity. In
fact G0 could be any point on the elliptic curve; but it is most
likely chosen in {G1,G2,G3,G4}. Besides, G0 could change
from one iteration to another. Therefore, we estimated the
SNR without considering the cases k̃i = 0. The corresponding
sub-traces were simply discarded from the SNR computa-
tions. In the third sub-figure of Figure 11, we can observe a
significant increase of the SNR to ≈ 0.65. These results tend
to confirm that G0 takes varying values among G1, G2 and
G3 only. Using standard noise reduction techniques, based on
filtering and principal component analysis, we managed to
further improve the SNR to 0.78.

Let us go a bit further in the understanding of the leakage.
Considering only the sub-traces where k̃i 6= 0, we estimated
the leakage strength with respect to the two bits of k̃i consid-
ered independently.

To do so we used the Welch T-Test [39]. Given two uni-
variate data sources the T-Test tells us whether one can reject
the null hypothesis with confidence, i.e. whether the two data
sources are far enough from two independent sources. We
performed two independent T-Tests. For the first test, the data
sources are the sub-traces that correspond to k̃i = 1 and k̃i = 3
respectively, for which the lsb (of k̃i) is equal to 1. This allows
to test the msb of k̃i. Similarly, we collected T-Test results for
the sub-traces corresponding to k̃i = 2 and k̃i = 3 respectively
which leave the msb constant; hence testing the lsb of k̃i.

A T-Test score was computed for each time sample inde-
pendently. The results are depicted in Figure 12. These scores
clearly show that the two bits of k̃i do not leak at the same

peaks are visible), the SNR converges toward a non-null value. This means
that Var(µs(t)) itself converges toward a non-null value and therefore the
side-channel traces at time sample t are significantly different for the four
different encoded nonce digits values.

Most significant bit of k̃i

Least significant bit of k̃i

Figure 12: Rhea EM Trace - ECDSA Signature (P-256, SHA-
256) - T-Test results (y-axis range [−100,100])

time. Furthermore, we can clearly see that the most signifi-
cant bit of k̃i shows a strong leakage for the last three peaks,
whereas the lsb’s strongest leakage is mainly located on the
first peak.

4.3 Improving our Knowledge of the NXP’s
Scalar Multiplication Algorithm

As explained in the previous section, we removed the sub-
traces corresponding to the case k̃i = 0 as they seem to dete-
riorate our SNR computation. Our hypothesis is that, when
k̃i = 0, the developers decided to randomly choose (at each
iteration) a point from the available pre-computed points
(G1,G2,G3).

To try validate our hypothesis, we designed the following
experiment based on supervised Expectation-Maximization
clustering (to this end, we use the GaussianMixture class
from Scikit-learn Python library [33]).

The idea is simple. We used the many sub-traces that are
correctly labeled when k̃i 6= 0 to train our clustering algorithm
(i.e. to precisely define the three clusters using maximum like-
lihood). We were then able to match the un-labeled sub-traces
(i.e. those corresponding to k̃i = 0) by finding the closest
cluster, i.e. by identifying the value j such that G0 = G j for
this iteration. The Expectation-Maximization clustering is
a multivariate process. It uses multi-dimensional data (i.e.
our sub-traces with several time samples) to infer multivari-
ate Gaussian distributions from these samples. To ease this
work, we had to remove some useless time samples (i.e. time
samples for which the signal was not strongly related to the
sensitive variable k̃i). The overall process is summarized be-
low:

1. Reduce all sub-traces to the time samples where the
SNR is larger than a specific threshold (since the opti-

mal threshold choice is not known a priori, we applied
the process for different threshold values until it gave
consistent results).

2. With the sub-traces corresponding to k̃i 6= 0, estimate the
three cluster centers for k̃i = 1,2 and 3 respectively.

3. For each labeled sub-trace, find the closest center. This
phase allows controlling the clustering success rate.

4. Finally, for each un-labeled sub-trace (i.e. k̃i = 0), find
the closest center.

The matching phase revealed that about half of the un-
labeled sub-traces matched the k̃i = 1 case, while the other
half were equally divided between the cases k̃i = 2 and k̃i = 3.

The above observation was validated by our next experi-
ment. We created two sets of sub-traces. In the first set, we
put the k̃i = 0 sub-traces. The other set contained a mix of
sub-traces with k̃i 6= 0, with half of them corresponding to
k̃i = 1 and the rest equally divided between k̃i = 2 and k̃i = 3.
The T-Test evaluation between these two sets could not reject
the null hypothesis (no T-Test peak is visible and the best
T-Test absolute value is less than 37), hence confirming the
Expectation-Maximization experiment results.

In the improved version of the scalar multiplication algo-
rithm presented in Algorithm 2, we have G0 = G1 = G (the
elliptic curve base point), G2 = [2129]G1, G3 = G1 +G2 and
G4 = [2128]G1.

Since G0 = G1 = G, one can check that the Dummy←
S+Grand addition is operated on G1 half the time and on G2
or G3 the rest of the time. We would like to emphasize that
this algorithm is only our interpretation of the real algorithm
implemented on Rhea that might differ slightly. Details of the
real implementation are not our concern here, a high-level
understanding of the countermeasures is good enough.

5 A Key-Recovery Attack

In this section, we detail the process that resulted in the full re-
covering of the private keys embedded into the NXP’s secure
components of both Rhea and Titan. Our attack consists of
two main steps: we first exploited the vulnerability observed
in Algorithm 2 to recover some zero bits of the nonces with
very high confidence level. Then, from this partial knowledge
on the nonces, we applied a lattice-based attack by reducing
our problem to an instance of the Extended Hidden Number
Problem (EHNP). We present these two phases in the next
sections.

7A more formal analysis, following e.g. [40], is possible to interpret the
T-Test results and estimate the error probability of having an undetected
leakage. Here, we do not need such a fine grain analysis, the T-Test results
do not show the significant peaks found in prior experiments. We can then
safely conclude that the two sets of sub-traces, selected as we did, behave
very much alike.

Algorithm 2: Improved Version of Scalar Multiplication
Algorithm used in Signature Operation

Input :{k̃1, · · · , k̃i, · · · , k̃129}: The encoded scalar
Input :G0,G1,G2,G3,G4: The pre-computed points
Output : [k]G: The scalar multiplication of scalar k by

point G

// Init Register S to the point G(= G1)
S← G1
for i← 2 to lk/2 do

S← [2]S
rand← random element from {0,1,2,3}
if k̃i > 0 then

S← S+Gk̃i

else
Dummy← S+Grand

if k̃1 = 0 then
S← S−G4

else
Dummy← S−G4

Return :S

5.1 Recovering Scalar Bits from the Observed
Leakage

As seen in Section 4, Algorithm 2 leaks non-uniform infor-
mation whenever the 2-bit encoded digit k̃i is zero. We recall
that k̃i is obtained from the binary representation of k as
k̃i = 2ki + k129+i. When k̃i = 0, our analysis confirmed that
Algorithm 2 stores the result of the addition S+G0 into a
dummy register, with G0 chosen at random in {G1,G2,G3}
with respective probability 1/2, 1/4, 1/4. Let (k̂i)i denote the
sequence of digits recovered from the observed leakage on k̃i
in a noise free scenario. From the above observation, we have
k̂i ∈ {1,2,3}. Let us first examine the case k̂i = 1. With proba-
bility 1/4, the observed value matches the correct value k̃i = 1,
in which case G1 is correctly added to S. But it may also corre-
spond to the case where k̃i = 0 and G1 was randomly chosen
to perform the dummy addition, which occurs with probabil-
ity 1/4×1/2 = 1/8. In total, we have P(k̂i = 1) = 3/8. The
overall analysis for k̂i = 1,2,3 is summarized in Table 2.

Table 2 provides crucial information on the bits of k. In
particular, we remark that k̂i = 1 implies ki = msb(k̃i) = 0.
Similarly, k̂i = 2 implies k129+i = lsb(k̃i) = 0.

As seen in Section 4, T-Test results on carefully re-aligned
sub-traces around four EM signal peaks (See Figure 12) gave
us very precise time samples where the encoded digits are
leaking. Testing the 2 bits of k̃i separately also revealed
more leakage points for ki = msb(k̃i) than for k129+i = lsb(k̃i).
Therefore, we first focused our analysis on the leakage arising
from msb(k̃i). In practice, we used 4000×128 sub-traces on
Rhea that we carefully filtered out by selecting time samples
for which the T-Test was greater than some threshold, in ab-

k̂i P(k̂i) k̃i (kik129+i)

1 3/8 1 (01)
0 (00)

2 5/16 2 (10)
0 (00)

3 5/16 3 (11)
0 (00)

Table 2: Information on Scalar Bits from Noise Free Sensitive
Leakage

solute value. We then used unsupervised clustering to classify
these sub-traces into two distinct subsets in order to differen-
tiate the cases ki = 0 and ki = 1. For this step, we used the
Expectation-Maximization algorithm (Scikit-learn Gaus-
sianMixture class8). If the classification is successful, the
number of sub-traces in each subsets should match the re-
spective probabilities given by Table 2, i.e. P(ki = 0) = 3/8,
P(ki = 1) = 5/8. This was indeed the case for some T-Test
threshold values. Nonetheless, since we were able to deduce
nonce values from the private key of our experiments on
Rhea, we could precisely evaluate the matching success rate
for ki = 0. Table 3 summarizes the matching success rates for
ki = 0 on the 4000×128 sub-traces of Rhea for various thresh-
old values. For a threshold t, we give the resulting sub-traces
length (# points) after samples selection and signal process-
ing, the probability of success when a sub-trace is sent to the
set ki = 0 and the overall number of sub-traces labeled ki = 0
over the 4000×128 sub-traces. More precisely, the clustering
algorithm will choose two cluster centers (i.e. two multivari-
ate Gaussian distributions) and output, for each sub-trace, the
probability of fitting each cluster. We call confidence level
the probability for a sub-trace to fit the cluster corresponding
to ki = 0. We ran several experiments on Rhea’s traces with
various threshold values. For the second phase of the attack,
we selected the 109714 sub-traces obtained with t = 11 for
which the clustering algorithm’s confidence level is equal or
greater than 95% (highlighted in blue in Table 3). At the end
of this first part of the attack, we have thus acquired with very
high probability roughly 109714/4000≈ 27.5 bits per nonce
(all located on the upper half of the nonce since they relate
to msb(k̃i)). The second phase of the attack presented in the
next section consists in recovering the unknown part of each
nonce in order to deduce the secret key d.

We proceeded similarly with lsb(k̃i) in the hope to
gather even more knowledge about the nonces. However, as
mentioned before (see Figure 12), the side-channel leakage
related to lsb(k̃i) is significantly weaker than the one related
to msb(k̃i) and our matching success rates seemed not

8Exact parameters are GaussianMixture(n_components=2,
covariance_type=’tied’)

t sub-trace length success rate (%) # sub-traces

10 697 99.0 110054
11 650 99.0 109714
12 591 99.0 108451
13 554 99.0 106990
14 520 99.1 106691
15 484 99.1 105911

Table 3: Results of the clustering algorithm with minimum
confidence level set to 0.95.

good enough. We hence decided to drop this (too) noisy
information.

To summarize, we will target only bits with value 0 (as
value 1 might hide the randomization of a dummy operation)
and only in msb(k̃i) since the sensitive leakage happens to be
stronger there (in comparison to lsb(k̃i)).

5.2 Lattice-based Attack with Partial Knowl-
edge of the Nonces

In [15], Howgrave-Graham and Smart exploited lattice re-
duction algorithms in order to recover (EC)DSA private
keys from the knowledge of only a few bits per nonce.
This work was followed by many others that improved
the understanding of so-called lattice-based attacks and/or
successfully applied variants to practical settings (see e.g.
[1–3, 5, 7, 13, 14, 16, 23, 24, 26–28, 36, 38]). All these attacks
work as follows:

1. Run N ECDSA signatures and record the inputs hi =
h(mi), the outputs (ri,si) and the known information k̂i
on the nonce ki. We denote by ui the unknown part of ki
so that ki = k̂i + ui (warning: contrary to the previous
sections where ki denoted the i-th bit of k, we shall now
use the subscript notation where ki designates the nonce
of the i-th signature, where i = 1, . . . ,N).

2. Rewrite the ECDSA equations si = k−1
i (hi + rid) mod q

(see Section 3.1), as linear equations of the form Aiui +
Bid ≡ Ci (mod q), involving the secret key d and the
ui’s for i = 1, . . . ,N.

3. Build a lattice L that contains the vector v =
(u1,u2, . . . ,uN) (in practice, this vector often contains
some extra elements).

4. If the known part k̂i of ki is sufficiently large, then the
norm of v is small and one can expect to find v by solving
an instance of the Shortest Vector Problem (SVP) in L .

As shown in [15], this attack amounts to finding a solution
to the so-called Hidden Number Problem (HNP) introduced
in [4]. The literature mostly considers the case where the

known part consists of some of the most significant bits of
each nonce. However, a more general setting sometimes re-
ferred to as the Extended Hidden Number Problem (EHNP),
allows the known part to be a sequence of several blocks of
consecutive known bits scattered all over the nonce. In this
case, the unknown ui is a vector whose elements are the un-
known sections of each nonce. We note ui = (ui,1,ui,2, . . .).
This more general setting did not draw much attention (im-
portant papers are [13–15, 27]) but led to practical attacks
nonetheless, mainly in the specific case of w-NAF implemen-
tations of the scalar multiplication [7, 23]. Our attack also
relies on this Extended version of the HNP.

Following [15], the ECDSA equations si = k−1
i (hi +

dri) mod q can be rewritten as ki = Aid−Bi (mod q), with
Ai = s−1

i ri and Bi = −s−1
i hi. If the most significant bits of

Aid and Bi coincide, or equivalently if Aid − Bi is small,
then one can build a lattice L such that the closest vector to
v = (B1, . . . ,BN ,0) in L reveals the nonces k1, . . . ,kN , hence
the private key d. This situation corresponds to the HNP and
the solution is obtained by solving an instance of the Closest
Vector Problem (CVP). A common variant makes it possible
to reduce the problem to an instance of the Shortest Vector
Problem (SVP) in L . In general, this so-called embedding
technique (due to [18]) provides a better probability of suc-
cess.

In our case, the known part of the nonces does not cor-
respond to the most significant bits of ki. Instead, we have

ki = k̂i +
`i

∑
j=1

ui, j2λi, j , (1)

where the bits that form the known part k̂i split the nonces ki
into `i unknown parts ui, j.

For the lattice reduction algorithm (LLL or BKZ) to be
successful, the side-channel acquisition phase should provide
enough information on the nonces. Notably, over all recorded
signatures, the number of known bits should be large enough.
It was commonly assumed that this number must be larger
than the bitlength of the secret9. Yet, it is worth mentioning
that very recently, M. Albrecht and N. Heninger managed to
slightly break this so-called information theoretic limit [1]
using a sieve algorithm (and, with less success, an enumer-
ation algorithm). Moreover, and at the price of some rather
expensive computations, they showed that 3 known bits by
nonce are sufficient in practice to solve HNP when most
recent attacks necessitated at least 4 known bits [16, 24].

Based on the above observations and after a few experi-
ments on Rhea, we opted for a strategy that we detail in Sec-
tion 5.3. As explained next, we filtered out the 4000 recorded
signatures in order to keep only those for which the known
part k̂i was a block of 5 consecutive zero bits so that

ki = ui,22λi +0×2µi +ui,1 (2)

9i.e. the bitlength of the group order: 256 in our case.

where λi = µi+5 is the index of the most significant unknown
part of ki. The least significant part ui,1 has index 0, i.e. it
coincides with the least significant bits of ki.

We then used equation 2 to build a lattice that contains
a short vector whose elements include the unknown parts
ui,1,ui,2. Using this information, it was then easy to recon-
struct the nonces ki, notably k1, and therefore the private key
d.

We applied several optimizations to increase both the effi-
ciency and probability of success of the attack. In particular,
we removed the secret key d from the equations, we used the
already mentioned embedding technique, and we adapted the
trick presented in [27] and recalled in [1, 24] that consists of
shifting the interval of the unknown parts ui, j from [0,Ui, j] to
[−Ui, j/2,Ui, j/2] to the case EHNP. The details of our opti-
mization and lattice construction are given in Appendix A.

5.3 Touchdown on Rhea

As seen in Section 5.1, we recorded input and output data
on 4000 ECDSA signatures. Our pruning process and pa-
rameters allowed us to select 109714 sub-traces (iterations)
corresponding to a zero bit with very high probability (99%).
This represents an average of ≈ 27.5 known zero bits per
nonce over the 4000 signatures. We also know that these zero
bits are all located in the upper half of the nonces (see Sec-
tion 4). Unfortunately, the vast majority of this information
is not easily exploitable. Indeed, an elementary, yet rather
conservative equation from [13] tells us that in the case of
EHNP, a known block of less than three consecutive bits is
not helping. In fact, it is deteriorating the success rate by in-
creasing the lattice dimension for no gain. According to [13],
there should be at least three (resp. two) known blocks of 3
bits (resp. 4 bits) per nonce for the attack to be successful.
Thus, after a few experiments, we decided to seek nonces
containing a single block of at least five consecutive zero bits.
We ended-up with 180 nonces, out of which only 5 included
a wrongly estimated known block.

In simulation, with such a configuration and using LLL for
the lattice reduction, 80 error free signatures are enough to
get about 50% chances to find the secret. Based on these sim-
ulations, we completed the attack on Rhea using a brute-force
strategy: we randomly selected 80 nonces among the 180
available to define the lattice and run the reduction algorithm
until the secret key was found.

Using LLL, each trial attack with 80 signatures took about
100 seconds to complete (on a 3,3GHz Intel Core i7, with
16GB RAM). Eventually, the secret key was recovered after
only a few tens of trials.

In the purpose of completeness, we provide in Appendix B
the attack success rate estimations in simulation with the
BKZ algorithm (for various block sizes). As expected, BKZ
offers much better results than LLL, even allowing us to con-
sider 4-bit known blocks instead of 5-bit blocks, significantly

decreasing the overall attack data complexity10.

5.4 Touchdown on Titan

We launched the attack on the Google Titan Security Key
following the exact same trajectory. First, we did our best
to locate the EM probe at the same spatial position and
with the same orientation (see Figure 4). We acquired
6000 side-channel traces during the execution of the U2F
authentication request command (details of the acquisi-
tion campaign are similar to Rhea’s, see Table 1, but for the
number of acquisitions and then for the acquisition time that
took about 6 hours).

Re-alignment, samples selection and signal processing
We applied exactly the same process than for Rhea (the
same four signal peaks were clearly visible). Once re-aligned
around the four signal peaks, we used the T-Test results from
Rhea to select the time samples and we applied the same
signal processing on the sub-traces.11

Unsupervised clustering Again, we applied the same
Expectation-Maximization algorithm than for Rhea. As men-
tioned earlier, we were optimistic about the correctness of the
clustering process since the sizes of the two output clusters
were proportional to the expected ratios (3/8,5/8). We then
brute-forced the T-Test threshold for time samples selection
and eventually selected t = 8 (for Rhea it was t = 11). After
signal processing and samples selection, the sub-trace length
with this threshold was 854.

Pruning and nonces selection We chose the highest con-
fidence level that preserved sufficiently many nonces with 5
or more consecutive zeros. Since we had more traces than
for Rhea, we were able to increase the confidence level to
0.98. We ended-up with 156 nonces with a block of at least 5
consecutive zero bits.

Key recovery attack We ran our EHNP solver on random
subsets of size 80 among the 156 selected nonces. The attack
was successful after only a few tens of attempts.

Post analysis From the secret key, we can compute the
values of the nonces and verify that, among the 156 selected
nonces, 7 were erroneous. The attack was then a little more
challenging than for Rhea but still possible. Again, as shown

10The use of a sieve algorithm, as in [1], would certainly improve further
these results.

11By reusing Rhea’s T-Test results for selecting the time samples for
Titan, we assumed that Rhea and Titan share the same clock frequency and
instructions order. These are not strong hypotheses since the clock frequency
can be easily checked and the NXP cryptographic library version seems to
be the same on both devices.

in Appendix B, the use of BKZ with medium or large block
size would do the work with much fewer nonces.

Time required to replay the attack Once the attacker get
hold of the Titan device, it should take less than 10 hours
to replay the side-channel acquisition: 2 hours for preparing
the device, 1 hour for preparing the side-channel acquisition
setup, 6 hours for the side-channel acquisition and 1 hour
for repackaging the device. After returning the device to the
victim, the key recovery can then be performed offline in less
than one day.

6 A Crucial Observation

During the post analysis, we ran a lot of simulations on vari-
ous instances of the EHNP. In particular, we observed that the
success rate of the attack, and the minimum number of sig-
natures required to reach a given success rate, differ between
the contexts of Rhea / Titan and that of random instances of
the EHNP.12 We made the following crucial observation:

The success rate of the attack increases when the positions
(bits) covered by the known blocks of the nonces correspond
to positions where the group order is either all-zeros or all-
ones. As a consequence, the number of signatures required to
complete the attack can be greatly reduced in this case.

We realized that the Rhea / Titan implementation of the
scalar multiplication with the comb method, together with the
fact that the observed leakage on the most significant bits of
the nonces are easier to infer, were crucial in the success of
our attack. Indeed, all the blocks of 5 consecutive zero bits
were located between the bit indices 129 and 250 (assuming
index 0 corresponds to the lsb). And since the elliptic curve
used in the FIDO U2F protocol has a structured order q, the
bits of q at these positions consist of large sequences of zeros
and ones.

To illustrate this, we conducted the following experiment:
for every possible bit index i ranging from 1 to 250, we ran
the attack13 with the 5-bit known blocks set at index i for all
the nonces.

The success rates of these 250 attacks is plotted in red in
Figure 13. On the same figure, the dashed blue curve corre-
sponds to the function δq, defined as follows:

δq(i)=
{

1 if q has 5 consecutive 0s or 1s at bit position i
0 otherwise

The order of the curve NIST P-256 used for our attack
contains 2 runs of 5 consecutive ones in its lower part, namely
at indices 26 and 108.14 The higher part is decomposed into

12 on the same curve and where each nonce contains a single block of 5
consecutive zero bits enclosed by two unknown parts.

13Using 60 nonces and lattice reduction algorithm BKZ with block size 25
14In fact, at index 26, the order contains a run of 6 consecutive ones. Thus

to be precise we should have said “3 runs of 5 consecutive ones at indices 26,
27 and 108”.

3 long runs of ones and zeros. The first 2 peaks on Figure 13
exactly correspond to the two runs of ones in the lower part.
Then starting at index 128 (first long run of ones), the success
rate reaches 100% except when the 5-bit window meets the
transitions between the runs of ones and that of zeros. The
correlation between the success rate and the bit values at
these exact locations clearly indicate that there exists a strong
correlation between δq(i) and the attack success rate for a
known block at position i.

2 50 100 150 200 250

0

1

Known Block Index

δq

2 50 100 150 200 250

0

50

100

Known Block Index
Su

cc
es

s
R

at
e

(%
)

Figure 13: Comparison between the success rate of EHNP
with 60 nonces and a single known block of 5 bits at a given
bit index (in red) and δq (in blue, dashed)

To the best of our knowledge, this phenomena has not been
observed before and we believe it opens new directions of
research.

First of all, it tends to show that structured elliptic curves,
for which the order contains large sequences of zeros or ones
happen to be more vulnerable to lattice-based attacks than
unstructured elliptic curves. Interestingly enough, we already
know in other contexts that these elliptic curves are not the
best choice as far as side-channel analysis is concerned as
they require more expensive countermeasures (see e.g. [35]).
It is worth mentioning that structured elliptic curves is a very
common choice in real-world protocols (like FIDO or Bit-
coin).

At this point, we do not have any theoretical explanation
for this observation. We know that finding a short vector in a
lattice necessitates that vector to be sufficiently short relative
to the lattice volume (at least, this is how these lattice-based
attacks were theoretically explained in the first place [15]).
However, we did not observe major differences in the norms
of the short vector solution or the lattice volume in the fa-
vorable15 and less favorable cases. Hence, to understand the
influence of the elliptic curve order on the difficulty to solve
SVP in the EHNP lattice, a deeper exploration of the inner

15the so-called favorable case is when the known block position i corre-
sponds to δq(i) = 1.

structure of the lattice is needed. The question remains thus
open.

We believe that a clear understanding of this surprising
behaviour might be a key to improve lattice-based attacks on
ECDSA. Indeed, if we understand the structural difference
between the favorable and the generic cases, one might be
able to adapt the lattice structure in the general case and
significantly improve the attack success rate.

7 Attack Mitigations

Several measures can be implemented to thwart the proposed
attack, at different levels.

7.1 Hardening the NXP P5x Cryptographic
Library

Straightforward ways for hardening the NXP P5x crypto-
graphic library:

• blinding of the scalar. This does not remove the sensitive
leakage but makes the attack much harder (as shown
in [13]). For instance, by addition of a random factor
of the curve order (the bit length of the random number
should be at least half the bit length of the curve order);

• re-randomizing the table lookup of precomputed points
in the comb implementation at each new access and
hence completely remove the sensitive leakage.

7.2 Use the FIDO U2F Counter to Detect
Clones

As explained in section 8.1 of [10], the counter may be
used as a signal for detecting cloned U2F devices. Thus
if a relying party of an application protected with FIDO
U2F receives a cryptographically correct authentication
response message, but with a counter value smaller or equal
to the previous counter value recorded, it means that a clone
of the U2F device has been created and used. Then the relying
party should not validate the authentication request, and lock
the account.
This countermeasure would reduce the usability of the clone
to a unique time after giving the security key back to the le-
gitimate user. Once the clone has been used (say one month
after the attack), the account will be locked by the next access
from the legitimate user.
Note that this protection would have to be implemented by
each relying party, independently of the FIDO U2F device.

References

[1] Martin R. Albrecht and Nadia Heninger. On Bounded
Distance Decoding with Predicate: Breaking the "Lat-

tice Barrier" for the Hidden Number Problem. Cryptol-
ogy ePrint Archive, Report 2020/1540, 2020. https:
//eprint.iacr.org/2020/1540.

[2] Alejandro Cabrera Aldaya, Cesar Pereida Garcia, and
Billy Bob Brumley. From A to Z: Projective Coordinates
Leakage in the Wild. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(3):428–
453, Jun. 2020.

[3] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. "Ooh Aah... Just a Little Bit" : A Small
Amount of Side Channel Can Go a Long Way. In Lejla
Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014, Bu-
san, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of LNCS, pages 75–92. Springer, 2014.

[4] Dan Boneh and Ramarathnam Venkatesan. Hardness of
Computing the Most Significant Bits of Secret Keys in
Diffie-Hellman and Related Schemes. In Neal Koblitz,
editor, Advances in Cryptology — CRYPTO ’96, pages
129–142, Berlin, Heidelberg, 1996. Springer Berlin Hei-
delberg.

[5] Billy Bob Brumley and Nicola Tuveri. Remote Timing
Attacks Are Still Practical. In Vijay Atluri and Clau-
dia Díaz, editors, Computer Security - ESORICS 2011,
Leuven, Belgium, September 12-14, 2011. Proceedings,
volume 6879 of LNCS, pages 355–371. Springer, 2011.

[6] Jean-Sébastien Coron. Resistance against Differen-
tial Power Analysis for Elliptic Curve Cryptosystems.
In Çetin Kaya Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES’99,
Worcester, MA, USA, August 12-13, 1999, Proceedings,
volume 1717 of LNCS, pages 292–302. Springer, 1999.

[7] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attack-
ing OpenSSL Implementation of ECDSA with a Few
Signatures. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, page 1505–1515, New York, NY, USA, 2016.
Association for Computing Machinery.

[8] Feitian. Feitian website. https://www.ftsafe.com.
[online; accessed 1-June-2021].

[9] FIDO Alliance. FIDO U2F Raw Message For-
mats. https://fidoalliance.org/specs/fido-
u2f-v1.2-ps-20170411/fido-u2f-raw-message-
formats-v1.2-ps-20170411.html. [online; ac-
cessed 1-June-2021].

[10] FIDO Alliance. Universal 2nd Factor (U2F) Overview.
https://fidoalliance.org/specs/fido-u2f-
v1.2-ps-20170411/fido-u2f-overview-v1.2-
ps-20170411.pdf. [online; accessed 1-June-2021].

https://eprint.iacr.org/2020/1540
https://eprint.iacr.org/2020/1540
https://www.ftsafe.com
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf

[11] Friedrich Beck. Integrated Circuit Failure Analysis: A
Guide to Preparation Techniques. John Wiley & Sons,
1998.

[12] Google. Google Titan Key. https://cloud.google.
com/titan-security-key/. [online; accessed 1-
June-2021].

[13] Dahmun Goudarzi, Matthieu Rivain, and Damien
Vergnaud. Lattice Attacks Against Elliptic-Curve Sig-
natures with Blinded Scalar Multiplication. In Roberto
Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers, volume
10532 of LNCS, pages 120–139. Springer, 2016.

[14] Martin Hlavác and Tomás Rosa. Extended Hidden Num-
ber Problem and Its Cryptanalytic Applications. In Eli
Biham and Amr M. Youssef, editors, Selected Areas in
Cryptography - SAC 2006, Montreal, Canada, August
17-18, 2006 Revised Selected Papers, volume 4356 of
LNCS, pages 114–133. Springer, 2006.

[15] Nick Howgrave-Graham and Nigel P. Smart. Lattice
Attacks on Digital Signature Schemes. Des. Codes
Cryptogr., 23(3):283–290, 2001.

[16] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek
Sys. Minerva: The Curse of ECDSA Nonces (System-
atic Analysis of Lattice Attacks on Noisy Leakage of
Bit-Length of ECDSA Nonces). IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2020(4):281–308, 2020.

[17] Don Johnson, Alfred Menezes, and Scott Vanstone. The
elliptic curve digital signature algorithm (ECDSA). In-
ternational Journal of Information Security, 1(1):36–63,
2001.

[18] Ravi Kannan. Minkowski’s convex body theorem and
integer programming. Mathematics of Operations Re-
search, 12(3):415–440, 1987.

[19] Langer. ICR HH 250-75. https://www.langer-
emv.de/en/product/near-field-microprobes-
icr-hh-h-field/26/icr-hh250-75-near-field-
microprobe-0-5-mhz-to-2-ghz/105, 2019. [on-
line; accessed 1-June-2021].

[20] Langer. ICR HH 500-6. https://www.langer-
emv.de/en/product/near-field-microprobes-
icr-hh-h-field/26/icr-hh500-6-near-field-
microprobe-2-mhz-to-6-ghz/108, 2019. [online;
accessed 1-June-2021].

[21] Chae Hoon Lim and Pil Joong Lee. More Flexible Ex-
ponentiation with Precomputation. In Yvo G. Desmedt,
editor, Advances in Cryptology — CRYPTO ’94, pages

95–107, Berlin, Heidelberg, 1994. Springer Berlin Hei-
delberg.

[22] S Mangard, ME Oswald, and T Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer,
2007. Other identifier: 0387308571.

[23] Gabrielle De Micheli, Rémi Piau, and Cécile Pier-
rot. A Tale of Three Signatures: Practical Attack of
ECDSA with wNAF. In Abderrahmane Nitaj and
Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020, Cairo, Egypt, July 20-22, 2020,
Proceedings, volume 12174 of LNCS, pages 361–381.
Springer, 2020.

[24] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and
Nadia Heninger. TPM-FAIL: TPM meets Timing and
Lattice Attacks. In USENIX Security 20, Boston, MA,
August 2020. USENIX Association.

[25] MOUSER. NXP A700x datasheet, secure authenti-
cation microcontroller. https://www.mouser.fr/
datasheet/2/302/a700x_fam_sds-1187735.pdf.
[online; accessed 1-June-2021].

[26] Elke De Mulder, Michael Hutter, Mark E. Marson, and
Peter Pearson. Using Bleichenbacher’s Solution to the
Hidden Number Problem to Attack Nonce Leaks in
384-bit ECDSA: extended version. J. Cryptogr. Eng.,
4(1):33–45, 2014.

[27] NS02 Q. Nguyen and Igor E. Shparlinski. The Insecurity
of the Digital Signature Algorithm with Partially Known
Nonces. J. Cryptol., 15(3):151–176, 2002.

[28] Phong Q. Nguyen and Igor E. Shparlinski. The Insecu-
rity of the Elliptic Curve Digital Signature Algorithm
with Partially Known Nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

[29] NIST. FIPS 186-2, Digital Signature Standard
(DSS). https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-
27/documents/fips186-2.pdf, 2001. [online;
accessed 1-June-2021].

[30] NXP. NXP LPC11U2x datasheet, 32-bit ARM Cortex-
M0 microcontroller. https://www.nxp.com/docs/
en/data-sheet/LPC11U2X.pdf. [online; accessed 1-
June-2021].

[31] NXP. NXP SmartMX family brochure. https://www.
nxp.com/docs/en/brochure/75017515.pdf. [on-
line; accessed 1-June-2021].

[32] Oracle. JavaCard Connected Platform Speci-
fications 3.0.1. https://www.oracle.com/
java/technologies/javacard/platform-

https://cloud.google.com/titan-security-key/
https://cloud.google.com/titan-security-key/
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh250-75-near-field-microprobe-0-5-mhz-to-2-ghz/105
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html

specification-3-0-1.html. [online; accessed
1-June-2021].

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[34] Pico Technology. PicoScope 6000 Series
datasheet. https://www.picotech.com/download/
datasheets/PicoScope6000CDSeriesDataSheet.
pdf, 2019. [online; accessed 1-June-2021].

[35] Thomas Roche, Laurent Imbert, and Victor Lomné. Side-
channel attacks on blinded scalar multiplications revis-
ited. In Sonia Belaïd and Tim Güneysu, editors, CARDIS
2019, Prague, Czech Republic, November 11-13, 2019,
Revised Selected Papers, volume 11833 of LNCS, pages
95–108. Springer, 2019.

[36] Keegan Ryan. Return of the Hidden Number Prob-
lem.: A Widespread and Novel Key Extraction Attack
on ECDSA and DSA. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2019(1):146–
168, Nov. 2018.

[37] Thorlabs. Manual 3-axes Stage PT3/M.
https://www.thorlabs.com/thorproduct.cfm?
partnumber=PT3/M#ad-image-0, 2019. [online;
accessed 1-June-2021].

[38] Samuel Weiser, David Schrammel, Lukas Bodner, and
Raphael Spreitzer. Big Numbers - Big Troubles: System-
atically Analyzing Nonce Leakage in (EC)DSA Imple-
mentations. In USENIX Security 20, pages 1767–1784.
USENIX Association, August 2020.

[39] B. L. Welch. The Generalization of ‘Student’s’ Prob-
lem when Several Different Population Variances are
Involved. Biometrika, 34(1/2):28–35, 1947.

[40] Carolyn Whitnall and Elisabeth Oswald. A critical anal-
ysis of ISO 17825 (’testing methods for the mitigation of
non-invasive attack classes against cryptographic mod-
ules’). In Steven D. Galbraith and Shiho Moriai, edi-
tors, Advances in Cryptology - ASIACRYPT 2019, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III, vol-
ume 11923 of LNCS, pages 256–284. Springer, 2019.

A Details of the Lattice Construction

Let us jump back to the modular equations given in Sec-
tion 5.2 that involves the nonces ki, the secret key d and the
public data hi and (si,ri):

ki = Aid−Bi (mod q),

where Ai = s−1
i ri and Bi =−s−1

i hi for each ECDSA signature
(i = 1, . . . ,N).

We first remove the secret key d from the equations. This
removes one unknown and one equation and results in a lattice
of smaller dimension (thus improving the efficiency of the
lattice reduction). By subtracting the equation for i = 1 to the
others we obtain N−1 equations of the form

ki = Aik1−Bi (mod q),

where Ai = s1r−1
1 s−1

i ri and Bi = r−1
1 s−1

i rih(m1)− s−1
1 h(mi)

for i = 2, . . . ,N.
Now, writing the nonce ki as in equation 1, with its known

part k̂i and its unknown parts ∑
`i
j=1 ui, j2λi, j we obtain the fol-

lowing N−1 congruences:

ui,1 ≡
`i

∑
j=2

σi, jui, j +
`1

∑
j=1

τ j,iu1, j + γi (mod q),

where τ j,i = Ai2λ1, j+λi,1 , σi, j = −2λi, j−λi,1 and γi =

−2−λi,1(k̂i−Aik̂1 +Bi).
The unknown blocks ui, j represent sequences of unknown

bits of the nonces, we then know an upper bound Ui, j = 2µi, j

for each of them (where µi, j is the size of the sequence of
unknown bits). As explained in section 5.2, we can optimize
our attack by shifting the interval of each ui, j from [0,Ui, j] to
[−Ui, j/2;Ui, j/2]. To this end, we set u′i, j = ui, j−Ui, j/2 and
we report this change of variable to the previous equations, to
get:

u′i,1 ≡
`i

∑
j=2

σi, ju′i, j +
`1

∑
j=1

τ j,iu′1, j + γ
′
i (mod q),

where γ′i, j =
`i
∑
j=2

σi, j
Ui, j

2 +
`1
∑
j=1

τ j,i
U1, j

2 + γi −
Ui,1

2 for i =

2, . . . ,N.
Finally, using the embedding technique described in [18]

which is known to be more efficient, we build the lattice L
given by the following base

ML =



q 0 0 0

0
. . .

...
...

0 q 0 0
τ2 . . . τt 1

σ2 0
. . .

. . .
...

. . .

σt 0
. . .

γ′2 . . . γ′t 1


×D

The coefficients τi represent the column vector (τ j,i)
`1
j=1,

the coefficients σi represent the column vector (σi, j)
`i
j=1 and

https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0

D represent the diagonal matrix defined by:

D =diag(J2,1, . . . ,Jt,1,J1,1, . . . ,J1,`1 ,

J2,2, . . . ,J2,`2 , . . . ,Jt,2, . . . ,Jt,`t ,J/2),

where J = 2dlog2 qe and Ji, j = J/Ui, j ∈ Z.
By solving SVP in L , we hope to find the following short

vector:

v = (u′2,1J2,1, . . . ,u′t,1Jt,1,u′1,1J1,1, . . . ,u′1,`1
J1,`1 ,

u′2,2J2,2, . . . ,u′2,`2
J2,`2 , . . . ,u

′
t,2Jt,2, . . . ,u′t,`t

Jt,`t ,J/2),

and from v retrieve the secret key d. The smaller the norm
of v, the more chance we have to find it using a lattice re-
duction algorithm. Shifting the interval where the ui, j’s live
allows to search for a vector v whose squared norm is bounded
by ∑1≤i≤t,

1≤ j≤`i

(J/2)2. Without this re-centering optimization, the

squared norm of the vector v would have been bounded by
∑1≤i≤t,

1≤ j≤li
J2 which is 4 times bigger.

Figure 14 shows the impact of this re-centering optimiza-
tion in the Titan case (i.e. a single block of 5 known bits
randomly located in the upper half part of the nonces). All our
experiments were done using the BKZ reduction algorithm
with a blocksize 25.

50 60 70 80 90 100

0

50

100

signatures

Su
cc

es
s

ra
te

Optimized
Non optimized

Figure 14: Comparison of the success rate of the optimized
and non-optimized attack on the ECDSA signature scheme
with the P-256 curve

B Attack Success Rate with BKZ

Our initial attack targeted 80 ECDSA signatures and used
LLL for the lattice reduction since early simulations showed
that with 80 signatures we could expect up to 50% success
rate16. It is however well known that BKZ can perform better

16in the Titan case, meaning when the attacker knows 5 consecutive bits
located in the upper-half of each nonce.

than LLL. We then conducted further experiments to evaluate
how BKZ could improve the data complexity of our attack.
Figures 15 provides the success rates for BKZ with various
medium blocksizes, these results clearly outperform the ones
with LLL since with blocksize 35 one obtains 100% success
rate with less than 60 signatures.

In Figure 16, the success-rates relate to similar experiments
but where the number of known bits is reduced to 4 (instead
of 5). With a blocksize of 35, about 75 signatures are suffi-
cient to reach 100% success-rate. Using these results in the
Titan attack would drastically reduce the number of ECDSA
observations.

50 55 60

0

50

100

signatures

Su
cc

es
s

ra
te

Blocksize 25
Blocksize 30
Blocksize 35

Figure 15: Success rates of the optimized attack using BKZ,
in the Titan case with 5-bit known block.

60 70 80 90

0

50

100

signatures

Su
cc

es
s

ra
te

Blocksize 25
Blocksize 30
Blocksize 35

Figure 16: Success rates of the optimized attack using BKZ,
in the Titan case with 4-bit known block.

	Introduction
	Preliminaries
	Product Description
	FIDO U2F Protocol
	An Attack Scenario on FIDO U2F
	Google Titan Security Key Teardown
	Removing the Casing
	PCB Analysis
	NXP A7005a Package Opening

	Matching the Google Titan Security Key with other NXP Products
	NXP A700x Datasheet Analysis
	Similarities with other NXP Products

	Side-Channel Observations
	Side-Channel Setup
	First Side-Channel Observations on Titan and Rhea

	Reverse-Engineering the ECDSA Algorithm
	ECDSA Signature Algorithm
	Basics about the ECDSA Signature Algorithm
	Matching the Algorithm to the Side-Channel Traces
	Studying the Scalar Multiplication Algorithm

	ECDSA Signature Verification Algorithm
	High-Level NXP Scalar Multiplication Algorithm

	A Side-Channel Vulnerability
	Searching for Sensitive Leakage
	Preliminary Acquisition Setup
	Traces re-alignment
	Final Acquisition Setup

	A Sensitive Leakage
	Improving our Knowledge of the NXP's Scalar Multiplication Algorithm

	A Key-Recovery Attack
	Recovering Scalar Bits from the Observed Leakage
	Lattice-based Attack with Partial Knowledge of the Nonces
	Touchdown on Rhea
	Touchdown on Titan

	A Crucial Observation
	Attack Mitigations
	Hardening the NXP P5x Cryptographic Library
	Use the FIDO U2F Counter to Detect Clones

	Details of the Lattice Construction
	Attack Success Rate with BKZ

