
HAL Id: lirmm-03341604
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03341604

Preprint submitted on 11 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and Energy Impact of Enhanced Cache
Replacement Policy on STT-MRAM LLC

Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres, Gilles
Sassatelli, Abdoulaye Gamatié

To cite this version:
Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres, Gilles Sassatelli, et al.. Performance
and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC. 2021. �lirmm-
03341604�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03341604
https://hal.archives-ouvertes.fr


Performance and Energy Impact of Enhanced Cache Replacement Policy on
STT-MRAM LLC

PIERRE-YVES PÉNEAU, DAVID NOVO, FLORENT BRUGUIER, LIONEL TORRES, GILLES SAS-

SATELLI, and ABDOULAYE GAMATIÉ,

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, France

Modern architectures adopt large on-chip cache memory hierarchies with more than two levels. While this improves performance, it
has a certain cost in area and power consumption. In this paper, we consider an emerging non volatile memory technology, namely
the Spin-Transfer Torque Magnetic RAM (STT-MRAM), with a powerful cache replacement policy in order to design an efficient
STT-MRAM Last-Level Cache (LLC) in terms of performance and energy. Well-known benefits of STT-MRAM are their near-zero
static power and high density compared to volatile memories. Nonetheless, their high write latency may be detrimental to system
performance. In order to mitigate this issue, we combine STT-MRAM with a recent cache replacement policy. The benefit of this
combination is evaluated through experiments on SPEC CPU2006 benchmark suite, showing performance improvements of up to 10%
and 14% compared to SRAM cache with LRU respectively on single and multicore systems. Moreover, the energy consumption is on
average decreased by 20% for all platforms.

Additional Key Words and Phrases: STT-MRAM, Last-Level Cache, Replacement Policy, Performance, Energy

ACM Reference Format:
Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres, Gilles Sassatelli, and Abdoulaye Gamatié. 2020. Performance and
Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC. 1, 1 (September 2020), 23 pages.

1 INTRODUCTION

Energy consumption has become an important concern of computer architecture design for the last decades. While the
demand for more computing resources is growing every year, much effort has been put on finding the best trade-off
between performance and power consumption in order to build energy-efficient architectures. Current design trends
show that the memory speed is not growing as fast as cores computing capacity, leading to the so-called memory-wall

issue. Caching techniques, which have been pushed in the past for mitigating the memory-wall, are facing the silicon
area constraints. As the memory hierarchy capacity is increased [45], the energy consumption of this part of the CPU
scales accordingly. As an example, it constitutes up to 30% of the total energy of a StrongARM chip [28]. In particular,
as the technology scaling continues, the static power consumption is becoming predominant over the dynamic power
consumption [4].

Authors’ address: Pierre-Yves Péneau, pierre-yves.peneau@lirmm.fr; David Novo, david.novo@lirmm.fr; Florent Bruguier, florent.bruguier@lirmm.fr;
Lionel Torres, florent.bruguier@lirmm.fr; Gilles Sassatelli, florent.bruguier@lirmm.fr; Abdoulaye Gamatié, abdoulaye.gamatie@lirmm.fr,
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, 161 rue Ada, Montpellier, France, 34095.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.

Draft document 1



2 Péneau et al.

Data accesses that occur beyond the Last-Level Cache (LLC) are usually time and energy-consuming as they have to
reach the off-chip main memory. An intelligent design of the LLC reducing such accesses can save power and increase
the overall performance. A usual technique adopted in the past consists in increasing the cache storage capacity so as
to reduce the cache miss rate. This approach is no longer desired due to area and energy constraints. Increasing the
cache size has a negative impact on the financial cost and increases the static power consumption.

Here, we consider an emerging memory technology, the Spin-Torque Transfer Magnetic RAM (STT-MRAM), a
Non-Volatile Memory (NVM) that has a near-zero leakage consumption. This memory has a higher density than SRAM,
providing more storage capacity for the same area. While STT-MRAM read latency is close to SRAM read latency, the
gap for write access is currently one obstacle to a wide STT-MRAM adoption.

The present work builds upon our previous studies [32, 34] and studies the impact in write reduction of cache
replacement policies. Each read request leading to a cache miss eventually triggers a write. Upon this cache miss, the
request is forwarded to an upper level in the memory hierarchy.1 When the response is received, the corresponding
data is written into the cache. Hence, the cache replacement policy has indirectly an important impact on the number
of writes that occur upon cache misses. We carry out a fine-grained analysis on the actual sequence of read/write
transactions taking place in the cache management strategy. This investigation focuses on performance and power
consumption. On the basis of this study, we propose and evaluate the combined use of STT-MRAM and state-of-the-art

Hawkeye cache replacement policy [18]. Thanks to Hawkeye, the number of writes due to cache misses is reduced,
while benefiting from STT-MRAM density for larger LLC.

This paper is organized as follows: Section 2 presents related work; Section 3 introduces a motivational example
and our writes analysis; Section 4 proposes a design space exploration for the Last-Level Cache with the STT-MRAM
technology; Section 5 describes the experimental setup to validate our proposal; Section 6 discusses our experimental
results; finally, Section 7 gives some concluding remarks and perspectives.

2 RELATEDWORK

The use of hybrid caches has been a recurrent approach to address write asymmetry in NVMs. A hybrid cache mixes
SRAM and NVM memories to achieve the best of each technology. Most existing techniques rely on a combination of
hardware and software techniques.

Wu et al. [48] proposed a hybrid memory hierarchy based on a larger LLC thanks to NVM density. They evaluated
different memory technologies and identified eDRAM as the best choice for performance improvement, while STT-
MRAM is the best choice for energy saving. Sun et al. [43] designed a hybrid L2 cache with STT-MRAM and SRAM,
and employed migration based policy to mitigate the latency drawbacks of STT-MRAM. The idea is to keep as many
write intensive data in the SRAM part as possible.

Kim et al. [20] promoted the design of exclusive last-level cache using STT-RAM. In such a cache hierarchy, evicted
blocks from lower-level cache are copied in the last-level cache regardless. The authors showed that their solution
drastically reduces energy consumption of the last-level cache while enhancing the system performance.

Priya et al. [37] introduced a mechanism for improving the lifetime of STT-RAM. They leveraged the MRU (Most
Recently Used) replacement algorithm to achieve their goal. They claimed an improvement of 4x compared to the
mainstream LRU replacement algorithm.

1The first cache level (L1), the closest to the CPU, is the lowest level.

Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 3

Senni et al. [39–41] proposed a hybrid cache design where the cache tag uses SRAM while cache data array uses
STT-MRAM. The cache reacts at the speed of SRAM for hits and misses, which slightly mitigate the overall latency,
while power is saved on the data array thanks to low leakage. Migration techniques for hybrid memories are expensive
and may suffer from inaccurate predictions, inducing extra write operations.

Luo et al. [26], authors present a thrashing aware placement and migration policy (TAP) that address the thrashing
blocks generation issue between L2 and LLC. They show how an adequate dirty thrashing blocks management in
a hybrid memory architecture (combining SRAM and STT-MRAM) favors energy reduction while minimizing the
performance loss.

Zhou et al. [50] proposed another technique called early-write-termination: upon a write, if the value to write is
already in the cell, i.e., a redundant write [7, 8, 36], the operation is canceled. This technique, implemented at circuit
level, does not require an extra read before writing and saves dynamic writing energy. Nevertheless, it is mainly relevant
to applications with many redundant writes.

Software techniques to mitigate NVMs drawbacks have been also proposed. Li et al. [22] proposed a compilation
method called migration-aware code motion. The goal is to change the data access patterns in cache blocks so as to
minimize the extra cost due to migrations. Instructions that access the same cache block with the same operation are
scheduled by the CPU close to each other. Péneau et al. [33] proposed to integrate STT-MRAM-based cache at L1 and
L2 level and to apply aggressive code optimizations to reduce the number of writes. Albeit software approaches are
portable to different architectures, they break the abstraction layer between hardware and software. Indeed, compiler
has to know the underlying technology.

Smullen et al. [42] redesigned the STT-MRAM memory cells to reduce the high dynamic energy and write latency.
They decreased the data retention time (i.e., the non-volatility period) and reduce the current required for writing.
While this approach shows promising results, it relies on an aggressive retention reduction that incurs the introduction
of a costly refresh policy to avoid data loss. Later on, Bouziane et al. [9] leveraged the data retention time tradeoff to
show how to efficiently map data on NVM.

In this work, we take a complementary approach and evaluate the impact of cache replacement policies coupled
with variations on LLC capacity in the reduction of critical writes. We basically re-evaluate the gap in performance
between STT-MRAM and SRAM-based LLC given the latest advances in cache replacement policies. Moreover, energy
results are also provided. We assess these changes on the entire memory hierarchy, while some previous work [22–
25, 30, 43, 47, 49, 50] often use a partial perspective, i.e., a cache-level only.

3 MOTIVATION AND APPROACH

In this work, we use the ChampSim [1] simulator with a subset of applications from the SPEC CPU2006 benchmark
suite [17] for motivating our approach. Compared to usual simulation tools used for evaluating NVM in system
architectures, e.g. gem5 [6, 11, 13, 14] and SimpleScalar [10, 44], ChampSim is a faster simulator, yet less precise tool
compared to gem5. It executes application traces instead of full codes. Note that trace-driven simulation is also possible
with gem5 [12, 31]. Another benefit is that it can be easily customized to evaluate various cache replacement techniques,
while it would be more tedious with an environment such as gem5. Timing and energy results are obtained from
NVSim [15] for the LLC and from datasheet information for the main memory [2]. More details of the experimental
setup are given in Section 5.1. A common metric used to assess LLC performance is theMiss Per Kilo Instructions (MPKI),
defined as the total number of cache misses divided by the total number of executed instructions. One possibility to

Working document



4 Péneau et al.

reduce the MPKI is to increase the cache size. The cache contains more data and reduces the probability for a cache
miss to occur. This results in penalties in terms of cache latency, energy and area.

3.1 Motivational Example

Let us evaluate the execution of two SPEC CPU2006 applications, namely soplex and libquantum. These applications
have different memory access patterns. Figure 1a depicts the impact of 4MB versus 2MB LLC cache designs on the
MPKI, the Instruction Per Cycle (IPC) and the energy consumption of LLC and the main memory. For soplex, the MPKI
is decreased by 27.6%, leading to a faster execution by 9.7%, while the energy consumption of the LLC and the main
memory is respectively damaged by 33% and improved by 23%. While the performance for soplex application benefits
from a larger cache, this induces a negative impact on the LLC energy consumption. On the other hand, the outcome is
different for the libquantum application. As shown in Figure 1a, the MPKI is unchanged (i.e., no improvement), while
the IPC is slightly decreased by 0.6%. The energy consumption of the LLC and the main memory is also degraded, due
to more expensive read/write transactions on the LLC. Moreover, a lower IPC, i.e., a longer execution time, increases
the static energy. Here, the energy consumption of the LLC drastically grows by up to 47% with larger cache. The
breakdown in static and dynamic energy consumption of the LLC is detailed in Figure 1b: 80% of the energy comes
from the static part.

MPKI = 0

MPKI
IPC

LLC energy
Main mem. energy

soplex libquantumIm
p

ro
ve

m
e
n

t 
w

.r
.t

 2
M

B
 L

L
C

 (
%

)

−50

−40

−30

−20

−10

0

10

20

30

(a) MPKI, IPC, and energy

4MB2MB4MB2MB
soplex libquantum

Static Dynamic
E

n
e
rg

y 
co

n
su

m
p

ti
o
n

 (
n

J)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Energy breakdown

Fig. 1. Evaluation of 2MB and 4MB LLC for soplex and libquantum

Increasing the cache size shows interesting results for performance but faces two obstacles. Firstly, the LLC energy
consumption is increased. Moreover, depending of the memory access pattern of the application, it may degrade the LLC
energy while offering no gain in performance. Secondly, doubling the LLC size increases the silicon area on the chip.
Nowadays, this aspect is crucial in design and larger caches are often not realistic due to area budget constraints. To
tackle these two aspects, we consider STT-MRAM, which is considered as a future candidate for SRAM replacement [46].
The STT-MRAM technology suffers from higher memory access latency and energy per access than SRAM, especially
for write operation. However, STT-MRAM memory cells are composed of one transistor, while it is six transistors
for SRAM cells. Hence, STT-MRAM is a denser. In addition, this technology offers a near-zero leakage power, which
eliminates the high static energy consumption observed with SRAM (see Figure 1b). This aspect is particularly relevant
for applications that do not benefit from larger cache such as libquantum (see Figure 1b) In such a case, even though the
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 5

execution time is longer, the energy consumption would not dramatically increase thanks to the low static energy of
STT-MRAM.

3.2 Writes Operations at Last-Level Cache

At Last-Level Cache, write operations are divided into two categories: a) write-back, i.e., a write operation coming from
a lower cache level, and b) write-fill, i.e., a write operation that occurs when the LLC receives an answer from the main
memory. These schemes are illustrated in Figure 2. Let us consider L3 cache as LLC. Transaction (1) is a write-back
coming from the L2 for data 𝑋 . In this case, 𝑋 is immediately written in the cache line (transaction (2a)). Possibly, a
write-back could be generated by the LLC towards the main memory (transaction (2b)) if data 𝐷 has been modified
and needs to be saved. For requests (3) and (4), corresponding respectively to a read and a prefetch, the requested 𝑌
data is not in the cache. This cache miss triggers a transaction to the main memory to fetch 𝑌 , and upon receiving the
response, 𝑌 data is written in the cache. This operation represents a write-fill. As with transaction (2b), a write-back is
generated if data 𝐿 replaced in the LLC must be saved.

LLC

(1) Writeback [X]
A B C D

A B C X

(3) Read [Y]

(4) Prefetch [Y]
I J K L

(5) Read [Y]

(6a) Fill [Y]
YI J K

(2b) Writeback [D]

(2a) Write [X]

(6b) Writeback [L]

Fig. 2. Write transactions on the Last-Level Cache

Then, an important question that arises is to know whether or not write-back and write-fill have an equivalent impact
on the overall system performance? For illustration, we consider five SPEC CPU2006 applications with different writes
distributions to answer this question. Figure 3a reports the normalized IPC for different write latencies, while Figure 3b
depicts the write distribution for the considered applications. Here,𝑊𝐹 and𝑊𝐵 respectively denote write-fill latency
and write-back latency. We define the reference configuration as a 2MB STT-MRAM LLC with𝑊𝐹 =𝑊𝐵 = 38 𝑐𝑦𝑐𝑙𝑒𝑠 .
Results are normalized to this reference. We also compare with a 2MB SRAM LLC where𝑊𝐹 =𝑊𝐵 = 20 𝑐𝑦𝑐𝑙𝑒𝑠 .

First, we set𝑊𝐹 = 0 𝑐𝑦𝑐𝑙𝑒 in order to assess the impact of the write-fill operation on system performance. Then,
we apply the same for𝑊𝐵 for evaluating the impact of write-back. We also compare to the specific configuration
where both𝑊𝐹 and𝑊𝐵 are set to zero. For all configurations, the write-buffer contains up to 16 elements. Moreover,
bypassing is disabled for write-back.

When𝑊𝐹 = 0 𝑐𝑦𝑐𝑙𝑒 , i.e., write-fill has no impact on performance, results show a reduced execution time by 0.93×
on average and up to 0.84× for libquantum. When𝑊𝐵 = 0 𝑐𝑦𝑐𝑙𝑒 , i.e., write-back has no impact on performance, the
execution time is the same as for the reference STT-MRAM configuration. Finally, when both𝑊𝐹 and𝑊𝐵 are set
to zero, the execution time is the same as the case where only write-fill latency is set to zero. Performance gains are
particularly visible for applications that have a higher number of write-fill than write-back requests, such as libquantum
or sphinx3. Nevertheless, even for an application with more write-back requests such as perlbench (see Figure 3b), results
show that𝑊𝐵 = 0 𝑐𝑦𝑐𝑙𝑒 has no impact on performance. These results show that only write-fill have a high impact on

Working document



6 Péneau et al.

STT (reference)
STT + WB = 0

STT + WF = 0
STT + WF = WB = 0

SRAM

0.80

0.85

0.90

0.95

1.00

gcc libquantum perlbench sphinx3 xalancbmk Average

(a)Write-back (WB) andwrite-fill (WF) effects on performances normalized to baseline
STT-MRAM

Write-back Write-fill

0

20

40

60

80

100

gcc libquantum perlbench sphinx3 xalancbmk

(b) Write-back and write-fill distribution

Fig. 3. Write operations performance and distribution

performance. Indeed, a write-back operation coming from a lower level of the memory does not require an immediate
response from the LLC. Hence, it does not stall the CPU. Conversely, a write-fill occurs upon a cache miss, meaning
that the CPU needs a data to continue the execution of an application. Unless the data becomes available, the CPU
could be stalled if further instructions depend on this data.

The above analysis shows that, with STT-MRAM , one should primarily focus on write-fill operations for reducing
the number of writes on the LLC and improving system performance.

Moreover, our results show that there is no side-effect between these two types of write. Let us define 𝐴 the
performance improvement with𝑊𝐹 = 0, 𝐵 the performance improvement with𝑊𝐵 = 0 and 𝐶 the performance
improvement with𝑊𝐹 = 𝑊𝐵 = 0. Figure 3a shows that 𝐴 + 𝐵 = 𝐶 for all applications. Hence, 𝐴 does not have an
impact on 𝐵 and vice versa. Therefore, one could reduce the number of write-fill without a side effect on write-back in
terms of performance.

3.3 Effects of write-fill reduction on the energy consumption

While a write-fill reduction has a positive effect in terms of performance, it could modify the type of requests on the
LLC and by corollary the energy consumption. In this section, we examine what are these changes and their impact.
Then, we analyze these effects on SRAM and STT-MRAM technologies.

3.3.1 Changes on memory accesses. Let us consider a memory hierarchy with inclusive L1 and L2 caches and an
exclusive LLC. With such an architecture, the eviction of a block in the LLC does not evict this block in other caches.
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 7

L2 LLC

B B

Step 1 : write-fill

DRAM

B

C

Step 2 : eviction

Step 3 :
replacement

Step 4 :
write-back

miss

Fig. 4. Illustration of the write-back miss effect

The reduction of write-fill means that read requests from the L2 have to priority over the write requests. Whenever
a block 𝐵 is detected in the LLC as useless for reading, it is discarded and replaced. However, block 𝐵 could be written
in the future in the LLC if the L2 generates a write-back request for 𝐵. This scheme is described on the Figure 4. First,
𝐵 is sent from the LLC to the L2 (step 1). Then, the LLC evicts 𝐵 which is replaced by 𝐶 (step 2 and 3). When the L2
generates a write-back request for 𝐵, the block is missing and it generates a write-back miss. 𝐶 is evicted, and 𝐵 is
written. If 𝐵 had not been evicted, the write-back would have generate a hit. Note that in both cases, the latency remains
the same. This slight difference between write-back hit and write-back miss is not perceptible in terms of performance,
but the energy requirement is different.

Equations 1 and 2 reflect the dynamic energy consumption of the LLC:

𝐸𝑟𝑑 = 𝑃ℎ𝑟 × 𝐸𝑟 + {(1 − 𝑃ℎ𝑟 ) × (𝐸𝑟 + 𝐸𝑚)} (1)

𝐸𝑤𝑟 = 𝑃ℎ𝑤 × 𝐸𝑤 + {(1 − 𝑃ℎ𝑤) × (𝐸𝑤 + 𝐸𝑚)} , (2)

where 𝐸𝑟𝑑 and 𝐸𝑤𝑟 respectively denote the total dynamic energy consumption for reading and writing, 𝐸𝑟 , 𝐸𝑤 and 𝐸𝑚
the energy consumption for a single read, write or miss, and 𝑃ℎ𝑟 and 𝑃ℎ𝑤 the probability of read hit and write-back hit.
Decreasing the number of write-fill means increasing 𝑃ℎ𝑟 . Hence, reading becomes less costly since one avoid the cost of
a miss, 𝐸𝑚 . As previously mentioned, a side-effect of this choice could be to reduce 𝑃ℎ𝑤 . In such a case, writing becomes
more costly since a miss has been added. In a write-fill -optimized scenario where 𝑃ℎ𝑟 is increased and 𝑃ℎ𝑤 is decreased,
the dynamic energy consumption of the LLC could be greater than a scenario without write-fill optimization.

3.3.2 Difference between SRAM and STT-MRAM . Changes on the dynamic energy consumption of the LLC do not
have the same effect according to the technology used for the cache. Equation 3 depicts the energy consumption of the
LLC, regardless of the technology:

𝐸 = 𝛼 (𝑊 ×𝑇 ) + 𝛽 (𝐸𝑟𝑑 + 𝐸𝑤𝑟 ) , (3)

where𝑊 is the static power of the LLC, 𝑇 the execution time, and 𝛼 and 𝛽 two variables. 𝛼 (𝑊 ×𝑇 ) and 𝛽 (𝐸𝑟𝑑 + 𝐸𝑤𝑟 )
respectively denot the static part and the dynamic part of the energy consumption. A cache that uses SRAM technology
has a total energy consumption mostly dominated by the static part, i.e., 𝛼 ≫ 𝛽 . An aggressive optimization on write-fill

would decrease the total execution time𝑇 , and by corollary the static energy consumption. However, even if the dynamic
power is increased, the relation 𝛼 ≫ 𝛽 remains true. Then, the overall energy consumption of the LLC is decreased.

This behavior is not observable with the STT-MRAM technology. One key property of STT-MRAM is its very low
static power. Then, the relation between 𝛼 and 𝛽 is reversed and 𝛼 ≪ 𝛽 . In such a case, an increase of the dynamic energy

Working document



8 Péneau et al.

consumption is not masked by the static part as with the SRAM technology. Then, a cache that uses the STT-MRAM
technology could suffer from a greater energy consumption when using optimization on write-fill than without.

3.4 Cache Replacement Policy

Write-fill operations are directly dependent on the MPKI of the LLC. A low MPKI leads to a low amount of requests to
the main memory, and then a low amount of write-fill operations. Thus, one way to mitigate the STT-MRAM write
latency is to reduce the MPKI to decrease the number of write-fill requests.

The cache replacement policy is responsible for data eviction when a cache line is full. For example, in Figure 2, data
𝑋 of the write-back transaction erases data 𝐷 . It means that 𝐷 has been chosen by the replacement policy to be evicted.
Hence, the next access to 𝐷 will generate a cache miss. Therefore, the replacement policy directly affects the number
of misses, and so the MPKI. An efficient policy should evict data that will not be re-used in the future, or at least be
re-used further than the other data in the same cache line. The most common used policy is the Least-Recently Used
(LRU), which is cheap in terms of hardware resources. However, it is well-known that LRU is not the most efficient
policy [38] and is also far from the theoretical optimal that could be achieved [16]. The state-of-the-art Hawkeye [18]
replacement policy has been developed as an attempt to bridge this gap. This policy is based on the theoretical MIN
algorithm, a.k.a. Belady’s algorithm [5]. To the best of our knowledge, this is the most advanced replacement policy [3].

This strategy identifies instructions that often generate cache misses. For a certain number of cache accesses, a data
structure called a predictor keeps in memory the result of each access, i.e., hit or miss, by using saturating counters. The
program counter of the instruction that has generated the access is also saved. Hence, the memory of the predictor
contains instructions that generate hits or misses. Upon each cache access, the predictor is consulted, a prediction is
made and saturating counters are updated. Cache blocks, which are accessed by instructions generating cache misses
have higher priority for eviction.

4 NON-VOLATILE MEMORY EXPLORATION

4.1 Leveraging the density of STT-MRAM

Large LLC memory capacity allows to store more data and avoid costly accesses to the main memory.2 As a result,
LLC accesses become more expensive in terms of latency and energy, while the leakage power increases as the area is
doubled.

For the same cache capacity, STT-MRAM requires a smaller silicon area footprint than SRAM thanks to its higher
density. In other words, STT-MRAM provides larger cache memory capacity for the same silicon area. In this work, we
exploit this feature, to enlarge the LLC capacity up to the silicon area of the reference SRAM LLC. Hence, the following
constraint must be satisfied:

𝐴𝑠𝑟𝑎𝑚 ≥ 𝐴𝑠𝑡𝑡 , (4)

where 𝐴𝑠𝑟𝑎𝑚 is the silicon area of the reference LLC in SRAM and 𝐴𝑠𝑡𝑡 is the silicon area of the LLC in STT-MRAM.
The reference LLC selected in our study is a SRAM cache with a storage capacity of 2MB for monocore systems and
4MB for multicore systems. We use NVSim [15] to determine that the STT-MRAM LLC size can be increased up to
8MB and 16MB within the reference cache area constraint respectively for monocore and multicore systems (see more
details in Section 5). Each cache size above this limit breaks the constraint expressed by Formula 4.

2Note that some applications may not benefit from this feature. When memory accesses have no spatial locality, the cache architecture cannot capture
this behavior and all accesses would eventually miss, regardless of the cache size.

Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 9

Criterion Description
ADP MIN(Area-Delay Product)
AD2P MIN(Area-Delay-Square Product)
ADEP MIN(Area-Delay-Energy Product)
ADE2P MIN(Area-Delay-Energy-Square Product)
ReadEDP MIN(ReadDelay*ReadEnergy)
WriteEDP MIN(WriteDelay*WriteEnergy)
Table 1. Selection criteria for cache memory configurations

4.2 Design exploration with NVSim

Usually, authors use NVSim to extract a cache configuration and give no explanation on how do they obtain these
results. In this paper, we propose an extensive NVM exploration in order to select the best cache configuration according
to a given criterion. To the best of our knowledge, this kind of design space exploration has never been presented in a
paper.

4.2.1 Methodology. Our exploration is conducted with NVSim and adopt the following method :

• A minimal definition of the cache configuration
• An automatized exploration based on this definition
• The definition of a criterion to select a configuration
• A visualization of the exploration space
• The application of our criterion to select an appropriate configuration

We set five parameters in the minimal definition of a cache: memory size, word size, associativity, technology
and temperature. The automatized process of exploration relies on the exploration mode provided by NVsim. For all
parameters without a pre-defined value, NVSim explores a large variety of possibilities and store all results in a CSV file.

4.2.2 Criterion selection. There is different criteria of design selection based for example on the latency or the energy
costs. Each of these criterion is usually used according to the considered cache level. For instance, a first-level cache
should treat CPU requests in a fast manner. Hence, the latency criterion is pre-dominant over the energy. On the
contrary, a Last-Level Cache should be optimized for its static energy, which is correlated to its area. Table 1 summarizes
six criteria we identified for a cache configuration selection.

Since STT-MRAM is known for its high delay and energy, we want to reduce these values as much as possible.
Moreover, we set an area constraint on the LLC for our exploration (see Formula 4). Then, we choose to take into
account the area in our choice and select the Area-Delay-Energy Product (ADEP) as our main discriminant. This is a
balanced choice between all three parameters that we need.

4.2.3 Result visualization. Figure 5 shows the design space exploration for a 4MB 16-way cache. There is a total of
72192 possible designs. For the sake of visibility, we perform a zoom on the most interesting region of the plot. Each
point denotes an energy value. The intersection of this value, the area value and the delay value gives one possible
design. Black points are the Pareto design according to these three metrics. The point surrounded with a square is the
selected ADEP design. We repeat this process for all STT-MRAM cache configuration used in this paper. Results are
summarized in Table 2.

Working document



10 Péneau et al.

0 0.2 0.4 0.6 0.8 1 1.2
Area (mm2)

0

2

4

6

8

10

12

R
e
a
d
 d

e
la

y
 (

n
s)

Design
Pareto Design
ADEP

Fig. 5. Pareto view of all cache configurations for read delay according to cache area

5 EXPERIMENTAL SETUP

5.1 Environment Setup

We describe the timing, area and power models used in the sequel for the LLC and the main memory. Then, we introduce
the used simulation infrastructure and we explain its calibration with considered timing information.

5.1.1 Memory Model. For both LLC models, we used 22𝑛𝑚 technology with a temperature of 350𝐾 . The considered
STT-MRAM model is provided with NVSim and assumes optimization for cell area, set/reset pulse duration and energy.
The obtained parameter values are summarized in Table 2 and are compliant with state-of-the-art projection for this
technology scaling [29].

The considered main memory model is based on a publicly available datasheet from Micron Technology [2]. We
modeled a 4GB DDR3 with 1 DIMM, 8 ranks, 8 banks per ranks, organized with 16 × 65536 columns with 64B on each
row. Thus, each bank contains 64MB of data, each rank 512MB, and the total is 4GB. The extracted latency parameters
are given in Table 3. For multicore systems with 8GB of memory, we add another DIMM with the same characteristics.

5.1.2 Power models. Caches memory. For each cache level, we extract the energy cost of each memory operation, i.e.,
read, write and miss, and multiply it by the number of reads, writes and misses observed on this cache level, as follows:

𝐸𝑖 = {𝑅𝑖 × 𝐸𝑖𝑅 +𝑊 𝑖 × 𝐸𝑖𝑊 +𝑀𝑖 × 𝐸𝑖𝑀 } + {𝑇 × 𝑃𝑖
𝑙𝑒𝑎𝑘

} , (5)

where 𝑖 is the 𝑖𝑡ℎ cache level; 𝑅𝑖 ,𝑊 𝑖 and 𝑀𝑖 are respectively the numbers of reads, writes and misses; 𝐸𝑖
𝑅
, 𝐸𝑖

𝑊
and

𝐸𝑖
𝑀

are respectively the costs of a read, a write and a miss operation; 𝑇 is the execution time and 𝑃𝑖
𝑙𝑒𝑎𝑘

is the leakage
power. The first part between braces represents the dynamic energy consumption and the second part the static energy
consumption.

Main memory. In addition to the latency model, Table 3 contains information extracted from the Micron datasheet [2]
to create a power model for the main memory. Here, 𝑅𝐷 and𝑊𝑅 are respectively the unit cost per read and write; 𝑃𝑅𝐸
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 11

Table 2. SRAM and STT-MRAM timing and area results configurations.

SRAM STT-MRAM
2MB 4MB 8MB 16MB 2MB 4MB 8MB 16MB

Read latency [ns] 1.43 2.10 3.74 6.53 4.43 4.45 5.05 5.55

Write latency [ns] - 6.00 6.05 6.31 6.52

Read energy [nJ] 0.07 0.10 0.14 0.19 0.20 0.25 0.26 0.29

Write energy [nJ] 0.06 0.09 0.13 0.18 0.25 0.30 0.30 0.33

Miss energy [nJ] 0.001 0.002 0.003 0.004 0.12 0.12 0.12 0.12

Static power [mW] 30.40 62.17 124.25 233.10 1.85 4.44 8.98 16.72

Area [mm2] 1.52 3.02 5.78 11.21 0.45 0.81 1.54 2.99

Table 3. Main memory configuration parameters [2]

𝑡𝑅𝑃 𝑡𝑅𝐶𝐷 𝑡𝐶𝐴𝑆 𝑡𝑅𝐴𝑆 𝑡𝑅𝐹𝐶 𝑡𝐶𝐾

11 cycles 28 cycles 208 cycles 1.25ns

𝑅𝐷 𝑊𝑅 𝑃𝑅𝐸 𝐴𝐶𝑇 𝐴𝐶𝑇𝐵𝐺 𝑅𝐸𝐹 𝑇𝑅𝐸𝐹

0.47nJ 0.47nJ 0.22nJ 0.38nJ 0.027W 46.33nJ 64ms

and 𝐴𝐶𝑇 are respectively the cost of page pre-charge and page activation; 𝐴𝐶𝑇𝐵𝐺 is the active background energy
consumption; 𝑅𝐸𝐹 is the cost of a refresh and 𝑇𝑅𝐸𝐹 is the self-refresh frequency of the main memory.

We use the following formula [27] to compute the energy consumption of the main memory:

𝐸𝑚 = 𝐸𝑎 + 𝐸𝑏 + 𝐸𝑐 , (6)

𝐸𝑎 = 𝑅 × 𝑅𝐷 +𝑊 ×𝑊𝑅 , (7)

𝐸𝑏 = (𝑅𝑀 +𝑊𝑀 ) × (𝑃𝑅𝐸 +𝐴𝐶𝑇 ) , (8)

𝐸𝑐 = (𝑇 /𝑇𝑅𝐸𝐹 ) × 𝑅𝐸𝐹 +𝑇 ×𝐴𝐶𝑇𝐵𝐺 , (9)

where 𝐸𝑚 is the total energy consumption of the main memory, 𝐸𝑎 the energy consumption due to read and write, 𝐸𝑏
the energy consumption due to row buffer miss which triggers pre-activation and activation of memory pages, and 𝐸𝑐
is the static energy consumption due to page refresh and static power.3 For Equation 7, 𝑅 and𝑊 are the number of read
and write. For Equation 8, 𝑅𝑀 and𝑊𝑀 are the number of read miss and write miss. For Equation 9, 𝑇 is the execution
time.

5.1.3 Simulation Environment. Our evaluation is conducted with the ChampSim simulator [1] used for the Cache
Replacement Championship at ISCA’17 conference [3]. The modeled architecture is based on an Intel Core i7 system.
Cores are Out-of-Order with a 3-level on chip cache hierarchy plus a main memory. For multicore systems, we set the
number of cores to 4. L1 and L2 caches are private to each core and the LLC is shared between all cores. The setup is
specified in Table 4.

3There is no low-power mode in our model that could reduce𝐴𝐶𝑇𝐵𝐺 .

Working document



12 Péneau et al.

Table 4. Experimental setup configuration.

L1 (I/D) 32KB, 8-way, LRU, Private, 4 cycles
L2 256KB, 8-way, LRU, Unified, 8 cycles
L3 Varying size/policy, 16-way, Shared
L3 size 2MB 4MB 8MB 16MB
L3 SRAM latency 20 23 30 41
L3 STT latency (R/W) 33/39 33/39 35/40 37/41
Hawkeye budget 28.2KB 58.7KB 114.7KB 266.4
CPU 1 or 4 core(s), Out-of-Order, 4GHz
Main mem. size/latency 4GB or 8GB, hit: 55 cycles, miss: 165 cycles

Each trace represents an isolated region of interest of 1 billion instructions. Each core executes a single-threaded
application during 1 billion instructions. The cache warm-up takes 200 millions instructions while the remaining 800
millions instructions are used to report execution statistics. For multicore platforms, we consider 20 mixes composed
each by four SPEC CPU2006 applications. Mixes have been generated randomly from the 20 applications and are
presented in Table 5. When a core finishes its 1 billion instructions, it continues to read the trace to simulate an activity
on the memory hierarchy until all cores reach 1 billion of executed instructions. The extra activity related to this
mechanism is not reported in the final results. We calculate the average performance, i.e., IPC, by applying a geometric
mean on the IPCs measured for all applications, as previous work did [18, 19, 35].

Sixteen configurations are addressed in this study: 2MB LLC cache with SRAM and STT-MRAM; 4MB and 8MB LLC
caches only with STT-MRAM; and each of these four caches is combined with either LRU or Hawkeye. This is the same
setup for multicore platform except that it is shifted from 4MB to 16MB. For the sake of simplicity, we associate the
prefixes T (for Tiny), S (for Small), M (for Medium) and B (for Big) together with technology names in order to denote
respectively the 2MB, 4MB, 8MB and 16MB LLC configurations. The name of considered replacement policies, i.e., LRU
and Hawkeye, are used as a suffix. For instance, T_stt_hwk denotes a 2MB STT cache, using the Hawkeye policy.

5.1.4 Latency Calibration. The total access time of LLC in SRAM is usually dominated by the transfer delay of the
interconnect, and not by the cache access itself [21]. This mitigates the impact of the potential performance penalty
resulting from the integration of STT-MRAM in LLC. Therefore, we define the total access time 𝐿𝑇 for the LLC as
follows:

𝐿𝑇 = 𝐿𝐶 + 𝐿𝐼 (10)

where 𝐿𝐼 is the interconnect latency and 𝐿𝐶 the cache latency (see also Figure 6). Thus, the effective latency is the sum
of the interconnect latency and the cache latency. Our evaluation framework is calibrated based on an Intel-i7 processor
where the LLC latency for a 2MB SRAM cache is 5𝑛𝑠 , i.e., 𝐿𝑇 = 5𝑛𝑠 . With NVSim, we extract the cache access latency of
a 2MB SRAM cache and we obtained 𝐿𝐶 = 1.34𝑛𝑠 . Hence, we calculate the interconnect latency:

𝐿𝐼 = 𝐿𝑇 − 𝐿𝐶 = 3.66𝑛𝑠 . (11)

We set 𝐿𝐼 to this value and use it as an offset to calculate the total access time for each cache configuration mentioned
in Table 2. Then, we convert this latency in cycles w.r.t. the CPU frequency
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 13

Table 5. Detail of the 20 mixes executed on multicore platforms

Core 0 Core 1 Core 2 Core 3
mix1 gobmk libquantum perlbench xalancbmk
mix2 astar bwaves lbm zeusmp
mix3 cactusADM lbm milc perlbench
mix4 bwaves lbm sphinx3 wrf
mix5 astar cactusADM GemsFDTD perlbench
mix6 cactusADM GemsFDTD gobmk soplex
mix7 astar cactusADM leslie3d sphinx3
mix8 bwaves libquantum perlbench sphinx3
mix9 cactusADM gobmk milc soplex
mix10 bzip2 gobmk lbm perlbench
mix11 astar gobmk milc soplex
mix12 gobmk leslie3d libquantum perlbench
mix13 bwaves bzip2 gobmk wrf
mix14 gobmk lbm leslie3d milc
mix15 cactusADM gobmk milc perlbench
mix16 bwaves bzip2 gobmk leslie3d
mix17 astar bzip2 leslie3d xalancbmk
mix18 gobmk libquantum wrf xalancbmk
mix19 gobmk lbm milc zeusmp
mix20 milc perlbench wrf zeusmp

LT = LI+LC

LLC

LC

(variable)

Read X
(from L2)

LI

(fixed)

Find/Send X

Fig. 6. Configuration of the LLC latency in ChampSim

6 EXPERIMENTAL RESULTS

This section presents performance results in a first time, and energy results in a second time. Both monocore and
multicore platforms are discussed.

6.1 Performance results

Performance results are presented as follows : firstly, we assess the impact of the LLC size in SRAM and STT-MRAM,
by exploiting density to enlarge the cache capacity. Secondly, we report results when taking the Hawkeye cache
replacement policy into account. Finally, we discuss this policy w.r.t. LRU. Except when it is explicitly mentioned, all
results are normalized to the reference setup. For monocore platforms, the reference is a 2MB SRAM LLC with LRU, i.e.,
T_sram_lru. For multicore platforms, it is a 4MB LLC with LRU, i.e., S_sram_lru.

Working document



14 Péneau et al.

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

T_stt_lru S_stt_lru M_stt_lru

1.59 1.63

IP
C

0.9
1

1.1
1.2
1.3
1.4
1.5

G
e
m
sF

D
T
D

a
st
a
r

b
w
a
ve

s

b
zi
p
2

ca
ct
u
sA

D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb

m
k

ze
u
sm

p

A
ve

ra
g
e

(a) LRU results normalized to T_sram_lru

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

T_sram_hwk T_stt_hwk S_stt_hwk M_stt_hwk

1.631.60

IP
C

0.9
1

1.1
1.2
1.3
1.4
1.5

G
e
m
sF

D
T
D

a
st
a
r

b
w
a
ve

s

b
zi
p
2

ca
ct
u
sA

D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb

m
k

ze
u
sm

p

A
ve

ra
g
e

(b) Hawkeye results normalized to T_sram_lru

Fig. 7. MPKI (top) and IPC (bottom) for a monocore platform with LRU and Hawkeye replacement policies

6.1.1 Impact of Cache Size and Technology. Here, all configurations use the LRU replacement policy. The top of Figure 7a
shows the MPKI improvement w.r.t. the reference configuration. We observe that the T_stt_lru configuration does
not influence the MPKI since the cache size remains unchanged. Conversely, a reduction of MPKI is clearly visible
with S_stt_lru and M_stt_lru configurations. Some applications are not sensitive to cache size, like bwaves, libquantum
or milc. Conversely, the lbm application is very sensitive to cache size from 8MB. For this application, the MPKI is
decreased by a factor of 0.56×. This indicates that a large part of the working set now fits into the LLC. Similar results
are observed on Figure 8a for a multicore system. The MPKI is not changed with the default S_stt_lru configuration,
and is reduced with other configurations. Configuration B_stt_lru reduces the MPKI up to 0.60× with mixes 7 and 8.

The bottom part of Figure 7a shows the normalized IPC achieved by STT-MRAM configurations w.r.t the reference
configuration. The T_stt_lru configuration, i.e., a direct replacement of SRAM by STT-MRAM, is slower than the
reference. This is due to the higher latency of STT-MRAM. The S_stt_lru configuration gives on average the same
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 15

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

S_stt_lru M_stt_lru B_stt_lru

IP
C

0.9

1

1.1

1.2

m
ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

m
ix
7

m
ix
8

m
ix
9

m
ix
1
0

m
ix
1
1

m
ix
1
2

m
ix
1
3

m
ix
1
4

m
ix
1
5

m
ix
1
6

m
ix
1
7

m
ix
1
8

m
ix
1
9

m
ix
2
0

A
ve
ra
g
e

(a) LRU results normalized to S_sram_lru

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

S_sram_hwk S_stt_hwk M_stt_hwk B_stt_hwk

1.26

IP
C

0.9
1

1.1
1.2
1.3

m
ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

m
ix
7

m
ix
8

m
ix
9

m
ix
1
0

m
ix
1
1

m
ix
1
2

m
ix
1
3

m
ix
1
4

m
ix
1
5

m
ix
1
6

m
ix
1
7

m
ix
1
8

m
ix
1
9

m
ix
2
0

A
ve
ra
g
e

(b) Hawkeye results normalized to S_sram_lru

Fig. 8. MPKI (top) and IPC (bottom) for a multicore platform with LRU and Hawkeye replacement policies

results than the reference, while the M_stt_lru configuration outperforms the reference on average by 1.06× With
S_stt_lru the IPC is degraded for sixteen applications, while it is only for nine applications with M_stt_lru.

The performance for the soplex application is correlated to the MPKI. Indeed, there is a linear trend between MPKI
reduction and IPC improvement. Conversely, the following applications, gobmk, gromacs and perlbench exhibit a
significant MPKI reduction with no visible impact on performance. This is due to the very low amount of requests
received by the LLC compared to the other applications. Hence, reducing this activity is not significant enough to
improve the overall performance.

Results on multicore platforms (Figure 8a) follow the same trend as on a monocore system. Configuration S_stt_lru

exhibits lower performance than the reference configuration S_sram_lru due to the STT-MRAM latency. However,
a bigger cache size is more efficient. The M_stt_lru configuration provides a lower IPC for thirteen applications and
B_stt_lru for only four applications. As a result, the average gain on IPC with the largest configuration is 1.07×.

Working document



16 Péneau et al.

On average, increasing the LLC size shows that STT-MRAM could achieve the same or better performance as SRAM
under area constraint for mono and multicore systems.

6.1.2 Impact of Cache Replacement Policy. Here, all configurations use the Hawkeye replacement policy. Performance
results for a monocore system are presented in Figure 7b. We observe the gains on the T_sram_hwk configuration, i.e.,
the Hawkeye reference. This configuration never degrades performances and achieves an average speedup of 1.05×.
Larger STT-MRAM configurations, S_stt_hwk and M_stt_hwk, perform better than T_sram_hwk on average.

Thanks to the Hawkeye policy, T_stt_hwk and S_stt_hwk outperform the reference for lbm or mcf. This was not the
case with LRU, as depicted in Figure 7a. Note that for a few applications such as bwaves, GemsFDTD or zeusmp, the
T_sram_hwk configuration achieves a higher speedup than larger configurations with the same (or almost) MPKI. This
shows that performance is still constrained by STT-MRAM latency, even with an enhanced replacement policy.

Nevertheless, Hawkeye improves performance where a larger cache only cannot. For example, all STT-MRAM
configurations achieve the same IPC for the milc application with LRU, considering the LLC size. When Hawkeye
is used, the performance is linearly increased with the cache size. As a matter of fact, Hawkeye can deal with some
memory patterns not exploited by larger LLCs. The best configuration is M_stt_hwk, which achieves a performance
improvement of 1.10× on average over the T_sram_lru baseline.

As with the LRU replacement policy, results for multicore systems on Figure 8b follow the same trend as on monocore
platforms. However, they are more valuable. The default configuration S_stt_hwk badly affects the IPC for only 3
applications (up to 1.2% for mix 20) while it is degraded for 15 applications on amonocore platform. As a consequence, the
average gain for the IPC with configurations M_stt_hwk and B_stt_hwk is respectively 1.09× and 1.14×. Configuration
S_stt_hwk is the only STT-MRAM configuration that achieves lower results than S_sram_hwk, while its results are
improved w.r.t. to S_sram_lru.

M
P
K
I

0.50
0.60
0.70
0.80
0.90
1.00
1.10

T_sram_hwk
T_stt_hwk

S_sram_hwk
S_stt_hwk

M_sram_hwk
M_stt_hwk

IP
C

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

G
e
m
sF

D
T
D

a
st
a
r

b
w
a
ve

s

b
zi
p
2

ca
ct
u
sA

D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb

m
k

ze
u
sm

p

A
ve

ra
g
e

Fig. 9. Performance impact of Hawkeye normalized to LRU for a monocore

6.1.3 Hawkeye versus LRU. In this section we focus only on results for a monocore system to avoid redundancy.
However, similar results are observed with a multicore platform.

Figure 9 shows the effect of the Hawkeye policy over LRU. Results are normalized for each configuration to its
counterpart with LRU. For example, M_stt_hwk is normalized to M_stt_lru. For this experiment, we also run SRAM
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 17

configuration that do not fit into area constraint to illustrate the effect of Hawkeye on SRAM and STT-MRAM for the
same cache size. Both SRAM and STT-MRAM configurations follow the same trend regarding the MPKI reduction over
LRU since the Hawkeye policy is not impacted by cache latency. Moreover, we use a single core platform where parallel
events cannot occur. Hence, eviction decision remains identical for a given cache size, regardless of the cache size.
However, the average gain obtained with Hawkeye is slightly better with STT-MRAM. The performance gap between
SRAM and STT-MRAM is 3.3% and 3.1%, respectively with LRU and Hawkeye. Hence, reducing the amount of write-fill
has higher impact on STT-MRAM where writes are penalizing.

Figure 9 shows that the 8MB configuration is not as efficient as the 4MB configuration in terms of performance
improvement. The average gain for the IPC for M_sram_hwk and M_stt_hwk is lower than S_sram_hwk and S_stt_hwk.
This suggests an issue that can be due to either a larger LLC, or the Hawkeye policy, or both. Even if the overall
performance improvement reported in Figure 7b shows that the 8MB configuration is faster, we note that there may be
a limit to the performance improvement provided by the Hawkeye policy. This behavior is visible with bzip2, wrf and
sphinx3. In Figure 7a, results show that the MPKI is reduced for S_stt_lru and M_stt_lru. Hence, increasing the cache
size is efficient. Similarly, in Figure 7b, the MPKI is also reduced for the same configurations while replacing LRU by
Hawkeye. However, the gains observed in Figure 9 show that Hawkeye increases the MPKI compared to LRU for a 8MB
LLC. The reason is that Hawkeye made inadequate eviction decisions. Indeed, the Hawkeye predictor exploits cache
accesses to identify the instructions that generate cache misses. Since a large cache size reduces the number of cache
misses, it becomes more difficult for the predictor to learn accurately from a small set of miss events. Note that the
performance for M_stt_hwk is still better than other configurations despite these inaccurate decisions.

6.2 Energy results

In this section, we present the energy consumption and energy-efficiency results with LRU and Hawkeye replacement
policies. We first describe our results for a monocore platform, and secondly for a multicore platform. For the rest of
the paper, the energy-efficiency is characterized as the Energy-Delay Product (EDP).

6.2.1 Entire system perspective. Figure 10a depicts results for the energy consumption (top) and the EDP (bottom)
for a monocore system with LRU. On average, configurations T_stt_lru, S_stt_lru and M_stt_lru reduce the energy
consumption respectively by a factor 0.89×, 0.86× and 0.83×. The application libquantum is the only application where
the energy consumption is increased. This is explained by the higher execution time due to longer STT-MRAM latency
(Figure 7a). The Energy-Delay Product is correlated to the energy consumption. On average, the gain w.r.t. the SRAM
reference is 0.95×, 0.86× and 0.79× respectively for configurations T_stt_lru, S_stt_lru and M_stt_lru. However, some
applications like bwaves, libquantum or milc badly affect the EDP compared to the SRAM reference T_sram_lru. These
applications suffer from a too important slowdown in terms of execution time, due to their insensibility to the LLC size
(Figure 7a).

Results with the Hawkeye replacement policies on Figure 10b show that the SRAM configuration T_sram_hwk

provides a small gain of 0.95× in terms of energy consumption. The low power feature of the STT-MRAM technology
increase this gain up to 0.85×, 0.81× and 0.80× respectively for configurations T_stt_hwk, S_stt_hwk and M_stt_hwk.
With the Hawkeye replacement policy, gains are more noticeable and no degradation can be observed as with the LRU.
The EPD is also improved, and only bwaves and libquantum applications exhibit a higher EDP w.r.t. T_sram_lru. The
best average EDP is provided by configuration M_stt_hwk.

Working document



18 Péneau et al.

E
n
e
rg

y
0.0
0.2
0.4
0.6
0.8
1.0

T_stt_lru S_stt_lru M_stt_lru

E
D
P

0.0
0.2
0.5
0.8
1.0
1.2

G
e
m
sF

D
T
D

a
st
a
r

b
w
a
ve

s

b
zi
p
2

ca
ct
u
sA

D
M

g
cc

g
o
b
m
k

g
ro

m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb

m
k

ze
u
sm

p

A
ve

ra
g
e

(a) LRU results normalized to T_sram_lru

E
n
e
rg

y

0.0
0.2
0.4
0.6
0.8
1.0

T_sram_hwk T_stt_hwk S_stt_hwk M_stt_hwk

E
D
P

0.0
0.2
0.5
0.8
1.0
1.2

G
e
m
sF

D
T
D

a
st
a
r

b
w
a
ve

s

b
zi
p
2

ca
ct
u
sA

D
M

g
cc

g
o
b
m
k

g
ro

m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb

m
k

ze
u
sm

p

A
ve

ra
g
e

(b) Hawkeye results normalized to T_sram_lru

Fig. 10. Energy consumption (top) and EDP (bottom) for a monocore platform with LRU and Hawkeye replacement policies

Thanks to the low-power feature of the STT-MRAM, results for multicore platform show a decrease of the energy
consumption for all considered mixes. However, one can observe on Figure 11a that for mixes 1, 12 and 18, the energy
consumption increases as the cache size is scaled. This is due to a higher execution time related to the STT-MRAM latency
that increases with cache size. On average, we observe an energy consumption improvement of 0.91×, 0.90× and 0.85×
respectively for configurations T_stt_lru, S_stt_lru andM_stt_lru. Regarding the EDP, we observe a counter-performance
for mix 1, 12, 18 and 8. For the first three, this is due to their higher execution time previously mentioned. Performance
of mix 8 on Figure 8b show an improvement, up to 1.20× with B_stt_lru configuration, while the energy consumption
reduction with this cache configuration is slight and similar to configuration T_stt_lru. This is due to the sphinx3
application in the mix, that achieves an IPC improvement of 1.50×, while others applications suffers from IPC reduction
of 0.98×, 0.91× and 0.99×. The geometric mean shows an average improvement while the global execution time of mix
8 is increased by 1.09×. This explain the low improvement in terms of EDP. Results with the Hawkeye replacement
policy are presented by Figure 11b. They follow a similar trend as with LRU, with more significant reductions on the
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 19

energy consumption. The improvement is gradual as the cache size increases. The EDP results are correlated to this
observation, and the best average EDP improvement is achieved by configuration B_stt_hwk by 0.79×.

E
n
e
rg
y

0.0
0.2
0.4
0.6
0.8
1.0

S_stt_lru M_stt_lru B_stt_lru

E
D
P

0.0
0.2
0.5
0.8
1.0
1.2

m
ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

m
ix
7

m
ix
8

m
ix
9

m
ix
1
0

m
ix
1
1

m
ix
1
2

m
ix
1
3

m
ix
1
4

m
ix
1
5

m
ix
1
6

m
ix
1
7

m
ix
1
8

m
ix
1
9

m
ix
2
0

A
ve

ra
g
e

(a) Energy consumption and EDP for a multicore platform with LRU

E
n
e
rg
y

0.0
0.2
0.4
0.6
0.8
1.0

S_sram_hwk S_stt_hwk M_stt_hwk B_stt_hwk

E
D
P

0.0
0.2
0.5
0.8
1.0
1.2

m
ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

m
ix
7

m
ix
8

m
ix
9

m
ix
1
0

m
ix
1
1

m
ix
1
2

m
ix
1
3

m
ix
1
4

m
ix
1
5

m
ix
1
6

m
ix
1
7

m
ix
1
8

m
ix
1
9

m
ix
2
0

A
ve
ra
g
e

(b) Energy consumption and EDP for a multicore platform with Hawkeye

Fig. 11. Energy consumption and EDP for a multicore platform with LRU and Hawkeye replacement policies

6.2.2 Last-Level Cache perspective. In the previous section, we present the energy consumption results for the entire
system. Here, we rather focus on the Last-Level Cache and the impact of the Hawkeye replacement policy. For the sake
of simplicity, this analysis is conducted on a monocore platform, but results for multicore platform are similar.

Figure 12 illustrates the impact of Hawkeye on the energy consumption. For each cache application, the energy
consumption with Hawkeye is normalized to its counterpart with LRU. On average, the effect is positive and the LLC
consumes less energy with Hawkeye. However, results show the opposite for few applications, like wrf or GemsFDTD.
With these applications, the energy consumption is always greater with Hawkeye than with LRU. This situation is due
to changes on transactions on the LLC, as discussed in Section 3.3.

Working document



20 Péneau et al.

T_sram_hwk T_stt_hwk S_stt_hwk M_stt_hwk

0.80
0.85
0.90
0.95
1.00
1.05

G
e
m
sF
D
T
D

a
st
a
r

b
w
a
ve
s

b
zi
p
2

ca
ct
u
sA
D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb
m
k

ze
u
sm

p

G
e
o
m
e
a
n

Fig. 12. Energy impact of the Hawkeye replacement policy on a monocore platform. For each configuration with Hawkeye, result is
normalized to its counterpart with LRU.

Table 6. Evolution of the number of transactions received by the LLC with the Hawkeye replacement policy

Metric Read hit Read miss Write-back hit Write-back miss
GemsFDTD 0.98× 1.0× 0.44× 2400×
libquantum 2.106 0.92× 0.17× 7.106×
milc 16× 0.96× 0.26× 6.105×
wrf 1.08× 0.98× 0.83× 450×

Table 6 gives the total amount of read hit, read miss, write-back hit and write-back miss for four applications with a
4MB cache: GemsFDTD, libquantum, milc and wrf. On one hand, this illustrates the positive effect of Hawkeye. Except
for GemsFDTD, the total number of read hit is increased, while the number of read miss is identical or decreased.
Considering Formula 1, variable 𝑃ℎ𝑟 is increased and the energy cost due to misses is decreased. On the other hand,
we can observe the negative impact of the Hawkeye strategy. The number of write-back hit is largely reduced, from
0.83× and up to 0.17×, while the number of write-back miss is drastically increased, from 450× and up to 7.106×.
Considering Formula 2, one can observe that when 𝑃ℎ𝑤 is decreased, then additional miss costs are added and writing is
more expensive.

Upon a certain threshold, the energy gains obtained by decreasing the number of read miss become less important
than additional costs due to an increasing number of write-back miss. Hence, the global energy consumption of the
LLC is increased.

7 CONCLUSION

This paper evaluates the impact of a state-of-the-art replacement policy used along with STT-MRAM technology on
monocore and multicore architectures. The high density feature of the STT-MRAM is used to increase the cache size,
while the replacement policy is used to improve the overall performance. Moreover, the low-power aspect of the
STT-MRAM allows a designer to decrease the energy consumption.

We analyze the two different types of write that exists in the memory hierarchy and showed that they are more
important thanwrite-back for performance improvement since they are on the critical path to main memory access. Thus,
we applied the Hawkeye replacement policy which is designed for reducing cache read misses. However, pre-simulation
Working document



Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 21

analysis and experimental results suggest that this policy could have a negative impact on the energy consumption of
the LLC for a certain class of applications.

We showed that using such policy with STT-MRAM is more beneficial than with SRAM. Indeed, the read/write
latency asymmetry of this technology allows a higher gap of improvement in terms of performance than with SRAM.
However, with a large cache that drastically reduces the number of misses, the small amount of accesses makes the
training of the Hawkeye predictor longer. Thus, it leads to inadequate eviction decisions. The evaluation results showed
that performance can be improved up to 10% and 14% respectively for monocore and multicore platform. This gain,
combined with the drastic static energy reduction enabled by STT-MRAM, leads to increased energy-efficiency up to
26.3%× and 27.7% for monocore and multicore systems.

ACKNOWLEDGEMENTS

This work has been funded by the French ANR agency under the grant ANR-15-CE25-0007-01, within the framework of
the CONTINUUM project.

REFERENCES
[1] [n.d.]. The ChampSim simulator. https://github.com/ChampSim.
[2] [n.d.]. DDR3-Micron MT41K512M8DA-125 datasheet. https://bit.ly/2x1HIG5, last accessed Sept. 2018.
[3] [n.d.]. ISCA 2017 Cache Replacement Championship. http://crc2.ece.tamu.edu.
[4] 2015. International Technology Roadmap for Semiconductors (ITRS).
[5] Laszlo A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-Storage Computer. IBM Systems journal 5, 2 (1966), 78–101.
[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,

Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator.
SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[7] Rabab Bouziane, Erven Rohou, and Abdoulaye Gamatié. 2017. How Could Compile-Time Program Analysis help Leveraging Emerging NVM
Features?. In EDiS: Embedded and Distributed Systems. Oran, Algeria, 1–6. https://doi.org/10.1109/EDIS.2017.8284031

[8] Rabab Bouziane, Erven Rohou, and Abdoulaye Gamatié. 2018. Compile-Time Silent-Store Elimination for Energy Efficiency: an Analytic Evaluation
for Non-Volatile Cache Memory. In Procs of the Rapido’18 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools. ACM, 5.

[9] Rabab Bouziane, Erven Rohou, and Abdoulaye Gamatié. 2018. Energy-Efficient Memory Mappings Based on Partial WCET Analysis and Multi-
Retention Time STT-RAM. In Proceedings of the 26th International Conference on Real-Time Networks and Systems (Chasseneuil-du-Poitou, France)
(RTNS ’18). Association for Computing Machinery, New York, NY, USA, 148–158. https://doi.org/10.1145/3273905.3273908

[10] Doug Burger and Todd M. Austin. 1997. The SimpleScalar Tool Set, Version 2.0. SIGARCH Comput. Archit. News 25, 3 (June 1997), 13–25.
https://doi.org/10.1145/268806.268810

[11] Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres, and Michel Robert. 2015. Design Exploration for next Generation High-
Performance Manycore On-chip Systems: Application to big.LITTLE Architectures. In ISVLSI: International Symposium on Very Large Scale Integration.
IEEE, Montpellier, France, 551–556. https://doi.org/10.1109/ISVLSI.2015.28

[12] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Abdoulaye Gamatié, Gilles Sassatelli, and Chris Adeniyi-Jones. 2015. A trace-driven
approach for fast and accurate simulation of manycore architectures. In The 20th Asia and South Pacific Design Automation Conference, ASP-DAC
2015, Chiba, Japan, January 19-22, 2015. IEEE, 707–712. https://doi.org/10.1109/ASPDAC.2015.7059093

[13] Thibaud Delobelle, Pierre-Yves Péneau, Abdoulaye Gamatié, Florent Bruguier, Sophiane Senni, Gilles Sassatelli, and Lionel Torres. 2017. MAGPIE:
System-level Evaluation of Manycore Systems with Emerging Memory Technologies. In EMS: Emerging Memory Solutions. Lausanne, Switzerland.
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01467328

[14] Thibaud Delobelle, Pierre-Yves Péneau, Sophiane Senni, Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli, and Lionel Torres. 2016. Flot
automatique d’évaluation pour l’exploration d’architectures à base de mémoires non volatiles. In ComPAS: Conférence en Parallélisme, Architecture et
Système. Lorient, France. https://hal-lirmm.ccsd.cnrs.fr/lirmm-01345975

[15] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. 2012. NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging
Nonvolatile Memory. IEEE Trans. on Computer-Aided Design of Integ. Circ. and Sys. 31, 7 (2012), 994–1007.

[16] J Gecsei, DR Slutz, and IL Traiger. 1970. Evaluation Techniques for Storage Hierarchies. IBM Systems journal 9, 2 (1970), 78–117.
[17] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News 34, 4 (2006), 1–17.
[18] Akanksha Jain and Calvin Lin. 2016. Back to the Future: Leveraging Belady’s Algorithm for Improved Cache Replacement. In Computer Architecture

(ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE, 78–89.

Working document

https://github.com/ChampSim
https://bit.ly/2x1HIG5
http://crc2.ece.tamu.edu
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/EDIS.2017.8284031
https://doi.org/10.1145/3273905.3273908
https://doi.org/10.1145/268806.268810
https://doi.org/10.1109/ISVLSI.2015.28
https://doi.org/10.1109/ASPDAC.2015.7059093
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01467328
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01345975


22 Péneau et al.

[19] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP). In ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 60–71.

[20] Namhyung Kim, Junwhan Ahn, Woong Seo, and Kiyoung Choi. 2015. Energy-efficient exclusive last-level hybrid caches consisting of SRAM and STT-
RAM. In 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 183–188. https://doi.org/10.1109/VLSI-SoC.2015.7314413

[21] Jing Li, Patrick Ndai, Ashish Goel, Sayeef Salahuddin, and Kaushik Roy. 2010. Design Paradigm for Robust Spin-Torque Transfer Magnetic RAM
(STT MRAM) from Circuit/Architecture Perspective. IEEE Tran. on Very Large Scale Integration Systems 18, 12 (2010), 1710–1723.

[22] Qingan Li, Liang Shi, Jianhua Li, Chun Jason Xue, and Yanxiang He. 2012. Code Motion for Migration Minimization in STT-RAM Based Hybrid
Cache. In VLSI (ISVLSI), 2012 IEEE Computer Society Annual Symposium on. IEEE, 410–415.

[23] Chen Liu, Yuanqing Cheng, Ying Wang, Youguang Zhang, and Weisheng Zhao. 2018. NEAR: A Novel Energy Aware Replacement Policy for
STT-MRAM LLCs. In IEEE Int’l Symp. on Circuits and Systems (ISCAS). 1–5.

[24] Liu Liu, Ping Chi, Shuangchen Li, Yuanqing Cheng, and Yuan Xie. 2017. Building Energy-Efficient Multi-Level Cell STT-RAM Caches With Data
Compression. In Asia and South Pacific Design Automation Conf. 751–756.

[25] Zihao Liu, Mengjie Mao, Tao Liu, Xue Wang, Wujie Wen, Yiran Chen, Hai Li, Danghui Wang, Yukui Pei, and Ning Ge. 2018. TriZone: A Design of
MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 10 (Oct, 2018), 1985–1998.

[26] Jing-Yuan Luo, Hsiang-Yun Cheng, Ing-Chao Lin, and Da-Wei Chang. 2019. TAP: Reducing the Energy of Asymmetric Hybrid Last-Level Cache via
Thrashing Aware Placement and Migration. IEEE Trans. Comput. 68, 12 (2019), 1704–1719. https://doi.org/10.1109/TC.2019.2917208

[27] Deepak M Mathew, Éder F Zulian, Subash Kannoth, Matthias Jung, Christian Weis, and Norbert Wehn. 2017. A Bank-Wise DRAM Power Model for
System Simulations. In Proceedings of the 9th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools. ACM, 5.

[28] Sparsh Mittal. 2014. A Survey of Architectural Techniques for Improving Cache Power Efficiency. Sustainable Computing: Informatics and Systems 4,
1 (2014), 33–43.

[29] Sparsh Mittal. 2017. A Survey of Soft-Error Mitigation Techniques for Non-Volatile Memories. Computers 6, 1 (2017), 8.
[30] Sparsh Mittal and Jeffrey S Vetter. 2015. AYUSH: A Technique for Extending Lifetime of SRAM-NVM Hybrid Caches. Computer Architecture Letters

14, 2 (2015), 115–118.
[31] Alejandro Nocua, Florent Bruguier, Gilles Sassatelli, and Abdoulaye Gamatié. 2017. ElasticSimMATE: A fast and accurate gem5 trace-driven

simulator for multicore systems. In 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip, ReCoSoC 2017, Madrid,
Spain, July 12-14, 2017. IEEE, 1–8. https://doi.org/10.1109/ReCoSoC.2017.8016146

[32] Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres, Gilles Sassatelli, and Abdoulaye Gamatié. 2018. Improving the Performance of
STT-MRAM LLC Through Enhanced Cache Replacement Policy. In Architecture of Computing Systems - ARCS 2018 - 31st International Conference,
Braunschweig, Germany, April 9-12, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10793), Mladen Berekovic, Rainer Buchty, Heiko
Hamann, Dirk Koch, and Thilo Pionteck (Eds.). Springer, 168–180. https://doi.org/10.1007/978-3-319-77610-1_13

[33] Pierre-Yves Péneau, Rabab Bouziane, Abdoulayse Gamatié, Erven Rohou, Florent Bruguier, Gilles Sassatelli, Lionel Torres, and Sophiane Senni. 2016.
Loop Optimization in Presence of STT-MRAM Caches: A Study of Performance-Energy Tradeoffs. In Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2016 26th International Workshop on. IEEE, 162–169.

[34] Pierre-Yves Péneau, Florent Bruguier, David Novo, Gilles Sassatelli, and Abdoulaye Gamatié. 2020. Towards a Flexible and ComprehensiveEvaluation
Approach for Adressing NVMIntegration in Cache Hierarchy. Technical Report. LIRMM, CNRS, Univ. Montpellier.

[35] Pierre-Yves Péneau, David Novo, Florent Bruguier, Gilles Sassatelli, and Abdoulaye Gamatié. 2017. Performance and Energy Assessment of Last-Level
Cache Replacement Policies. In Embedded & Distributed Systems (EDiS), 2017 First International Conference on. IEEE, 1–6.

[36] Fernando Magno Quintão Pereira, Guilherme Vieira Leobas, and Abdoulaye Gamatié. 2018. Static Prediction of Silent Stores. ACM Trans. Archit.
Code Optim. 15, 4, Article 44 (Nov. 2018), 26 pages. https://doi.org/10.1145/3280848

[37] Bhukya Krishna Priya, Sampath Kumar, Shameedha Begum, and N. Ramasubramaniam. 2018. Enhancing the lifetime of STT-RAM with MRU
replacement algorithm. In 2018 4th International Conference on Recent Advances in Information Technology (RAIT). 1–6. https://doi.org/10.1109/RAIT.
2018.8388985

[38] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer. 2007. Adaptive Insertion Policies for High Performance Caching. In
ACM SIGARCH Computer Architecture News, Vol. 35. ACM, 381–391.

[39] Sophiane Senni, Raphael Martins Brum, Lionel Torres, Gilles Sassatelli, Abdoulaye Gamatié, and Bruno Mussard. 2015. Potential applications based
on NVM emerging technologies. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble, France,
March 9-13, 2015, Wolfgang Nebel and David Atienza (Eds.). ACM, 1012–1017. http://dl.acm.org/citation.cfm?id=2757049

[40] Sophiane Senni, Thibaud Delobelle, Odilia Coi, Pierre-Yves Péneau, Lionel Torres, Abdoulaye Gamatié, Pascal Benoit, and Gilles Sassatelli. 2017.
Embedded Systems to High Performance Computing Using STT-MRAM. In 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 536–541.

[41] Sophiane Senni, Lionel Torres, Gilles Sassatelli, Abdoulaye Gamatie, and Bruno Mussard. 2016. Exploring MRAM Technologies for Energy Efficient
Systems-On-Chip. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6, 3 (2016), 279–292. https://doi.org/10.1109/JETCAS.2016.
2547680

[42] Clinton W Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R Stan. 2011. Relaxing Non-Volatility for Fast and
Energy-Efficient STT-RAM Caches. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on. IEEE, 50–61.

Working document

https://doi.org/10.1109/VLSI-SoC.2015.7314413
https://doi.org/10.1109/TC.2019.2917208
https://doi.org/10.1109/ReCoSoC.2017.8016146
https://doi.org/10.1007/978-3-319-77610-1_13
https://doi.org/10.1145/3280848
https://doi.org/10.1109/RAIT.2018.8388985
https://doi.org/10.1109/RAIT.2018.8388985
http://dl.acm.org/citation.cfm?id=2757049
https://doi.org/10.1109/JETCAS.2016.2547680
https://doi.org/10.1109/JETCAS.2016.2547680


Performance and Energy Impact of Enhanced Cache Replacement Policy on STT-MRAM LLC 23

[43] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. 2009. A Novel Architecture of the 3D Stacked MRAM L2 Cache for CMPs. In High
Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on. IEEE, 239–249.

[44] Mohammad Taghi Teimoori, MuhammadAbdullahHanif, Alireza Ejlali, andMuhammad Shafique. 2018. AdAM: Adaptive approximationmanagement
for the non-volatile memory hierarchies. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 785–790. https://doi.org/10.23919/
DATE.2018.8342113

[45] K Ananda Vardhan and YN Srikant. 2014. Exploiting Critical Data Regions to Reduce Data Cache Energy Consumption. In Proceedings of the 17th
International Workshop on Software and Compilers for Embedded Systems. ACM, 69–78.

[46] Jeffrey S Vetter and Sparsh Mittal. 2015. Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing. Computing
in Science & Engineering 17, 2 (2015), 73–82.

[47] Jianxing Wang, Yenni Tim, Weng-Fai Wong, Zhong-Liang Ong, Zhenyu Sun, and Hai Li. 2014. A Coherent Hybrid SRAM and STT-RAM L1 Cache
Architecture for Shared Memory Multicores. In Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 610–615.

[48] XiaoxiaWu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie. 2009. Hybrid Cache Architecture with Disparate Memory Technologies.
In ACM SIGARCH computer architecture news, Vol. 37. ACM, 34–45.

[49] Sadegh Yazdanshenas, Marzieh Ranjbar Pirbasti, Mahdi Fazeli, and Ahmad Patooghy. 2014. Coding Last Level STT-RAM Cache for High Endurance
and Low Power. IEEE Comp. Arch. Letters 13, 2 (2014), 73–76.

[50] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. Energy Eeduction for STT-RAM Using Early Write Termination. In Computer-Aided
Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on. IEEE, 264–268.

Working document

https://doi.org/10.23919/DATE.2018.8342113
https://doi.org/10.23919/DATE.2018.8342113

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation and Approach
	3.1 Motivational Example
	3.2 Writes Operations at Last-Level Cache
	3.3 Effects of write-fill reduction on the energy consumption
	3.4 Cache Replacement Policy

	4 Non-Volatile Memory exploration
	4.1 Leveraging the density of STT-MRAM 
	4.2 Design exploration with NVSim

	5 Experimental Setup
	5.1 Environment Setup

	6 Experimental Results
	6.1 Performance results
	6.2 Energy results

	7 Conclusion
	References

