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Abstract. Given a graph, a geodetic set (resp. edge geodetic set) is a
subset of vertices such that every vertex (resp. edge) of the graph is on
a shortest path between two vertices of the subset. A strong geodetic set
is a subset S of vertices and a choice of a shortest path for every pair of
vertices of S such that every vertex is on one of these shortest paths. The
geodetic number (resp. edge geodetic number) of a graph is the minimum
size of a geodetic set (resp. edge geodetic set) and the strong geodetic
number is the minimum size of a strong geodetic set. We first prove
that, given a subset of vertices, it is NP-hard to determine whether it is
a strong geodesic set. Therefore, it seems natural to study the problem
of maximizing the number of covered vertices by a choice of a shortest
path for every pair of a provided subset of vertices. We provide a tight 2-
approximation algorithm to solve this problem. Then, we show that there
is no 781/780 polynomial-time approximation algorithm for edge geodetic
number and strong geodetic number on subcubic bipartite graphs with
arbitrarily high girth. We also prove that geodetic number and edge
geodetic number are both LOG-APX -hard, even on subcubic bipartite
graphs with arbitrarily high girth. Finally, we disprove a conjecture of
Iršič and Konvalinka by proving that the strong geodetic number can be
computed in polynomial time in complete multipartite graphs.

1 Introduction

Geodetic number and edge geodetic number. A geodesic between two vertices of
a graph G is a path of minimum length between x and y. The geodetic number
of G is the minimum size of a subset X of the vertices such that, for every vertex
v, there exists a geodesic between two vertices of X containing v. The geodetic
number of a graph has been introduced by Harary et al in [13], where the authors
show that deciding whether a graph has a geodetic number less than an integer
k is NP-complete. The complexity of this problem has also been investigated in
several classes of graphs, such as bipartite graphs [11] and chordal graphs [10]
where it remains NP-complete. Recently, Chakraborty et al. proved that finding
the geodetic number of a graph is NP-hard on planar graphs with maximum
degree six and line graphs [6]. They also proved in another paper that, unless
P = NP, there is no polynomial time o(log n)-approximation algorithm for



computing the geodetic number of a graph, even on graphs that have a universal
vertex and where n stands for the number of vertices in the input graph [7].

The edge version of the geodetic number has been introduced independently
in [3] and in [22]. A subset X of the vertices is an edge geodetic set if, for every
edge e, there is a geodesic between two vertices of X containing e. The edge
geodetic number of G is the size of the smallest geodetic set of G. Note that,
given a graph G, the geodetic number of G is smaller than its edge geodetic
number. This edge version is also known to be NP-hard [3]. This problem has
been studied on several classes of graphs, such as Cartesian products [1, 21] and
fuzzy graphs [20]. From a structural point of view, Santhakumaran and Ullas
Chandran characterized graphs with a prescribed edge geodetic number [23]. For
more results and motivations about geodetic sets, see [5].

Strong geodetic number and strong edge geodetic number. A subset of vertices
X is a strong geodetic set if there exists a function Ĩ that associates a unique
geodesic to each pair of vertices of X and such that every vertex v is contained
in a geodesic Ĩ(a, b), where {a, b} ⊆ X. In the following, we call such a function a
geodesic assignation for X. The strong geodetic number of a graph G is the size of
the smallest strong geodetic set. The strong geodetic number has been introduced
recently by Arokiaraj et al. [2]. In their original paper, the authors motivate this
variation by social network applications. Furthermore, they also prove that this
problem is NP-complete. Note that it remains NP-hard even when restricted
to bipartite graphs [15]. This problem has been studied on complete Apollonian
networks [2], grids and cylinders [16], and on Cartesian product of graphs [12],
on complete bipartite graphs [14], on complete multipartite graphs [15] and on
outerplanar graphs [18]. Connections to the diameter of the graph were studied
in [14] and to the isometric path problem [2].

Finally, the edge version of the strong geodetic problem, where we want to
cover every edge of the graph, has been introduced by Manuel et al. [17] and
were provedNP-complete. Zmazek recently studied the values of the edge strong
geodetic number on grids [25].

Our results. The results of our paper are divided in four sections. In Section 3,
we propose a variant of the strong geodetic problem where, given a subset S of
vertices, the question is to determine whether S is a strong geodesic set of the
graph. Using a reduction from Monotone Balanced 3-SAT-(4), we prove
that this problem is NP-hard. Then, we consider in Section 4 the problem of
maximizing the number of covered vertices by a choice of a geodesic for each pair
of a provided subset of vertices, and provide a tight 2-approximation algorithm
to solve it. In Section 5, we reduce the geodetic problems from Set Cover. We
first give it in the general case, and then we adapt the previous construction on
bipartite graphs with arbitrarily high girth. Using the previous reductions, we
show in Section 6 that there is no approximation of Edge Geodetic Number
with an approximation factor better than 781/780. We also prove that geodetic
number and edge geodetic number are both LOG-APX -hard, even on subcu-
bic bipartite graphs with arbitrarily high girth. Finally, in section 7, we give a
polynomial time algorithm which computes the Strong Geodetic Number of
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complete multipartite graphs, disproving the conjecture of [15] which states that
Strong Geodetic Number is NP-hard on complete multipartite graphs.
Due to space constraints, the proofs have been moved to the appendix.

2 Notations

We first introduce some notations and formally define the problems. Given a
set X, we denote by P2(X) the pairs of this set. Given two sets X and Y , we
denote by X tY the union X ∪Y when X and Y are disjoint. Let G be a graph,
we denote by V (G) its set of vertices and by E(G) its set of edges. We denote
by D1(G) the set of vertices of degree one in G. Let X be a subset of vertices
of G and x be a vertex, we say that x is selected by X if x ∈ X and that x
is covered by X if x is contained in a geodesic between two vertices of X (or
simply selected or covered if there is no ambiguity on X). Likewise, let uv be an
edge, we say that uv is covered by X (or simply covered) if uv is contained in a
geodesic between two vertices of X.

To describe a path between two vertices u and v, we introduce the operator
∼ as follows. Let p1, p2, . . . , pk be some subgraphs such that u ∈ p1, v ∈ pk and
for each i < k, there exists a unique vertex xi ∈ pi ∩ pi+1. The path described
by p1 ∼ p2 ∼ · · · ∼ pk corresponds to (u, . . . , x1, . . . , xi, . . . , xk−1, . . . , v) (fol-
lowing successively the paths p1, p2, . . . , pk). Let g be a path that contains the
vertices u and v. We denote by g[u, v] the subpath of g with extremities u and
v. Furthermore, we denote by V (g) the vertices of g. Similarly, given a geodesic
assignation Ĩ for a set of vertices X, we denote by V (Ĩ) the vertices covered by
the geodesics of Ĩ.
We now introduce the problems studied in this work.

(Strong) (Edge) Geodetic Number
Input: a simple graph G and an integer k.
Question: is there a (strong) (edge) geodetic set X ⊆ V of size k?

The following already known property will be fundamental in the proofs of
our reductions as it helps to force some vertices to be part of a (strong) (edge)
geodetic set.

Property 1. If G is a graph and X is a solution of any geodesic problem, then
we have D1(G) ⊆ X.

3 Hardness to find a geodesic assignation

In the proof of the fact that computing the strong geodesic number is NP
complete, the assignation is rather trivial [2]. In this section, we show that de-
termining if a set of vertices is a strong geodetic set is NP-complete. In order
to do that, we reduce from a special case of 3-SAT called Monotone Bal-
anced 3-SAT-(4). In this variant, the boolean formula is composed of mono-
tone clauses, that is, clauses that contains only positive literals or only negative
literals. Monotone Balanced 3-SAT-(4) is defined as follows.
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Monotone Balanced 3-SAT-(4)
Input: a monotone 3-SAT formula ϕ where each variable occurs exactly

two times positively and two times negatively.
Question: is ϕ satisfiable?

Darman et al. showed that this problem is NP-complete [8]. We introduce the
following construction.

Construction 1. Let ϕ be a Monotone Balanced 3-SAT-(4) formula, we
construct the following graph G:

– For each clause Cj, introduce a vertex qj.
– For each variable xi, introduce two edges v0i v

1
i and u0iu

1
i . Furthermore, let Cj

and Cj′ , with j < j′ be the two clauses where xi occurs with the same polarity
(i.e. it appears positively in both clauses, or negatively in both), construct a
path (v1i , qj , qj′ , u

1
i ).

– For each pair of vertices v1i and u1i′ with i 6= i′, introduce a vertex ti,i′ and
construct the path (v1i , ti,i′ , u

1
i′).

– Finally, construct two vertices kv and ku, and for each variable xi, introduce
the edges v1i kv and u1i ku.

v01

v11

q2

q7

q1

q8

u1
1

u0
1

v01

v11

q2

q7

q1

q8

u1
1

u0
1

v04

v14

q3

q6

q4

q5

u1
4

u0
4ku

t1,4

kv

t4,1

Fig. 1. Induced subgraph of an
example of a graph produced by
Construction 1. In the Boolean for-
mula, the variable x1 appears pos-
itively in C2 and C7 and nega-
tively in C1 and C8. The variable
x4 appears positively in C3 and C6

and negatively in C4 and C5. The
paths p1, p̄1 and p1,4 are depicted
in green, red and blue, respectively.

For each variable xi, let Cj and Cj′ (resp. Ck and Ck′) with j < j′ be
the clauses where xi occurs positively (resp. negatively). We denote by pi =
(v0i , v

1
i , qj , qj′ , u

1
i , u

0
i ) and p̄i = (v0i , v

1
i , qk, qk′ , u

1
i , u

0
i ) and pi,i′ = (v0i , v

1
i , ti,i′ , u

1
i′ , u

0
i′),

for any i 6= i′. An example of a graph produced by Construction 1 is depicted in
Figure 1.

Lemma 1. Let ϕ be a Monotone Balanced 3-SAT-(4) formula and G its
graph resulting from Construction 1. Let Ĩ be a geodesic assignation for D1(G).
It is possible to construct a geodesic assignation Ĩ ′ for D1(G) such that |V (Ĩ)| ≤
|V (Ĩ ′)| and:

(1) for any i 6= i′, the geodesic between v0i and u0i′ in Ĩ ′ is pi,i′ , and

(2) for any i, the geodesic between v0i and u0i in Ĩ ′ is either pi or p̄i.
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Proof. First, note that every geodesic with extremity v0i (resp. u0i ) covers the
vertex v1i (resp. u1i ). Second, the geodesic between two vertices u0i and u0i′ is
(u0i , u

1
i , ku, u

1
i′ , u

0
i′). Similarly, the geodesic between two vertices v0i and v0i′ is

(v0i , v
1
i , kv, v

1
i′ , v

0
i′). Hence, it remains to cover the qj vertices and the ti,i′ vertices.

Let V1 = {v1i | xi ∈ ϕ} and U1 = {u1i | xi ∈ ϕ}. Since there is no edge between
V1 and U1, the distance between any vertex of V1 and any vertex of U1 is at
least two. From that, we can deduce that no geodesic g between two vertices v0i
and u0i′ contains the vertex kv or the vertex ku since the length of g would be at
least six, and pi,i′ or pi (if i = i′) are shorter paths. Let us now prove the two
items of the statement.

(1) Since the distance between V1 and U1 is at least two, the path pi,i′ is a
geodesic between v0i and u0i′ . Suppose that there exists another geodesic
g between v0i and u0i′ . We have g = (v0i , v

1
i , qj , u

1
i′ , u

0
i′), where the clause

Cj contains xi and xi′ in ϕ. Suppose, without loss of generality that Cj
contains positive literals. Toward a contradiction, suppose that ti,i′ is covered

by Ĩ and let g′ be the geodesic that covers ti,i′ . Since g′ cannot have the
same extremities as g, g′ contains either the vertex kv or the vertex ku,
contradicting g′ being a geodesic. Hence, the vertex ti,i′ is not covered by Ĩ,
then we can replace g by pi,i′ in it to obtain a solution as thought.

(2) Let g be a geodesic between v0i and u0i . Since, g does not contain kv, then
v1i is adjacent to a vertex qj in g. Likewise, u1i is adjacent to a vertex qj′ in
g. By contradiction, suppose that xi appears positively in Cj and negatively
in Cj′ . Then, since the edge qjqj′ exists, by construction, there is a path
pi′ or p̄i′ containing qj and qj′ . But then, the variable xi′ appears either
positively in Cj and Cj′ or negatively in Cj and C ′j . In any case, we reach
a contradiction since either Cj or Cj′ is not monotone. Hence, xi appears
only positively in Cj and Cj′ or only negatively in Cj and Cj′ , and then g
corresponds to either pi or p̄i.

Theorem 1. It is NP-hard to determine if a set of vertices V ′ is a strong
geodetic set, even if for every strong geodetic set Vstrong, we have V ′ ⊆ Vstrong.

Proof. Let ϕ be a Monotone Balanced 3-SAT-(4) formula and G its graph
resulting from Construction 1. We show that ϕ is satisfiable if and only if D1(G)
is a strong geodetic set.

– Let β be a satisfying assignment of ϕ, we construct a geodesic assignation Ĩ
for D1(G) as follows. For each i 6= i′, we set Ĩ(v0i , u

0
i ) = pi,i′ , Ĩ(v0i′ , u

0
i ) = pi′,i,

Ĩ(v0i , v
0
i′) = (v0i , kv, v

0
i′), and Ĩ(u0i , u

0
i′) = (u0i , ku, u

0
i′). Hence, every vertex is

covered except the qj vertices. Now, for each variable xi, if xi is assigned to

true, we set Ĩ(v0i , u
0
i ) = pi and we set Ĩ(v0i , u

0
i ) = p̄i, otherwise.

Suppose, there is a vertex qj that is not covered by Ĩ. Let xi, xk and x` be
the three variables that occur in Cj and suppose that Cj contains positive

literals. We have img(Ĩ)∩{pi, pk, p`} = ∅, and then β(xi) = β(xk) = β(x`) =
false, contradicting β being a satisfying assignment for ϕ. Hence, every
vertex of G is covered and D1(G) is a strong geodetic set of G.
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– Let Ĩ be a geodesic assignation for D1(G) that covers every vertex of G,
and such that Ĩ respects properties of Lemma 1. We construct a satisfying
assignment β for ϕ as follows. For each variable xi, if pi ∈ img(Ĩ), we set
β(xi) = true and β(xi) = false, otherwise.
Suppose there is a clause Cj that is not satisfied by β and suppose by symme-
try that Cj contains positive literals. Let xi, xk and x` be the three literals

of Cj . We have img(Ĩ) ∩ {pi, pk, p`} = ∅ and then qj is not covered by Ĩ
which is a contradiction. Hence, β is a satisfying assignment for ϕ.

Finally, by Property 1, the set D1(G) belongs to any strong geodetic set.

From this theorem, we can derive a result about the residue variant of
Strong Geodetic Number. The residue variant of an optimisation problem
has been defined recently in [24] and consists of, given a partial solution P for
an instance I, find an optimal partial solution R such that P ∪ R is a solution
for I. The complexity class RAPX contains the residue variant optimisation
problems such that the score of the residue can be approximated by a constant.

Corollary 1. Strong Geodetic Number 6∈ RAPX

Proof. Let ϕ be a Monotone Balanced 3-SAT-(4) formula and G be its
graph resulting from Construction 1. Then, given a partial solution P = D1(G),
G has a residue solution R = ∅ if and only if ϕ is satisfiable. Hence, the residual
variant of Strong Geodetic Number cannot be approximated to any constant
factor unless P = NP.

4 Approximation

Since it is hard to determine if a subset of vertices is a strong geodetic set,
a natural question that arises is to find, given a subset of vertices, a geodetic
assignation that maximizes the number of covered vertices. We call this problem
Max Geodesic Assignation. By Theorem 1, this problem is also NP-hard
and we show that this problem belongs to APX , i.e. approximable within a
constant ratio. In this part, we show that this problem is 2-approximable using
a simple greedy algorithm, defined in Algorithm 1.

Theorem 2. Algorithm 1 computes in polynomial time a solution for Max
Geodesic Assignation with an approximation ratio of 2 and this ratio is tight.

Proof. Let Ĩapp be the geodesic assignation computed by Algorithm 1 and let

Ĩopt be an optimal geodesic assignation. We show that there exists an application

f : V (Ĩopt)→ V (Ĩapp) such that for each u ∈ V (Ĩapp), |f−1(u)| ≤ 2.

First, for each vertex v ∈ V (Ĩopt)∩V (Ĩapp), we set f(v) = v. Further, let giapp
the geodesic chosen by the greedy algorithm at step i and let giopt be the geodesic

with the same extremities in Ĩopt. For each i, let V iopt = V (giopt) \
⋃
j<i V (gjopt)

and V iapp = V (giapp) \
⋃
j<i V (gjapp) (i.e. the set of vertices newly covered by

giapp). We have |V iopt \ V (Ĩapp)| ≤ |V iapp| since otherwise, the greedy algorithm
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Algorithm 1: Greedy Algorithm

Data: A graph G and a set of vertices V ′ ⊆ V (G).
Result: A geodetic assignation Ĩ for V ′.

1 A← P2(V ′) ;
2 while A 6= ∅ do
3 {u, v} ← first element of A;

4 g ← geodesic between u and v that maximizes |V (g) \ V (Ĩ)|;
5 Set Ĩ(u, v) := g; A← A \ {{u, v}};
6 end

7 return Ĩ;

would have chosen giopt at step i. Thus, there exists an injective function f ′ :

V iopt\V (Ĩapp)→ V iapp and, for each vertex v ∈ V iopt\V (Ĩapp), we set f(v) = f ′(v).

Since each vertex u ∈ V (Ĩapp) belongs to a unique V iapp, we have |f−1(u)| ≤ 2.

Moreover, since each vertex v ∈ V (Ĩopt) belongs either to V (Ĩopt) ∩ V (Ĩapp)

or to a set V iopt \ V (Ĩapp), we defined a function f as thought. It follows that

|V (Ĩopt)| ≤ 2 · |V (Ĩapp)|, proving the approximation ratio. Furthermore, the ratio
is tight, as shown by Figure 2.

a

b c d

e Fig. 2. Tightness of the approximation ratio of Algorithm 1. Con-
sider a, c and e as selected (in black in the graph). The optimal so-
lution consists in taking the geodesics (a, b, e), (c, d, e) and (a, c, d)
which cover the non-selected vertices b and d. The greedy algorithm
can start by taking the geodesic (a, d, e) between a and e. Then the
algorithm will choose (c, d, e) and (a, c, d) for the last two pairs. This
leads to a set of geodesics which only covers d.

5 Reduction from Set Cover
In this part, we prove preliminary results that will be used in the next section.
More specifically, we reduce the geodetic problems from the classic NP-complete
problem Set Cover described as follows.

Set Cover (SC)
Input: A collection C = {S1, . . . , Sm′} of finite sets over the universe

U = {E1, . . . , En′}.
Question: Find a minimum C ′ ⊆ C such that every element of U is

contained in a set of C ′.

For the strong versions, we use a version of Set Cover, denoted (k, k′)-Set
Cover, where the size of the intersection between two sets is at most k and the
set sizes are bounded by k′. Notice that since Vertex Cover is a particular
case of (1, k′)-Set Cover, then (k, k′)-Set Cover is NP-complete.
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v23

v13

v03
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Fig. 3. Example of a graph produced by Construction 2 (left) and Construction 4
(right) on the collection containing S1 = {E1, E3}, S2 = {E1, E2} and S3 = {E2, E3}.
Element paths, set paths, cut paths and long paths are coloured in blue, red, yellow
and green, respectively. In the right graph, black edges, green edges and yellow edges
represent paths of length h, 2h and 3h, respectively

In the following, we first show how this reduction works in the general case and
then, we adapt it in subcubic bipartite graphs with arbitrary high girth.

5.1 On general case
Construction 2. Let (C,U) be an instance of Set Cover. We construct a
graph G as follows:
– For each set Si, create a 3-path spi = (v0i , v

1
i , v

2
i ).

– For each element Ej, create a 4-path epj = (u0j , u
1
j , u

2
j , u

3
j ). We denote the

edge u2ju
3
j as ej.

– For each set Si and each element Ej ∈ Si, introduce a 3-path cpij between v1i
and u2j ) and a 2-path lpij between v2i and u3j .

– For each pair of elements Ej and Ej′ , introduce the edge tj,j′ = u1ju
1
j′ .

The paths epj , spi, cp
i
j and lpik are called element paths, set paths, cut paths

and long paths, respectively. An example of a graph produced by Construction 2
is depicted in Figure 3.

Clearly, the construction can be carried in polynomial time. In order to show
that Construction 2 constitutes a reduction, we introduce the following lemmas.

Lemma 2. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and let G be its graph resulting from Construction 2. The set D1(G) covers (resp.
strongly covers) every edge of G′ except the edges in {ej | Ej ∈ U}.

Proof. We start by describing the geodesics between each pair of vertices of
D1(G) and how we can make the assignation them when there is some choice.

(a) For any pair of elements Ej and Ej′ of U , the distance between u0j and

u0j′ is 3 and the unique geodesic between these two vertices is described by
epj ∼ tj,j′ ∼ epj′ .
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(b) For any set Si of C and any element Ej ∈ Si, the distance between u0j and

v0i is 6 and the unique geodesic between these two vertices is described by
epj ∼ cpij ∼ spi.

(c) For any set Si of C and any element Ej 6∈ Si, the distance between u0j and

v0i is 7 and the geodesics are described by epj ∼ tj,j′ ∼ epj′ ∼ cpij′ ∼ spi,
for any element Ej ∈ Si. Since these geodesics contain only edges that are
covered by the cases (a) or (b), we can assign any geodesic for this case.

(d) For any pair of sets Si and Si′ of C such that Si ∩ Si′ 6= ∅, the distance
between v0i and v0i′ is 8 and the geodesics between these two vertices are

described by spi ∼ cpij ∼ cpi
′

j ∼ spi′ and spi ∼ lpij ∼ lpi
′

j ∼ spi′ , for each

Ej ∈ Si ∩Si′ . Since, the edges of cpij and cpi
′

j are already covers by the case

(b), it is better to assign a geodesic spi ∼ lpij ∼ lpi
′

j ∼ spi′ , note that if
|Si ∩ Si′ | = 1, then there only one such geodesic.

(e) For any pair of sets Si and Si′ of C such that Si ∩ Si′ = ∅, the distance
between v0i and v0i′ is 11 and the geodesics between these two vertices are

described by spi ∼ cpij ∼ epj ∼ tj,j′ ∼ epj′ ∼ cpi
′

j′ ∼ spi′ , for any Ej ∈ Si
and Ej′ ∈ Si′ .

Remark that the ej edges are not covered by any geodesic between the vertices
of D1(G). We conclude by showing that every other edges are covered by D1(G),
even if we fix a unique geodesic in the case where the intersection between two
sets is at most one.

Let e be an edge in E(G)\{ej | EjU}. If e belongs to a set path spi or a long
path lpi, then e is covered by the geodesic between v0i and v0j . If e belongs to an

element path epj or a cut path cpij , then e is covered by the geodesic between

v0i and u0i,j . Finally, if e is a tj,j′ edge, then e is covered by the geodesic between

u0j and u0j′ . Hence, every edge of G is covered except the ej edges.

In the following, let Y Si ⊂ V (G) denote the set containing spi \ {v0i } and
every long path lpij and cut path cpij incident to cpi minus vertices of every

element path epj . Formally, Yi = (spi \ {v0i })∪{(cpij ∪ lpij) \ epj | ∀Ej ∈ Si}. For

each element Ej ∈ U , we also denote Y Ej = {Yi | Ej ∈ Si} ∪ epj \ {u0j}.

Lemma 3. Let (C,U) be an instance of Set Cover and let G be its graph
resulting from Construction 2. For each element Ej, every geodesic containing
the edge ej has an extremity in Y Ej .

Proof. Toward a contradiction, we suppose that there exists an edge ej such that
there is a geodesic g with extremities x 6∈ Y Ej and y 6∈ Y Ej that contains ej . For

simplicity, we denote the subpath g[x, u3j ] as gx (we suppose that ej 6∈ gx). By

hypothesis, gx contains a long path lpij such that Ej ∈ Si. Since gx can not have

an extremity in Y Si , gx contains a vertex x′ in some element path epk, such that
Ek ∈ Si. The subpath g[x′, u2j ] can be described either by cpik ∼ spi ∼ cpij ∼ epj
or by lpik ∼ spi ∼ lpij ∼ epj . Let g′ be the path between x′ and u2j described

by epk ∼ tk,j ∼ epj . By construction, we have |g′| < |g[x′, u2j ]|. Thus replacing
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g[x′, u2j ] by g′ in g constructs a path between x and y that is shorter than g,

contradicting that g is a geodesic. Hence, X contains at least one vertex in Y Ej .

In order to easily produce a set cover in G from a (strong) edge geodetic set
X of G′, we need X to respect a certain property. Hence, we use the following
lemma.

Lemma 4. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Let X ⊆ V (G) be an edge geode-
tic set (resp. strong edge geodetic set) of G. It is possible to construct an edge
geodetic set (resp. a strong edge geodetic set) X ′ of G such that |X ′| ≤ |X| and

X ′ ⊆ {v2i | Si ∈ C} ∪D1(G)

.

Proof. First by Property 1, X contains any vertices of D1(G). Therefore, by
Lemma 2, every edge is (strongly) covered by D1(G) except the ej edges. Note
that selecting a vertex v2i ensures to cover every ej edges (with Ej ∈ Si) since
the unique geodesic between v1i and u0j is described by lpij ∼ epj .

We show how to transform X so that it respects lemma’s property. For each
edge ej , by Lemma 3, there is a vertex x in the intersection X ∩ Y Ej . If x ∈ Y Si
for some Si such that Ej ∈ Si, we replace x in X by v2i . Since x belongs to any
set Y Ek such that Sk ∈ Ei, every edge previously covered by x is still covered.
If x ∈ epj then it is only used to cover ej . Thus, we can replace x arbitrarily
by any vertex v2i such that Ej ∈ Si. Finally, there exists a vertex that does not
belong to {v2i | Si ∈ C} ∪D1(G), we can remove it from X. Hence, we obtain a
solution as thought.

Lemma 5. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Then the instance (C,U) contains
a set cover of size k if and only if G contains an edge geodetic set (resp. strong
edge geodetic set) of size k + |C|+ |U |.

Proof. – Let C ′ ⊆ C be a set cover of size k of (C,U) and consider the (strong)
edge geodetic set X = D1(G) ∪ {v2i | Si ∈ C ′}. By Lemma 2, every edges
in E(G) \ {ej | Ej ∈ U} are (strongly) covered. Let Ej be an element of U ,
there is a set Si ∈ S′ such that Ej ∈ Si. Thus, v2i ∈ X and therefore the
edge ej is covered by the unique geodesic between v2i and u0i,j . Since every
element of U appears in S′, every ej edges of G are also (strongly) covered.
Hence, we produce a (strong) edge geodetic set of size k + |C|+ |U |.

– Let X ⊂ V (G) be a (strong) edge geodetic set of size k+ |C|+ |U | of G that
respects the property of Lemma 4. Consider the set cover C ′ = {Si | v2i ∈ X}.
Let Ej be an element of U and suppose that it does not belong to a set of C ′.
In that case, no vertex v2i such that Ej ∈ Si belongs to X. By Lemma 3, the
edge ej is not covered by X, contradicting X being a (strong) edge geodetic
set. Hence, every element of U is contained in a set of C ′ and, we construct
a set cover of size k.
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5.2 On subcubic bipartite graphs

We now extend the previous result to subcubic and bipartite graphs. First, we
show that the result holds in graph with maximum degree three. We introduce
the following construction.

Construction 3. Given a graph G, a vertex u ∈ V (G), a set of non-adjacent
neighbours N0 = {v00 , . . . , v0k−1} ⊆ N(u) and an integer h > log k, emplace a
h-pyramid Py(h, u,N0) consists of removing all edges between u and N0 and
replacing them with the following subgraph. For each 0 < i < h, construct recur-
sively the sets N i:
– create t = d|Ni−1|/2e vertices vi0, . . . , v

i
t, and

– introduce the edges vit′v
i−1
2t′ , and vit′v

i−1
2t′+1 (if vi−12t′+1 exists) for each t′ < t.

Finally, introduce the edge uvh−10 (Nh−1 consists of a single vertex since h >
log k).

v

u

w
x

y

v

u

w x y

v

u

w x y

Fig. 4. Example of a 3-pyramid Py(3, v, {w, x, y}) produced by Construction 3. Left:
v and its neighbours in the original graph. Center: emplaced 3-pyramid. Right: Rep-
resentation of the pyramid used in Figure 3.

Let Py(h, v,N) be a h-pyramid. We can make the following observations.
– The maximum degree of Pyh(h, v,N) is three.
– Let n1, n2 ∈ N , the distance between n1 and n2 in Pyh(h, v,N) is between

2 and 2h and the distance between v and n1 or n2 is h.
We now use the previous structure to modify Construction 2 as follows.

Construction 4. Let (C,U) be an instance of Set Cover and G be its graph
resulting from Construction 2. Let h > log∆(G) be an integer. We modify G as
follows:
– for each set Si and each integer k ∈ {1, 2}, emplace a h-pyramid
Py(h, vki , N(vki ) \ {vk−1i }),

– for each element Ej and each integer k ∈ {1, 2, 3}, emplace a h-pyramid
Py(h, ukj , N(ukj ) \ {uk−1j }), and

– replace each edge of G that does not belong to a h-pyramid by a path of length
h.

Note that the resulting graph has maximum degree three. Moreover, if k is
odd then the resulting graph is bipartite. Finally, by taking an arbitrary high
value of k, the resulting graph has an arbitrary high girth. We use a similar
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vocabulary than for Construction 2: an element tree etj is the tree induced by
the vertices of epj in the h-pyramids emplaced in it in the original graph. A set
tree sti is defined the same way. For each element Ej , the h-path that replaces
the edge ej is denoted pj . An example of a graph produced by Construction 4
is depicted in Figure 3. Since Construction 4 multiplies the length of every path
of Construction 2 by h, we can adapt Lemmas 2 to 4 to it by replacing epj by
etj and spi by sti in the geodesics descriptions.

Lemma 6. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
be a connected graph and G its graph resulting from Construction 4. The set
D1(G) covers (resp. strongly cover) every edge and vertex of G except edges and
vertices in {pj | Ej ∈ U}.

Proof. By construction, geodesics between vertices of D1(G) can be described
the same way as for Lemma 2. The result follows.

In the following Y Si and Y Ej are defined in the same way as for Construction 2
(by taking sti instead of spi and etj instead of epj). Notice that the geodesic
between a vertex v1 and a vertex u0j is described by sti ∼ lpij ∼ etj and contains
the path pj . Hence, using the same arguments as in Lemmas 3 and 4, we can
show the two following results.

Lemma 7. Let (C,U) be an instance of Set Cover and G be its graph re-
sulting from Construction 4. For each element Ej, every geodesic containing a
vertex of pj has an extremity in Y Ej .

Lemma 8. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G be its graph resulting from Construction 4. Let X ⊆ V (G) be a geodetic
or an edge geodetic set of G′ (resp. strong geodetic or a strong edge geodetic set).
It is possible to construct a geodetic or an edge geodetic set (resp. strong geodetic
or a strong edge geodetic set) X ′ of G such that |X ′| ≤ |X| and

X ′ ⊆ {v2i | Si ∈ C} ∪D1(G).

Using the same idea as for Lemma 5, we can now show that Construction 4
constitutes a reduction: if a path pj is (strongly) covered, then there is a vertex
v2i , such that Ej ∈ Si, is selected. Thus, given a solution for a geodetic problem
X the set {Si | v2i ∈ X} is a set cover of G. Hence, we obtain the following
result.

Lemma 9. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Then the instance (C,U) contains
a set cover of size k if and only if G contains an edge geodetic set and a geodetic
set (resp. strong edge geodetic set and a strong geodetic set) of size k+ |C|+ |U |.

6 Non-approximability

In this section, we use the results of the previous section to find hardness of
approximation results for the geodetic problems.
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6.1 Strong geodetic set and strong edge geodetic set

First, recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou and Yannakakis [19]. This reduction consists of
polynomial-time computable functions f and g such that, for each instance x of
Π, f(x) is an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a
feasible solution for x. Moreover, there are constants α1, α2 > 0 such that:
1. OPTΠ′(f(x)) ≤ α1 ·OPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)| ≤ α2 · |valΠ′(y′)−OPTΠ′(f(x))|.

Using Construction 4, we can construct a L-reduction with α1 = (2k′ + 2) and
α2 = 1 to obtain the following lemma.

Lemma 10. Let ρk′ be the best possible polynomial time approximation factor of
(1, k′)-Minimum Set Cover. Then Strong Geodetic Number and Strong
Edge Geodetic Number cannot be approximated with a factor better than

1 +
ρk′ − 1

2k′ + 2
,

in subcubic bipartite graphs with arbitrary high girth.

Proof. Let (C,U) be an instance of (1, k′)-Minimum Set Cover andG its graph
resulting from Construction 4. Suppose there is a polynomial-time approximation
algorithm for Strong Geodetic Number (resp. Strong Edge Geodetic
Number) in subcubic bipartite graphs with arbitrary high girth and let Xapp be
a strong geodetic set (resp. strong edge geodetic set) computed by this algorithm
in G. We suppose that Xapp respects the property of Lemma 8. Let C ′app = {Si |
v2i ∈ Xapp}. Using the same argument as in Lemma 9, we can show that C ′app
is a set cover of (C,U) and |Xapp| = |C| + |U | + |C ′app|. Let C ′opt ⊂ C be a set
cover of (C,U) and let Xopt be a minimum strong geodetic set (resp. strong edge
geodetic set) in G. Similarly, we can show that |Xopt| = |C|+ |U |+ |C ′opt|. Hence,
we have

|Xapp| − |Xopt| = |C ′app| − |C ′opt|. (1)

Moreover, since the intersection between two sets contains at least two elements
and the size of each set is bounded by k′, we deduce

|U | ≤ k′ · |C ′opt| and |C| ≤ (k′ + 1) · |C ′opt|

which leads to

|Xopt| ≤ (2k′ + 2) · |C ′opt|. (2)

Thus we construct a L-reduction with α1 = (2k′ + 2) and α2 = 1. We conclude,

|Xapp|
(1)
= |C ′app| − |C ′opt|+ |Xopt|
≥ (ρk′ − 1) · |C ′opt|+ |Xopt|
(2)

≥ (1 +
ρk′ − 1

2k′ + 2
) · |Xopt|.
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Since Minimum Vertex Cover with bounded maximum degree k′ is a
particular case of (1, k′)-Minimum Set Cover, we can pick the value of k′

(and so the best known value ρk′) that maximize the previous inapproximation
ratio. Thus, since Berman and Karpinski showed that Minimum Vertex Cover
cannot be approximated with a factor better than 79/78 in graphs with maximum
degree four [4], we obtain the following result.

Corollary 2. Strong Geodetic Number and Strong Edge Geodetic
Number cannot be approximated with a factor better than 781/780 in subcubic
bipartite graphs with arbitrary high girth.

6.2 Geodetic set and edge geodetic set

Now, we provide approximation lower bounds for Geodetic Number and
Strong Geodetic Number. We apply the following modification to Construc-
tion 4.

Construction 5. Let (C,U) be an instance of Set Cover, G be its graph
produced by Construction 4 and k > |V (G)| be an integer. We construct a graph
G′ as follows:
– create k disjoint copies {G1, . . . , Gk} of G,
– for each vertex x of D1(G),
• create an edge s0xs

1
x,

• for each G` ∈ {G1, . . . , Gk} and for each vertex x ∈ D1(G`), construct
a k-path p`x between x and s1x, and

• emplace a k-pyramid Py(k, s1x, N(s1x) \ {s0x}).

Notice that the resulting graph has maximum degree three. For simplicity, we
denote the k-pyramide Py(k, s1x, N(s1x) \ {s0x}) as Py[x].

Lemma 11. Let (C,U) be an instance of Set Cover and let G′ be its graphs
resulting from Construction 5. The set D1(G′) covers every edge and vertex of
G′ except edges and vertices in {pj | Ej ∈ U,G` ∈ {G1, . . . , Gk}, pj ∈ G`}.

Proof. Let G be the graph of (C,U) produced Construction 4. Let x ∈ D1(G)
and G` in {G1, . . . , Gk}. The shortest path between G` and s0x has length 2k and
walks through p`k and Py[x]. Let x1 and x2 be two vertices of D1(G) and x′1 and
x′2 be their corresponding vertices in G`. Let g` be a geodesic between x′1 and x′2,
note that g` is entirely contained in G` since every path leaving G` has length
k > |V (G`)|. Suppose that g = s0x1

s1x1
∼ Py[x1] ∼ p`x1

∼ g` ∼ p`x2
∼ Py[x2] ∼

s0x2
s1x2

is not a geodesic between s0x1
and s0x2

. Then, let g′ be a geodesic between
s0x1

and s0x2
. If g′ contains two subgraph G` and G`′ , then since the distance

between G` and G`′ is 2k, the length of g′ is at least 6k and then g is shorter
than g′. Thus, g′ contains only one subgraph G` and then, it can be described
by s0x1

s1x1
∼ Py[x1] ∼ p`x2

∼ g′` ∼ p`x2
∼ Py[x2] ∼ s0x2

s1x2
, where g′` is a path

between x′1 and x′2 in G`, but then it contradicts g` being a geodesic. Hence,
g is a geodesic between s0x1

and s0x2
. From that, we can conclude that D1(G′)

covers exactly the same edges and vertices than D1(G) in each G`. Hence, by
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Lemma 6, every edge and vertex in any G` is covered, except edges and vertices
in {pj | Ej ∈ U}.

It remains to show that edges and vertices in every Py[x] and p`x are also
covered. First, since for every x ∈ D1(G) and every G`, there is a geodesic g with
extremity s0x that walks through G`, then g contains p`x and thus every edge and
vertex of p`x is covered. Moreover, since every p`x is adjacent to a distinct leaf
of Py[x], the set of geodesic with extremity s0x covers every edge and vertex of
Py[x]. The result follows.

Lemma 12. Let (C,U) be an instance of Set Cover and let G′ be its graph
resulting from Construction 5. Let X ⊆ V (G′) be a geodetic set or an edge
geodetic set of G′. It is possible to construct a geodetic set or an edge geodetic
set X ′ of G′ such that |X ′| ≤ |X| and

X ′ ⊆ {v2i | Si ∈ C,G` ∈ {G1, . . . , Gk}, v2i ∈ V (G`)} ∪D1(G′).

Proof. Since for each G` ∈ {G1, . . . , Gk}, the result of Lemma 7 holds in G`,
we can use the same technique as for Lemma 8 to obtain a set X ′ such that
X ′ ∩ V (G`) = {v2i | Si ∈ C}. Then, the result follows.

Set Cover is hard to approximate with a factor better than a logarithmic
function [9]. Therefore, we can transfer the lower bounds of approximation of
Set Cover to Geodetic Number and Edge Geodetic Number. This result
is in addition to the one proved by Chakraborty et al. [7].

Theorem 3. Geodetic Number and Edge Geodetic Number are LOG-
APX -hard, even in bipartite subcubic graphs with arbitrary high girth.

Proof. Let (C,U) be an instance Set Cover graph and G′ be its graph pro-
duced by Construction 5. Suppose that we have a polynomial-time approxi-
mation algorithm A to compute a geodetic set or an edge geodetic set of a
graph. We denote by X the geodetic set obtained by A in G′ and we sup-
pose that X respects Lemma 12 property. We can suppose that |X ∩ V (G`)|
has the same value for any G` ∈ {G1, . . . , Gk}, since otherwise it suffixes to
transpose the solution with the minimum |X ∩ V (G`)| value to the every other
G`. Let C ′ = {Si | v2i ∈ X ∩ V (G1)}. Using the same argument as in the
proof of Lemma 5, we can show that C is a set cover of (C,U), and that
|X| = k|C ′|+ |C|+ |U |.

Let Xopt be a minimum geodetic set or a minimum edge geodetic set of
G′ and C ′opt be a minimum set cover of (C,U). Similarly, we can show that
|Xopt| = k|C ′opt|+ |U |+ |C|. We have:

|X|
|Xopt|

=
k|C ′|+ |U |+ |C|
k|C ′opt|+ |U |+ |C|

(3)

As k tends to +∞ we deduce that |X|
|Xopt| converges to |C

′|/|C′opt|. Since Set Cover

cannot be approximated with a factor better than a logarithmic function, we
deduce that A cannot have an approximation factor better than a logarithmic
function.
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7 Strong Geodetic Number on complete multipartite
graphs

First, remark that geodesics of complete multipartite graphs are easy to deter-
mine: for any pair of vertices which are not in the part, the edge between them
is the unique shortest path between them. For a pair of vertices which are in
the same part, the shortest paths between them are all the paths of length two
between them with all the vertices not in this part as middle vertices.

In this section, we develop a polynomial algorithm which computes the strong
geodetic number of a complete multipartite graph. The algorithm is based on
dynamic programming where we not only look after a minimum strong geodetic
set of vertices covering all the graph, but we look after all sets of vertices max-
imizing the number of pairs not used to cover other vertices among sets with
some fixed parameters.

Let Kn1,...,nr
denotes a complete multipartite graph whose parts are noted

X1, . . . , Xr such that |Xi| = ni for every i ∈ {1, . . . , r}. We denote Ni =
∑i
j=1 nj

for every i ∈ {1, . . . , r} and Kn1,...,ni
by Gi.

Definition 1. A selection of Kn1,...,nr is a set of selected vertices S in which we
pick a set of pairs of non-adjacent vertices C to cover some non-selected vertices.
Formally, a selection is a triplet (S,C, f), where
– S ⊆ V ,
– C ⊆

⋃r
j=1 P2(S ∩Xj) and,

– f : C → V \ S is an injective map such that ∀c ∈ C
⋂
P2(S

⋂
Xi), f(c) 6∈ Xi

(i.e. two vertices of Xi can not cover another vertex of Xi).

Given a selection s(S,C, f), we denote by
– s(S,C, f) = |S|, the number of selected vertices,
– r(S,C, f) = |V \ (S t f(C))| = n − s(S,C, f) − |C|, the number of vertices

that are neither selected nor covered, and
– d(S,C, f) = |∪nj=1P2(S∩Sj)\C| =

∑n
j=1

(
S∩Xj

2

)
−|C|, the number of pairs

of non-adjacent vertices that are not in C.
We say that a selection (S,C, f) is nice if it maximizes the number d(S,C, f)

among all selection with the same size s(S,C, f) and the same number r(S,C, f).
In our dynamic programming approach, we construct every nice selections in
every subgraph Gi, successively. To construct a selection in Gi from a selection
of Gi−1, we use the following lemma.

Lemma 13. Let (S′, C ′, f ′) a selection of Gi−1. Let three integers k, u and
q such that 0 ≤ k ≤ ni, 0 ≤ u ≤ min(ni − k, d(S′, C ′, f ′)) and 0 ≤ q ≤
min(

(
k
2

)
, r(S′, C ′, f ′)). There exists a selection (S,C, f) of Gi such that

s(S,C, f) = s(S′, C ′, f ′) + k

r(S,C, f) = r(S′, C ′, f ′) + ni − k − q − u
d(S,C, f) = d(S′, C ′, f ′) +

(
k
2

)
− q − u.

In other words, we select k vertices in Xi, cover u vertices in Xi and cover q
vertices in Gi−1.

16



Proof. Let T be any subset of Xi of size k. Let Q be any subset of P2(T ) of size

q. Let U be any subset of
⋃i−1
j=1 P2(S′ ∩Xj) \C ′ of size u. Let Q′ be any subset

of
⋃i−1
j=1Xj \ (S′ ∪ f ′(C ′)) of size q. Let U ′ be any subset of Xi \ T of size u.

We define

S = S′ ∪ T
C = C ′ ∪Q ∪ U
f : C → V \ S

where the function f is defined as follows. On C ′, f|C′ = f ′. As U (resp.
Q) and U ′ (resp. Q′) are of the same size, we can define f|U (resp. f|Q) as any
bijection between U and U ′ (resp. Q and Q′).

Fig. 5. Description of the creation of selection (S,C, f) of Gi from the selection
(S′, C′, f ′) of Gi−1. An arrow between two set indicates that pairs of vertices of the
source set are used to cover vertices of the target set.

Let us show that (S,C, f) is a selection of Gi. As S′ ⊆
⋃i−1
j=1Xj and T ⊆ Xi,

we deduce that S ⊆
⋃i
j=1Xj . As C ′ ⊆

⋃i−1
j=1 P2(S ∩Xj), Q ⊆ P2(S

⋂
Xi) and

U ⊆
⋃i−1
j=1 P2(S ∩Xj), we deduce that C ⊆

⋃i
j=1 P2(S ∩Xj).

By definition of f , f|C′ , f|Q and f|U are injective. Let x, x′ ∈ C such that

f(x) = f(x′). As f(U) ⊆ Xi and f(Q) and f(C ′) ⊆
⋃i−1
j=1Xj , we deduce that

we can suppose that x ∈ Q and x′ ∈ C ′. As f(x) ∈ Q′, we have f(x) 6∈ f ′(C ′).
It contradicts the fact that f(x) = f(x′) ∈ f ′(C ′) because x′ ∈ C ′. We conclude
that x = x′ and that f is injective.

Let a ∈ C ∩ P2(S ∩Xi) = Q. Then f(a) ∈ Q′ ⊆
⋃i−1
j=1Xj . Thus, f(a) 6∈ Xi.

Let a ∈ C∩P2(S∩Xj) = C ′∪U for any j < i. If a ∈ C ′, then f(a) = f ′(a) 6∈ Xj

because (S′, C ′, f ′) is a selection of Gi−1. Otherwise, a ∈ U and f(a) ∈ Xi and
thus f(a) 6∈ Xj .

We conclude that (S,C, f) is a selection of Gi.

As S = S′tT , we deduce that s(S,C, f) = s(S′, C ′, f ′)+ |T | = s(S′, C ′, f ′)+
k. As C = C ′ tQtU , we deduce that r(S,C, f) = Ni− |S| − |C| = ni +Ni−1−
|S′| − k − |C ′| − |Q| − |U | = ni − k − q − u+ r(S′, C ′, f ′). Furthermore
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d(S,C, f) =

i∑
j=1

(
S ∩Xj

2

)
− |C|

=

i−1∑
j=1

(
S′ ∩Xj

2

)
+

(
|T |
2

)
− |C ′| − q − u

= d(S′, C ′, f ′) +

(
k

2

)
− q − u

Since the number of selections can be exponential, we only keep nice selec-
tions. In order to do that, we adapt the result of Lemma 13 as follows.

Lemma 14. Let (S,C, f) be a nice selection of Gi, then there exists a nice
selection (S′, C ′, f ′) of Gi−1 and numbers k, u, q such that 0 ≤ k ≤ ni, 0 ≤ q ≤
min(

(
k
2

)
, r(S′, C ′, f ′)) and 0 ≤ u ≤ min(ni − k, d(S′, C ′, f ′)) and

s(S,C, f) = s(S′, C ′, f ′) + k

r(S,C, f) = r(S′, C ′, f ′) + ni − u− q − k
d(S,C, f) = d′(S′, C ′, f ′) +

(
k
2

)
− q − u

Proof. We define S′ = S
⋂
Gi−1, C ′ = C

⋂
Gi−1 \ f−1(Xi) and f ′ = f|C′ . Let

us prove that (S′, C ′, f ′) is a nice selection of Gi−1 satisfying the announced
equalities.

Let us show that ∀c ∈ C ′
⋂
P2(S

⋂
Xi), f

′(c) 6∈ Xi. Let c ∈ C ′
⋂
P2(S

⋂
Xi),

suppose by contradiction that f ′(c) ∈ Xi. As f ′(c) = f(c), we deduce that
c ∈ f−1(Xi). This contradicts the definition of C ′. Thus, f ′(c) 6∈ Xi. As f is
injective, f ′ is also injective and, we deduce that (S′, C ′, f ′) is a selection of
Gi−1.

We define k = |S ∩Xi|, q = |C ∩P2(S ∩Xi)| and u = |f−1(Xi)|. As S = S′t
(S∩Xi), we have s(S) = s(S′)+k. As we have C = C ′tf−1(Xi)t(C∩P2(S∩Xi),
thus |C| = |C ′| + u + q. We deduce that r(S) = Ni − |S| − |C| = ni + Ni−1 −
s(S′, C ′, f ′)− k − |C ′| − u− q = r(S′, C ′, f ′) + ni − k − u− q. Furthermore,

d(S,C, f) =

i∑
j=1

(
S ∩Xj

2

)
− |C|

=

i−1∑
j=1

(
S′ ∩Xj

2

)
+

(
k

2

)
− |C ′| − q − u

= d(S′, C ′, f ′) +

(
k

2

)
− q − u

We have k = |S ∩ Xi| ≤ |Xi| ≤ ni. We have q ≤ |P2(S ∩ Xi)| ≤
(
k
2

)
. As

r(S,C, f) = r(S′, C ′, f ′) +ni−k−u− q, we have q = r′(S′, C ′, f ′)− r(S,C, f) +
ni − k − u ≤ r′(S′, C ′, f ′) as we have ni ≤ r(S,C, f) + k + u as r(S,C, f) is
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the size of the set
⋃i
j=1Xj \ (S t f(C)) and as Xi \ ((S ∩Xi) t f(f−1(Xi))) ⊆⋃i

j=1Xj \ (S t f(C)). Thus, q ≤ r(S′, C ′, f ′).
As (S∩Xi)tf(f−1(Xi)) ⊆ Xi, we deduce that k+u ≤ ni (as f is injective),

thus u ≤ ni−k. As d(S,C, f) is the size of the set
⋃i
j=1 P2(S ∩Xj)\C, we have

P2(S ∩Xi) \ (C ∩P2(S ∩Xi)) ⊆
⋃i
j=1 P2(S ∩Xj) \C. Thus,

(
k
2

)
− q ≤ d(S,C, f)

and so, u = d(S′, C ′, f ′)− d(S,C, f) +
(
k
2

)
− q ≤ d(S′, C ′, f ′).

We conclude that k, q, u satisfy the following inequalities:

0 ≤ k ≤ ni

0 ≤ q ≤ min

((
k

2

)
, r(S′, C ′, f ′)

)
0 ≤ u ≤ min(ni − k, d(S′, C ′, f ′))

Let us show that (S′, C ′, f ′) is a nice selection of Gi−1. Suppose by contradic-
tion that there exists a selection (S′′, C ′′, f ′′) of Gi−1 such that s(S′′, C ′′, f ′′) =
s(S′, C ′, f ′) and r(S′′, C ′′, f ′′) = r(S′, C ′, f ′) and that d(S′′, C ′′, f ′′) > d(S′, C ′, f ′).
According to Lemma 13, there exists a selection (Sp,Cp, fp) of Gi such that

s(Sp,Cp, fp) = s(S′′, C ′′, f ′′) + k

r(Sp,Cp, fp) = r(S′′, C ′′, f ′′) + ni − k − q − u
d(Sp,Cp, fp) = d(S′′, C ′′, f ′′) +

(
k
2

)
− q − u

As s(S′′, C ′′, f ′′) = s(S′, C ′, f ′), r(S′′, C ′′, f ′′) = r(S′, C ′, f ′) and d(S′′, C ′′, f ′′) >
d(S′, C ′, f ′), we obtain

s(Sp,Cp, fp) = s(S,C, f)

r(Sp,Cp, fp) = r(S,C, f)

d(Sp,Cp, fp) > d(S,C, f)

Which contradicts that (S,C, f) is a nice selection of Gi. We conclude that
(S′, C ′, f ′) is a nice selection of Gi−1.

We denote by d(i, j, r) the maximum of d(S,C, f) for any selection (S,C, f)
of Gi such that s(S,C, f) = j and r(S,C, f) = r. This quantity is set to −∞ if
no such selection of Gi exists.

Lemma 15. For any integers i, s, r and integers k, u, q we define the following
quantities:

s′ = s− k, r′ = r − ni + u+ q + k and d′ = d(i− 1, s′, r′)

We deduce that: d(i, s, r) = max

{
(d′) +

(
k
2

)
− q − u

∣∣∣∣ 0 ≤ k ≤ ni
0 ≤ u ≤ min(ni − k, d′)
0 ≤ q ≤ min(

(
k
2

)
, r′)

}
.
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Proof. According to Lemma 13, we have

d(i, s, r) ≤ max

(d′) +

(
k

2

)
− q − u

∣∣∣∣∣∣
0 ≤ k ≤ ni
0 ≤ u ≤ min(ni − k, d′)
0 ≤ q ≤ min(

(
k
2

)
, r′)


as for any selection (S′, C ′, f ′) ofGi−1 such that s(S′, C ′, f ′) = s′, r(S′, C ′, f ′) =

r′ and d(S′, C ′, f ′) = d′, we can create a selection (S,C, f) of Gi such that
s(S,C, f) = s, r(S,C, f) = r and d(S,C, f) = d′ +

(
k
2

)
− q − u.

According to Lemma 14, we have

d(i, s, r) ≥ max

(d′) +

(
k

2

)
− q − u

∣∣∣∣∣∣
0 ≤ k ≤ ni
0 ≤ u ≤ min(ni − k, d′)
0 ≤ q ≤ min(

(
k
2

)
, r′)


as for any selection (S,C, f) of Gi such that s(S,C, f) = s, r(S,C, f) = r and
d(S,C, f) = d(i, s, r) we can create a nice selection (S′, C ′, f ′) of Gi−1 such that
s(S′, C ′, f ′) = s′, r(S′, C ′, f ′) = r′ and d(S′, C ′, f ′) = d(S,C, f) −

(
k
2

)
+ q + u.

We deduce the equality between the two quantities.

From previous lemma we deduce the following theorem.

Theorem 4. There exists an algorithm in O(n8) computing the geodetic number
of a complete multipartite graph with n vertices.

Proof. The algorithm 2 consists mainly in six independent “for” loops. Four of
them are of length at most n and two of them are of length at most n2. The
complexity of the algorithm is therefore in O(n8).

Notice that a complete multipartite graph can be described with the list of
integers n1, . . . , nk. In that case, the dynamic programming that we described
is not polynomial if the values of the ni are exponential. Thus, if we formulate
Edge Geodetic Number on complete multipartite graph as a specific problem
on this class, the question whether such a problem is weak NP-hard or not is
open.

8 Conclusion

In this paper, we investigated the hardness of the approximation of the geodetic
set problems. Given our approximation lower bound for Geodetic Number
and Edge Geodetic Number, the question of the existence of a O(log(n))-
approximation algorithm seems natural. We also proved that deciding whether a
set admits a geodesic assignation NP-hard. Therefore, a second question arises:
is it also hard to decide whether a set of vertices is a strong geodetic set. We
also give a tight 2-approximation of this problem. Finding a lower bound for
this problem is probably a good question for further work. Finally, for Strong
Geodetic Number, we proved that it was polynomial on complete multipartite
graphs. What about other graph classes?
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Algorithm 2: Strong Geodetic Number Algorithm For Complete Mul-
tipartite Graphs

Data: L the list of the size of the parts of the complete multipartite graph G
Result: The strong geodetic number of G

1 n← sum(L)
2 k ← len(L)
3 nc← 0
4 for jin(0..L[0]) do
5 d[0][j][L[0]− j]← j ∗ (j − 1)/2
6 end
7 for iin(0..k − 2) do
8 nc← nc + L[i]
9 for jin(0..nc) do

10 for rin(0..nc) do
11 if d[i][j][r] == −1 then
12 continue
13 end
14 dc← d[i][j][r]
15 for sin(0..L[i + 1]) do
16 for spin(0..s ∗ (s− 1)/2) do
17 for dpin(0..dc) do
18 rp← max(0, r − sp) + max(0, L[i + 1]− s− dp)
19 dd← s ∗ (s− 1)/2− sp + max(0,−(r − sp)) +

max(0,−(L[i + 1]− s− dp)) + dc− dp
20 if dd > d[i + 1][j + s][rp] then
21 d[i + 1][j + s][rp] = dd
22 end

23 end

24 end

25 end

26 end

27 end

28 end
29 j ← 0 ;
30 while d[k − 1][j][0] < 0 do
31 j ← j + 1
32 end
33 return j ;
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