N
N

N

HAL

open science

Energy-Efficiency Metric for Real-Time Monitoring of
OpenMP Programs Executing on Multicore Systems
Maxime Mirka, Gilles Sassatelli, Abdoulaye Gamatié

» To cite this version:

Maxime Mirka, Gilles Sassatelli, Abdoulaye Gamatié. Energy-Efficiency Metric for Real-Time Moni-
toring of OpenMP Programs Executing on Multicore Systems. 13e Colloque National du GDR SoC?,

Jun 2019, Montpellier, France. lirmm-03326276v2

HAL Id: lirmm-03326276
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03326276v2
Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-03326276v2
https://hal.archives-ouvertes.fr

Energy-Efficiency Metric for Real-Time Monitoring of OpenMP Programs
Executing on Multicore Systems

Maxime Mirka, Gilles Sassatelli and Abdoulaye Gamatié
LIRMM (CNRS and University of Montpellier)
Montpellier, France
name.surname @ lirmm.fr

Abstract

Energy-efficiency has been a major challenge in com-
pute systems over the last decade. In this paper, we pro-
pose an approach for on-line energy-efficiency mesure-
ment when executing OpenMP workloads on multicore
systems. The novelty of our approach lies in the abil-
ity to monitor energy efficiency at run-time without prior
knowledge of the application profile or code annotation.
The solution relies on two new metrics: the Chunks per
Second (CpS) and Chunks per Joule (CpJ). The former
captures the quantity of work achieved by threads per unit
time (i.e. a performance indicator). The latter indicates
the quantity of work achieved by threads per unit energy,
also corresponding to the performance per watt. We show
that these new metrics are suitable information making it
possible to perform energy efficiency analysis.

1. Introduction

Energy-efficiency has been a major challenge in com-
pute systems over the last decade in both embedded
and high-performance computing domains. By energy-
efficiency, we mean the best compromise between exe-
cution performance and power consumption. In high-
performance computing domain (HPC), it is often referred
to by using the floating-point operation per second per
watt (or FLOPS/W in short) metric. In embedded com-
puting domain, the usual metrics are rather millions of in-
structions per second per watt (or MIPS/W in short). In
both units the first components refer to the performance
(i.e., FLOPS and MIPS) while the second reflects the
power consumption. Based on the energy-efficiency met-
ric, optimizing the energy-efficiency can be achieved. Ex-
isting approaches relying on various design techniques are
already surveyed in literature [4].

While the above techniques have been proven useful,
the ability to exploit them in an adaptive way is central
for optimized energy-efficiency. In particular, it is im-
portant to dynamically deal with application-specific en-
ergy consumption profile so as to take adequate decisions
as early as possible. For this purpose, one usually re-

lies on typical performance of power measurements that
are informative-enough. Existing profiling tools such as
PAPI [1] or scorep [2] can be used to gather the per-
formance and power consumption numbers of a system.
Such information are often obtained a posteriori i.e. af-
ter execution a large portion (if not the whole) of a given
program, therefore, leaving only a little room for early op-
timizations. Analytic approaches, based on high-level es-
timation models for performance and power consumption,
could be used for an earlier dynamic optimization. Unfor-
tunately, such models are not necessarily reliable approx-
imations for any execution platforms.

Contribution of this work. In this paper, we investi-
gate a framework that enables real-time energy-efficiency
measurement. Contrary to conventional approaches that
either perform indirect measurement (i.e. on metrics that
do not relate application performance directly) or require
prior profiling (deriving energy efficiency from execution
time), this approach taps into the OpenMP runtime and
tracks application progress thereby enabling to derive en-
ergy efficiency. Our approach therefore applies to appli-
cation programs written in OpenMP programming model
which is by far the most popular shared-memory paral-
lel APL. It relies on two new metrics: Chunks per Second
(CpS) and Chunks per Joule (CpJ). We show that these
new metrics are suitable information allowing one to eas-
ily extract on-line programs’ execution profile, opening
opportunities for real-time optimizations. We further pro-
pose an extension of this work in [3].

2. Energy-efficiency Characterization

OpenMP is the most popular parallel programming
model for shared-memory systems. Its API supports
C/C++ and Fortran programming languages among others
on almost all architectures and operating systems, which
makes it widely used.

OpenMP programs manage parallelism mostly by us-
ing threads. Threads are the smallest unit of processing
that can be scheduled by an OS. A set of tools is pro-
vided by OpenMP to control parallelization and synchro-
nizations. It is all based on two fundamental concepts:
Fork and Join. The former is the transition from a sequen-



M Cp) M Cps
Ccps CcpJ
1.5M 40k
™ 30k
20k

0.5M
10k

0 0
1 2 3 4 5 6 7 8 9 10
# Core

(a) Configurations with different core counts. Frequency =
1.2GHz.

Cps W Ccp) MW Cps

CpJ
800k

15k
600k

10k
400k

200k Sk

Frequency (GHz)

(b) Configurations with different core frequencies (#core = 1).

Figure 1. CpS and CpJ for different system configurations.

tial region (master thread) to a parallel region (set of team
threads) while the latter is the opposite transition, from a
parallel to a sequential region.

Its features include parallel loops, in which jobs are
partitioned in blocks of instructions, also called chunks.
Chunks are assigned to the parallel threads previously de-
fined during execution.

Light-Weight Metrics: In the following, we rely on
this specific feature of OpenMP to define new light-
weight metrics for characterizing both the performance
and energy-efficiency of an application executing on mul-
ticore architectures: the Chunks per Second (CpS) and the
Chunks per Joule (CpJ). The former is defined as the num-
ber of chunks executed in one second, where a chunk is
a block of instruction assigned to a thread for execution.
It denotes a speed of work, i.e., it is a performance met-
ric. The latter defines the number of chunks executed per
Joule, where the Joules designate the quantity of energy
used by the compute system. It is also defined as CpS
per Watt or CpS/W, the number of chunks per second exe-
cuted per Watt. It denotes a quantity of work per quantity
of energy, i.e., it is an energy efficiency metric.

The following example illustrates the characteriza-
tion of a synthetic OpenMP code describing a memory-
intensive program, using the new metrics.

Example: We consider a memory-intensive applica-
tion. When executed on various architecture configura-
tions in terms of core count or operating frequencies, we
obtain variable performance and energy-efficiency out-
comes, through the obtained CpS and CpJ metrics, as
shown in Figure 1. In Figure la, performance (i.e. CpS)
increases up to 3 cores and reaches a plateau due to an ob-
vious saturation of the memory subsystem given the rather
memory intensive nature of the application. Having more
than 3 cores further results in a decrease in energy effi-
ciency as most cores are idling waiting for data to process
whilst consuming power. When varying the freqgency on
a single core a monotonic increase in performance is ob-
served in Figure 1b. Energy efficiency however drops past
a certain frequency, possibly to rising contentions to the
main memory.

Implementation: Modifications are done on the com-

piler’s OpenMP library, where the scheduling mecha-
nisms responsible to dispatch chunks to threads are de-
scribed. They consist in updating a chunk-counter saved
in a shared memory, at any allocation of a chunk to a
thread. Application binaries produced by this modified
version of the OpenMP library therefore perform this au-
tomatic instrumentation. It then makes it possible to mon-
itor CpS and CpJ values during application execution, by
reading out from the shared memory region.

These metrics are easily implemented and suitable for
a wide variety of architecture. As described previously,
they can also be used at runtime, opening perspectives for
online analysis of compute systems’ efficiency.

3. Conclusion

On-line energy-efficiency measurement is essential for
better management of resources in multicore systems. In
this paper we focus on OpenMP programs, a parallel pro-
gramming model widely used. We proposed two new
metrics to evaluate both the performance and the energy-
efficiency of compute systems during run-time.

This work opens new perspectives for energy consump-
tion optimization. Indeed, the introduced metrics make
possible on-line analysis of energy-efficiency. Further
work could rely on such an analysis for adaptive systems,
where adequate decisions will be taken upon the feedback
from the CpS and CpJ analysis.

References

[1] S. Browne et al. A portable programming interface for per-
formance evaluation on modern processors. Int. J. High Per-
Sform. Comput. Appl., 14(3):189-204, Aug. 2000.

[2] D. Kai. Tools for assessing and optimizing the energy re-
quirements of high performance scientific computing soft-
ware. PAMM, 16:837-838, 2016.

[3] M. Mirka et al. Automatic energy-efficiency monitor-
ing of openmp workloads. In I4th Int. Symp. on Re-
configurable Communication-centric Systems-on-Chip (Re-
CoSoC), 2019.

[4] S. Mittal. A survey of techniques for improving energy ef-
ficiency in embedded computing systems. IJCAET.



