Thomas Roche

Victor Lomné

Camille Mutschler

Laurent Imbert

A Side Journey To Titan

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Hardware security keys for two-factor authentication are the recommended alternatives to SMS-based or app-based twofactor authentication using a smartphone. These security keys are based on the FIDO U2F standard initially developed by Google and Yubico and now administered by the FIDO Alliance. Security-wise, their strength resides in the use of secure microcontrollers (or secure elements) for the manipulation of cryptographic secret keys. The secure element must safely generate, store and use a user-unique secret to prove its legitimacy to a remote server during login in. The FIDO U2F standard is based on ECDSA signature over the NIST P-256 elliptic curve [START_REF]FIPS 186-2, Digital Signature Standard (DSS)[END_REF].

In this paper we study the security of the Google Titan Security Key [START_REF]Google Titan Key[END_REF] and show that its secure element, the NXP A700x chip, is susceptible to side-channel attack (through the observation of its local ElectroMagnetic -EM -activity). This allows, given physical access to a Google Titan Security Key during about 10 hours, to retrieve a user-specific secret key (there is one key for each remote account) and therefore to clone the security key.

To understand the NXP ECDSA implementation, find a vulnerability and design a key-recovery attack, we had to make a quick stop on Rhea (NXP J3D081 JavaCard smartcard). This product looks very much like the NXP A700x chip and uses the same cryptographic library. Rhea, as an open JavaCard platform, gives us more control to study the ECDSA implementation.

The vulnerability allows an attacker, using a nonsupervised machine learning mechanism, to gather several bits randomly scattered over the ephemeral key of the ECDSA signature scheme. She can then use a lattice-based attack to exploit this information in a key-recovery attack using a few thousands of ECDSA observations. Contrary to most latticebased attacks with partial knowledge of the nonces reported in the literature, the known bits are not the leading bits of the nonces.

Surprisingly, the attack is much more efficient than expected in terms of data complexity. This observation led us to a finding of independent interest, relating the success rate of these attacks to the order of the elliptic curve. We believe that this observation opens new directions in the theoretical understanding of (Extended) Hidden Number Problem solvers.

The vulnerability was acknowledged by Google and the chip manufacturer NXP (we assigned CVE-2021-3011). It is present in few other security keys and various NXP JavaCards products1 (all based on similar secure elements).

The contributions presented in this paper include:

• a teardown / PCB analysis of the Google Titan Security Key, and the identification of an NXP open Javacard product that shares a very similar secure element, presented in Section 2; • the use of side-channel analysis to reverse-engineer the implementation of the cryptographic primitives and to reveal their countermeasures (see Section 3); • the discovery of a previously unknown vulnerability in the (previously unknown) implementation (see Section 4); • the exploitation of this vulnerability with a custom lattice-based attack to fully recover an ECDSA private key from the Google Titan Security Key (see Section 5);

• an original observation that seems to link together the success rate of lattice-based attacks on ECDSA and the order of the elliptic curve, and its consequences regarding the success rate of lattice-based attacks on structuredorder elliptic curves such as NIST P-256 (see Section 6);

• several countermeasures that could be implemented in order to mitigate the proposed attack (see Section 7).

Preliminaries

In this Section, we introduce the public information available for the FIDO U2F protocol and the physical analysis of the Google Titan Security Key. We also present the preparation process for EM based side-channel analysis.

Product Description

The Google Titan Security Key is a hardware FIDO U2F (universal second factor) device. It provides a complement to the login/password authentication mechanism, in order to sign in to a Google account, or any other web applications supporting the FIDO U2F protocol. The Google Titan Security Key is available in three versions, as depicted in Figure 1.

FIDO U2F Protocol

The FIDO U2F protocol, when used with a hardware FIDO U2F device like the Google Titan Security Key, works in two steps: registration and authentication. Three parties are involved: the relying party (e.g. the Google server), the client (e.g. a web browser) and the U2F device. Let us briefly summarize how the different messages are constructed and exchanged. For more details, see [START_REF]FIDO U2F Raw Message Formats[END_REF]. Registration 1. The FIDO client first contacts the relying party to obtain a challenge. It then constructs the registration request message, made of the challenge and application parameters and sends it to the U2F device.

2. The U2F device creates a new ECDSA keypair in response to the registration request message, and answers the registration response message, which contains the user's public key, a key handle (which may contains the encrypted private key), an attestation certificate, and an ECDSA signature on P-256 over the application and challenge parameters, the key handle and the public key.

3. Finally, the FIDO client sends the registration response message back to the relying party, which stores the different fields for later authentications.

Authentication

1. The FIDO client contacts the relying party to obtain a challenge and constructs the authentication request message, made of a control byte (specifying whether or not the U2F device should enforce user presence), the challenge parameter, the application parameter and a key handle. Then sends it to the U2F device.

2. If the U2F device succeeds to process/sign the authentication request message, it answers the authentication response message, made of a user presence byte indicating whether user presence was verified or not, a counter on 4 bytes that is incremented each time the U2F device performs an U2F authentication and an ECDSA signature on P-256 (over the application parameter, the user presence byte, the counter and the challenge parameter).

3. Finally, the FIDO client sends the authentication response message back to the relying party, which can then verify the ECDSA signature using the public key obtained during registration.

An Attack Scenario on FIDO U2F

From the study of the FIDO U2F protocol, one can imagine the following attack scenario that requires the adversary to get physical access to the victim's U2F device during a limited time frame without the victim noticing (step 2):

1. the adversary steals the login and password of a victim's application account protected with FIDO U2F (e.g. via a phishing attack);

2. thanks to the stolen victim's login and password (for a given application account), the adversary can get the corresponding client data and key handle. She can then send many authentication requests to the U2F device while performing side-channel measurements2 ;

3. the adversary quietly returns the U2F device to the victim;

4. the adversary performs a side-channel attack on the measurements, and succeeds in extracting the ECDSA private key linked to the victim's application account;

5. the adversary can sign in to the victim's application account without the U2F device, and without the victim noticing. In other words the adversary created a clone of the U2F device for the victim's application account. This clone will give access to the application account as long as the legitimate user does not revoke its second factor authentication credentials.

Note that the relying party might use the counter value to detect cloned U2F devices and then limit (but not totally remove) the attack impact (see Section 7.2 for more details).

Google Titan Security Key Teardown

Once plugged into a computer's USB port, lsusb outputs: Bus 001 Device 018: ID 096e:0858 Feitian Technologies, Inc.

As a matter of fact, the company who designed the Google Titan Security Key is Feitian [START_REF]Feitian website[END_REF]. Indeed Feitian proposes generic FIDO U2F security keys, with customization for casing, packaging and related services.

Removing the Casing

We first performed a teardown of the USB type A version of the Google Titan Security Key. The plastic casing is made of two parts which are strongly glued together. We used a hot air gun in order to soften the white plastic and we easily separated the two casing parts with a scalpel.

If done carefully, this easy procedure allows to preserve intact the Printed Circuit Board (PCB). An interesting future work could be to find a way to open the Google Titan Security Key casing without damaging the two plastic parts, so that it can be re-assembled after the attack.

PCB Analysis

In Figure 2, we display the back of the Google Titan Security Key PCB, where the different circuits are soldered. The Integrated Circuit (IC) package markings allow to guess the IC references:

• the first IC (in green in Figure 2) is a general purpose microcontroller from NXP, the LPC11u24 from the LPC11U2x family [START_REF]NXP LPC11U2x datasheet, 32-bit ARM Cortex-M0 microcontroller[END_REF]. It acts as a router between the USB and NFC interfaces and the secure element;

• the second IC (in red in Figure 2) is a secure authentication microcontroller also from NXP, the A7005a from the A700x family [START_REF] Mouser | NXP A700x datasheet[END_REF]. It acts as the secure element, generating and storing cryptographic secrets and performing cryptographic operations (we validated this hypothesis by probing electric signals between the two ICs while processing an authentication request message). Opening the NXP A7005a epoxy package necessitated a wet chemical attack. We protected the PCB with some aluminium tape and dropped some hot fuming nitric acid on the NXP A7005a package until the die was revealed (see [START_REF] Beck | Integrated Circuit Failure Analysis: A Guide to Preparation Techniques[END_REF]Chapter 2] for a survey on IC package opening techniques).

The result is shown in Figure 3. With the device still alive, we can then proceed with the EM side-channel measurements.

Matching the Google Titan Security Key with other NXP Products

The FIDO U2F protocol does not allow to extract the ECDSA secret key of a given application account from a U2F device. This is a limitation of the protocol which, for instance, makes it impossible to transfer the user credentials from one security key to another. If a user wants to switch to a new hardware security key, a new registration (i.e. a new ECDSA key pair) is required for every application account.

From a security point of view, this limitation is also a strength as it prevents creating a clone and represents an obstacle for side-channel reverse-engineering. With no control whatsoever on the secret key, understanding the details of a highly secured implementation (let alone attacking) can Figure 3: Google Titan Security Key PCB, with NXP A7005a die visible after wet chemical attack of its package prove cumbersome. We had to find a workaround to study the implementation in a more convenient setting.

NXP A700x Datasheet Analysis

The NXP A700x public datasheet [START_REF] Mouser | NXP A700x datasheet[END_REF] provides the following interesting informations:

• it runs the NXP's JavaCard Operating System called JCOP, in version JCOP 2.4.2 R0.9 or R1 (JavaCard version 3.0.1 and GlobalPlatform version 2.1.1);

• technological node is 140 µm;

• CPU is Secure_MX51;

• 3-DES and AES hardware co-processors;

• public-key cryptographic co-processor is NXP FameXE;

• RSA available up to 2048 bits and ECC available up to 320 bits.

The NXP A7005a RSA and ECC key length limitations, JCOP version and technological node indicate that this is not a very recent chip.

Similarities with other NXP Products

With the information gathered from the NXP A700x datasheet and its IC optical analysis, we tried to identify similar NXP products for which we could have more control on the ECDSA operations. In fact, several NXP JavaCard platforms share the NXP A700x's characteristics. They are all based on NXP P5x chips.

The NXP P5x secure microcontroller family is the first generation of NXP secure elements, also called SmartMX family [START_REF]NXP SmartMX family brochure[END_REF]. It has the exact same characteristics as the NXP A700x. Furthermore the NXP P5x secure microcontroller family is Common Criteria (CC) and EMVCo certified (last CC certification found in 2015).

We went through the public data that can be found online and figured out that several NXP JavaCard smartcards are based on P5x chips. Thanks to BSI and NLNCSA CC public certification reports 3 , we were able to compile a (nonexhaustive) list of NXP JavaCard smartcards based on P5x chips.

We selected the product NXP J3D081 (CC certification report BSI-DSZ-CC-0860-2013) since its characteristics were the closest to those of NXP A700x (JCOP 2.4.2 R2, JavaCard 3.0.1 and GlobalPlatform 2.2.1). We named it Rhea, in reference to the second largest moon of Saturn, right after Titan.

Open JavaCard products, like Rhea, are generic platforms that allow developers to load their own applications (a JavaCard applet) on the smartcard. The JavaCard OS takes care of low level interactions with the hardware and offers high level APIs for the applets. Hence, an applet needs to comply with the JavaCard OS API independently of the underlying hardware.

On Rhea, the JavaCard OS happens to follow JavaCard 3.0.1 specifications [START_REF]JavaCard Connected Platform Specifications 3.0.1[END_REF]. We developed and loaded a custom JavaCard applet allowing us to freely control the JavaCard ECDSA signature engine on Rhea. At this point, we were able to upload the long term ECDSA secret keys of our choice, perform ECDSA signatures and verifications.

Side-Channel Observations

Side-Channel Setup

In order to perform EM side-channel measurements, we used the following side-channel analysis hardware setup (global cost is about US $12,000):

• Langer ICR HH 500-6 near-field EM probe with an horizontal coil of diameter 500µm and a frequency bandwidth ranging from 2MHz to 6GHz [START_REF] Langer | ICR HH[END_REF];

• Thorlabs PT3/M 3 axes (X-Y-Z) manual micromanipulator with a precision of 10µm [START_REF]Manual 3-axes Stage PT3/M[END_REF];

• Pico Technology PicoScope 6404D oscilloscope, with a 500MHz frequency bandwidth, sampling rate up to 5GSa/s, 4 channels and a shared channel memory of 2G samples [START_REF]PicoScope 6000 Series datasheet[END_REF].

For triggering the side-channel measurements, we proceeded as follows:

• for the side-channel measurements performed on Rhea, we used a modified commercial smartcard reader where • for the side-channel measurements performed on Titan, we used the triggering capabilities of our oscilloscope to trigger on a pattern present at the beginning of the EM activity of the command processing the authentication request message.

First Side-Channel Observations on Titan and Rhea

Figure 4 depicts the spatial position of the EM probe above the die of the Google Titan Security Key NXP A7005a and the die of Rhea. In Figures 5 and6, we give the EM activities observed during Titan's authentication request message ECDSA signature, and during the processing of the APDU command launching the ECDSA signature available in the JavaCard cryptographic API of Rhea.

The similarities between EM activities on Titan and Rhea confirm our hypothesis that the implementations are very similar. Note that the spatial probe positioning is sensitive to get a clear signal with sharp peaks, but the picture taken for Rhea (Figure 4 left) proved sufficient to replay the probe positioning on Titan.

Reverse-Engineering the ECDSA Algorithm

The reverse-engineering of the ECDSA signature and verification algorithms presented in this section was conducted on Rhea as we had full control on the inputs, in particular the private key d.

3.1 ECDSA Signature Algorithm Let us briefly recall the ECDSA signature algorithm and introduce the necessary notations. We work on an elliptic curve E defined over the finite field F p , and denote by G (x,y) a point on E of large prime order q. The ECDSA signature algorithm [START_REF] Johnson | The elliptic curve digital signature algorithm (ECDSA)[END_REF] takes as inputs the hash of the message m to be signed h = H(m), and a secret key d. It outputs a pair (r, s) computed as follows:

1. randomly pick a nonce k in Z/qZ 2. scalar multiplication

4 Q (x,y) = [k]G (x,y) 3. denote by r the x-coordinate of Q : r = Q x 4. compute s = k -1 (h + rd) mod q
Observe that since Rhea allows us to choose the secret key d, we can easily compute the nonce value k used to produce any signature (r, s) for any given message h = H(m).

Matching the Algorithm to the Side-Channel Traces

Figure 6 presents a full EM trace of the ECDSA signature at sampling rate 2.5GSa/s. (The whole execution time is approximatively 73ms.) Our first goal was to identify the different steps of the ECDSA algorithm on the trace. After an initialization phase, where ECDSA inputs are processed and stored, the first step is to randomly generate the nonce k and the z coordinate of G in projective coordinates. The call to a pseudo-random number generator (PRNG) is clear in the identified area: there are 48 calls to the PRNG to generate a 256-bit random and the PRNG re-initializes itself every 60 calls. There must also be at least two modular multiplications in this step to get G in projective coordinates. Also, the nonce k is recoded in the form required by the scalar multiplication algorithm (we give more details in Section 3.3).

The next block corresponds to the scalar multiplication itself. This is the longest operation in ECDSA and its stable iterative process stands out clearly.

The last four blocks are composed of two modular inversions (z -1 mod p to get r = Q x and k -1 mod q), the hash of the message m and the final computation of s with two modular multiplications and one addition. We infer the ordering depicted in Figure 6 but we do not have strong arguments to show that these operations are actually performed in this order.

Init k, z ← $ encode k G (x,y) → G (xz,yz,z) [k]G (xz,yz,z) 1 z H(m) 1 k k -1 (h + rd)
It is worth mentioning that the overall process is pretty similar to what was observed in [START_REF] Mulder | Using Bleichenbacher's Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-bit ECDSA: extended version[END_REF]. The authors were working on a P5 chip with an older version of the NXP cryptographic library.

Studying the Scalar Multiplication Algorithm

In side-channel analysis, there are many ways to attack an ECDSA implementation. In fact, any leakage inside one of the previously mentioned operations involving the nonce or the secret key could potentially lead to an attack. In the literature, the most studied operation is the scalar multiplication. Let us have a closer look.

By observing many signature traces, we observed that the scalar multiplication step takes approximatively 43 ms, and more importantly that each scalar multiplication consists of exactly 128 iterations (i.e. the repetition of the same signal pattern). Figure 7 displays a single iteration at sampling rate 5GSa/s. We observed that some parts of the traces vary slightly from one iteration to another (probably due to a random delay countermeasure). The iteration length is then not perfectly stable but it takes roughly 340µs, which corresponds to about 1.7M samples at sampling rate 5GSa/s. We concluded for a constant time algorithm based on some sort of Double&Add Always implementation. In particular, the implementation does not skip the leading zero bits of the scalar as in [START_REF] Billy | Remote Timing Attacks Are Still Practical[END_REF], or more recently [START_REF] Jancar | Minerva: The Curse of ECDSA Nonces (Systematic Analysis of Lattice Attacks on Noisy Leakage of Bit-Length of ECDSA Nonces)[END_REF][START_REF] Moghimi | TPM-FAIL: TPM meets Timing and Lattice Attacks[END_REF]. In order to find a vulnerability we needed a better understanding of the implementation. To this end, we analyzed the ECDSA signature verification algorithm.

ECDSA Signature Verification Algorithm

As mentioned before, one great advantage of working on Rhea is the possibility to run the ECDSA signature verification algorithm which does not involve any secret. Countermeasures are therefore useless and developers often downgrade or suppress them in order to reduce the execution time. For reverse engineering however, such a countermeasure downgrade is a windfall. It provides the opportunity to learn a lot about the implementation and its countermeasures.

The core of an ECDSA signature verification is a doublescalar multiplication of the form [k 1]G + [k 2]P, where G is the curve base point and P the signatory's public key. It instantly appeared that this operation was implemented as two separate scalar multiplications (followed by a final point addition), whose traces looked similar to those observed for the signature algorithm. Our analysis revealed however that it is not constant time: the Double&Add Always implementation is replaced by a simple Double&Add implementation and the leading zero bits of the scalar are skipped. Also, an expensive pre-computation step is visible before one of the two scalar multiplications. This pre-computation step looks like a scalar multiplication where the scalar is a power of 2 (i.e. it is made of Double operations only). Finally, the manipulation of the point at infinity can be easily spotted in the side-channel signal.

These observations on the verification algorithm led us to draw the following hypothesis for the signature algorithm:

• each iteration is constituted of a Double and a Add operation; • each iteration handles two bits of the scalar, starting with the most significant bit; • the scalar is not blinded;

• the point at infinity is never manipulated;

• the scalar multiplication requires the pre-computed value [2 l/2]G (where l is the bit-length of the scalar) that is hard coded into the chip.

High-Level NXP Scalar Multiplication Algorithm

There are many ways to implement a scalar multiplication algorithm but the costly pre-computation observed in the previous section, together with the number of subsequent iterations and the fact that there is a single doubling operation for each addition clearly suggests a comb method (see [START_REF] Hoon | More Flexible Exponentiation with Precomputation[END_REF]) of width 2.

To compute [k]G, the scalar k = (k 1 , . . . , k l) 2 of even length l 5 is first encoded as k = (k1 , . . . , kl/2) where ki is a 2-bit value obtained by concatenation of k i and k l/2+i such that ki

= 2k i + k l/2+i .
A comb implementation of width 2, requires the precomputation of the curve points

G 1 = G, G 2 = [2 l/2]G 1 and G 3 = G 1 + G 2 = [2 l/2 + 1]G 1 .
From the above analysis, our first and best guess for the scalar multiplication algorithm is given in Algorithm 1.

Algorithm 1: Scalar Multiplication Algorithm used in Signature Operation

Input : (k1 , . . . , k129), the encoded scalar

Input : G 0 , G 1 , G 2 , G 3 , G 4 , the pre-computed points Output : [k]G S ← G 1 for i ← 2 to 129 do S ← [2]S if ki > 0 then S ← S + G ki else Dummy ← S + G 0 if k1 = 0 then S ← S -G 4 else Dummy ← S -G 4 Return : S
In Algorithm 1, Dummy represents a register or memory address which will not be read and therefore stores useless computation results, G 0 is any point on the elliptic curve,

G 1 = G (the elliptic curve base point), G 2 = [2 129]G 1 , G 3 = G 1 + G 2 and G 4 = [2 128]G 1 .
Since G 0 is solely used for the dummy additions, it could be any point on the curve, it could even change over time. Most likely G 0 ∈ {G 1 , G 2 , G 3 , G 4 }, since these points are already computed.

In Algorithm 1, the binary form of k is of length l = 258. This means that at least two extra leading zero bits are added to k. The purpose of this trick is to ensure that k1 is either 0 or 1. In the former case however, the initialization of S should be the point at infinity. In order to avoid this, k1 is 5 k may be padded with 0s if necessary forced to value 1. It is corrected by the last operations in Algorithm 1 assuming the point G 4 is also stored during the pre-computation step (in addition to G 2 and G 3). This process is confirmed by the presence of an Add operation following the scalar multiplication sequence of Double&Add iterations.

A Side-Channel Vulnerability

As explained in the previous section, each signature on Rhea allows us to deduce the nonce k from the chosen private key d. Therefore, we could look for statistical dependencies between the side-channel traces and the nonce values, more exactly the encoded digits ki .

The research of sensitive leakage is a tedious task where many interdependent parameters have strong influence and should be set correctly for success. In the next section, we investigate these parameters and show how we eventually managed to find a sensitive leakage. Section 4.1 sums-up several months of work tainted with failed attempts and disillusionment. The details given in Sections 4.1.1 to 4.1.3 can be skipped at first-reading. Section 4.2 provides precise information about the sensitive leakage. Section 4.3 shows how that leakage helped to better understand the scalar multiplication implementation.

Searching for Sensitive Leakage

Our statistical side-channel analysis started by the acquisition of the EM radiations of the Rhea chip during 1000 ECDSA executions (we eventually needed 4000 acquisitions for the attack to be successful). Each trace was then split into 128 subtraces corresponding to the point doubling and point addition operations inside the main loop of Algorithm 1. We thus ended-up with 1000 × 128 sub-traces (one per iteration).

As mentioned in Section 3.1.3, the sub-traces are not perfectly synchronized (certainly due to a random delay countermeasure). This means that, at time sample t, two sub-traces do not exactly capture the EM signal related to the same underlying computations. They have to be re-aligned in order for us to estimate any statistical dependency between the EM signal and the encoded nonce digits.

Preliminary Acquisition Setup

This whole process necessitate to choose some acquisition parameters:

• choice of EM probe: we started with a Langer ICR HH 250-75 near-field EM probe with an horizontal coil of diameter 250 µm and a frequency bandwidth ranging from 0.5 MHz to 2 GHz [START_REF] Langer | ICR HH[END_REF].

• EM probe position: we selected a position where the Double and Add operations were easily distinguishable and the EM signal had a large amplitude. • sampling rate: we choose the highest sampling rate given by our oscilloscope (5 GSamples/s). The drawback is that we then had to handle large traces: about 1.7M samples per sub-trace.

Traces re-alignment

Let us now see how we managed to re-align our 1000 × 128 sub-traces. In Figure 8, we display a sub-trace with 8 identified sections (in orange) where the execution time seems to randomly vary from one sub-trace to another. Over all subtraces, we observed that the length of these sections vary by a factor of 2. Our hypothesis is that an elementary random delay countermeasure is applied (by repeating or not some of the computations). The rest of the sub-traces, i.e. the 8 interleaved sections, show a small jitter which very likely comes from the internal clock natural jitter. These observations led us to try to re-align each of the 16 sections independently. We started with the orange sections showing a random delay countermeasure assuming that they were more likely to hide worthwhile information. As we shall see next, this was clearly not our best bet.

We decided to skip the first section as it was not clear if it was the start of the current iteration or the end of the preceding one. Unfortunately, for each of the seven other orange sections, the SNR analysis resulting from the 1000 × 128 re-aligned sections did not show any significant leakage.

We then considered the 8 other sections without random delay countermeasure. In each of these sections, the signal is mostly composed of small consecutive EM peaks that we detected and re-aligned. However, the peak detection was too noisy. Some peaks were overlooked and some signal interferences were erroneously identified as signal peaks. Again, these re-alignments did not give us any interesting results.

At this point, we had more questions than answers: is the acquisition setup correct? Was our trace re-alignment procedure correct? Do we have enough traces to observe a sensitive leakage? Was there any sensitive leakage at all? We modified the EM probe position and adapted some previous re-alignments (those that seemed to give the best SNR results) with no success.

In a last attempt, we focused our attention on the two orange sections at the beginning of the Double and the Add operations. These parts of the traces reflect the activity of the crypto library which sets the different register addresses before launching the operations. We finally captured a weak sensitive leakage located on a large EM signal peak (one of the peaks with large amplitude that we can see on Figure 8 at the very beginning of the Add operation). Note that we did not explicitly exploited these peaks during our first attempts because we based our re-alignment procedure on the peaks belonging to the random delay countermeasure.

This first positive result lead us to perform a last experiment relying on the systematic detection of the EM signal peaks with large amplitude over the whole sub-trace. It turned out that four of these peaks (located during the Double operation) bear a strong sensitive leakage, much stronger than the weak leakage observed before. In Figure 9, we show the area where a sensitive leakage was eventually detected. Figure 10 Based on this success, we checked various EM probe positions and even changed our EM probe itself (for the Langer ICR HH 500-6, see Section 2.6.1) to improve the signal strength.

The final acquisition setup details are provided in Table 1. A picture of the probe position is shown in Figure 4.

A Sensitive Leakage

Figure 11 (first sub-figure) depicts 1000 superposed traces after re-alignment, where only 400 samples were kept around each of the four identified signal peaks. As mentioned before, to evaluate the statistical relations between the re-aligned traces and the encoded scalar digits, we computed the Signal-To-Noise Ratio (SNR). As stated in [START_REF] Mangard | Power Analysis Attacks: Revealing the Secrets of Smart Cards[END_REF]: "The SNR is quantifying how much information is leaking from a point of a power trace. The higher the SNR, the higher is the leakage".

More precisely, each of the 4000 × 128 re-aligned traces are classified with respect to the corresponding 2-bit digit ki . We then end up with four sets of traces. For each set s and at each time sample t, we estimated the traces mean µ s (t) and variance v s (t). The SNR computed independently for each time sample t is obtained by:

SNR(t) = Var(µ s (t)) E(v s (t)) ,
where Var(µ s (t)) is the estimated variance over the four estimated means and E(v s (t)) is the estimated mean of the four estimated variances.

In the second sub-figure of Figure 11, we plotted the SNR results for the four sets (ki ∈ {0, 1, 2, 3}). The best SNR value is ≈ 0.53. Clearly the amplitude of the side-channel traces is strongly related to the sensitive values ki 6 . Our first guess on the scalar multiplication algorithm (Algorithm 1) did not completely disclose the value taken by G 0 , apart from the fact that it is not the point at infinity. In fact G 0 could be any point on the elliptic curve; but it is most likely chosen in {G 1 , G 2 , G 3 , G 4 }. Besides, G 0 could change from one iteration to another. Therefore, we estimated the SNR without considering the cases ki = 0. The corresponding sub-traces were simply discarded from the SNR computations. In the third sub-figure of Figure 11, we can observe a significant increase of the SNR to ≈ 0.65. These results tend to confirm that G 0 takes varying values among G 1 , G 2 and G 3 only. Using standard noise reduction techniques, based on filtering and principal component analysis, we managed to further improve the SNR to 0.78.

Let us go a bit further in the understanding of the leakage. Considering only the sub-traces where ki = 0, we estimated the leakage strength with respect to the two bits of ki considered independently.

To do so we used the Welch T-Test [START_REF] Welch | The Generalization of 'Student's' Problem when Several Different Population Variances are Involved[END_REF]. Given two univariate data sources the T-Test tells us whether one can reject the null hypothesis with confidence, i.e. whether the two data sources are far enough from two independent sources. We performed two independent T-Tests. For the first test, the data sources are the sub-traces that correspond to ki = 1 and ki = 3 respectively, for which the lsb (of ki) is equal to 1. This allows to test the msb of ki . Similarly, we collected T-Test results for the sub-traces corresponding to ki = 2 and ki = 3 respectively which leave the msb constant; hence testing the lsb of ki .

A T-Test score was computed for each time sample independently. The results are depicted in Figure 12. These scores clearly show that the two bits of ki do not leak at the same peaks are visible), the SNR converges toward a non-null value. This means that Var(µ s (t)) itself converges toward a non-null value and therefore the side-channel traces at time sample t are significantly different for the four different encoded nonce digits values. time. Furthermore, we can clearly see that the most significant bit of ki shows a strong leakage for the last three peaks, whereas the lsb's strongest leakage is mainly located on the first peak.

Improving our Knowledge of the NXP's Scalar Multiplication Algorithm

As explained in the previous section, we removed the subtraces corresponding to the case ki = 0 as they seem to deteriorate our SNR computation. Our hypothesis is that, when ki = 0, the developers decided to randomly choose (at each iteration) a point from the available pre-computed points

(G 1 , G 2 , G 3).
To try validate our hypothesis, we designed the following experiment based on supervised Expectation-Maximization clustering (to this end, we use the GaussianMixture class from Scikit-learn Python library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]).

The idea is simple. We used the many sub-traces that are correctly labeled when ki = 0 to train our clustering algorithm (i.e. to precisely define the three clusters using maximum likelihood). We were then able to match the un-labeled sub-traces (i.e. those corresponding to ki = 0) by finding the closest cluster, i.e. by identifying the value j such that G 0 = G j for this iteration. The Expectation-Maximization clustering is a multivariate process. It uses multi-dimensional data (i.e. our sub-traces with several time samples) to infer multivariate Gaussian distributions from these samples. To ease this work, we had to remove some useless time samples (i.e. time samples for which the signal was not strongly related to the sensitive variable ki). The overall process is summarized below:

1. Reduce all sub-traces to the time samples where the SNR is larger than a specific threshold (since the opti-mal threshold choice is not known a priori, we applied the process for different threshold values until it gave consistent results).

2. With the sub-traces corresponding to ki = 0, estimate the three cluster centers for ki = 1, 2 and 3 respectively.

3. For each labeled sub-trace, find the closest center. This phase allows controlling the clustering success rate.

4. Finally, for each un-labeled sub-trace (i.e. ki = 0), find the closest center.

The matching phase revealed that about half of the unlabeled sub-traces matched the ki = 1 case, while the other half were equally divided between the cases ki = 2 and ki = 3.

The above observation was validated by our next experiment. We created two sets of sub-traces. In the first set, we put the ki = 0 sub-traces. The other set contained a mix of sub-traces with ki = 0, with half of them corresponding to ki = 1 and the rest equally divided between ki = 2 and ki = 3. The T-Test evaluation between these two sets could not reject the null hypothesis (no T-Test peak is visible and the best T-Test absolute value is less than 3 7), hence confirming the Expectation-Maximization experiment results.

In the improved version of the scalar multiplication algorithm presented in Algorithm 2, we have

G 0 = G 1 = G (the elliptic curve base point), G 2 = [2 129]G 1 , G 3 = G 1 + G 2 and G 4 = [2 128]G 1 .
Since G 0 = G 1 = G, one can check that the Dummy ← S + G rand addition is operated on G 1 half the time and on G 2 or G 3 the rest of the time. We would like to emphasize that this algorithm is only our interpretation of the real algorithm implemented on Rhea that might differ slightly. Details of the real implementation are not our concern here, a high-level understanding of the countermeasures is good enough.

A Key-Recovery Attack

In this section, we detail the process that resulted in the full recovering of the private keys embedded into the NXP's secure components of both Rhea and Titan. Our attack consists of two main steps: we first exploited the vulnerability observed in Algorithm 2 to recover some zero bits of the nonces with very high confidence level. Then, from this partial knowledge on the nonces, we applied a lattice-based attack by reducing our problem to an instance of the Extended Hidden Number Problem (EHNP). We present these two phases in the next sections.

Algorithm 2: Improved Version of Scalar Multiplication Algorithm used in Signature Operation

Input : { k1 , • • • , ki , • • • , k129 }: The encoded scalar Input : G 0 , G 1 , G 2 , G 3 , G 4 : The pre-computed points Output : [k]G: The scalar multiplication of scalar k by point G // Init Register S to the point G(= G 1) S ← G 1 for i ← 2 to l k /2 do S ← [2]S rand ← random element from {0, 1, 2, 3} if ki > 0 then S ← S + G ki else Dummy ← S + G rand if k1 = 0 then S ← S -G 4 else
Dummy ← S -G 4 Return : S

Recovering Scalar Bits from the Observed Leakage

As seen in Section 4, Algorithm 2 leaks non-uniform information whenever the 2-bit encoded digit ki is zero. We recall that ki is obtained from the binary representation of k as ki = 2k i + k 129+i . When ki = 0, our analysis confirmed that Algorithm 2 stores the result of the addition S + G 0 into a dummy register, with G 0 chosen at random in {G 1 , G 2 , G 3 } with respective probability 1/2, 1/4, 1/4. Let (ki) i denote the sequence of digits recovered from the observed leakage on ki in a noise free scenario. From the above observation, we have ki ∈ {1, 2, 3}. Let us first examine the case ki = 1. With probability 1/4, the observed value matches the correct value ki = 1, in which case G 1 is correctly added to S. But it may also correspond to the case where ki = 0 and G 1 was randomly chosen to perform the dummy addition, which occurs with probability 1/4 × 1/2 = 1/8. In total, we have P(ki = 1) = 3/8. The overall analysis for ki = 1, 2, 3 is summarized in Table 2.

Table 2 provides crucial information on the bits of k. In particular, we remark that ki = 1 implies

k i = msb(ki) = 0. Similarly, ki = 2 implies k 129+i = lsb(ki) = 0.
As seen in Section 4, T-Test results on carefully re-aligned sub-traces around four EM signal peaks (See Figure 12) gave us very precise time samples where the encoded digits are leaking. Testing the 2 bits of ki separately also revealed more leakage points for k i = msb(ki) than for k 129+i = lsb(ki). Therefore, we first focused our analysis on the leakage arising from msb(ki). In practice, we used 4000 × 128 sub-traces on Rhea that we carefully filtered out by selecting time samples for which the T-Test was greater than some threshold, in ab-ki We then used unsupervised clustering to classify these sub-traces into two distinct subsets in order to differentiate the cases k i = 0 and k i = 1. For this step, we used the Expectation-Maximization algorithm (Scikit-learn Gaus-sianMixture class 8). If the classification is successful, the number of sub-traces in each subsets should match the respective probabilities given by Table 2, i.e. P(k i = 0) = 3/8, P(k i = 1) = 5/8. This was indeed the case for some T-Test threshold values. Nonetheless, since we were able to deduce nonce values from the private key of our experiments on Rhea, we could precisely evaluate the matching success rate for k i = 0. Table 3 summarizes the matching success rates for k i = 0 on the 4000×128 sub-traces of Rhea for various threshold values. For a threshold t, we give the resulting sub-traces length (# points) after samples selection and signal processing, the probability of success when a sub-trace is sent to the set k i = 0 and the overall number of sub-traces labeled k i = 0 over the 4000 × 128 sub-traces. More precisely, the clustering algorithm will choose two cluster centers (i.e. two multivariate Gaussian distributions) and output, for each sub-trace, the probability of fitting each cluster. We call confidence level the probability for a sub-trace to fit the cluster corresponding to k i = 0. We ran several experiments on Rhea's traces with various threshold values. For the second phase of the attack, we selected the 109714 sub-traces obtained with t = 11 for which the clustering algorithm's confidence level is equal or greater than 95% (highlighted in blue in Table 3). At the end of this first part of the attack, we have thus acquired with very high probability roughly 109714/4000 ≈ 27.5 bits per nonce (all located on the upper half of the nonce since they relate to msb(ki)). The second phase of the attack presented in the next section consists in recovering the unknown part of each nonce in order to deduce the secret key d.

P(ki) ki (k i k 129+i) 1 3/8 1 (
We proceeded similarly with lsb(ki) in the hope to gather even more knowledge about the nonces. However, as mentioned before (see Figure 12), the side-channel leakage related to lsb(ki) is significantly weaker than the one related to msb(ki) and our matching success rates seemed not good enough. We hence decided to drop this (too) noisy information.

To summarize, we will target only bits with value 0 (as value 1 might hide the randomization of a dummy operation) and only in msb(ki) since the sensitive leakage happens to be stronger there (in comparison to lsb(ki)).

Lattice-based Attack with Partial Knowledge of the Nonces

In [START_REF] Howgrave | Lattice Attacks on Digital Signature Schemes[END_REF], Howgrave-Graham and Smart exploited lattice reduction algorithms in order to recover (EC)DSA private keys from the knowledge of only a few bits per nonce. This work was followed by many others that improved the understanding of so-called lattice-based attacks and/or successfully applied variants to practical settings (see e.g. [1-3, 5, 7, 13, 14, 16, 23, 24, 26-28, 36, 38]). All these attacks work as follows:

1. Run N ECDSA signatures and record the inputs h i = h(m i), the outputs (r i , s i) and the known information ki on the nonce k i . We denote by u i the unknown part of k i so that k i = ki + u i (warning: contrary to the previous sections where k i denoted the i-th bit of k, we shall now use the subscript notation where k i designates the nonce of the i-th signature, where i = 1, . . . , N).

Rewrite the ECDSA equations

s i = k -1 i (h i + r i d
) mod q (see Section 3.1), as linear equations of the form A i u i + B i d ≡ C i (mod q), involving the secret key d and the u i 's for i = 1, . . . , N.

3. Build a lattice L that contains the vector v = (u 1 , u 2 , . . . , u N) (in practice, this vector often contains some extra elements).

4. If the known part ki of k i is sufficiently large, then the norm of v is small and one can expect to find v by solving an instance of the Shortest Vector Problem (SVP) in L.

As shown in [START_REF] Howgrave | Lattice Attacks on Digital Signature Schemes[END_REF], this attack amounts to finding a solution to the so-called Hidden Number Problem (HNP) introduced in [START_REF] Boneh | Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes[END_REF]. The literature mostly considers the case where the known part consists of some of the most significant bits of each nonce. However, a more general setting sometimes referred to as the Extended Hidden Number Problem (EHNP), allows the known part to be a sequence of several blocks of consecutive known bits scattered all over the nonce. In this case, the unknown u i is a vector whose elements are the unknown sections of each nonce. We note u i = (u i,1 , u i,2 , . . .). This more general setting did not draw much attention (important papers are [START_REF] Goudarzi | Lattice Attacks Against Elliptic-Curve Signatures with Blinded Scalar Multiplication[END_REF][START_REF] Hlavác | Extended Hidden Number Problem and Its Cryptanalytic Applications[END_REF][START_REF] Howgrave | Lattice Attacks on Digital Signature Schemes[END_REF][START_REF] Nguyen | The Insecurity of the Digital Signature Algorithm with Partially Known Nonces[END_REF]) but led to practical attacks nonetheless, mainly in the specific case of w-NAF implementations of the scalar multiplication [START_REF] Fan | Attacking OpenSSL Implementation of ECDSA with a Few Signatures[END_REF][START_REF] De Micheli | A Tale of Three Signatures: Practical Attack of ECDSA with wNAF[END_REF]. Our attack also relies on this Extended version of the HNP.

Following [START_REF] Howgrave | Lattice Attacks on Digital Signature Schemes[END_REF], the ECDSA equations

s i = k -1 i (h i + dr i) mod q can be rewritten as k i = A i d -B i (mod q), with A i = s -1 i r i and B i = -s -1 i h i .
If the most significant bits of A i d and B i coincide, or equivalently if A i d -B i is small, then one can build a lattice L such that the closest vector to v = (B 1 , . . . , B N , 0) in L reveals the nonces k 1 , . . . , k N , hence the private key d. This situation corresponds to the HNP and the solution is obtained by solving an instance of the Closest Vector Problem (CVP). A common variant makes it possible to reduce the problem to an instance of the Shortest Vector Problem (SVP) in L. In general, this so-called embedding technique (due to [START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF]) provides a better probability of success.

In our case, the known part of the nonces does not correspond to the most significant bits of k i . Instead, we have

k i = ki + i ∑ j=1 u i, j 2 λ i, j , (1)
where the bits that form the known part ki split the nonces k i into i unknown parts u i, j .

For the lattice reduction algorithm (LLL or BKZ) to be successful, the side-channel acquisition phase should provide enough information on the nonces. Notably, over all recorded signatures, the number of known bits should be large enough. It was commonly assumed that this number must be larger than the bitlength of the secret 9 . Yet, it is worth mentioning that very recently, M. Albrecht and N. Heninger managed to slightly break this so-called information theoretic limit [START_REF] Albrecht | On Bounded Distance Decoding with Predicate: Breaking the "Lat-tice Barrier" for the Hidden Number Problem[END_REF] using a sieve algorithm (and, with less success, an enumeration algorithm). Moreover, and at the price of some rather expensive computations, they showed that 3 known bits by nonce are sufficient in practice to solve HNP when most recent attacks necessitated at least 4 known bits [START_REF] Jancar | Minerva: The Curse of ECDSA Nonces (Systematic Analysis of Lattice Attacks on Noisy Leakage of Bit-Length of ECDSA Nonces)[END_REF][START_REF] Moghimi | TPM-FAIL: TPM meets Timing and Lattice Attacks[END_REF].

Based on the above observations and after a few experiments on Rhea, we opted for a strategy that we detail in Section 5.3. As explained next, we filtered out the 4000 recorded signatures in order to keep only those for which the known part ki was a block of 5 consecutive zero bits so that

k i = u i,2 2 λ i + 0 × 2 µ i + u i,1 (2)
where λ i = µ i + 5 is the index of the most significant unknown part of k i . The least significant part u i,1 has index 0, i.e. it coincides with the least significant bits of k i .

We then used equation 2 to build a lattice that contains a short vector whose elements include the unknown parts u i,1 , u i,2 . Using this information, it was then easy to reconstruct the nonces k i , notably k 1 , and therefore the private key d.

We applied several optimizations to increase both the efficiency and probability of success of the attack. In particular, we removed the secret key d from the equations, we used the already mentioned embedding technique, and we adapted the trick presented in [START_REF] Nguyen | The Insecurity of the Digital Signature Algorithm with Partially Known Nonces[END_REF] and recalled in [START_REF] Albrecht | On Bounded Distance Decoding with Predicate: Breaking the "Lat-tice Barrier" for the Hidden Number Problem[END_REF][START_REF] Moghimi | TPM-FAIL: TPM meets Timing and Lattice Attacks[END_REF] that consists of shifting the interval of the unknown parts u i, j from [0,U i, j] to [-U i, j /2,U i, j /2] to the case EHNP. The details of our optimization and lattice construction are given in Appendix A.

Touchdown on Rhea

As seen in Section 5.1, we recorded input and output data on 4000 ECDSA signatures. Our pruning process and parameters allowed us to select 109714 sub-traces (iterations) corresponding to a zero bit with very high probability (99%). This represents an average of ≈ 27.5 known zero bits per nonce over the 4000 signatures. We also know that these zero bits are all located in the upper half of the nonces (see Section 4). Unfortunately, the vast majority of this information is not easily exploitable. Indeed, an elementary, yet rather conservative equation from [START_REF] Goudarzi | Lattice Attacks Against Elliptic-Curve Signatures with Blinded Scalar Multiplication[END_REF] tells us that in the case of EHNP, a known block of less than three consecutive bits is not helping. In fact, it is deteriorating the success rate by increasing the lattice dimension for no gain. According to [START_REF] Goudarzi | Lattice Attacks Against Elliptic-Curve Signatures with Blinded Scalar Multiplication[END_REF], there should be at least three (resp. two) known blocks of 3 bits (resp. 4 bits) per nonce for the attack to be successful. Thus, after a few experiments, we decided to seek nonces containing a single block of at least five consecutive zero bits. We ended-up with 180 nonces, out of which only 5 included a wrongly estimated known block.

In simulation, with such a configuration and using LLL for the lattice reduction, 80 error free signatures are enough to get about 50% chances to find the secret. Based on these simulations, we completed the attack on Rhea using a brute-force strategy: we randomly selected 80 nonces among the 180 available to define the lattice and run the reduction algorithm until the secret key was found.

Using LLL, each trial attack with 80 signatures took about 100 seconds to complete (on a 3,3GHz Intel Core i7, with 16GB RAM). Eventually, the secret key was recovered after only a few tens of trials.

In the purpose of completeness, we provide in Appendix B the attack success rate estimations in simulation with the BKZ algorithm (for various block sizes). As expected, BKZ offers much better results than LLL, even allowing us to consider 4-bit known blocks instead of 5-bit blocks, significantly decreasing the overall attack data complexity 10 .

Touchdown on Titan

We launched the attack on the Google Titan Security Key following the exact same trajectory. First, we did our best to locate the EM probe at the same spatial position and with the same orientation (see Figure 4). We acquired 6000 side-channel traces during the execution of the U2F authentication request command (details of the acquisition campaign are similar to Rhea's, see Table 1, but for the number of acquisitions and then for the acquisition time that took about 6 hours).

Re-alignment, samples selection and signal processing

We applied exactly the same process than for Rhea (the same four signal peaks were clearly visible). Once re-aligned around the four signal peaks, we used the T-Test results from Rhea to select the time samples and we applied the same signal processing on the sub-traces. 11Unsupervised clustering Again, we applied the same Expectation-Maximization algorithm than for Rhea. As mentioned earlier, we were optimistic about the correctness of the clustering process since the sizes of the two output clusters were proportional to the expected ratios (3/8, 5/8). We then brute-forced the T-Test threshold for time samples selection and eventually selected t = 8 (for Rhea it was t = 11). After signal processing and samples selection, the sub-trace length with this threshold was 854.

Pruning and nonces selection

We chose the highest confidence level that preserved sufficiently many nonces with 5 or more consecutive zeros. Since we had more traces than for Rhea, we were able to increase the confidence level to 0.98. We ended-up with 156 nonces with a block of at least 5 consecutive zero bits.

Key recovery attack

We ran our EHNP solver on random subsets of size 80 among the 156 selected nonces. The attack was successful after only a few tens of attempts.

Post analysis From the secret key, we can compute the values of the nonces and verify that, among the 156 selected nonces, 7 were erroneous. The attack was then a little more challenging than for Rhea but still possible. Again, as shown in Appendix B, the use of BKZ with medium or large block size would do the work with much fewer nonces.

Time required to replay the attack Once the attacker get hold of the Titan device, it should take less than 10 hours to replay the side-channel acquisition: 2 hours for preparing the device, 1 hour for preparing the side-channel acquisition setup, 6 hours for the side-channel acquisition and 1 hour for repackaging the device. After returning the device to the victim, the key recovery can then be performed offline in less than one day.

A Crucial Observation

During the post analysis, we ran a lot of simulations on various instances of the EHNP. In particular, we observed that the success rate of the attack, and the minimum number of signatures required to reach a given success rate, differ between the contexts of Rhea / Titan and that of random instances of the EHNP. 12 We made the following crucial observation:

The success rate of the attack increases when the positions (bits) covered by the known blocks of the nonces correspond to positions where the group order is either all-zeros or allones. As a consequence, the number of signatures required to complete the attack can be greatly reduced in this case.

We realized that the Rhea / Titan implementation of the scalar multiplication with the comb method, together with the fact that the observed leakage on the most significant bits of the nonces are easier to infer, were crucial in the success of our attack. Indeed, all the blocks of 5 consecutive zero bits were located between the bit indices 129 and 250 (assuming index 0 corresponds to the lsb). And since the elliptic curve used in the FIDO U2F protocol has a structured order q, the bits of q at these positions consist of large sequences of zeros and ones.

To illustrate this, we conducted the following experiment: for every possible bit index i ranging from 1 to 250, we ran the attack 13 with the 5-bit known blocks set at index i for all the nonces.

The success rates of these 250 attacks is plotted in red in Figure 13. On the same figure, the dashed blue curve corresponds to the function δ q , defined as follows:

δ q (i) =
1 if q has 5 consecutive 0s or 1s at bit position i 0 otherwise

The order of the curve NIST P-256 used for our attack contains 2 runs of 5 consecutive ones in its lower part, namely at indices 26 and 108. 14 The higher part is decomposed into 12 on the same curve and where each nonce contains a single block of 5 consecutive zero bits enclosed by two unknown parts. 13 Using 60 nonces and lattice reduction algorithm BKZ with block size 25 14 In fact, at index 26, the order contains a run of 6 consecutive ones. Thus to be precise we should have said "3 runs of 5 consecutive ones at indices 26, 27 and 108".

3 long runs of ones and zeros. The first 2 peaks on Figure 13 exactly correspond to the two runs of ones in the lower part. Then starting at index 128 (first long run of ones), the success rate reaches 100% except when the 5-bit window meets the transitions between the runs of ones and that of zeros. The correlation between the success rate and the bit values at these exact locations clearly indicate that there exists a strong correlation between δ q (i) and the attack success rate for a known block at position i. Figure 13: Comparison between the success rate of EHNP with 60 nonces and a single known block of 5 bits at a given bit index (in red) and δ q (in blue, dashed)

To the best of our knowledge, this phenomena has not been observed before and we believe it opens new directions of research.

First of all, it tends to show that structured elliptic curves, for which the order contains large sequences of zeros or ones happen to be more vulnerable to lattice-based attacks than unstructured elliptic curves. Interestingly enough, we already know in other contexts that these elliptic curves are not the best choice as far as side-channel analysis is concerned as they require more expensive countermeasures (see e.g. [START_REF] Roche | Sidechannel attacks on blinded scalar multiplications revisited[END_REF]). It is worth mentioning that structured elliptic curves is a very common choice in real-world protocols (like FIDO or Bitcoin).

At this point, we do not have any theoretical explanation for this observation. We know that finding a short vector in a lattice necessitates that vector to be sufficiently short relative to the lattice volume (at least, this is how these lattice-based attacks were theoretically explained in the first place [START_REF] Howgrave | Lattice Attacks on Digital Signature Schemes[END_REF]). However, we did not observe major differences in the norms of the short vector solution or the lattice volume in the favorable 15 and less favorable cases. Hence, to understand the influence of the elliptic curve order on the difficulty to solve SVP in the EHNP lattice, a deeper exploration of the inner structure of the lattice is needed. The question remains thus open.

We believe that a clear understanding of this surprising behaviour might be a key to improve lattice-based attacks on ECDSA. Indeed, if we understand the structural difference between the favorable and the generic cases, one might be able to adapt the lattice structure in the general case and significantly improve the attack success rate.

Attack Mitigations

Several measures can be implemented to thwart the proposed attack, at different levels.

Hardening the NXP P5x Cryptographic Library

Straightforward ways for hardening the NXP P5x cryptographic library:

• blinding of the scalar. This does not remove the sensitive leakage but makes the attack much harder (as shown in [START_REF] Goudarzi | Lattice Attacks Against Elliptic-Curve Signatures with Blinded Scalar Multiplication[END_REF]). For instance, by addition of a random factor of the curve order (the bit length of the random number should be at least half the bit length of the curve order);

• re-randomizing the table lookup of precomputed points in the comb implementation at each new access and hence completely remove the sensitive leakage.

Use the FIDO U2F Counter to Detect Clones

As explained in section 8.1 of [START_REF]Universal 2nd Factor (U2F) Overview[END_REF], the counter may be used as a signal for detecting cloned U2F devices. Thus if a relying party of an application protected with FIDO U2F receives a cryptographically correct authentication response message, but with a counter value smaller or equal to the previous counter value recorded, it means that a clone of the U2F device has been created and used. Then the relying party should not validate the authentication request, and lock the account. This countermeasure would reduce the usability of the clone to a unique time after giving the security key back to the legitimate user. Once the clone has been used (say one month after the attack), the account will be locked by the next access from the legitimate user. Note that this protection would have to be implemented by each relying party, independently of the FIDO U2F device.

A Details of the Lattice Construction

Let us jump back to the modular equations given in Section 5.2 that involves the nonces k i , the secret key d and the public data h i and (s i , r i):

k i = A i d -B i (mod q),
where A i = s -1 i r i and B i = -s -1 i h i for each ECDSA signature (i = 1, . . . , N).

We first remove the secret key d from the equations. This removes one unknown and one equation and results in a lattice of smaller dimension (thus improving the efficiency of the lattice reduction). By subtracting the equation for i = 1 to the others we obtain N -1 equations of the form

k i = A i k 1 -B i (mod q),
where A i = s 1 r -1 1 s -1 i r i and B i = r -1 1 s -1 i r i h(m 1)s -1 1 h(m i) for i = 2, . . . , N. Now, writing the nonce k i as in equation 1, with its known part ki and its unknown parts ∑ i j=1 u i, j 2 λ i, j we obtain the following N -1 congruences:

u i,1 ≡ i ∑ j=2 σ i, j u i, j + 1 ∑ j=1
τ j,i u 1, j + γ i (mod q), where τ j,i = A i 2 λ 1, j +λ i,1 , σ i, j = -2 λ i, j -λ i,1 and γ i = -2 -λ i,1 (ki -A i k1 + B i).

The unknown blocks u i, j represent sequences of unknown bits of the nonces, we then know an upper bound U i, j = 2 µ i, j for each of them (where µ i, j is the size of the sequence of unknown bits). As explained in section 5.2, we can optimize our attack by shifting the interval of each u i, j from [0,U i, j] to [-U i, j /2;U i, j /2]. To this end, we set u i, j = u i, j -U i, j /2 and we report this change of variable to the previous equations, to get: u i,1 ≡ i ∑ j=2 σ i, j u i, j + 1 ∑ j=1 τ j,i u 1, j + γ i (mod q), where γ i, j

= i ∑ j=2 σ i, j U i, j 2 + 1 ∑ j=1 τ j,i U 1, j 2 + γ i - U i,1 2
for i = 2, . . . , N.

Finally, using the embedding technique described in [START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF] which is known to be more efficient, we build the lattice L

given by the following base

M L =                 q 0 0
               × D
The coefficients τ i represent the column vector (τ j,i) 1 j=1 , the coefficients σ i represent the column vector (σ i, j) i j=1 and D represent the diagonal matrix defined by: D =diag(J 2,1 , . . . , J t,1 , J 1,1 , . . . , J 1, 1 , J 2,2 , . . . , J 2, 2 , . . . , J t,2 , . . . , J t, t , J/2),

where J = 2 log 2 q and J i, j = J/U i, j ∈ Z.

By solving SVP in L, we hope to find the following short vector: v = (u 2,1 J 2,1 , . . . , u t,1 J t,1 , u 1,1 J 1,1 , . . . , u 1, 1 J 1, 1 , u 2,2 J 2,2 , . . . , u 2, 2 J 2, 2 , . . . , u t,2 J t,2 , . . . , u t, t J t, t , J/2), and from v retrieve the secret key d. The smaller the norm of v, the more chance we have to find it using a lattice reduction algorithm. Shifting the interval where the u i, j 's live allows to search for a vector v whose squared norm is bounded by ∑ 1≤i≤t, 1≤ j≤ i (J/2) 2 . Without this re-centering optimization, the squared norm of the vector v would have been bounded by ∑1≤i≤t, 1≤ j≤l i J 2 which is 4 times bigger.

Figure 14 shows the impact of this re-centering optimization in the Titan case (i.e. a single block of 5 known bits randomly located in the upper half part of the nonces). All our experiments were done using the BKZ reduction algorithm with a blocksize 25.

B Attack Success Rate with BKZ

Our initial attack targeted 80 ECDSA signatures and used LLL for the lattice reduction since early simulations showed that with 80 signatures we could expect up to 50% success rate 16 . It is however well known that BKZ can perform better 16 in the Titan case, meaning when the attacker knows 5 consecutive bits located in the upper-half of each nonce. than LLL. We then conducted further experiments to evaluate how BKZ could improve the data complexity of our attack. Figures 15 provides the success rates for BKZ with various medium blocksizes, these results clearly outperform the ones with LLL since with blocksize 35 one obtains 100% success rate with less than 60 signatures.

In Figure 16, the success-rates relate to similar experiments but where the number of known bits is reduced to 4 (instead of 5). With a blocksize of 35, about 75 signatures are sufficient to reach 100% success-rate. Using these results in the Titan attack would drastically reduce the number of ECDSA observations.

Figure 1 :

 1 Figure 1: Google Titan Security Key -Left: version with micro-USB, NFC and BLE interfaces -Middle: version with USB type A and NFC interfaces -Right: version with USB type C interface

Figure 2 :

 2 Figure 2: Google Titan Security Key PCB, with annotated main parts

Figure 4 :Figure 5 :

 45 Figure 4: EM Probe Positions on Titan (left) and Rhea (right)

3. 1 . 1

 11 Basics about the ECDSA Signature Algorithm

Figure 6 :

 6 Figure 6: Rhea EM Trace -ECDSA Signature (P-256, SHA-256)

Figure 7 :

 7 Figure 7: Rhea EM Trace -ECDSA Signature (P-256, SHA-256) -Scalar Multiplication Single Iteration

Figure 8 :

 8 Figure 8: Rhea EM Trace -ECDSA Signature (P-256, SHA-256) -Scalar Multiplication Single Iteration

Figure 9 :Figure 10 :

 910 Figure 9: Rhea EM Trace -ECDSA Signature (P-256, SHA-256) -Sensitive Leakage Area

Figure 11 :

 11 Figure 11: Rhea EM Trace -ECDSA Signature (P-256, SHA-256) -SNR results (y-axis range [0, 0.7])

 Most significant bit of kiLeast significant bit of ki

Figure 12 :

 12 Figure 12: Rhea EM Trace -ECDSA Signature (P-256, SHA-256) -T-Test results (y-axis range [-100, 100])

Figure 14 :

 14 Figure 14: Comparison of the success rate of the optimized and non-optimized attack on the ECDSA signature scheme with the P-256 curve

Figure 15 :Figure

 15 Figure 15: Success rates of the optimized attack using BKZ, in the Titan case with 5-bit known block.

Table 1 :

 1 SCA acquisition parameters for Rhea 4.1.3 Final Acquisition Setup

Table 2 :

 2 Information on Scalar Bits from Noise Free Sensitive Leakage solute value.

		01)
	0	(00)

Table 3 :

 3 Results of the clustering algorithm with minimum confidence level set to 0.95.

	t	sub-trace length success rate (%) # sub-traces
	10	697	99.0	110054
	11	650	99.0	109714
	12	591	99.0	108451
	13	554	99.0	106990
	14	520	99.1	106691
	15	484	99.1	105911

The full list of identified products is here: https://ninjalab.io/aside-journey-to-titan/

it might be limited to several billions of requests, the counter being encoded on 4 bytes

https://www.bsi.bund.de/EN/Topics/Certification/ certified_products/Archiv_reports.html

In a secure implementation, this is usually done on randomized projective coordinates G (x,y) → G (xz mod p,yz mod p,z) with z a fresh random from F p (see e.g.[START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF]).

If the side-channel traces amplitude at time sample t is not related to encoded nonce digits, the respective SNR value should tends toward 0 as the number of traces increases (as the signal variance (Var(µ s (t))) itself tends to 0). This is what happens for most of the traces time samples (see Figure11, second sub-figure). However, at some specific time samples (where SNR SNR for ki ∈ {0, 1, 2, 3} SNR for ki ∈ {1, 2, 3}

A more formal analysis, following e.g.[START_REF] Whitnall | A critical analysis of ISO 17825 ('testing methods for the mitigation of non-invasive attack classes against cryptographic modules')[END_REF], is possible to interpret the T-Test results and estimate the error probability of having an undetected leakage. Here, we do not need such a fine grain analysis, the T-Test results do not show the significant peaks found in prior experiments. We can then safely conclude that the two sets of sub-traces, selected as we did, behave very much alike.

Exact parameters areGaussianMixture(n_components=2, covariance_type='tied')

The use of a sieve algorithm, as in[START_REF] Albrecht | On Bounded Distance Decoding with Predicate: Breaking the "Lat-tice Barrier" for the Hidden Number Problem[END_REF], would certainly improve further these results.

By reusing Rhea's T-Test results for selecting the time samples for Titan, we assumed that Rhea and Titan share the same clock frequency and instructions order. These are not strong hypotheses since the clock frequency can be easily checked and the NXP cryptographic library version seems to be the same on both devices.

the so-called favorable case is when the known block position i corresponds to δ q (i) = 1.