Materializing Knowledge Bases via Trigger Graphs
Efthymia Tsamoura, David Carral, Enrico Malizia, Jacopo Urbani

▶ To cite this version:

HAL Id: lirmm-03344217
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03344217
Submitted on 14 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Materializing Knowledge Bases via Trigger Graphs
(Technical Report)

Efthymia Tsamoura‡, David Carral†, Enrico Malizia‡, Jacopo Urbani§
‡ Samsung AI Research, United Kingdom; † TU Dresden, Germany;
§ University of Bologna, Italy; § Vrije Universiteit Amsterdam, The Netherlands

ABSTRACT
The chase is a well-established family of algorithms used to materialize Knowledge Bases (KBs), like Knowledge Graphs (KGs), to tackle important tasks like query answering under dependencies or data cleaning. A general problem of chase algorithms is that they might perform redundant computations. To counter this problem, we introduce the notion of Trigger Graphs (TGs), which guide the execution of the rules avoiding redundant computations. We present the results of an extensive theoretical and empirical study that seeks to answer when and how TGs can be computed and what are the benefits of TGs when applied over real-world KBs. Our results include introducing algorithms that compute (minimal) TGs. We implemented our approach in a new engine, and our experiments show that it can be significantly more efficient than the chase enabling us to materialize KBs with 17B facts in less than 40 min on commodity machines.

PVLDB Reference Format:
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Motivation. Knowledge Bases (KBs) are becoming increasingly important with many industrial key players investing in this technology. For example, Knowledge Graphs (KGs) [32] have emerged as the main vehicle for representing factual knowledge on the Web and enjoy a widespread adoption [48]. Moreover, several tech giants are building KGs to support their core business. For instance, the KG developed at Microsoft contains information about the world and supports question answering, while, at Google, KGs are used to help Google products respond more appropriately to user requests by mapping them to concepts in the KG. The use of KBs and KGs in such scenarios is not restricted only to database-like analytics or query answering: KBs play also a central role in neural-symbolic systems for efficient learning and explainable AI [23,36].

A KB can be viewed as a classical database B with factual knowledge and a set of logical rules P, called program, allowing the derivation of additional knowledge. One class of rules that is of particular interest both to academia and to industry is Datalog [2]. Datalog is a recursive language with declarative semantics that allows users to succinctly write recursive graph queries. Beyond expressing graph queries, e.g., reachability, Datalog allows richer fixed-point graph analytics via aggregate functions. LogicBlox and LinkedIn used Datalog to develop high-performance applications, or to compute analytics over its KG [3,46]. Google developed their own Datalog engine called Yedalog [21]. Other industrial users include Facebook, BP [10] and Samsung [40].

Materializing a KB (P, B) is the process of deriving all the facts that logically follow when reasoning over the database B using the rules in P. Materialization is a core operation in KB management. An obvious use is that of caching the derived knowledge. A second use is that of goal-driven query answering, i.e., deriving the knowledge specific to a given query only, using database techniques such as magic sets and subsumptive tabling [8,9,13,55]. Beyond knowledge exploration, other applications of materialization are data wrangling [35], entity resolution [37], data exchange [25] and query answering over OWL [44] and RDFS [16] ontologies. Finally, materialization has been also used in probabilistic KBs [56].

Problem. The increasing sizes of modern KBs [48], and the fact that materialization is not a one-off operation when used for goal-driven query answering, make improving the materialization performance critical. The chase, which was introduced in 1979 by Maier et al. [42], has been the most popular materialization technique and has been adopted by several commercial and open source engines such as VLog [58], RDFox [47] and Vadalog [10].

To improve the performance of materialization, different approaches have focused on different inefficiency aspects. One approach is to reduce the number of
facts added in the KB. This is the take of some of the
chase variants proposed by the database and AI
communities \cite{11, 24, 49}. A second approach is to paral-
lelize the computation. For example, RDFox proposes a
parallelization technique for Datalog rules \cite{47}, while
WebPIE \cite{59} and Inferray \cite{54} propose parallelization
techniques for fixed RDFS rules. Orthogonal to those ap-
proaches are those employing compression and columnar
storage layouts to reduce memory consumption \cite{34, 58}.

In this paper, we focus on a different aspect: that of
avoiding redundant computations. Redundant computa-
tions is a problem that concerns all chase variants and
has multiple causes. A first cause is the derivation of
facts that either have been derived in previous rounds, or
are logically redundant, i.e., they can be ignored without
compromising query answering. The above issue has
been partially addressed in Datalog with the well-known
semi-naive evaluation (SNE) \cite{2}. SNE restricts the exe-
cution of the rules over at least one new fact. However,
it cannot block the derivation of the same or logically
redundant facts by different rules. A second cause of
redundant computations relates to the execution of the
rules: when executing a rule, the chase may consider
facts that cannot lead to any derivations.

Our approach. To reduce the amount of redundant
computations, we introduce the notion of Trigger Graphs
(TGs). A TG is an acyclic directed graph that captures
all the operations that should be performed to material-
ize a KB \((P, B)\). Each node in a TG is associated with
a rule from \(P\) and with a set of facts, while the edges
specify the facts over which we execute each rule.

Intuitively, a TG can be viewed as a blueprint for
reasoning over the KB. As such, we can use it to “guide”
a reasoning procedure without resorting to an exhaustive
execution of the rules, as it is done with the chase. In
particular, our approach consists of traversing the TG,
executing the rule \(r\) associated with a node \(v\) over the
union of the facts associated with the parent nodes of
\(v\) and storing the derived facts “inside” \(v\). After the
traversal is complete, then the materialization of the KB
is simply the union of the facts in all the nodes.

TG-guided materialization addresses at the same time
all causes of inefficiencies described above. In particu-
lar, TGs block the derivation of the same or logically
redundant facts that cannot be blocked by SNE. This
is achieved by effectively partitioning into smaller sub-
instances the facts currently in the KB. This partitioning
also enables us to reduce the cost of executing the rules.

Furthermore, in specific cases, TGs allow us reasoning
via either completely avoiding certain steps involved
when executing rules, or performing them at the end and
collectively for all rules. Our experiments show that we
can get good runtime improvements with both alternatives.

Contributions. We propose techniques for computing
both instance-independent and instance-dependent TGs.
The former TGs are computed exclusively based on the
rules of the KB and allow us to reason over any possible
instance of the KB making them particularly useful when
the database changes frequently. In contrast, instance-
dependent TGs are computed based both on the rules
and the data of the KB and, thus, support reasoning over
the given KB only. We show that not every program
admits a finite instance-independent TG. We define
a special class, called FTG, including all programs that
admit a finite instance-independent TG and explore its
relationship with other known classes.

As a second contribution, we propose algorithms to
calculate and minimize (instance-independent) TGs for
linear programs: a class of programs relevant in practice.
A program \(P\) not admitting a finite instance-independent
TG may still admit a finite instance-dependent TG.

As a third contribution, we show that all programs
that admit a finite universal model also admit a finite
instance-dependent TG. We use this finding to propose a
TG-guided materialization technique that supports any
such program (not necessarily in \(FTG\)). The technique
works by interleaving the reasoning process with the
computation of the TG, and it reduces the number of
redundant computations via query containment and via
a novel TG-based rule execution strategy.

We implemented our approach in a new reasoner,
called GLog, and compared its performance versus multi-
ple state-of-the-art chase and RDFS engines including
RDFox, VLog, WebPIE \cite{59} and Inferray \cite{54}, using
well-established benchmarks, e.g., ChaseBench \cite{11}.
Our evaluation shows that GLog outperforms all its com-
petitors in all benchmarks. Moreover, in our largest
experiment, GLog was able to materialize a KB with
17B facts in 37 minutes on commodity hardware.

Summary. We make the following contributions:

- (New idea) We propose a new reasoning technique
 based on traversing acyclic graphs, called TGs, to
tackle multiple sources of inefficiency of the chase;
- (New theoretical contribution) We study the class
 of programs admitting finite instance-independent
 TGs and its relationship with other known classes;
- (New algorithms) We propose techniques for com-
 puting minimal instance-independent TGs for lin-
 ear programs, and techniques for computing mini-
 mal instance-dependent TGs for Datalog programs;
- (New system) We introduce a new reasoner, GLog,
 which has competitive performance, often superior
to the state-of-the-art, and has good scalability.

Supplementary material with all proofs, code and eval-
uation data is in https://bitbucket.org/tsamoura/
trigger-graphs/src/master/

2. MOTIVATING EXAMPLE

We start our discussion with a simple example to
describe how the chase works, its inefficiencies, and how
they can be overcome with TGs. For the moment, we
give only an intuitive description of some key concepts to
aid the understanding of the main ideas. In the following
sections, we will provide a formal description.

The chase works in rounds during which it executes
the rules over the facts that are currently in the KB.

\begin{supplementary-material}

\end{supplementary-material}
In most chase variants, the execution of a rule involves three steps: retrieving all the facts that instantiate the premise of the rule, then, checking whether the facts to be derived logically hold in the KB and finally, adding them to the KB if they do.

Example 1. Consider the KB $B = \{ r(c_1, c_2) \}$ with a single fact and the program $P = \{ r_1, r_2, r_3, r_4 \}$:

$$r(X, Y) \rightarrow R(X, Y) \quad (r_1)$$
$$R(X, Y) \rightarrow T(Y, X, Y) \quad (r_2)$$
$$T(Y, X, Y) \rightarrow R(X, Y) \quad (r_3)$$
$$r(X, Y) \rightarrow 3Z.T(Y, X, Z) \quad (r_4)$$

Figure 1(a) depicts the rounds of the chase with such an input. In the first round, the only rules that can derive facts are r_1 and r_4. Rule r_1 derives the fact $R(c_1, c_2)$. Since this fact is not in the KB, the chase adds it to the KB. Let us now focus on r_4. Notice that variable Z in r_4 does not occur in the premise of r_4. The chase deals with such variables by introducing fresh null (values). Nulls can be seen as “placeholders” for objects that are not known. In our case, r_4 derives the fact $T(c_2, c_1, n_1)$, where n_1 is a null, and the chase adds it to the KB.

The chase then continues to the second round where rules are executed over $B' = B \cup \{ R(c_1, c_2), T(c_2, c_1, n_1) \}$. The execution of r_2 derives the fact $T(c_2, c_1, n_1)$, which is added to the KB, yielding $B'' = B' \cup \{ T(c_2, c_1, n_1) \}$. Finally, the chase proceeds to the third round where only rule r_3 derives $R(c_1, c_2)$ from B''. However, since this fact is already in B'', the chase stops.

The above steps expose two inefficiencies of the chase.

The first inefficiency is that of incurring the cost of deriving the same or logically redundant facts.

The second inefficiency that is exposed is that of suboptimally executing the rules themselves: when computing the facts instantiating the premise of a rule, the chase considers all facts currently in the KB even the ones that cannot instantiate the premise of the rule.

Example 3. Continuing with Example 1 consider the execution of r_3 in the second round of the chase. No fact derived by r_4 can instantiate the premise of r_3, since the premise of r_3 requires the first and the third arguments of the T-facts to be the same. Hence, the cost paid for executing r_3 over those facts is unnecessary.

The root of these inefficiencies is that the chase, in each round, considers the entire KB as a source for potential derivations, with only SNE as means to avoid some redundant derivations. If we were able to “guide” the execution of the rules in a more clever way, then we can avoid the inefficiencies stated above.

For instance, consider an alternative execution strategy where r_2 is executed only over the derivations of r_1, while r_3 and r_4 are not executed at all. This strategy would not face any of the inefficiencies highlighted above, and it can be defined with a graph like the one in Figure 1(c). Informally, a Trigger Graph (TG) is precisely such a graph-based blueprint to compute the materialization. In the remaining, we will first provide a formal definition of TGs and study their properties. Then, we will show that in some cases we can build a TG that is optimal for any possible set of facts given as input. In other cases, we can still build TGs incrementally. Such TGs allow to avoid redundant computations that will occur with the chase but only with the given input.

3. Preliminaries

Let Consts, Nulls, Vars, and Preds be mutually disjoint, (countably infinite) sets of constants, nulls, variables, and predicates, respectively. Each predicate p is associated with a non-negative integer $\text{arity}(p) \geq 0$, called the arity of p. Let EDP and IDP be disjoint subsets of Preds of intensional and extensional predicates, respectively. A term is a constant, a null, or a variable. A term is ground if it is either a constant or a null. An atom A has the form $p(t_1, \ldots, t_n)$, where p is an n-ary predicate, and t_1, \ldots, t_n are terms. An atom A is extensional (resp., intensional), if the predicate of A is in EDP (resp., IDP).

A fact is an atom of ground terms. A base fact is an atom of constants whose predicate is extensional. An instance I is a set of facts (possibly comprising null terms). A base instance B is a set of base facts.

A rule is a first-order formula of the form

$$\forall X \forall Y \bigwedge_{i=1}^{n} P_i(X_i, Y_i) \rightarrow 3Z.P(Y, Z),$$

where P_i is an intensional predicate and for all $1 \leq i \leq n$, $X_i \subseteq X$ and $Y_i \subseteq Y$ (X_i and Y_i might be empty). We
assume w.l.o.g. that the body of a rule includes only extensional predicates or intensional predicates. We will denote extensional predicates with lowercase letters, while intensional predicates with uppercase letters. Quantifiers are commonly omitted. The left-hand and the right-hand side of a rule \(r \) are its body and head, respectively, and are denoted by body\((r)\) and head\((r)\). A rule is Datalog if it has no existentially quantified variables, \textit{extensional} if body\((r)\) includes only extensional atoms, and \textit{linear} if it has a single atom in its body.

A \textit{program} is a set of rules. A \textit{knowledge base} (KB) is a pair \((P, B)\) with \(P\) a program and \(B\) a base instance.

Symbol \(\models \) denotes logical entailment, where sets of atoms and rules are viewed as first-order theories. Symbol \(\equiv \) denotes logical equivalence, i.e., logical entailment in both directions.

A \textit{term mapping} \(\sigma \) is a (possibly partial) mapping of terms to terms; we write \(\sigma = \{ t_1 \mapsto s_1, \ldots, t_n \mapsto s_n \} \) to denote that \(\sigma(t_i) = s_i \) for \(1 \leq i \leq n \). Let \(\alpha \) be a term, an atom, a conjunction of atoms, or a set of atoms. Then \(\sigma(\alpha) \) is obtained by replacing each occurrence of a term \(t \) in \(\alpha \) that also occurs in the domain of \(\sigma \) with \(\sigma(t) \) (i.e., terms outside the domain of \(\sigma \) remain unchanged).

A \textit{substitution} is a term mapping whose domain contains only variables and whose range contains only ground terms. For two sets, or conjunctions, of atoms \(A_1 \) and \(A_2 \), a \textit{term mapping} \(\sigma \) from the terms occurring in \(A_1 \) to the terms occurring in \(A_2 \) is said to be a \textit{homomorphism} from \(A_1 \) to \(A_2 \) if the following hold: (i) \(\sigma \) maps each constant in its domain to itself, (ii) \(\sigma \) maps each null in its domain to \(\text{Consts} \cup \text{Nulls} \) and (iii) for each atom \(A \in A_1 \), \(\sigma(A) \in A_2 \). We denote a homomorphism \(\sigma \) from \(A_1 \) into \(A_2 \) by \(\sigma : A_1 \rightarrow A_2 \).

It is known that, for two sets of facts \(A_1 \) and \(A_2 \), there exists a homomorphism from \(A_1 \) into \(A_2 \) iff \(A_1 \models A_2 \) (and hence, there exists a homomorphism in both ways iff \(A_1 \equiv A_2 \)). When \(A_1 \) and \(A_2 \) are null-free instances, \(A_2 \models A_1 \) iff \(A_1 \subseteq A_2 \) and \(A_2 \equiv A_1 \) iff \(A_1 = A_2 \).

For a set of two or more atoms \(A = \{ A_1, \ldots, A_n \} \) a \textit{most general unifier} (MGU) \(\mu \) for \(A \) is a substitution so that: (i) \(\mu(A_1) = \cdots = \mu(A_n) \); and (ii) for each other substitution \(\sigma \) for which \(\sigma(A_1) = \cdots = \sigma(A_n) \), there exists a \(\sigma' \) such that \(\sigma = \sigma' \circ \mu \).

Consider a rule \(r \) of the form \([1]\) and an instance \(I \). A \textit{trigger} for \(r \) in \(I \) is a homomorphism from the body of \(r \) into \(I \). We denote by \(h_s \) the extension of a trigger \(h \) mapping each \(Z \in Z \) into a unique fresh null. A rule \(r \) \textit{holds} or is \textit{satisfied} in an instance \(I \), if for each trigger \(h \) for \(r \) in \(I \), there exists an extension \(h' \) of \(h \) to a homomorphism from the head of \(r \) into \(I \). A \textit{model} of a KB \((P, B)\) is a set \(I \supseteq B \), such that each \(r \in P \) holds in \(I \). A KB may admit infinitely many different models. A model \(M \) is \textit{universal}, if there exists a homomorphism from \(M \) into every other model of \((P, B)\). A program \(P \) is \textit{Finite Expansion Set} (FES), if for each base instance \(B \), \((P, B)\) admits a finite universal model.

A \textit{conjunctive query} (CQ) is a formula of the form \(Q(X_1, \ldots, X_n) \leftarrow \bigwedge_{i=1}^{m} A_i \), where \(Q \) is a fresh predicate not occurring in \(P \), \(A_i \) are null-free atoms and each \(X_i \) occurs in some \(A_i \) atom. We usually refer to a CQ by its head predicate. We refer to the left-hand and the right-hand side of the formula as the \textit{head} and the \textit{body} of the query, respectively. A CQ is \textit{atomic} if its body consists of a single atom. A Boolean CQ (BCQ) is a CQ whose head predicate has no arguments. A substitution \(\sigma \) is an \textit{answer} to \(Q \) on an instance \(I \) if the domain of \(\sigma \) is precisely its head variables, and if \(\sigma \) can be extended to a homomorphism from \(\bigwedge_{i=1}^{n} A_i \) into \(I \). We often identify \(\sigma \) with the \(n \)-tuple \((\sigma(X_1), \ldots, \sigma(X_n)) \). The \textit{output} of \(Q \) on \(I \) is the set \(Q(I) \) of all answers to \(Q \) on \(I \). The answer to a BCQ \(Q \) on an instance \(I \) is true, denoted as \(I \models Q \), if there exists a homomorphism from \(\bigwedge_{i=1}^{n} A_i \) into \(I \). The answer to a BCQ \(Q \) on a KB \((P, B)\) is true, denoted as \((P, B) \models Q \), if \(I \models Q \) holds, for each model \(M \) of \((P, B)\). Finally, a CQ \(Q_1 \) is \textit{contained} in a CQ \(Q_2 \), denoted as \(Q_1 \subseteq Q_2 \), if for each instance \(I \), each answer to \(Q_1 \) on \(I \) is in the answers to \(Q_2 \) on \(I \).

The \textit{chase} refers to a family of techniques for repairing a base instance \(B \) relative to a set of rules \(P \) so that the result satisfies the rules in \(P \) and contains all base facts from \(B \). In particular, the result is a universal model of \((P, B)\), which we can use for query answering [26]. By “chase” we refer both to the procedure and its output.

The chase works in rounds during which it executes one or more rules from the KB. The result of each round \(i \geq 0 \) is a new instance \(I^i \) (with \(I^0 = B \)), which includes the facts of all previous instances plus the newly derived facts. The execution of a rule in the \(i \)-th chase round, involves computing all triggers from the body of \(r \) into \(I^{i-1} \), then (potentially) checking whether the facts to be derived satisfy certain criteria in the KB and finally, adding to the KB or discarding the derived facts. Different chase variants employ different criteria for deciding whether a fact should be added to the KB or whether to stop or continue the reasoning process [11, 49]. For example, the restricted chase (adopted by VLog and RFDox) adds a fact if there exists no homomorphism from this fact into the KB and terminates when no new fact is added. The warded chase (adopted by Vadalog) replaces homomorphism checks by isomorphism ones [10] and terminates, again, when no new fact is added. The equivalent chase omits any checks and terminates when there is a round \(i \) which produces an instance that is logically equivalent to the instance produced in the \((i - 1)\)-th round [24]. Notice that when a KB includes only Datalog rules all chase variants behave the same: a fact is added when it has not been previously derived and the chase stops when no new fact is added to the KB.

Not all chase variants terminate even when the KB admits a finite universal model [24]. The core chase [25] and the equivalent one do offer such guarantees.

For a chase variant, we use \(\text{Ch}(K) \) or \(\text{Ch}(P, B) \) to denote the instance computed during the \(i \)-th chase round and \(\text{Ch}(P, B) \) to denote the (possibly infinite) result of the chase. Furthermore, we define the \textit{chase graph} \(\text{chaseGraph}(P, B) \) for a KB \((P, B)\) as the edge-labeled directed acyclic graph having as nodes the facts in \(\text{Ch}(P, B) \) and having an edge from a node \(f_1 \) to \(f_2 \).
labeled with rule \(r \in P \) if \(f_2 \) is obtained from \(f_1 \) and possibly from other facts by executing \(r \).

4. TRIGGER GRAPHS

In this section, we formally define Trigger Graphs (TGs) and study the class of programs admitting finite instance-independent TGs. First, we introduce the notion of Execution Graphs (EGs). Intuitively, an EG for a program is a digraph stating a “plan” of rule execution to reason via the program. In its general definition, an EG is not required to characterize a plan of reasoning guaranteeing completeness. Particular EGs, defined later, will also satisfy this property.

Definition 4. An execution graph (EG) for a program \(P \) is an acyclic, node- and edge-labelled digraph \(G = (V, E, \text{rule}, \ell) \), where \(V \) and \(E \) are the graph nodes and edges sets, respectively, and \(\text{rule} \) and \(\ell \) are the node- and edge-labeling functions. Each node \(v \) (i) is labeled with some rule, denoted by \(\text{rule}(v) \), from \(P \); and (ii) if the \(j \)-th predicate in the body of \(\text{rule}(v) \) equals the head predicate of \(\text{rule}(u) \) for some node \(u \), then there is an edge labeled \(j \) from node \(u \) to node \(v \), denoted by \(u \rightarrow_{j} v \).

Figures 1(b) and 1(c) show two EGs for \(P_i \) from Example 1. Next to each node is the associated rule. Later we show that both EGs are also TGs for \(P_i \).

Since the nodes of an execution graph are associated with rules of a program, when, in the following, we refer to the head and the body of a node \(v \), we actually mean the head and the body of \(\text{rule}(v) \). Observe that, by definition, nodes associated with extensional rules do not have entering edges, and nodes \(v \) associated with an intensional rule have at most one incoming edge associated with the \(j \)-th predicate of the body of \(v \), i.e., there is at most one node \(u \) such that \(u \rightarrow_{j} v \). The latter might seem counterintuitive as, in a program, the \(j \)-th predicate in the body of a rule can appear in the heads of many different rules. It is precisely to take into account this possibility that, in an execution graph, more than one node can be associated with the same rule \(r \) of the program. In this way, different nodes \(v_1, \ldots, v_q \) associated with the same rule \(r \) can be linked with an edge labeled \(j \) to different nodes \(u_1, \ldots, u_q \) whose head’s predicate is the \(j \)-th predicate of the body of \(r \). This models that to evaluate a rule \(r \) we might need to match the \(j \)-th predicate in the body of \(r \) with facts generated by the heads of different rules.

We now define some notions on EGs that we will use throughout the paper. For an EG \(G \) for a program \(P \), we denote by \(\nu(G) \) and \(\epsilon(G) \) the sets of nodes and edges in \(G \). The depth of a node \(v \in \nu(G) \) is the length of the longest path that ends in \(v \). The depth \(d(G) \) of \(G \) is \(0 \) if \(G \) is the empty graph; otherwise, it is the maximum depth of the nodes in \(\nu(V) \).

As said earlier, EGs can be used to guide the reasoning process. In the following definition, we formalise how the reasoning over a program \(P \) is carried out by following the plan encoded in an EG for \(P \). The definition assumes the following for each rule \(r \) in \(P \): (i) \(r \) is of the form \(\forall X \forall Y \bigwedge_{i=1}^{n} P_i(X_i, Y_i) \rightarrow \exists Z P(Y, Z) \); and (ii) if \(r \) is intensional and is associated with a node in an EG for \(P \), then the EG includes an edge of the form \(u_i \rightarrow_{i} v \), for each \(1 \leq i \leq n \).

Definition 5. Let \((P, B) \) be a KB, \(G \) be an EG for \(P \) and \(v \) be a node in \(G \) associated with rule \(r \in P \). \(v(B) \) includes a fact \(h_v(\text{head}(r)) \), for each \(h \) that is either:
- a homomorphism from the body of \(r \) to \(B \), if \(r \) is extensional; or otherwise
- a homomorphism from the body of \(r \) into \(\bigcup_{i=1}^{n} u_i(B) \) so that the following holds: the restriction of \(h \) over \(X_i \cup Y_i \) is a homomorphism from \(P_i(X_i, Y_i) \) into \(u_i(B) \), for each \(1 \leq i \leq n \).

We pose \(G(B) = B \cup \bigcup_{v \in V} v(B) \).

TGs are EGs guaranteeing the correct computation of conjunctive query answering.

Definition 6. An EG \(G \) is a TG for \((P, B) \), if for each BCQ \(Q \), \((P, B) \models Q \) iff \(G(B) \models Q \). \(G \) is a TG for \(P \), if for each base instance \(B \), \(G \) is a TG for \((P, B) \).

TGs that depend both on \(P \) and \(B \) are called instance-dependent, while TGs that depend only on \(P \) are called instance-independent. The EGs shown in Figure 1 are both instance-independent TGs for \(P_i \).

We provide an analysis of the class of programs that admit a finite instance-independent TG denoted as \(\text{FTG} \). Theorem 7 summarizes the relationship between \(\text{FTG} \) and the classes of programs that are bounded (BDD, \(\{24\} \)), term-depth bounded (TDB, \(\{39\} \)) and first-order-rewritable (FOR, \(\{15\} \)).

Theorem 7. The following hold: \(P \) is \(\text{FTG} \) iff it is BDD; and \(P \) is \(\text{TDB} \cap \text{FOR} \) iff it is BDD.

This result is obtained by showing that if \(P \) is \(\text{FTG} \), then it is \(\text{BDD} \) with bound the maximal depth of any instance-independent TG for \(P \). If it is \(\text{BDD} \) with bound \(k \), then the (finite) EG \(G^k \), which is described above, is a TG for \(P \).

If a program is \(\text{FOR} \), then all facts that contain terms of depth at most \(k \) are produced in a fixed number of chase steps. Therefore, if it is also \(\text{TDB} \), then all relevant facts in the chase are also produced in a fixed number of steps. Finally, the undecidability of \(\text{FTG} \) follows from the fact that \(\text{FOR} \) and \(\text{FTG} \) coincide for Datalog programs, which are always \(\text{TDB} \). See the appendix for a detailed explanation.

We conclude our analysis by showing that any KB that admits a finite model, also admits a finite instance-dependent TG, as stated in the following statement.

Theorem 8. For each KB \((P, B) \) that admits a finite model, there exists an instance-dependent TG.

The key insight is that we can build a TG that mimics the chase. Below, we analyze the conditions under which
the same rule execution takes place both in the chase and when reasoning over a TG. Based on this analysis we present a technique for computing instance-dependent TGs that mimic breadth-first chase variants.

Consider a rule of the form \(r \) and assume that the chase over a KB \((P, B)\) executes \(r \) in some round \(k \) by instantiating its body using the facts \(R(c_i) \). Consider now a TG \(G \) for \((P, B)\). If \(k = 1 \), then this rule execution (notice that the rule has to be extensional) takes place in \(G \) if there is a node \(v \) associated with \(r \). Otherwise, if \(k > 1 \), then this rule execution takes place in \(G \) if the following holds: (i) there is a node \(v \) associated with \(r \), (ii) each \(R(c_i) \) is stored in some node \(u_i \) and (iii) there is an incoming edge \(u_i \rightarrow v \), for each \(1 \leq i \leq n \). We refer to each combination of nodes of depth \(< k \) whose facts may instantiate the body of a rule \(r \) when reasoning over an EG, as \(k \)-compatible nodes for \(r \):

Definition 9. Let \(P \) be a program, \(r \) be an intensional rule in \(P \) and \(G \) be an EG for \(P \). A combination of \(n \) (not-necessarily distinct) nodes \((u_1, \ldots, u_n)\) from \(G \) is \(k \)-compatible with \(r \), where \(k \geq 2 \) is an integer, if:
- the predicate in the head of \(u_i \) is \(R_i \);
- the depth of each \(u_i \) is less than \(k \); and
- at least one node in \((u_1, \ldots, u_n)\) is of depth \(k - 1 \).

The above ideas are summarized in an iterative procedure, which builds at each step \(k \) a graph \(G^k \):
- **(Base step)** if \(k = 1 \), then for each extensional rule \(r \) add to \(G^k \) a node \(v \) associated with \(r \).
- **(Inductive step)** otherwise, for each intensional rule \(r \) and each combination of nodes \((u_1, \ldots, u_n)\) from \(G^{k-1} \) that is \(k \)-compatible with \(r \), add to \(G^k \):
 - (i) a fresh node \(v \) associated with \(r \) and (ii) an edge \(u_i \rightarrow v \), for each \(1 \leq i \leq n \).

The inductive step ensures that \(G^k \) encodes each rule execution that takes place in the \(k \)-th chase round.

So far, we did not specify when the TG computation process stops. When \(P \) is Datalog, we can stop when \(G^{k-1}(B) = G^k(B) \). Otherwise, we can employ the termination criterion of the equivalent chase, e.g., \(G^{k-1}(B) \models G^k(B) \), or of the restricted chase.

5. TGS FOR LINEAR PROGRAMS

In the previous section, we outlined a procedure to compute instance-dependent TGs that mimics the chase. Now, we propose an algorithm for computing instance-independent TGs for linear programs.

Our technique is based on two ideas. The first one is that, for each base instance \(B \), the result of chasing \(B \) using a linear program \(P \) is logically equivalent to the union of the instances computed when chasing each single fact in \(B \) using \(P \).

The second idea is based on pattern-isomorphic facts: facts with the same predicate name and for which there is a bijection between their constants. For example, \(R(1, 2, 3) \) is pattern-isomorphic to \(R(5, 6, 7) \) but not to \(R(9, 9, 8) \). We can see that two different pattern-isomorphic facts will have the same linear rules executed in the same order during chasing. We denote by \(\mathcal{H}(P) \) a set of facts formed over the extensional predicates in a program \(P \), where no fact \(f_1 \in \mathcal{H}(P) \) is pattern-isomorphic to some other fact \(f_2 \in \mathcal{H}(P) \).

Algorithm 1 combines these two ideas: it runs the chase for each fact in \(\mathcal{H}(P) \) then tracks the rule executions and (iii) based on these rule executions it computes a TG. In particular, for each fact \(f_2 \) that is derived after executing a rule \(r \) over \(f_1 \), Algorithm 1 will create a fresh node \(u \) and associate it with \(r \) and rules \(\{f_2\} \). The mapping \(\mu \) associates nodes with rule executions. Then, the algorithm adds edges between the nodes based on the sequences of rule executions that took place during chasing, lines 3–9.

Algorithm 1 is (implicitly) parameterized by the chase variant. The results below are based on the equivalent chase, as it ensures termination for FES programs.

Theorem 10. For any linear program \(P \) that is FES, \(\text{t} \text{glinear}(P) \) is a TG for \(P \).

Algorithm 1 has a double-exponential overhead.

Theorem 11. The execution time of Algorithm 1 for FES programs is double exponential in the input program \(P \). If the arity of the predicates in \(P \) is bounded, the execution time is (single) exponential.

5.1 Minimizing TGs for linear programs

The TGs computed by Algorithm 1 may comprise nodes which can be deleted without compromising query answering. Let us return to Example 1 and to the TG \(G \) from Figure 1. We can safely ignore the facts associated with the node \(u_2 \) from \(G \) and still preserve the answers to all queries over \((P_1, B)\). In this section, we show a technique for minimizing TGs for linear programs.

Our minimization algorithm is based on the following. Consider a TG \(G \) for a linear program \(P \), a base instance \(B \) of \(P \) and the query \(Q(X) \leftarrow R(X,Y) \land S(Y,Z,Z) \). Assume that there exists a homomorphism from the body of the query into the facts \(f_1 = R(c_1, n_1) \) and \(f_2 = S(n_1, n_2, n_2) \) and that \(f_1 \in v(B) \) and \(f_2 \in u(B) \) with \(v, u \) being two nodes of \(G \). Since \(n_1 \) is shared among two different facts associated with two different nodes, it is safe to remove \(u \) if there is another node \(u' \in v(G) \) whose instance \(u'(B) \) includes a fact of the form \(S(n_1, n_2', n_2') \).
Equivalently, it is safe to remove u if there exists a homomorphism from $u(B)$ into $u'(B)$ that maps to itself each null occurring both in $u(B)$ and $u'(B)$. Since a null can occur both in $u(B)$ and in $u'(B)$ if u, u' share a common ancestor we can rephrase the previous statement as follows: we can remove $u(B)$ if there exists a homomorphism from $u(B)$ into $u'(B)$ preserving each null (from $u(B)$) that also occurs in some $u'(B)$ with u' being an ancestor of u in G. We refer to such homomorphisms as preserving homomorphisms:

Definition 12. Let G be a TG for a program P, $u, v \in \nu(G)$ and B be a base instance. A homomorphism from $u(B)$ into $v(B)$ is preserving, if it maps to itself each null occurring in some $u'(B)$ with u' being an ancestor of u.

It suffices to consider only the facts in $\mathcal{H}(P)$ to verify the existence of preserving homomorphisms.

Lemma 13. Let P be a linear program, G be an EG for P and $u, v \in \nu(G)$. Then, there exists a preserving homomorphism from $u(B)$ into $v(B)$ for each base instance B, iff there exists a preserving homomorphism from $u(\{f\})$ into $v(\{f\})$, for each fact $f \in \mathcal{H}(P)$.

From Definition 12 and from Lemma 13 it follows that a node v of a TG can be “ignored” for query answering if there exists a node v' and a preserving homomorphism from $v(\{f\})$ into $v'(\{f\})$, for each $f \in \mathcal{H}(P)$. If the above holds, then we say that v is dominated by v'. The above implies a strategy to reduce the size of TGSs.

Definition 14. For a TG G for a linear program P, the EG minLinear(G) is obtained by exhaustively applying the steps: (i) choose a pair of nodes v, v' from G where v is dominated by v', (ii) remove v from $\nu(G)$; and (iii) add an edge $v' \rightarrow v$, for each edge $v \rightarrow u$ from $\nu(G)$.

The minimization procedure described in Definition 14 is correct: given a TG for a linear program P, the output of minLinear is still a TG for P.

Theorem 15. For a TG G for a linear program P, minLinear(G) is a TG for P.

We present an example demonstrating the TG computation and minimizes techniques described above.

Example 16. Recall Example 2. Since r is the only extensional predicate in P_1, $\mathcal{H}(P_1)$ will include two facts, say $r(c_1, c_2)$ and $r(c_3, c_3)$, where c_1, c_2 and c_3 are constants. Algorithm 2 computes a TG by tracking the rule executions that take place when chasing each fact in $\mathcal{H}(P_1)$. For example, when considering $r(c_1, c_2)$, the graph Γ computed in lines 3-6 will be the TG G_1 from Figure 2(b), where nodes are denoted as u_1, u_2, and u_3.

Let us now focus on the minimization algorithm. To minimize G_1, we need to identify nodes that are dominated by others. Recall that a node u in G_1 is dominated by a node v, if for each f in $\mathcal{H}(P_1)$, there exists a preserving homomorphism from $u(\{f\})$ into $v(\{f\})$. Based on the above, we can see that u_2 is dominated by u_3. For example, when $B' = \{r(c_1, c_2)\}$, there exists a preserving homomorphism from $u_2(B') = \{r(c_2, c_1, c_1)\}$ into $u_3(B') = \{r(c_2, c_1, c_1)\}$ mapping n_1 to c_1. Since u_2 is dominated by u_3, the minimization process eliminates u_2 from G_1. The result is the TG G_2 from Figure 2(c), since no other node in G_2 is dominated.

6. Optimizing TGSs for Datalog

There are cases where we cannot compute instance-independent TG, e.g., for Datalog programs that are not also in FTG class. In such cases, we can still create an instance-dependent TG using the procedure outlined in Section 3. In this section, we present two optimizations to this procedure which avoid redundant computations. These optimizations work with Datalog programs; thus also with non-linear rules.

6.1 Eliminating redundant nodes

Our first technique is based on a simple observation. Consider a node v of a TG G. Assume that v is associated with the rule $a(X, Y, Z) \rightarrow A(Y, X)$ with a being extensional. We can see that for each base instance B and each fact $a(\sigma(X), \sigma(Y), \sigma(Z))$ in B, where σ is a variable substitution, the fact $A(\sigma(Y), \sigma(X))$ is in $v(B)$. Equivalently, for each answer σ to $Q(Y, X) \leftarrow a(X, Y, Z)$, a fact $A(\sigma(Y), \sigma(X))$ is associated with $v(B)$. The above can be generalized. Consider a node v of a TG G such that rule(v) is $\wedge_{i=1}^n A_i(Y_i) \rightarrow A(X)$. The facts in $v(B)$ can be obtained by (i) computing the rewriting of the query $Q(X) \leftarrow \wedge_{i=1}^n A_i(Y_i)$ w.r.t. the rules in the ancestors of v up to the extensional predicates; (ii) evaluating the rewritten query over B; and (iii) adding $A(t)$ to $v(B)$, for each answer t to the rewritten query over B—recall that we denote answers either as substitutions or as tuples, cf. Section 3. We refer to $Q(X) \leftarrow \wedge_{i=1}^n A_i(Y_i)$ as the characteristic query of v.

This observation suggests we can use query containment tests to identify nodes that can be safely removed from TGSs (and EGs). Intuitively, the naive algorithm above can be modified so that, at each step i, right after computing G^i, and before computing $G^{i+1}(B)$, we eliminate each node u if the EG-guided rewriting over of the characteristic query of u is contained in the EG-guided rewriting of the characteristic query of another node v.

Below, we formalize the notion of EG-rewritings, then we show the correspondence between the answers to EG-rewritings and the facts associated with the nodes, and we finish with an algorithm eliminating nodes from TGSs.

Definition 17. Let v be a node in an EG G for a Datalog program. Let rule(v) be $\wedge_{i=1}^n A_i \rightarrow R(Y)$. The EG-rewriting of v, denoted as rew(v), is the CQ computed as follows (w.l.o.g. no pair of rules rule(u) and rule(v) with $u, v \in \nu(G)$ and $u \neq v$ shares variables):

- form $Q(Y) \leftarrow R(Y)$; associate $R(Y)$ with v;
repeat the following rewriting step until no intensional atom is left in body(Q): (i) choose an intensional atom \(a \in \text{body}(Q) \); (ii) compute the MGU \(\theta \) of \(\{ \text{head}(u), a \}, \) where \(u \) is the node associated with \(a \); (iii) replace \(a \) in body(Q) with body(u) and apply \(\theta \) on the resulting Q; (iv) associate \(\theta(B_j) \) in body(Q) with the node \(w_j \), where \(B_j \) is the \(j \)-th atom in body(u) and \(w_j \rightarrow y \in \mathcal{E}(G) \).

The rewriting algorithm described in Definition 17 is a variant of the rewriting algorithm in [29]. Our difference from [29] is that at each step of the rewriting process, we consider only the rule rule(u) with \(u \) being the node with which \(a \) is associated with.

There is a correspondence between the answers to the nodes’ EG-rewritings with the facts stored in \(G \).

Lemma 18. Let \(G \) be an EG for a Datalog program \(P \) and \(B \) be a base instance of \(P \). Then for each \(v \in v(G) \) we have: \(v(B) \) includes exactly a fact \(A(t) \) with \(A \) being the head predicate of rule(v), for each answer \(t \) to the EG-rewriting of \(v \) on \(B \).

Our algorithm for removing nodes from EGs is below.

Definition 19. The EG \(\text{minDatalog}(G) \) is obtained from an EG \(G \) for a program \(P \) by exhaustively applying these steps: for each pair of nodes \(u \) and \(v \) such that (i) the depth of \(v \) is equal or larger than that of \(u \), (ii) the predicates of head(rule(u)) and head(rule(u)) are the same and (iii) the EG-rewriting of \(v \) is contained in the EG-rewriting of \(u \): (a) remove the node \(v \) from \(v(G) \), and \(b \) add an edge \(u \rightarrow w \), for each edge \(v \rightarrow w \) occurring in \(G \).

The minimization technique of Definition 19 can be proven sound and to produce a TG with fewest nodes.

Theorem 20. If \(G \) is a TG for a Datalog program \(P \), then \(\text{minDatalog}(G) \) is a minimum size TG for \(P \).

Deciding whether a TG of a Datalog program is of minimum size can be proven co-NP-complete. The problem’s hardness lies is the necessity of performing query containment tests, carried out via homomorphism tests, which require exponential time on deterministic machines (unless \(P = \text{NP} \)) [21]. This hardness result supports the optimality of minDatalog in terms of complexity.

Theorem 21. For a Datalog program \(P \) and a TG \(G \) for \(P \), deciding whether \(G \) is a TG of minimum size for \(P \) is co-NP-complete.

6.2 A more efficient rule execution strategy

EG-rewritings can be further used to optimize the execution of the rules, as shown in the example below.

Example 22. Consider the program \(P_2 \)

\[
\begin{align*}
a(X) \land b(X) & \rightarrow A(X) \quad (r_8) \\
a'(X) \land b'(X) & \rightarrow A(X) \quad (r_9)
\end{align*}
\]

where \(a, a', b \) and \(b' \) are extensional predicates. We denote by \(a, a', b \) and \(b' \) the relations storing the tuples of the corresponding predicates in the input instance. The data of each relation are shown in Figure 2.

The upper part of Figure 2 shows the steps involved when executing \(r_8 \) and \(r_9 \) using the chase: (i) shows the joins involved when executing \(r_8 \); (ii)–(iii) shows the joins involved when executing \(r_9 \): (ii) shows the join to compute \(\text{body}(r_9) \) while (iii) shows the outer join involved when checking whether the conclusions of \(r_9 \) have been previously derived. Assuming that the cost of executing each join is the cost of scanning the smallest relation, the total cost of the chase is: 100 (step (i)) + 51 (step (ii)) + 50 (step (iii)) = 201.

The lower part of Figure 2 shows a more efficient strategy. The execution of \(r_8 \) stays the same (step (iv)), while for \(r_9 \) we first compute all tuples that are in \(a' \) but not in \(A \) (step (v)) and use \(a' \setminus A \) to restrict the tuples instantiating the body of \(r_9 \) (step (vi)). The intuition is that the tuples of \(a' \) that are already in \(A \) will be discarded, so it is not worth considering them when instantiating the body of \(r_9 \). The total cost of this strategy is: 100 (step (iv)) + 51 (step (v)) + 1 (step (vi)) = 152.

Example 22 suggests a way to optimize the execution of the rules, which reduces the cost of instantiating the rule bodies. This is achieved by considering only the instantiations leading to the derivation of new conclusions. Our new rule execution strategy is described below.

Definition 23. Let \(v \) be a node of an EG \(G \) for a Datalog program \(P \), and \(I \subseteq G(B) \). Let \(A(X) \) be the head atom of rule(v) and let \(Q(Y) \leftarrow \bigwedge_{i=1}^m f_i \) be the EG-rewriting of \(v \). The computation of \(v(B) \) under \(I \), denoted as \(v(B, I) \), is:

1. pick \(m \geq 1 \) atoms \(f_{i_1}, \ldots, f_{i_m} \) from the body of \(Q \) whose variables include all variables in \(Y \) and form \(Q'(Y) \leftarrow f_{i_1} \land \cdots \land f_{i_m} \);
2. compute \(v(B) \) as in Definition 19 but restrict to homomorphisms \(h \) for which (i) \(h(X) \) is an answer to \(Q' \) on \(B \) and (ii) \(A(h(X)) \notin I \).

To help us understand Definition 23, let us apply it to Example 22. We have \(Q'(X) \leftarrow a'(X) \). The antijoin between \(Q' \) and \(A \) (step (v) of Figure 2) corresponds to restricting to homomorphisms that are answers to \(Q' \) (step (2.i) of Definition 23), but are not in \(I \) (step (2.ii) of Definition 23). In our implementation, we pick one
Algorithm 2 TGmat(P, B)

1: $k := 0$; G^0 is the empty graph; $I^0 := \emptyset$
2: do
3: $k := k + 1$; $I^k := I^{k-1}$
4: Compute G^k starting from G^{k-1} as in Section 4
5: $G^k := \min\text{Datalog}(G^k)$
6: for each node v of depth k do
7: \quad $\text{add } v(B, I^{k-1})$ (cf. Definition 23) to I^k
8: while $I^k \neq I^{k-1}$
9: return I^∞

extensional atom ($m = 1$) in step (1). To pick this atom, we consider each f_i in the body of $\text{rew}(v)$, then compute the join as in step (v) of Example 22 between a subset of the f_i-tuples and the A-tuples in I and finally, choose the f_i leading to the highest join output.

We summarize TG-guided reasoning for Datalog programs in Algorithm 2. Correctness is stated below.

Theorem 24. For a Datalog program P and a base instance B, $\text{TGmat}(P, B) = \chi(P, B)$.

7. **EVALUATION**

We implemented Algorithm 1, TG-guided reasoning over a fixed TG (Def. 4) and Algorithm 2 in a new open-source reasoner called GLog. GLog is a fork of VLog [60] that shares the same code for handling the extensional relations while the code for reasoning is entirely novel.

We consider three performance measures: the absolute reasoning runtime, the peak RAM consumption observed at reasoning time, and the total number of triggers. The last measure is added because it reflects the ability of TGs to reduce the number of redundant rule executions and it is robust to most implementation choices.

7.1 **Testbed**

Systems. We compared against the following systems:

- VLog, as, to our knowledge, is the most efficient system both time- and memory-wise [58, 60];
- the latest public release of RDFox from [1] as it outperforms all chase engines tested against ChaseBench [11]: ChaseFun, DEMo [50], LLucinat [27], PDQ [12] and Pegasus [43];
- the commercial state of the art chase engine COM (name is anonymized due to licensing restrictions);
- Inferray, an RDFS reasoner that uses a columnar layout and that outperforms RDFox [54]; and
- WebPIE, another high-performance RDFS reasoner that runs over Hadoop [59].

We ran VLog, RDFox and the commercial chase engine COM using their most efficient chase implementations. For VLog, this is the restricted chase, while for RDFox and COM this is the Skolem one [11]. All engines ran using a single thread. We could not obtain access to the Vadalog binaries. However, we perform an indirect comparison against Vadalog: we both compare against RDFox using the ChaseBench scenarios from [11].

Benchmarks. To assess the performance of GLog on linear and Datalog scenarios, we considered benchmarks previously used to evaluate the performance of reasoning engines including VLog and RDFox: LUBM [30] and UOBM [41] are synthetic benchmarks; DBpedia [14] (v2014, available online) is a KG extracted from Wikipedia: Claros [43] and Reactome [22] are real-world ontologies. With both VLog and GLog, the KBs are stored with the RDF engine Trident [57].

Linear scenarios. Linear scenarios were created using LUBM, UOBM, DBpedia, Claros and Reactome. For the first four KBs, we considered the linear rules returned by translating the OWL ontologies in each KB using the method described by [61], which was the technique used for evaluating our competitors [45, 55]. This method converts an OWL ontology O into a Datalog program P_L such that $O \models P_L$. For instance, the OWL axiom $A \sqsubseteq B$ (concept inclusion) can be translated into the rule $A(X) \rightarrow B(X)$. This technique is ideal for our purposes since this subset is what is mostly supported by RDF reasoners [45]. Here, the subscript “L” stands for “lower bound”. In fact, not every ontology can be fully captured by Datalog (e.g., ontologies that are not in OWL 2 RL) and in such cases the translation captures a subset of all possible derivations.

For Reactome, we considered the subset of linear rules from the program used in [60]. The programs for the first four KBs do not include any existential rules while the program for Reactome does. Linear scenarios are suffixed by “LI”, e.g., LUBM-LI.

Datalog scenarios. Datalog scenarios were created using LUBM, UOBM, DBpedia and Claros, as Reactome includes non-Datalog rules only. LUBM comes with a generator, which allows controlling the size of the base instance by fixing the number of different universes X in the instance. One university roughly corresponds to 132k facts. In our experiments, we set X to the following values: 125, 1k, 2k, 4k, 8k, 32k, 64k, 128k. This means that our largest KB contains about 17B facts. As programs, we used the entire Datalog programs (linear and non-linear) obtained with [61], as described above. These programs are suffixed by “L”. For Claros and LUBM, we used

```plaintext
https://www.cs.ox.ac.uk/isg/tools/RDFox/2014/
AAAI/input/DBpedia/ttl/
```

Both datasets are available in our code repository.

Table 1: The considered benchmarks. #EDP’s and #IDP’s absolute numbers are stated in millions of facts.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#EDP’s</th>
<th>#IDP’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear and Datalog scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBM var.</td>
<td>163</td>
<td>170</td>
</tr>
<tr>
<td>UOBM 2.1</td>
<td>337</td>
<td>561</td>
</tr>
<tr>
<td>DBpedia 29</td>
<td>4204</td>
<td>9396</td>
</tr>
<tr>
<td>Claros 13.8</td>
<td>1749</td>
<td>2689</td>
</tr>
<tr>
<td>React. 5.6</td>
<td>259</td>
<td>NA</td>
</tr>
<tr>
<td>ChaseBench scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-128</td>
<td>0.15</td>
<td>167</td>
</tr>
<tr>
<td>O-256</td>
<td>1</td>
<td>529</td>
</tr>
<tr>
<td>YAGO 18.2</td>
<td>498016</td>
<td>27</td>
</tr>
</tbody>
</table>

...
used two additional programs, suffixed by “LE”, created by [45] as harder benchmarks. These programs extend the “LI” ones with extra rules, such as the transitive and symmetric rules for owl:sameAs. The relationship between the various rulesets is $LI \subset L \subset LE$.

ChaseBench scenarios. ChaseBench was introduced for evaluating the performance of chase engines [11]. The benchmark comes with four different families of scenarios. Out of these four families, we focused on the iBench scenarios, namely STB-128 and ONT-256 [4] because they come with non-linear rules with existentials that involve many joins and that are highly recursive. Moreover, as we do compare against RDfox which was the top-performing chase engine in [11], we can use these two scenarios to indirectly compare against all the engines considered in [11].

RDFS scenarios. In the Semantic Web, it has been shown that a large part of the inference that is possible under the RDF Schema (RDFS) [16] can be captured into a set of Datalog rules. A number of works have focused on the execution of such rules. In particular, WebPIE and more recently InferrKY returned state-of-the-art performance for ρDF – a subset of RDFS that captures its essential semantics. It is interesting to compare the performance of GLog, which is a generic engine not optimized for RDFS rules, against such ad-hoc systems. To this end, we considered YAGO [31] and a LUBM KB with 16.7M triples. As rules for GLog, we translated the ontologies under the ρDF semantics.

Table I shows, for each scenario, the corresponding number of rules and EDP-facts as well as the number of IDP-facts in the model of the KB. With LUBM and the linear and Datalog scenarios, the number of IDP-facts is proportional to the input size, thus it is stated as %. For instance, with the “LI” rules, the output is 116%, which means that if the input contains 1M facts, then reasoning returns 1.16M new facts.

Hardware. All experiments except the ones on scalability (Section 7.3) ran on an Ubuntu 16.04 Linux PC with Intel i7 64-bit CPU and 94.1 GB RAM. For our experiments on scalability, we used a second machine with an Intel Xeon E5 and 256 GB of RAM due to the large sizes of the KBs. The cost of both machines is < $5k, thus we arguably label them as commodity hardware.

7.2 Results for linear scenarios

Table II summarizes the results of our empirical evaluation for the linear scenarios. Recall that when a program is linear and FES it admits a finite TG which can be computed prior to reasoning using t_{linear} (Algorithm 1) and minimized using minLinear from Definition 14. Columns two to seven show the runtime and the peak memory consumption for VLog, RDfox and the commercial engine COM. The remaining columns show results related to TG-guided reasoning. Column Comp shows the time to compute and reason over the computed TG given a base instance (i.e., apply Definition 5). Column w/o cleaning shows the total runtime if we do not filter out redundant facts at reasoning time, while column w/cleaning shows the total runtime if we additionally filter out redundancies at the end and collectively for all the rules. Notice that in both cases the total runtime includes the time to compute and reason over the TG (columns Comp and Reason). Column Mem shows the peak memory consumption. As we will explain later, in the case of linear rules, the memory consumption in GLog is the same both with and without filtering out redundant facts. Finally, the last three columns #N, #E, and D show the number of nodes, edges, and the depth (i.e., length of the longest shortest path) in the resulting TGs.

We summarize two main conclusions of our analysis.

C1: TGs outperform the chase in terms of runtime and memory. The runtime improvements over the chase vary from multiple orders of magnitude (w/o filtering of redundancies) to almost two times (w/o filtering). When redundancies are discarded, the vast improvements are attributed to structure sharing, a technique which is also implemented in VLog.

Structure sharing is about reusing the same code to store the data of different facts. For example, consider the rule $R(X, Y) \rightarrow S(Y, X)$. Instead of creating different S- and R-facts, we can simply add a pointer from the first column of R to the second column of S and a pointer from the second column of R to the first column of S. When a rule is linear, both VLog and GLog perform structure sharing and, hence, do not allocate extra memory to store the derived facts. Apart
from the obvious benefits memory-wise, structure sharing also provides benefits in runtime as it allows deriving new facts without actually executing rules. The above, along with the fact that the facts (redundant or not) are not explicitly materialized in memory makes GLog very efficient time-wise.

When redundancies are filtered out, GLog still outperforms the other engines: it is multiple orders of magnitude faster than RDFox and COM and almost two times faster than VLog (Reactome-LI). The performance improvements are attributed to a more efficient strategy for filtering out redundancies: TGs allow filtering out redundancies after reasoning has terminated, in contrast to the chase, which is forced to filter out redundancies right after the derivation of new facts. This strategy is more efficient because we can use a single n-way join rather than multiple binary joins to remove redundancies.

With regards to memory, GLog has similar memory requirements with VLog, while it is much more memory efficient than RDFox and the commercial engine COM.

C2: The TG computation overhead is small. The time to compute and minimize a TG in advance of reasoning only is a small fraction of the total runtime, see Table 2. We argue that even if this time was not negligible, TG-guided reasoning would still be beneficial: first, once a TG is computed reasoning over it is multiple times faster than the chase, and, second, the same TG can be used to reason over the same rules independently of any changes in the database.

7.3 Results for Datalog and ChaseBench

Table 4 summarizes our results on generic (linear and non-linear) Datalog rules. The last nine columns show results for TGmat (Algorithm 2). To assess the impact of minDatalog and ruleExec, the rule execution strategy from Definition 23, we ran TGmat as follows: without minDatalog or ruleExec, column No opt; with minDatalog, but without ruleExec, column m; with both minDatalog and ruleExec, column m+r. The total runtime in the last two cases includes the runtime overhead of minDatalog and ruleExec. The last three columns report the number of nodes, edges, and depth of the computed TGs when both minDatalog or ruleExec are employed. Table 4 shows results for ChaseBench while Table 5 shows the number of triggers for the Datalog scenarios for VLog and GLog (we could not extract this information for RDFox and COM).

We summarize the main conclusions of our analysis.

C3: TGs outperform the chase in terms of runtime and memory. Even without any optimizations, GLog is faster than VLog, RDFox and COM in all but one case. With regards to VLog, GLog is up to nine times faster in the Datalog scenarios (LUBM-LE) and up to two times faster in ChaseBench (ONT-256). With regards to RDFox, GLog is up to 20 times faster in the Datalog scenarios (Claros-L) and up to 67 times faster in ChaseBench (ONT-256). These optimizations are enabled GLog outperforms the competitors in all cases.

We have observed that the bulk of the computation lies in the execution of the joins involved when executing few expensive rules. In GLog, joins are executed more efficiently than in the other engines (GLog uses only merge joins), since the considered instances are smaller —recall that in TGs, the execution of a rule associated with a node v considers only the instances of the parents of v. Due to the above, the optimizations do not decrease the runtime considerably. The only exception is LUBM-L, where the optimizations half the runtime.

Continuing with the optimizations, their runtime overhead is very low: it is less than 0.5% of the total runtime (LUBM-LE), while the overhead of minDatalog is less than 1% of the total runtime (detailed results are in the appendix). We consider this overhead as acceptable, since, as we shall see later, the optimizations considerably decrease the number of triggers, a performance measure which is robust to hardware and most implementation choices.

It is important to mention that GLog implements the technique in [53] for executing transitive and symmetric rules. The improvements brought by this technique are most visible in LUBM-LE where the runtime increases from 18s with this technique to 71s without it. Other optimizations occur with UOBM-L and DBpedia-L (69% and 57% resp.). In any case, even without this technique, GLog remains faster than its competitors in all cases.

Last, the ChaseBench experiments allow us to compare against Vadalog. According to [10], Vadalog is three times faster than RDFox on STB-128 and ONT-256. Our empirical results show that GLog brings more substantial runtime improvements: GLog is from 49 times to more than 76 times faster than RDFox in those scenarios.

With regards to memory, the memory footprint of GLog again is comparable to that of VLog and it is
generating dependencies. We can see that GLog can reason with up to 17B facts, while Inferray executes each rule on a dedicated thread. ChaseFun [15] proposes equality and only optimality rules by appropriately ordering the rules. In [58], the authors describe a rule ordering that is optimal only for a fixed set of RDFS rules. In contrast, we focus on generic programs. ChaseFun [15] proposes a new rule ordering technique that focuses on equality generating dependencies. Hence, it is orthogonal to our approach. In a similar spirit, the rewriting technique from [33] targets transitive and symmetric rules. GLog applies this technique by default to improve the performance, but our experiments show it outperforms the state of the art even without this optimization.

To optimize the execution of the rules themselves, most chase engines rely on external DBMSs or employ state of the art query execution algorithms: LLunatic [27], PDQ and ChaseFun run on top of PostgreSQL; RDFox and VLog implement their own in-memory rule execution engine. However, none of these engines can effectively reduce the instances over which rules are executed as TGs do. Other approaches involve exploring columnar memory layouts as in VLog and Inferray to reduce memory consumption and to guarantee sequential access and efficient sort-merge join inference.

Orthogonal to the above is the work in [10], which introduces a new chase variant for materializing KBs as warded Datalog programs. Warded Datalog is a class of programs not admiring a finite model for any base instance. The variant works as the restricted chase does but replaces homomorphism with isomorphism checks. As a result, the computed models become bigger. An implementation of the warded chase is also introduced in [10] which focuses on decreasing the cost of isomorphism checks. The warded chase implementation does not apply any techniques to detect redundancies in the offline fashion as we do for linear rules, or to reduce the execution cost of Datalog rules as we do in Section 6.

We now turn our attention to the applications of materialization in goal-driven query answering. Two well-known database techniques that use materialization as a tool for goal-driven query answering are magic sets and subsumptive tabling [8,9,53,55]. The advantage of these techniques over the query rewriting ones, which are not based on materialization, e.g., [6,19,29], is the full support of Datalog. The query rewriting techniques can support Datalog of bounded recursion only. Beyond Datalog, materialization-based techniques have been recently proposed for goal-driven query answering over KBs with equality [13], as well as for probabilistic KBs [59], leading in both cases to significant improvements in terms of runtime and memory consumption. The above automatically turns TGs to a very powerful tool to also support query-driven knowledge exploration.

TGs are different from acyclic graphs of rule dependencies [7]: the former contain a single node per rule while TGs do not.

8. RELATED WORK

One approach to improve the reasoning performance is to parallelize the execution of the rules. RDFox proposes a parallelization technique for Datalog materialization with mostly lock-free data insertion. Parallelization has been also been studied for reasoning over RDFS and OWL ontologies. For example, WebPIE encodes the materialization process into a set of MapReduce programs while Inferray executes each rule on a dedicated thread. Our experiments show that GLog outperforms all these engines in a single-core scenario. This motivates further research on parallelizing TG-based materialization.

A second approach is to reduce the number of logically redundant facts by appropriately ordering the rules. In [59], the authors describe a rule ordering that is optimal only for a fixed set of RDFS rules. In contrast, we focus on generic programs. ChaseFun [15] proposes a new rule ordering technique that focuses on equality generating dependencies. Hence, it is orthogonal to our approach. In a similar spirit, the rewriting technique from [33] targets transitive and symmetric rules. GLog applies this technique by default to improve the performance, but our experiments show it outperforms the state of the art even without this optimization.

To optimize the execution of the rules themselves, most chase engines rely on external DBMSs or employ state of the art query execution algorithms: LLunatic [27], PDQ and ChaseFun run on top of PostgreSQL; RDFox and VLog implement their own in-memory rule execution engine. However, none of these engines can effectively reduce the instances over which rules are executed as TGs do. Other approaches involve exploring columnar memory layouts as in VLog and Inferray to reduce memory consumption and to guarantee sequential access and efficient sort-merge join inference.

Orthogonal to the above is the work in [10], which introduces a new chase variant for materializing KBs as warded Datalog programs. Warded Datalog is a class of programs not admiring a finite model for any base instance. The variant works as the restricted chase does but replaces homomorphism with isomorphism checks. As a result, the computed models become bigger. An implementation of the warded chase is also introduced in [10] which focuses on decreasing the cost of isomorphism checks. The warded chase implementation does not apply any techniques to detect redundancies in the offline fashion as we do for linear rules, or to reduce the execution cost of Datalog rules as we do in Section 6.

We now turn our attention to the applications of materialization in goal-driven query answering. Two well-known database techniques that use materialization as a tool for goal-driven query answering are magic sets and subsumptive tabling [8,9,53,55]. The advantage of these techniques over the query rewriting ones, which are not based on materialization, e.g., [6,19,29], is the full support of Datalog. The query rewriting techniques can support Datalog of bounded recursion only. Beyond Datalog, materialization-based techniques have been recently proposed for goal-driven query answering over KBs with equality [13], as well as for probabilistic KBs [59], leading in both cases to significant improvements in terms of runtime and memory consumption. The above automatically turns TGs to a very powerful tool to also support query-driven knowledge exploration.

TGs are different from acyclic graphs of rule dependencies [7]: the former contain a single node per rule while TGs do not.

9. CONCLUSION

We introduced a novel approach for materializing KBs that is based on traversing acyclic graphs of rules called TGs. Our theoretical analysis and our empirical evaluation over well-known benchmarks show that TG-guided reasoning is a more efficient alternative to the chase, since it effectively overcomes all of its limitations.

Future research involves studying the problem of updating TGs in response to KB updates, as well as extending TGs to materialize distributed KBs.
10. REFERENCES

(a) #Triggers for VLog and GLog on the linear scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>VLog</th>
<th>GLog</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUBM-L</td>
<td>34346</td>
<td>35093</td>
</tr>
<tr>
<td>UOBM-L</td>
<td>7625</td>
<td>6718</td>
</tr>
<tr>
<td>DBpedia-L</td>
<td>61134</td>
<td>115150</td>
</tr>
<tr>
<td>Claros-L</td>
<td>129098</td>
<td>134180</td>
</tr>
<tr>
<td>Reactome-L</td>
<td>17120</td>
<td>23218</td>
</tr>
</tbody>
</table>

(b) Cost of optimizations.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>m</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUBM-L</td>
<td>0.0005</td>
<td>0.16</td>
</tr>
<tr>
<td>LUBM-LE</td>
<td>0.0007</td>
<td>0.16</td>
</tr>
<tr>
<td>UOBM-L</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>DBpedia-L</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>Claros-L</td>
<td>0.03</td>
<td>2.8</td>
</tr>
<tr>
<td>Claros-LE</td>
<td>0.3</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Table 8: Additional Experimental Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>VLog Runtime</th>
<th>VLog Memory</th>
<th>RDFox Runtime</th>
<th>RDFox Memory</th>
<th>COM Runtime</th>
<th>COM Memory</th>
<th>GLog Runtime</th>
<th>GLog Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUBM-L</td>
<td>1.5</td>
<td>324</td>
<td>2312</td>
<td>2301</td>
<td>20.4</td>
<td>2479</td>
<td>7.1</td>
<td>68.8</td>
</tr>
<tr>
<td>LUBM-LE</td>
<td>170.5</td>
<td>2725</td>
<td>2312</td>
<td>2301</td>
<td>20.4</td>
<td>2479</td>
<td>7.1</td>
<td>68.8</td>
</tr>
<tr>
<td>UOBM-L</td>
<td>7.3</td>
<td>1021</td>
<td>4930</td>
<td>4903</td>
<td>196.4</td>
<td>3878</td>
<td>31.4</td>
<td>32</td>
</tr>
<tr>
<td>DBpedia-L</td>
<td>431</td>
<td>3170</td>
<td>2512</td>
<td>5491</td>
<td>2373.0</td>
<td>6453</td>
<td>128.6</td>
<td>125.6</td>
</tr>
<tr>
<td>Claros-L</td>
<td>2771.8</td>
<td>11895</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1104.3</td>
<td>1094</td>
</tr>
<tr>
<td>Claros-LE</td>
<td>2771.8</td>
<td>11895</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1104.3</td>
<td>1094</td>
</tr>
</tbody>
</table>

Table 9: Datalog scenarios. GLog is ran without the optimization from [33]. Time is in sec and memory in MB.

Table 10: ChaseBench scenarios. GLog is ran without the optimization from [33]. Time is in sec and memory in MB.

APPENDIX

A. ADDITIONAL EXPERIMENTAL RESULTS

Number of triggers in the linear scenarios. Table 8a summarizes the number of triggers for the linear scenarios. We can see that the number of triggers in GLog is often higher than in VLog. This is due to the fact that GLog does not eliminate redundancies right at their creation. However, these redundancies are harmless: due to structure sharing these redundant facts are not explicitly materialized in memory and hence, they do not slow down the runtime.

Cost of optimizations. Table 8b summarizes the cost of optimizations for the Datalog scenarios. Recall that the optimizations in Section 6 are not applicable to ChaseBench as the rules have existential variables. Column m shows the total runtime cost of \(\minDatalog \), while column r shows the total runtime cost of ruleExec.

Impact on rewriting on GLog. Tables 9, 10 and 11 summarize the performance of GLog when disabling the optimization from [33]. To ease the presentation, we also copy the results of the competitor engines on the same benchmarks from Tables 3, 4 and 6. We can see that the only scenario whose performance degrades considerably is LUBM-LE shown in Table 9. Even in this case though, the performance of GLog is still better than the performance of its competitors: it is twice as fast as VLog, RDFox and COM in most scenarios and more than an order of magnitude faster than RDFox and COM in Claros-L.

Running RDFox in multiple threads. Tables 12, 13 and 14 show the runtime performance of RDFox when increasing the number of threads from 1 to 8 and 16. For completeness, we also copy the runtime of GLog using a single thread on the same scenarios from Tables 2, 3 and 4. We can see that the runtime of RDFox drops considerably when using 16 threads. However, it is still higher than the runtime of GLog in all cases except UOBM-L, where RDFox’s runtime is 1.6s, while GLog’s runtime is 2.6s. In the other scenarios, GLog is up to 7.8 times faster than RDFox (ONT-256).
B. ADDITIONAL DEFINITIONS

We provide some definitions that will be useful for the proofs in the next section.

For a KB K where $Ch(K)$ is defined, the depth $d(t)$ of a term t in $Ch(K)$ is defined as follows: if $t \in Const$, then $d(t) = 1$; otherwise, if t is a null of the form $n_{r,h,z}$, then $d(t) = \max(d(t_1), \ldots, d(t_n)) + 1$, where $\{t_1, \ldots, t_n\}$ are all terms in the range of h.

Next, we recapitulate the definitions of some known classes of programs.

Definition 25. Consider a program P and some $k \geq 0$.
- P is a Finite Expansion Set (FES), if for each base instance B, the KB (P,B) has a terminating chase.
- P is a k-Term Depth Bounded (k-TDB), if for each base instance B, each $i \geq 0$ and each term t in $Ch^i(P,B)$, $d(t) \leq k$. P is TDB, if it is k-TDB.
- P is a Finite Order Rewritable (FOR), if, for each $BCQ Q$, there is a union of $BCQs (UBCQs) Q'$ such that, for each base instance B, we have that $(P,B) \models Q$ iff $B \models Q'$.

C. PROOFS FOR RESULTS IN SECTION 4

For a program P, we refer to the graph computed by applying the base and the inductive steps from Section 4 as the level-k full EG for P, and denote it as Φ_k^P. Below, we show that reasoning via a level-k full EG produces logically equivalent facts with the k-th round of the chase when the chase is applied in a breadth-first fashion:

Theorem 26. For a program P, a base instance B and a $k \geq 0$, $Ch^k(P,B) \equiv \Phi_k^P(B)$.

Proof. Let $P = \{r_1, \ldots, r_n\}$. Let $\Phi_k^P = G^k = (V^k,E^k)$ and let $\Phi_{k+1}^P = G^{k+1} = (V^{k+1}, E^{k+1})$. Let $I^k = Ch^k((P,B))$ and let $J^k = G^k(B)$.

(\Rightarrow) To prove the claim, we show the following property, for each $k \geq 0$:
- \exists there is a homomorphism $\gamma^k : J^k \rightarrow I^k$.

For $k = 0$, ψ holds, since $I^0 = G^0(B) = B$. For $k + 1$ and assuming that ψ holds for k, the proof proceeds as follows. Let $v_{k+1}^1, \ldots, v_{m+1}^1$ be all nodes in V^{k+1} of depth $k + 1$. For each $1 \leq t \leq m$, let r_i and let $v_{k+1}^1 = \{F_1, \ldots, F_{n_r}\}$. Since each rule has a single atom in its head, it follows from Definition 5 that for each $1 \leq t \leq m$ and each $1 \leq \kappa \leq n_r$, there exists a homomorphism $h_{r,s}$ such that $h_{r,s}(head(r)) = F_{r,s}$. We distinguish the cases, for each rule r_i, for $1 \leq t \leq m$:
- r_i is an extensional rule. Hence, for each $1 \leq \kappa \leq n_r$, $h_{i,r,k}$ is a homomorphism from $body(r_i)$ into B.
- r_i is not an extensional rule. WLOG, assume that r_i comprises only IDP-atoms in its body. Since G^{k+1} is a full EG, it follows that for each $1 \leq \lambda \leq e_i$, there exists an edge $u_{\lambda,\lambda} \rightarrow v_{k+1}^1$ in E^{k+1}. Due to the above, and due to Definition 5, it follows that for each $1 \leq \kappa \leq n_r$, $h_{i,r,k}$ is a homomorphism from $body(r_i)$ into $\bigcup \lambda u_{\lambda,\lambda}(B)$.

Let $N^k = \bigcup \bigcup \bigcup \lambda h_{i,r,k}(head(r))$. We further distinguish the cases:
- for each $1 \leq t \leq m$ and each $1 \leq \kappa \leq n_r$, $F_{r,s} \in G^k(B)$. Then ψ trivially holds.
• there exists $1 \leq i \leq m$ and $1 \leq \kappa \leq n_i$, such that $F_{i, \kappa} \not\subseteq G^k(B)$. Since ψ holds for k and due to g^k, it follows that for each $1 \leq i \leq m$ and each $1 \leq \kappa \leq n_i$, there exists a homomorphism $\chi_{i, \kappa} = g^k \circ \phi$ from body(r_i) into I^k. Due to the above, for each $1 \leq i \leq m$ and each $1 \leq \kappa \leq n_i$, there also exists a homomorphism $\omega_{i, \kappa}$ from $h_{i, \kappa, i}(\text{head}(r_i))$ into $\chi_{i, \kappa, i}(\text{head}(r_i))$, mapping each $h_{i, \kappa, i}(n_{i, \kappa})$ to $\chi_{i, \kappa, i}(n'_{i, \kappa})$, where $h_{i, \kappa, i}(z) = n_z$ and $\chi_{i, \kappa, i}(z) = n'_z$, for each existentially quantified variable z occurring in r. Due to the above and since for each $1 \leq i \leq m$ and each $1 \leq \kappa \leq n_i$, $h_{i, \kappa, i}(c) = g^k(c)$, there also exists a homomorphism from N^k into $M^k = \bigcup_i \chi_{i, \kappa, i}(\text{head}(r_i))$ and hence from $I^k \cup N^k$ into $J^k \cup M^k$. The above shows that ψ holds for $k + 1$.

(\Rightarrow) To prove the claim, we show the following property, for each $k \geq 0$:

• ϕ there exists a homomorphism $g^k : I^k \rightarrow J^k$ mapping each $F \in I^k$ to some fact $F' \in J^k$ of the same depth. For $k = 0$, ϕ holds, since $I^0 = G^0(B) = B$. For $k + 1$ and assuming that ϕ holds for k the proof proceeds as follows. For each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, let $h_{i, j}$ be the j-th homomorphism from the body of rule r_i into I^k, where $h_{i, j}(\text{body}(r_i))$ comprises at least one fact of depth k. Due to the inductive hypothesis, we know that for each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, there exists a homomorphism $\chi_{i, j} = h_{i, j} \circ g^k$ from body(r_i) into J^k. We distinguish the cases, for each rule r_i, for $1 \leq i \leq n$:

• r_i is an extensional rule. Hence, $I^k = B$.

• r_i is not an extensional rule. WLOG, assume that r_i comprises only IDP-atoms in its body. Let $u^1_{i, j}, \ldots, u^{|\text{body}(r_i)|}_{i, j}$ be the nodes in V^k, such that for each $1 \leq i \leq n$ and each $1 \leq l \leq |\text{body}(r_i)|$, the l-th fact in $\chi_{i, j}(\text{body}(r_i))$ belongs to $u^l_{i, j}(B)$. Since ϕ holds for k, it follows that for each $1 \leq i \leq n_i$, some fact in $\chi_{i, j}(\text{body}(r_i))$ is of depth k. Hence some node in $u^1_{i, j}, \ldots, u^{|\text{body}(r_i)|}_{i, j}$ is of depth k. Since G^{k+1} is a full EG for F, it follows that for each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, there exists a homomorphism $\chi_{i, j}(\text{head}(r_i)) \in G^{k+1}(B)$. Since for each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, there exists a homomorphism from g^k from $h_{i, j}(\text{body}(r_i))$ into $\chi_{i, j}(\text{body}(r_i))$, it follows that for each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, there also exists a homomorphism $\omega_{i, j}$ from $h_{i, j}(\text{head}(r_i))$ into $\chi_{i, j}(\text{head}(r_i))$, mapping each $h_{i, j}(n_{i, j})$ to $\chi_{i, j}(n'_{i, j})$, where $h_{i, j}(z) = n_z$ and $\chi_{i, j}(z) = n'_z$, for each existentially quantified variable z occurring in r. Due to the above and since for each $1 \leq i \leq n$ and each $1 \leq j \leq n_i$, $h_{i, j}(c) = g^k(c)$, there also exists a homomorphism from $N^k = \bigcup_i \bigcup_j \chi_{i, j, i}(\text{head}(r_i))$ into $M^k = \bigcup_i \bigcup_j \chi_{i, j, i}(\text{head}(r_i))$ and hence from $I^k \cup N^k$ into $J^k \cup M^k$. The above shows that the induction holds for $k + 1$. □

Theorem 7. The following hold: P is FTG iff it is BDD; and P is TDB \cap FOR iff it is BDD.

Proof. The proof is based on the proofs of Theorem 27 and Theorem 28. □

Theorem 27. P is FTG iff it is BDD.

Proof. \Rightarrow If P is FTG, then there is some finite TG $G = (V, E)$ for this program. We proceed to show that P is k-BDD with k the depth of G. More precisely, we show by contradiction that $Ch^k(P, B) \vdash Ch^{k+1}(P, B)$ for any given base instance B.

1. Suppose for a contradiction that $Ch^k(K) \not\subseteq Ch^{k+1}(K)$ with $K = (P, B)$.
2. By the definition of the standard chase, $Ch^k(K) \subseteq Ch^{k+1}(K)$.
3. By (1) and (2), there is some BCQ q such that $Ch^k(K) \not\models q$ and $Ch^{k+1}(K) \models q$.
4. We can show via induction that $G^k(B) \subseteq Ch^k(K)$ for all $i \geq 0$.
5. By (4), $G^k(B) \subseteq Ch^k(K)$.
6. By (3) and (5), $G(B) \not\models q$.
7. By (3), $K \models q$.
8. By (6) and (7), the graph G is not a TG for P.

\Leftarrow Since P is BDD, we have that P is k-BDD for some $k \geq 0$. Therefore, the graph Φ^k_P is a TG for P by Theorem 26 and the program P is FTG. □

Theorem 28. P is TDB and FOR iff it is BDD.

Proof. \Rightarrow
1. Assume that P is (a) FOR and (b) TDB.

2. Let h be a homomorphism that maps every $t \in \text{Nulls} \cup \text{Vars}$ to a fresh $c_l \in \text{Consts}$ unique for t.

3. For all facts ϕ that can be defined over some $s \in \text{Preds}$ in P, we introduce the following notions.

 (a) Let ω_ϕ be some (arbitrarily chosen) rewriting for the BCQ ϕ with respect to P. Note that, such a rewriting must exist by (1.a).
 (b) Let k_ϕ be the smallest number such that $Ch^{k_\phi}(P, h(\beta)) \models Ch^{k_\phi+1}(P, h(\beta))$ for every disjunct β in the rewriting ω_ϕ. Note that, such a number must exist by (1.b).

4. For all $s \in \text{Preds}$, let k_s be the smallest number such that $k_s > k_\phi$ for all facts ϕ that can be defined over the predicate s. Note that, the number k_s is well-defined despite the fact that we can define infinitely many different facts over any given predicate. This is because $k_{s(t_1, ..., t_n)} = k_{s(u_1, ..., u_n)}$ if we have that there is a bijective function mapping t_i to u_i for all $1 \leq i \leq n$.

5. Let k_P be the smallest number such that $k_P > k_s + 1$ for all $s \in \text{Preds}$ in P.

6. Consider some fact $\phi = s(t_1, ..., t_n)$, some base instance B, and some $i \geq 0$. We show that, if the terms $t_1, ..., t_n$ in $Ch_i(P, B)$ and $\phi \in \text{Ch}(P, B)$, then $\phi \in Ch^{k_P+1}(P, B)$.

 a. $h(\phi) \in Ch((P, B'))$ with $B' = h(Ch_i(P, B))$.
 b. By (a): $B' \models \omega_h(\phi)$ where $\omega_h(\phi)$ is a UBCQ of the form $\exists x_1, \beta_1 \land \cdots \land \exists x_n, \beta_n$.
 c. By (b): $B' \models \exists x_k, \beta_k$ for some $1 \leq k \leq n$.
 d. By (c): there is a homomorphism such that $h'(\beta_k) \subseteq B'$.
 e. By (d): $h'(\phi) \in Ch((P, h(\beta_k)))$.
 f. By (5) and (e): $Ch^{k_P-1}(P, h'(\beta_k)) \supseteq Ch(P, h'(\beta_k))$.
 g. By (e) and (f): $h'(\phi) \in Ch^{k_P-1}(P, h'(\beta_k))$.
 h. By (d) and (g): $h'(\phi) \in Ch^{k_P-1}(P, B')$.
 i. By (h): $\phi \in Ch^{k_P-1}(P, B)$.

7. For a fact $\phi = s(t_1, ..., t_n)$, let $d(\phi) = \max_{1 \leq i \leq n}(d(t_i))$.

8. By (6) and (7): We show via induction that, for all $d \geq 1$, the set $Ch^{d \cdot k_P}(P, F)$ contains all of the facts $\phi \in \text{Ch}(P, F)$ with $d(\phi) \leq d$.

 • Base case: The set $Ch^0(P, F)$ contains all terms of depth 1 (i.e., all constants) that occur in $Ch(P, F)$. Hence, by (6), the set $Ch^{k_P}(P, F)$ contains every $\phi \in Ch(P, F)$ with $d(\phi) = 1$.

 • Inductive step: Let $i \geq 1$. Then, $Ch^{k_P-1}(P, F)$ contains all $\phi \in Ch(P, F)$ with $d(\phi) = i - 1$. Hence, the set $Ch^{k_P}(P, F)$ contains all $\phi \in Ch(P, F)$ with $d(\phi) = i$. By (6), the set $Ch^{k_P}(P, F)$ contains all $\phi \in Ch(P, F)$ with $d(\phi) = i$.

9. By (1.b): There is some $k_d \geq 0$ that depends only on P such that, for every term in t occurring in $Ch(P, F)$, the depth t is equal or smaller than k_d.

10. By (8) and (9): P is $(k_d \cdot k_P)$-BDD. Note that, neither k_d nor k_P depend on the set of facts F.

 \iff Since $P \in \text{BDD}$, $P \in k$-BDD for some $k \geq 0$. Via induction on $i \in \{0, ..., k\}$, we can show that all terms in $Ch_i(P, B)$ are of depth i or smaller for any instance B, and hence, $P \in k$-TDB. Note that $\text{BDD} \subseteq \text{FOR}$ has been shown in \[39\].

Theorem 29. The language of all programs that admit a finite TG is undecidable.

Proof. This follows from the fact that FTG decidability implies decidability of FOR for Datalog programs, which is undecidable \[28\].

Theorem 8. For each KB (P, B) that admits a finite model, there exists an instance-dependent TG.

Proof. Recall that we denote by Φ^k_P the level-k full EG for a program P. We can stop the expansion of the level-k full EG for a program P when $\Phi_{k-1}^k(B) \models \Phi^k_P(B)$ holds. The above, along with Theorem \[26\] and the fact that whenever $Ch^k(P, B) \models Ch^k(P, B)$ holds for some $k \geq 1$, then the KB (P, B) admits a finite model (see \[24\]) conclude the proof of Theorem \[8\].

18
D. PROOFS FOR RESULTS IN SECTION 5

THEOREM 10. For any linear program \(P \) that is FES, \(tgl(P) \) is a TG for \(P \).

PROOF. In order to show that the EG \(G = (V,E) \) computed by Algorithm \(1 \) is a TG for \(P \), it suffices to show that \(Ch^\infty(P,B) \) is logically equivalent to \(G(B) \). The proof makes use of Propositions \(30 \) and \(31 \) as well as of Lemma \(32 \). Note that Propositions \(30 \) is a known result and, hence, we skip its proof, while Proposition \(31 \) directly follows from Definition \(5 \).

PROPOSITION 30. For each linear program \(P \) and each base instance \(B \), the following holds:

\[
Ch^\infty(P,B) = \bigcup_{F \in B} Ch^\infty(P,\{F\})
\]

PROPOSITION 31. For each linear TG \(G \), each node \(v \in G \) and each base instance \(B \), the following holds:

\[
v(B) = \bigcup_{F \in B} u(\{F\})
\]

LEMMA 32. For each fact \(f \in H(P) \), \(\Gamma(\{f\}) \equiv Ch^\infty(P,\{f\}) \), where \(\Gamma \) is the EG computed in lines \(3 \) to \(10 \) for fact \(f \).

PROOF. \(\Rightarrow \) We want to show that for each fact \(f \in H(P) \), there exists a homomorphism from \(\Gamma(\{f\}) \) into \(Ch^\infty(P,\{f\}) \). Due to Algorithm \(1 \), we know that \(\Gamma \) is a graph of the form

\[
\left(\bigcup_{j=1}^{n} u_{j} \bigcup_{j=1}^{n-1} \{u_{j} \rightarrow_{1} u_{j+1}\} \right)
\]

where \(u_{j} \in V \), for each \(0 \leq i \leq n \); \(u_{j} \rightarrow_{1} u_{j+1} \in E \), for each \(0 \leq i < n \); and \(u_{n} = v \). To prove this direction, we will show that the following property holds, for each \(0 \leq i \leq n \):

\(\phi_{i} \) there is a homomorphism \(h^{i} \) from \(\Gamma_{\leq u_{i}}(\{f\}) \) into \(Ch^\infty(P,\{f\}) \).

For \(i = 0 \), since \(\Gamma_{\leq u_{0}} \) is the empty graph and hence \(\Gamma_{\leq u_{0}}(B) = B \) by Definition \(5 \), it follows that \(\phi_{0} \) holds. For \(i + 1 \) and assuming that \(\phi_{i} \) holds for \(i \) the proof proceeds as follows. Since \(\phi_{i} \) holds for \(i \), we know that there exists a homomorphism \(h^{i} \) from \(\Gamma_{\leq u_{i}}(\{f\}) \) into \(Ch^\infty(P,\{f\}) \). If \(u_{i+1}(\{f\}) = \emptyset \), then \(\phi_{i+1} \) trivially holds for \(i + 1 \). Hence, we will consider the case where \(v_{i+1}(\{f\}) \neq \emptyset \). Since \(v_{i+1} \) is a child of \(v_{i} \) and since \(v_{i+1} \) is associated with some rule \(r_{i+1} \in P \), it follows that there exists a homomorphism \(g \) from \(\text{body}(r_{i+1}) \) into \(v_{i}(\{f\}) \) and \(v_{i+1}(\{f\}) = g(\text{head}(r_{i+1})) \).

Due to \(g \) and due to \(h^{i} \), we know that there exists a homomorphism \(\psi = g \circ h^{i} \circ \text{body}(r_{i+1}) \circ \text{head}(r_{i+1}) \) mapping each value \(c \) occurring in \(\text{dom}(g) \) into \(\text{dom}(h^{i})(c) \) and \(n_{z} \) into \(n'_{z} \), for each existentially quantified variable \(z \) of \(r_{i+1} \), where \(g(z) = n_{z} \) and \(\psi(z) = n'_{z} \).

We distinguish the cases:

\(\psi_{r_{i}}(\text{head}(r_{i+1})) \in Ch^\infty(P,\{f\}) \). Due to \(h^{i} \) and due to \(\omega \), it follows that \(h^{i+1} = h^{i} \cup \omega \) is a homomorphism from \(\Gamma_{\leq u_{i}}(\{f\}) \) into \(Ch^\infty(P,\{f\}) \).

\(\psi_{r_{i}}(\text{head}(r_{i+1})) \notin Ch^\infty(P,\{f\}) \). Then \(Ch^\infty(P,\{f\}) = \psi_{r_{i}}(\text{head}(r_{i+1})) \) holds and hence, there exists a homomorphism \(\theta \) from \(\psi_{r_{i}}(\text{head}(r_{i+1})) \) into \(Ch^\infty(P,\{f\}) \). Due to \(h^{i} \), due to \(\omega \) and due to \(\theta \), we can see that \(h^{i+1} = (h^{i} \cup \omega) \circ \theta \) is a homomorphism from \(\Gamma_{\leq u_{i+1}}(\{f\}) \) into \(Ch^\infty(P,\{f\}) \).

The above shows that \(\phi_{i+1} \) holds for \(i + 1 \). Continuing the proof of the \(\Rightarrow \) direction.

\(\Leftarrow \) We want to show that for each fact \(f \in H(P) \), there exists a homomorphism from \(Ch^\infty(P,\{f\}) \) into \(\Gamma(\{f\}) \). We use \(I^{f} \) to denote \(Ch^{f}(P,\{f\}) \) and \(\text{chaseGraph}^{f}(P,\{f\}) \) to denote the chase graph corresponding to \(Ch^{f}(P,\{f\}) \). The proof of this direction proceeds by showing that the following properties hold, for each \(i \geq 0 \):

\(\phi_{i} \) there exists a homomorphism \(h^{i} \) from \(Ch^{f}(P,\{f\}) \) into \(\Gamma(\{f\}) \).

\(\phi_{i} \). For each \(f_{1} \rightarrow_{r_{1}} f_{2} \rightarrow_{r_{2}} \cdots \rightarrow_{r_{j}} f_{j+1} \) in \(\text{chaseGraph}^{f}(P,\{f\}) \), a path of the form \(u_{1} \rightarrow_{1} \cdots \rightarrow_{i} u_{j} \) is in \(\Gamma \), where for each \(1 \leq k \leq j \), \(u_{k} \) is associated with \(r_{k} \) and there exists a homomorphism from \(f_{k+1} \) into \(u_{k}(\{f\}) \).

For \(i = 0 \), since \(Ch^{f}(P,\{f\}) = \{f\} \) and since \(f \in \Gamma(\{f\}) \) by definition, it follows that the inductive hypotheses \(\phi_{2} \) and \(\phi_{3} \) hold. For \(i + 1 \) and assuming that \(\phi_{2} \) and \(\phi_{3} \) hold for \(i \) the proof proceeds as follows. Let \(\Sigma_{r} \) be the set of all active triggers for each \(r \in P \) in \(I^{f} \). Let also

\[
\Delta I = \bigcup_{r \in P} \bigcup_{h \in \Sigma_{r}} h_{u}(\text{head}(r))
\]

We distinguish the following cases:

\(I^{f} \models I^{f} \cup \Delta I \) holds. Then the equivalent chase terminates and hence \(Ch^{f}(P,\{f\}) = Ch^\infty(P,\{f\}) \). Since the inductive hypotheses \(\phi_{2} \) and \(\phi_{3} \) hold for \(i \) and due to the above, it follows that the inductive hypothesis will hold for \(i + 1 \).
\begin{itemize}
\item $I^i \models I^i \cup \Delta I$ does not hold. Then, for each rule $r \in P$ for which $\Sigma_r \neq \emptyset$ and for each $h \in \Sigma_r$, the chase graph $\text{chaseGraph}^{i+1}(P, \{f\})$ will include an edge $h(\text{body}(r)) \rightarrow h_s(\text{head}(r))$. Due to the steps in lines 4–6 we know that Γ includes a node v associated with $r \ast$. We have the following two subcases:
\begin{itemize}
\item There is no edge of the form $f' \rightarrow r \ast h(\text{body}(r))$ in $\text{chaseGraph}^{i+1}(P, \{f\})$, for some $r' \in P$. Then, it follows that $h(\text{body}(r)) = f$. Due to the above, due to \ast and due to Definition 5 it follows that the inductive hypotheses ϕ_2 and ϕ_3 hold for $i+1$.
\item Otherwise, since the inductive hypothesis ϕ_3 holds for i and due to the steps in lines 7–9 it follows that an edge of the form $v' \rightarrow v$ will be in Γ, where node v' is associated with rule r'. Furthermore, due to ϕ_3, there exists a homomorphism g' from $h(\text{body}(r))$ into $v'(\{f\})$. Due to g', due to the fact that the edge $v' \rightarrow v$ is in Γ and due to Definition 5 there exists a homomorphism g^{i+1} from $h_s(\text{head}(r))$ into $v(\{f\})$. Finally, due to the above, and since ϕ_2 holds for i, it follows that $h^{i+1} = h \circ g^{i+1}$ is a homomorphism from $Ch(P, \{f\})$ into $\Gamma(\{f\})$. Hence, ϕ_2 and ϕ_3 hold for $i+1$ concluding the proof of this direction and, consequently of Lemma 52.
\end{itemize}
\end{itemize}

\end{proof}

We are now ready to return to the proof of Theorem 10. Let Γ_f be the EG computed in lines 2–10 for each $f \in \mathcal{H}(P)$. Since Algorithm 1 only adds new nodes and new edges to set of nodes and the set of edges of an input EG, it follows that

$$V = \bigcup_{\forall f \in \mathcal{H}(P)} \nu(\Gamma_f)$$

(6)

$$E = \bigcup_{\forall f \in \mathcal{H}(P)} \epsilon(\Gamma_f)$$

(7)

Since for each base instance B of P and each fact $f' \in B$, there exists a fact $f \in \mathcal{H}(P)$ and a bijective function g over the constants in \mathcal{C}, such that $g(f') = f$ and from Lemma 52 it follows that $\Gamma_f(\{f'\}) \equiv Ch^\infty(\{P, f\})$. Due to the above, due to (6) and (7) and since each node in V has up to one incoming edge, it follows that for each base instance B of P

$$\bigcup_{F \in B} Ch^\infty(\{P, f\}) \equiv \bigcup_{F \in B} G(\{F\})$$

(8)

Due to Definition 5 and since each node in V has up to one incoming edge, it follows that for each base instance B of P we have

$$\bigcup_{F \in B} G(\{F\}) = G(B)$$

(9)

Finally, due to Proposition 30 and due to (8) and (9), we have $Ch^\infty(\{P, B\}) \equiv G(B)$, for each base instance B of P. The above concludes the proof of the first part of Theorem 10.

Theorem 11. The execution time of Algorithm 1 for FES programs is double exponential in the input program P. If the arity of the predicates in P is bounded, the execution time is (single) exponential.

Proof. We first show the first part of the theorem with a step-by-step argument.

1. Consider some program P.
2. The set $\mathcal{H}(P)$ is exponential in P.
 \begin{itemize}
 \item (a) Let Ary be the maximal arity of an extensional predicate occurring in P.
 \item (b) For an extensional predicate p occurring in P, there are at most Ary^{Ary} facts in $\mathcal{H}(P)$ defined over p.
 \item (c) Since P is a linear rule set and extensional predicates may only appear in the body of a rule, we have that number of extensional predicates in P is at most $|P|$.
 \item (d) By (b) and (c): there are at most $|P| \times Ary^{Ary}$ facts in $\mathcal{H}(P)$.
 \end{itemize}
3. For every fact $f \in \mathcal{H}(P)$, we may have to add at most $|Ch(P, \{f\})|^2$ nodes to the graph $tg_{linear}(P)$. (Note that $Ch(P, \{f\})$ is defined since P is FES.) Therefore, this graph contains at most $|Ch(P, \{f\})|^4$ edges.
4. From results in [38], the size of $Ch(P, \{f\})$ is double exponential in P.
 \begin{itemize}
 \item (a) By Proposition 30 in [38]: if $Ch(P, \{f\})$ is finite, then there exists a finite entailment tree T such that the set of atoms associated with T is a complete core.
 \item (b) In Algorithm 1 in [38], the authors describe how to construct the finite entailment tree for P and $\{f\}$.
 \end{itemize}
(c) The complexity of this algorithm, as well as the size of the output tree, is double exponential in the input P and $\{f\}$. Note the discussion right after Algorithm 1 in [38].

5. By (2–4): the algorithm $\text{tlinear}(P)$ runs in double exponential in P.

To show that the procedure $\text{tlinear}(P)$ runs in single exponential time when (\ast) the arity of the predicates in P is bounded, we can show that the size of $\text{Ch}(P, \{f\})$ is (single) exponential in P if (\ast). In fact, this claim also follows from the results in [38]. Namely, if (\ast), then entailment trees for P and f (as they are defined in [38]) are of polynomial depth because the number of “sharing types” for P is polynomial. Therefore, the size of these trees is exponential and so is the size of $\text{Ch}(P, \{f\})$. □

Lemma 13. Let P be a linear program, G be an EG for P and $u, v \in v(G)$. Then, there exists a preserving homomorphism from $u(B)$ into $v(B)$ for each base instance B, if for each $f \in H(P)$.

Proof. (\Rightarrow) This direction trivially holds.

(\Leftarrow) We want to show that if there exists a preserving homomorphism from $u(\{f\})$ into $v(\{f\})$, for each fact $f \in \mathcal{H}(P)$, there exists a preserving homomorphism from $u(B)$ into $v(B)$, for each base instance B. The proof works by contradiction. Suppose that there exists a base instance B', such that there does not exist a preserving homomorphism from $u(B')$ into $v(B')$. Since there does not exist a preserving homomorphism from $u(B')$ into $v(B')$, and due to Proposition 31, it follows that there does not exist a preserving homomorphism from $\bigcup_{F' \in B'} u(\{F'\})$ into $\bigcup_{F' \in B'} v(\{F'\})$.

Next we show that there exists some $F' \in B'$, so that there does not exist a preserving homomorphism $h_{F'}$ from $u(\{F'\})$ into $v(\{F'\})$. The proof proceeds as follows. Suppose by contradiction that there exists a preserving homomorphism $h_{F'}$ from $u(\{F'\})$ into $v(\{F'\})$, for each $F' \in B'$, but there does not exist a preserving homomorphism $h_{B'}$ from $u(B')$ into $v(B')$. The above assumption, will be referred to as Assumption (A1). By definition, we know that a preserving homomorphism from $u(B')$ into $v(B')$ maps each value c either (i) to itself if c was a schema constant or a null occurring in $(G(B') \setminus G_{\geq u}(B')) \cap G_{\geq v}(B')$ or (ii) to a fresh null occurring in a single fact from $v(\{F'\})$. Since for each $F' \in B'$, $h_{F'}$ maps each schema constant and each null occurring in $(G(B') \setminus G_{\geq u}(B')) \cap G_{\geq v}(B')$ to itself according to Assumption (A1) and due to the above, it follows that there exist two facts $F'_1, F'_2 \in B'$ and a null n occurring in $G_{\geq u}(B') \setminus G(B')$, such that $h_{F'_1}(n) = m_1$ and $h_{F'_2}(n) = m_2$, where $h_{F'_1}$ is a preserving homomorphism from $u(\{F'_1\})$ into $v(\{F'_1\})$, for each $1 \leq j \leq 2$. However, the above leads to a contradiction, since in linear TGs each null from $u(\{B'\})$ or $v(\{B'\})$ occurs in only one fact. The above shows that if there does not exist a preserving homomorphism from $\bigcup_{F' \in B'} u(\{F'\})$ into $\bigcup_{F' \in B'} v(\{F'\})$, then there exists some $F' \in B'$, such that there does not exist a preserving homomorphism from $u(\{F'\})$ into $v(\{F'\})$. The proof proceeds as follows.

Since for each $F' \in B'$, there exists a bijective function g over the constants in \mathcal{C} and an instance $f \in \mathcal{H}(P)$, such that $g(F') = f$, it follows that there does not exist a preserving homomorphism from $u(\{f\})$ into $v(\{f\})$, for some $f \in \mathcal{H}(P)$. This leads to a contradiction. Hence, there exists a preserving homomorphism from $u(B)$ into $v(B)$, for each base instance B and thus, Lemma 13 holds. □

Theorem 15. For a TG G for a linear program P, $\text{minLinear}(G)$ is a TG for P.

Proof. Recall from Definition 14 that $\text{minLinear}(G)$ results from G after applying the following step until reaching a fixpoint: (i) find a pair of nodes u and v with u being dominated by v; (ii) remove v from $\nu(G)$; and (iii) add an edge $v \rightarrow u'$, for each edge $u \rightarrow v$ from $\nu(G)$. Let G' be the EG computed at the beginning of the i-th step of this iterative process with $G^0 = G$. In order to show that $\text{minLinear}(G)$ is a TG for P, we need to show that the following property holds for each BCQ Q entailed by (P, B):

$$G^i(B) \models Q$$

(\ast)

We can see that (\ast) holds $i = 0$, since $G^0 = G$. For $i + 1$ and assuming that (\ast) holds for $i \geq 0$ we proceed as follows. Suppose that there exists a homomorphism q from Q into $G^{i+1}(B)$. Furthermore, let C_1 and C_2 be two conjuncts, such that $Q = C_1 \land C_2$ and q maps C_1 into $G_{\geq u}(B)$ and C_2 into $G(B) \setminus G_{\geq u}(B)$. Due to the above, it follows that q maps each variable occurring both in C_1 and C_2 either to a constant or to a null occurring in $(G(B) \setminus G_{\geq u}(B)) \cap G_{\geq u}(B)$. From Definition 14 we know that (i) there exists a pair of nodes $u, v \in \nu(G^i)$ with u being dominated by v and that (ii) the graph G^{i+1} that results from $G_{\geq u}$ after adding an edge $v \rightarrow u'$, for each edge $u \rightarrow u'$ in G^i, is a subgraph of G^{i+1}. Since q maps each variable occurring both in C_1 and C_2 either to a constant or to a null occurring in $(G(B) \setminus G_{\geq u}(B)) \cap G_{\geq u}(B)$ it follows that (\ast) holds for $i + 1$ if the following holds:

Lemma 33. There exists a homomorphism g from $G^{i+1}_{\geq u}(B)$ into $G^{i+1}(B)$ so that $g(c) = h(c)$, for each $c \in \text{dom}(h)$. 21
The proof of Lemma 33 directly follows from the facts that (i) there exists a preserving homomorphism from \(u(B) \) into \(v(B) \), for each base instance \(B \) and (ii) all subgraphs rooted at each child of \(u \) are copied below \(v \).

From Lemma 33 and since \(\Gamma^{i+1} \) is a subgraph of \(G^{i+1} \), we have that there exists a homomorphism \((q \circ g) \) from \(Q \) into \(G^{i+1}(B) \) concluding the proof of (\(\ast \)) for \(i + 1 \) and hence the proof of Theorem 10.

E. PROOFS FOR RESULTS IN SECTION 5.1

Below, we recapitulate the notion of the answers of non-Boolean CQs on a KB. The answers to a CQ \(Q \) on a KB \((P, B) \), denoted as \(\text{ans}(Q, P, B) \), is the set of tuples that are answers to each model of \((P, B) \), i.e., \(\{ t \mid t \in Q(I), \text{ for each model } I \text{ of } (P, B) \} \).

Lemma 18. Let \(G \) be an EG for a Datalog program \(P \) and \(B \) be a base instance of \(P \). Then for each \(v \in \nu(G) \) we have: \(\nu(B) \) includes exactly a fact \(A(t) \) with \(A \) being the head predicate of rule \((v) \), for each answer \(t \) to the EG-rewriting of \(v \) on \(B \).

Proof. Let \(R \) be the predicate in the body of the characteristic query of \(v \). In order to prove Lemma 18, we have to show that \(t \) is an answer to \(\text{rew}(v) \) on \(B \) if \(R(t) \in \nu(B) \). The proof is based on (i) the correspondence between the rewriting process of Definition 17 and the query rewriting algorithm from [29], called \(\text{XRewrite} \) and (ii) the correctness of \(\text{XRewrite} \). In particular, the steps of the proof are as follows. First, we compute a new set of rules \(P^* \) by rewriting the rules associated with the nodes in \(G_{\leq v} \). This rewriting process is described in Definition 34. Then, we establish the relationship between the \(\text{rew} \) and the rewritings computed by \(\text{XRewrite} \). In particular, Lemma 36 shows that Definition 17 and \(\text{XRewrite} \) result in the same rewritings modulo bijective variable renaming, when the latter is provided with \(P^* \) and a rewriting of the characteristic query of \(v \) denoted as \(Q^* \). A direct consequence of Lemma 36 is that \(\text{XRewrite} \) terminates when provided with \(P^* \) and \(Q^* \). In order to show our goal, we make use of the above results as well as of Lemma 37.

Below, we describe \(\text{XRewrite} \). Given a CQ \(Q \) and a set of rules \(P \), \(\text{XRewrite} \) computes a rewriting \(Q^* \) of \(Q \) so that for any null-free instance \(I \), the answers to \(Q^* \) on \((P, I) \) coincide with the answers to \(Q \) on \((P, I) \). We describe how \(\text{XRewrite}(P, Q) \) works when \(P \) is Datalog. At each step \(i \), \(\text{XRewrite} \) computes a tree \(T^i \), where each node \(\kappa \) is associated with a CQ denoted as \(\text{query}(\kappa) \). When \(i = 0 \), \(T^0 \) includes a single root node associated with \(Q \). When \(i > 0 \), then \(T^i \) is computed as follows: for each leaf node \(\kappa \) in \(\nu(T^{i-1}) \), each atom \(\beta \) occurring in the body of \(\text{query}(\kappa) \) and each rule \(r = \rho \) in \(P \) whose head unifies with \(\text{query}(\kappa) \), \(\text{XRewrite} \) computes a rewriting \(Q^* \) of query \(\kappa \):

1. computes a new query \(Q^* \) by (i) computing the MGU \(\theta \) of \(\{ \text{head}(r), \alpha \} \), (ii) replacing \(\alpha \) in the body of \(\text{query}(\kappa) \) with \(\text{body}(r) \) and (iii) applying \(\theta \) on the resulting query;
2. adds a new node \(\kappa' \) in \(T^i \) and associates it with \(Q^* \); and
3. adds the edge \(\kappa \xrightarrow{\text{rew}} \kappa' \) to \(T^i \).

Notice that \(\text{XRewrite} \) also includes a factorization step, however, this step is only applicable in the presence of existential rules.

We now introduce some notation related to Definition 17. We denote by \(\text{rew}(v) \) the CQ at the beginning of the \(i \)-th iteration of the rewriting step of Definition 17 with \(\text{rew}^0(v) \) being equal to the characteristic query of \(v \). We use \(\text{rew}(v) \xrightarrow{\ast} \text{rew}^{i+1}(v) \) to denote that \(\text{rew}^{i+1}(v) \) results from \(\text{rew}(v) \) after choosing the atom \(\alpha_i \) from the body of \(\text{rew}(v) \) at the beginning of the \(i \)-th rewriting step.

Below, we describe a process that computes a new ruleset by rewriting the rules with the nodes of an EG.

Definition 34. Let \(G \) be an EG of a program \(P \) with a single leaf node. Let \(\pi \) be a mapping associating each edge \(\varepsilon \in \varepsilon(G) \cup \{ \circ \} \) with \(\circ \) denoting the empty edge, with a fresh predicate \(\pi(\varepsilon) \). We denote by \(\rho(G, \pi) \) the rules obtained from the rules associated with the nodes in \(G \) after rewriting them as follows: replace each \(A(X) \) that is either

- i. the \(i \)-th intensional atom in the body of \(\text{rule}(v) \) or the head atom of \(\text{rule}(u) \) and \(\varepsilon := u \rightarrow_i v \in \varepsilon(G) \); or
- ii. the head atom of \(\text{rule}(\kappa) \) with \(\kappa \) being the leaf node of \(G \), by \(A^\ast(X) \), where \(A^\ast = \pi(\varepsilon) \) when (i) holds, or \(A^\ast = \pi(\circ) \) when (ii) holds.

For a node \(u \in \nu(G) \), we denote by \(r^\ast_u \) the rule from \(\rho(G, \pi) \) that results after rewriting rule \(u \).

From Definition 34 we can see that the following holds:

Corollary 35. For an EG \(G \) of a program \(P \) with a single leaf node, a mapping \(\pi \) associating each edge \(\varepsilon \in \varepsilon(G) \cup \{ \circ \} \) with a fresh predicate and two rules \(g_1 \) and \(g_2 \) from \(\rho(G, \pi) \), we have: the \(i \)-th body atom of \(g_1 \) has the same predicate with the head atom of \(g_2 \) only if \(g_1 \) is of the form \(r^\ast_{u_j} \), for \(1 \leq j \leq 2 \) and \(u_2 \rightarrow_{i+1} u_1 \) is in \(\varepsilon(G) \).

Let \(\Gamma = G_{\leq v} \) and \(n \) be the depth of \(\Gamma \). Let \(\pi \) be a mapping from edges to predicates as defined above. Let \(P^* \) be the rules in \(\rho(\Gamma, \pi) \). Let \(R \) be the predicate occurring in the head of \(\text{rule}(v) \) and let \(\text{head}(\text{rule}(v)) = R(Y) \). Let
\[R^* = \pi(\phi). \] Let \(Q(Y) \leftarrow R(Y) \) and \(Q^*(Y) \leftarrow R^*(Y) \). Let \(T^i \) be the tree computed at the end of the \(i \)-th iteration of \(\text{XRewrite}(P^*, Q^*) \).

Below, we establish the relationship between the \(\text{rew} \) and the rewritings computed by \(\text{XRewrite} \).

Lemma 36. For each branch \(\kappa^0 \xrightarrow{a_0} \ldots \xrightarrow{a_{n-1}} \kappa^{n+1} \) with \(a_i = (\beta_i, g_i) \) and \(\kappa^i \) is a node of depth \(i \) in \(T^{n+1} \), there exists a sequence

\[
\text{rew}^0(v) \xrightarrow{a_0} \ldots \xrightarrow{a_{n-1}} \text{rew}^{n+1}(v)
\]

such that \(\text{rew}^{n+1}(v) \) equals \(\text{query}(\kappa^{n+1}) \) modulo bijective variable renaming.

The proof of Lemma 36 follows from: (i) \(Q(Y) \leftarrow R(Y) \) and \(Q^*(Y) \leftarrow R^*(Y) \), where \(R^* = \pi(\phi) \), (ii) the correspondence between the rewriting steps (1)–(3) of \(\text{XRewrite} \) and the rewriting process of Definition 17 and (iii) Corollary 35.

From Lemma 36 and since \(\text{rew}^{n+1}(v) \) includes only EDP-atoms, we have that: \(\text{XRewrite}(P^*, Q^*) \) terminates after \(n + 1 \) iterations. Furthermore, since \(\text{XRewrite} \) terminates and due to its correctness we have: \(R^*(t) \in C\kappa^n(P^*, B) \) iff \(t \) is an answer to \(\text{XRewrite}(P^*, Q^*) \) on \(B \).

Due to Corollary 35 we also have:

Lemma 37. For each base instance \(B \), the following inductive property holds for each \(1 \leq i \leq n + 1 \):

- \(\phi. S(t) \in u(B) \), with \(u \) being a node of depth \(i \) in \(\Gamma \) iff \(S^*(t) \in Ch(P^*, B) \), where \(S^* \) is the predicate of the head atom of \(r^* \).

We now establish the correspondence between \(v(B) \) and the answers to \(\text{rew}(v) \) on \(B \). From Lemma 37 we have: \(R^*(t) \in C\kappa^n(P^*, B) \) iff \(R(t) \in v(B) \). Since \(R^*(t) \in C\kappa^n(P^*, B) \) iff \(t \) is an answer to \(\text{XRewrite}(P^*, Q^*) \) on \(B \), it follows that \(R(t) \in v(B) \) iff \(t \) is an answer to \(\text{XRewrite}(P^*, Q^*) \) on \(B \). Since \(t \) is an answer to \(\text{XRewrite}(P^*, Q^*) \) on \(B \) iff \(t \) is an answer to \(\text{rew}(v) \) on \(B \) and due to the above, it follows that: \(t \) is an answer to \(\text{rew}(v) \) on \(B \) iff \(R(t) \in v(B) \). The above completes the proof of Lemma 38.

Theorem 20. If \(G \) is a TG for a Datalog program \(P \) and each base instance \(B \) of \(P \), \(G(B) = \text{minDatalog}(G(B)) \).

Proof. Part I. The proof follows from Lemma 38.

Part II. First, we can see that the following holds due to Definition 19.

Corollary 39. For a TG \(G \) of a Datalog program \(P \), there exists no two nodes \(u, v \) in \(\text{minDatalog}(G) \) satisfying the following: (i) \(u \) and \(v \) define the same predicate \(A \) and (ii) \(\text{rew}(u) \subseteq \text{rew}(v) \).

The proof works by contradiction. Let \(P \) be a Datalog program, \(G \) be a TG for \(P \) and \(\Gamma = \text{minDatalog}(G) \). Suppose by contradiction that there exists a TG \(\Gamma' \) for \(P \) with \(\nu(\Gamma) > \nu(\Gamma') \). From Lemma 18 we know that for each set of nodes \(u_1, \ldots, u_m \) from \(\nu(\Gamma) \) defining a predicate \(A \), there exists a set of nodes \(u'_1, \ldots, u'_n \) from \(\nu(\Gamma') \) defining also \(A \), such that the following holds:

\[
\text{rew}(u_1) \cup \ldots \cup \text{rew}(u_m) \equiv \text{rew}(u'_1) \cup \ldots \cup \text{rew}(u'_n)
\]

Since \(\nu(\Gamma) > \nu(\Gamma') \), we know that there exist a set \(u_1, \ldots, u_m \) and a set \(u'_1, \ldots, u'_n \) so that \(m > n \). Since 19 holds, we know from 32 that the following holds:

- for each \(\text{rew}(u_i) \) with \(1 \leq i \leq m \), there exists a \(\text{rew}(u'_j) \) with \(1 \leq j \leq n \), such that \(\text{rew}(u_i) \subseteq \text{rew}(u'_j) \); for each \(\text{rew}(u'_j) \) with \(1 \leq j \leq n \), there exists a \(\text{rew}(u_i) \) with \(1 \leq i \leq m \), such that \(\text{rew}(u'_j) \subseteq \text{rew}(u_i) \).

Since \(m > n \), it follows that there exist \(i_1, i_2 \) with \(1 \leq i_1, i_2 \leq m \) and an \(\ell \) with \(1 \leq \ell \leq n \), such that \(\text{rew}(u_{i_1}) \subseteq \text{rew}(u'_{i_2}) \) and \(\text{rew}(u_{i_2}) \subseteq \text{rew}(u'_{i_1}) \). Below, we show how we reach a contradiction. We consider the following cases:

\[
\text{We say that a node } u \text{ in a TG defines a predicate } A \text{ if the predicate of } \text{head}(u) \text{ is } A.
\]
• there exists an i_3 with $1 \leq i_3 \leq m$ and $i_3 \neq i_1, i_2$, such that $\text{rew}(u_i') \subseteq \text{rew}(u_{i_3})$. From the above, it follows that $\text{rew}(u_{i_1}) \subseteq \text{rew}(u_{i_3})$ and $\text{rew}(u_{i_2}) \subseteq \text{rew}(u_{i_3})$ leading to a contradiction due to Corollary 39.

• $\text{rew}(u_{i_1}) \subseteq \text{rew}(u_{i_2})$. From the above, it follows that $\text{rew}(u_{i_2}) \subseteq \text{rew}(u_{i_1})$ leading again to a contradiction due to Corollary 39.

The above completes the proof of Theorem 20. □

Theorem 21. For a Datalog program P and a TG G for P, deciding whether G is a TG of minimum size for P is co-NP-complete.

Proof. Membership. We show that deciding whether G is a TG of P not of minimum size is in NP. By Definition 19 and Theorem 20, G is a TG of P not of minimum size iff there exists a pair of vertices u and v in G satisfying the conditions in Definition 19 for which $\text{rew}(v) \subseteq \text{rew}(u)$ (remember that the last condition holds iff there exists a homomorphism from $\text{rew}(u)$ to $\text{rew}(v)$). Hence, to disprove that G is a TG of P of minimum size, it is sufficient to guess such nodes u and v, guess the homomorphism from $\text{rew}(u)$ to $\text{rew}(v)$ (observe that the size of $\text{rew}(u)$ and $\text{rew}(v)$ is polynomial), then compute $\text{rew}(u)$ and $\text{rew}(v)$ (feasible in deterministic polynomial time), and then check that the guessed homomorphism is correct (feasible in deterministic polynomial time). This procedure is feasible in NP.

Hardness. We show the co-NP-hardness of the problem by showing the NP-hardness of its complement. The reduction is from the NP-complete problem of query containment in relational DBs: given two CQs $Q_1(X)$ and $Q_2(X)$ for a relational DB, decide whether $Q_1(X) \subseteq Q_2(X)$. Let the queries be $Q_1(X) \leftarrow a_{i_1}(X_{i_1}), \ldots, a_{i_n}(X_{i_n})$ and $Q_2(X) \leftarrow a_{j_1}(X_{j_1}), \ldots, a_{j_m}(X_{j_m})$.

We now describe the reduction. Consider the following program P and TG G.

The rules of P are obtained as follows. Let $D = \{a_{i_1}, \ldots, a_{i_n}\}$ be the set of all the distinct predicates from $\{a_{i_1}, \ldots, a_{i_n}\}$. For each of the predicates a_{i_k} in D, there is a rule $a_{i_k}(X_{i_k}) \rightarrow A_{i_k}(X_{i_k})$ in P. In P there are also the rules $A_{i_1}(X_{i_1})$, $A_{i_2}(X_{i_2})$, \ldots, $A_{i_n}(X_{i_n}) \rightarrow Q(X)$ and $a_{j_1}(X_{j_1}), \ldots, a_{j_m}(X_{j_m}) \rightarrow Q'(X)$.

The TG G is as follows. There is a node v_{i_k} associated with each of the rules $a_{i_k}(X_{i_k}) \rightarrow A_{i_k}(X_{i_k})$; there is a node v associated with the rule $A_{i_1}(X_{i_1}), \ldots, A_{i_n}(X_{i_n}) \rightarrow Q(X)$; and there is a node u associated with the rule $a_{j_1}(X_{j_1}), \ldots, a_{j_m}(X_{j_m}) \rightarrow Q'(X)$. The edges of G are: for each $1 \leq s \leq n$, there is an edge labelled s to node v from the node v_{i_s} such that the predicate of $\text{head}(\text{rule}(v_{i_s}))$ is A_{i_s}.

We show the TG is a TG of minimum size for P iff $Q_1(X) \subseteq Q_2(X)$.

First, observe that the predicates of the rules associated with nodes v_{i_k} are all distinct, and they differ from the predicate of the heads of the rules associated with u and v. Hence none of the nodes v_{i_k} can be removed from G in the minimization process. Nodes u and v are the only nodes in G associated with rules with the same head predicate. The depth of u is 0, while the depth of v is 1. Hence, v is the only node that can be removed in the minimization process. Therefore, G is not of minimum size if v can be removed. The node v can be removed iff $\text{rew}(v) \subseteq \text{rew}(u)$, and hence, by the definition of P, iff $Q_1(X) \subseteq Q_2(X)$. □

Theorem 24. For a Datalog program P and a base instance B, $\text{TGmat}(P, B) = \text{Ch}(P, B)$.

Proof. We first show that

Claim 40. For each node $v \in v(G)$ and each instance I, we have

$$v(B, I) = v(B) \setminus I$$

(12)

Proof. Let $A(X)$ be the head atom of $\text{rule}(v)$ and let $Q(Y) \leftarrow \bigwedge_{i=1}^{n} f_i$ be the EG-rewriting of v.

Recall from Lemma 18 that for each base instance of B of P we have: $v(B)$ includes exactly a fact $A(t)$ for each answer t to the EG-rewriting of v on B.

Now consider any $m \geq 1$ atoms f_1, \ldots, f_m from the body of Q whose variables include all variables in Y. Consider also the query $Q'(Y) \leftarrow f_1, \ldots, f_m$. From (17), it follows that Q is contained in Q', i.e., for each base instance B, each answer t to Q on B is an answer to Q' on B. From the above, we have: each t, for which $A(t) \in v(B)$, holds, is also an answer to $Q'(Y) \leftarrow f_1, \ldots, f_m$ on B. We refer to this conclusion as (\star).

Since step (2) of Definition 23 considers each homomorphism h for which (i) $h(X)$ is an answer to Q' on B and (ii) $A(h(X)) \notin I$ and due to (\star), it follows that Claim 40 holds. □

Let I^k be the instance computed the beginning of the k-th iteration of the steps in lines 23-38 of Algorithm 2. Then, using Claim 40, Theorem 26, and Lemma 38, we can easily show that for each $k \geq 0$, the following property holds:

• ϕ^k, $I^k = \text{Ch}^k(P, B)$

The above concludes the proof of Theorem 24.

F. ADDITIONAL EXAMPLES

24
Example 41. We show how reasoning over the TG G_1 from Figure 7 proceeds for the base instance $B = \{r(c_1, c_2)\}$. Reasoning starts from the root nodes u_1 and u_2, which are associated with the rules r_1 and r_2, respectively. Since there exists a homomorphism $h = \{X \mapsto c_1, Y \mapsto c_2\}$ from $\text{body}(r_1)$ into B and from $\text{body}(r_2)$ into B, we have

\begin{align}
 u_1(\{f_1\}) &= \{R(c_1, c_2)\} \\
 u_2(\{f_1\}) &= \{T(c_2, c_1, n_1)\}
\end{align}

where n_1 is a null. Then, since there exists an edge from u_1 to u_3 and since u_3 is associated with r_2, we compute all homomorphisms from $\text{body}(r_2)$ into $u_4(B)$. Since there exists a homomorphism $h = \{X \mapsto c_1, Y \mapsto c_2\}$ from $\text{body}(r_2)$ into $u_3(B)$, we have

\[u_3(\{f_1\}) = \{T(c_2, c_1, c_2)\} \]

Since there is no other node, reasoning stops.

Example 42. We demonstrate the notion of preserving homomorphisms introduced in Definition 13.

Consider the facts $f_1 = r(c_1, c_2)$ and $f_2 = r(c_3, c_3)$ from the set $H(P)$. By applying Definition 5 for the base instance $\{f_1\}$, we have $u_1(\{f_1\})$ and $u_3(\{f_1\})$ as in (13), (14) and (15). Similarly, by applying Definition 5 for the base instance $\{f_2\}$, we have

\begin{align}
 u_1(\{f_2\}) &= \{R(c_3, c_3)\} \\
 u_2(\{f_2\}) &= \{T(c_3, c_3, n_2)\} \\
 u_3(\{f_2\}) &= \{T(c_3, c_3, c_3)\}
\end{align}

Above, n_2 is a null. We can see that there exists a preserving homomorphism from $u_2(\{f_1\})$ into $u_3(\{f_1\})$ mapping n_1 to c_2, since the null n_1 is not shared among the facts occurring in the instances associated with u_2 and u_3. For the same reason, there exists a preserving homomorphism from $u_2(\{f_2\})$ into $u_3(\{f_2\})$ mapping n_2 to c_3. Hence according to Lemma 7, there exists a preserving homomorphism from $u_2(B)$ into $u_3(B)$ for each base instance B.

Example 43. We demonstrate the computation of EG-rewritings introduced in Definition 17.

Consider the rules

\begin{align}
 r(X_1, Y_1, Z_1) &\rightarrow T(X_1, X_1, Y_1) \\
 T(X_2, Y_2, Z_2) &\rightarrow R(Y_2, Z_2)
\end{align}

where r is the only extensional predicate. Consider now an EG having nodes u_1 and u_2, where u_1 is associated with r_i for each $1 \leq i \leq 2$, and the edge $u_1 \rightarrow u_2$.

To compute the EG-rewriting $\text{rew}(u_2)$ of u_2 we first form the query

\[Q(Y_2, Z_2) \leftarrow R(Y_2, Z_2) \]

and associate the atom $R(Y_2, Z_2)$ with u_2. The following steps take place in the first iteration of the rewriting algorithm. First, since $R(Y_2, Z_2)$ is the only intensional atom in the query we have $\alpha = R(Y_2, Z_2)$. Then, according to step (ii) and since the node u_2 is associated with $R(Y_2, Z_2)$, we compute the MGU θ_1 of the set $\{\text{head}(u_2), R(Y_2, Z_2)\}$. We have $\theta_1 = \{Y_2 \rightarrow Y_2, Z_2 \rightarrow Z_2\}$, since $\text{head}(u_2) = R(Y_2, Z_2)$. By applying the step (iii), the query in (19) becomes

\[Q(Y_2, Z_2) \leftarrow T(X_2, Y_2, Z_2) \]

In step (iv) we associate the fact $T(X_2, Y_2, Z_2)$ with node u_1 due to the edge $u_1 \rightarrow u_2$.

In the second iteration of the rewriting algorithm, we have $\alpha = T(X_2, Y_2, Z_2)$ associated with node u_1, in step (ii) we compute the MGU θ_2 of the set $\{\text{head}(u_1), T(X_2, Y_2, Z_2)\}$. We have $\theta_2 = \{X_1 \rightarrow X_2, Y_1 \rightarrow Y_2, Z_1 \rightarrow Z_2\}$. In step (iii) we replace $\alpha = T(X_2, Y_2, Z_2)$ in (20) with $\text{body}(u_1) = r(X_1, Y_1, Z_1)$ and apply θ_2 to the resulting query. The query in (20) becomes

\[Q(Y_2, Z_2) \leftarrow r(Y_2, Z_2, Z_1) \]

Since there is no incoming edge to u_1, we associate no node to the fact $r(Y_2, Z_2, Z_1)$. The algorithm then stops, since there is no extensional fact in (21). The EG-rewriting of u_2 is the query shown in (21).

Example 44. We demonstrate the notion of compatible nodes introduced in Definition 8 as well as the procedure for computing instance-dependent TGs from Section 7.
Consider the program P_3

\begin{align*}
a(X) &\rightarrow A(X) \quad (r_{12}) \\
r(X,Y) &\rightarrow R(X,Y) \quad (r_{13}) \\
R(X,Y) \land A(Y) &\rightarrow A(X) \quad (r_{14}) \\
R(X,Y) \land R(Y,Z) &\rightarrow A(X) \quad (r_{15})
\end{align*}

where a and r are extensional predicates. Figure 3 shows part of the graph computed up to level 3. Next to each node, we show the rule associated with it. For example, node u_1 is associated with rule r_{13} and node u_2 is associated with rule r_{12}.

When $k = 1$, G^1 includes two nodes, one associated with rule r_{12} (u_2) and one associated with rule r_{13} (u_1). When $k = 2$, r_{14} has only one 2-compatible combination of nodes. That is (u_1, u_2). Hence, the technique will add a fresh node u_3, associated with r_{14} and will add the edges $u_1 \rightarrow u_3$ and $u_2 \rightarrow u_3$. The 2-compatible combination of nodes for r_{15} is (u_2, u_2). Hence, the technique will add one fresh node u_4, associated with r_{15} and will add the edges $u_2 \rightarrow u_4$ and $u_2 \rightarrow u_4$.

When $k = 3$, r_{14} has the following 3-compatible combinations of nodes: (u_1, u_3) and (u_1, u_4). For each such 3-compatible combinations of nodes, the algorithm adds a fresh node and associates it with r_{14}. For $k = 3$, the 3-compatible combinations of nodes for r_{15} are: $(u_2, u_3), (u_2, u_4), (u_3, u_2), (u_4, u_2), (u_3, u_4), (u_4, u_3), (u_3, u_3), (u_4, u_4)$. Again, for each such combination of nodes, the algorithm adds a fresh node and associates it with r_{15}.

Figure 3: Part of the graph from Example 44.