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Abstract. In this study, the constrained spanning problem supposing
heterogeneous degree bounds on nodes capacities representing limited
momentary capacities is analyzed. Given an undirected graph, we sup-
pose different positive integer upper bounds associated with nodes to
limit their degree for each visit. Finding the minimum cost connected
spanning structure satisfying the degree constraints is the subject of
our work. Usually, for budget constrained problems spanning trees are
the solutions and the problem is NP hard which can not be approxi-
mated by a constant factor. Moreover, spanning the nodes with a tree
respecting the degree constraints is not always possible. We demonstrate
that the optimal solution to solve the capacity limited spanning problem
with heterogeneous bounds can be different from a spanning tree, and
an earlier proposed generalization of the tree concept, i.e. the hierarchy
corresponds to the minimum cost solution. We investigate on the degree
constrained minimum spanning hierarchy (DCMSH) under non-uniform
constraints, on the conditions of its existence and on the possibility of
its approximation being the problem NP hard. We prove necessary and
sufficient conditions to find spanning hierarchies corresponding to the
constraints.
Keywords: Graph theory, spanning problems, degree constrained min-
imum spanning tree, hierarchy, degree constrained minimum spanning
hierarchy, inhomogeneous constraints, conditions for existence, approxi-
mation

1 Introduction

To optimally solve spanning problems in graphs (generally by minimizing the
cost) is important in several domains, for instance in networks or for solving the
routing in micro-circuits. In the simplest cases, spanning problems are formulated
in graphs with positive costs associated to the edges, and the set of nodes or a
given sub set of nodes should be spanned with minimum cost. It is well known
the sub-graph which spans the set of nodes with minimum cost is a minimum
spanning tree (MST) and several polynomial times algorithms are known to find
it.

Some applications need to respect additional constraints. Various constrained
spanning problems have been analyzed in graphs (cf. examples in [1,2,3]). Here



we are interested in the degree constrained spanning problem. In this constrained
spanning problem, each node v ∈ V of the graph G = (V,E) is assigned a
positive integer value d(v) which represents the maximum degree of the node
in any spanning structure (for example in the spanning trees). This degree is
potentially different from the degree of v in G indicated by dG(v). Note that only
values 0 < d(v) ≤ dG(v) need to be considered for realistic cases. In the literature
one can find several propositions to span the nodes of a graph respecting budget
type degree bounds [4] [5]. In this cases, nodes are dotted by limited budgets and
can not exceed the limit in the spanning trees. For instance, when the bounds
are uniform and equal to 2, the problem corresponds to the Hamiltonian path
problem which is one of the well known NP-hard problems and it is known
the path does not always exist. Degree constrained spanning tree problems are
hard to solve and unfortunately constant factor approximations do not exist for
them [6]. Moreover, it is not always possible to span the nodes using trees with
respect to the degree constraints [7].

If the degree bound does not correspond to a definitive budget but to a
momentary limited capacity of the node, advantageous solutions, different from
trees can be found. For example, in optical networks, the capacity of duplication
of the switches may be limited for each incoming light, but a wavelength can be
reused several times in a switch when it returns to that one (cf. [8]). As a result,
the optical broadcast/multicast route may be different from a spanning tree. In
[9], the authors propose a special walk containing returns to some nodes when
the use of spanning trees or Hamiltonian paths is not possible due to the absence
of nodes which may have a degree greater than two in the spanning structure (in
their example, the under-layered optical network does not contain nodes which
can duplicate the light, so spanning trees can not be used). Concretely, the walk
proposed in [9] visits the nodes by using a Depth First Search algorithm on a
spanning tree. Typically, the Depth First Search algorithm visits nodes at most
twice.

In the cases where constraints correspond to momentary capacities but they
are uniform in the node set, a hierarchy based solution has been proposed [10].
The analysis of this NP hard minimum spanning problem shows that a hierar-
chy based solution always exists and the minimum spanning hierarchy can be
approximated. Here we propose the analysis of the cases where the momentary
capacity constraints are not uniform but heterogeneous. We investigate on the
following questions:

– In which cases is it possible to span the node set of the graph respecting
heterogeneous degree constraints?

– Can the solutions be approximated?

We demonstrate that, similarly to the case with uniform capacity bounds, the
optimal solution of the problem is a hierarchy and we formulate necessary and
sufficient conditions to find it. The minimum cost spanning hierarchy problem,
similarly to the minimum constrained spanning tree problem is NP-hard. In
some cases the optimal solution can be approximated.



In the following sections, we propose a quick presentation of the well known
and discussed degree constrained spanning tree problems followed by the defini-
tion of hierarchies and the analyzed capacity constrained spanning problems (cf.
Section 2). The hardness of the problem is presented in Section 4, and Section 5
presents some approximations.

2 Degree Constrained Spanning Problems

The first version of the problems was formulated in [4] and extensively studied
in [5]. The constraints on the degree of the nodes are budget-like constraints and
the nodes can participate to the span until the exhaustion of their budget.

2.1 Minimum Spanning Trees under Degree Budget Constraints

Let us suppose that the edges and also the nodes in an undirected graph G =
(V,E) are assigned positive values. The positive integer value of a node limits
the degree budget of the node in the spanning tree (it corresponds to a maximum
budget which can be used to connect neighbors to the node) while the positive
value of an edge corresponds to a cost or length function. Let D(v) be the
maximum possible number of neighbors (the budget constraint on the degree)
of the node v ∈ V . If a degree bound D(v) is equal to one, then v should only
be a leaf in the span. (A special partial spanning problem with given leaf nodes
has been formulated in [11].)

Property 1. If the objective is to span the node set respecting the budgets, the
minimum cost solution is a spanning tree,

The proof is trivial, since cycles are useless. Let us suppose that the solution
returns to a node several times and so there are cycles in the solution. Deleting
one edge from each cycle, the node set remains covered but the cost of the
solution is smaller. The connected solution if it exists, is a spanning tree.

The basic problem (DCMST) is known as follows.

Definition 1 (Degree Constrained Minimum Spanning Tree Problem)
Given an undirected graph G = (V, E) with nonnegative costs c(e) on the edges
e ∈ E and with positive integer degree bounds D(v) on the nodes v ∈ V . The
objective is finding a spanning tree in which the degree of any node v is at most
D(v) and the total cost is a minimum.

The degree bounds can be uniform or not in the node set. In a homogeneous
case, a bound B is given and the maximum degree of any node in the spanning
tree is at most B. In the case of B = 2, no node can have a degree more than
2; and the solution is the minimum Hamiltonian path. The degree constrained
spanning tree problem is known to be NP hard and the spanning tree (in the
particular case the Hamiltonian path) does not always exist.



In [6], the authors present the problem as a hard network design problem.
Their analysis fits in the frame of a generic bi-criteria optimization where the
first objective corresponds to the respect of the budget (degree) constraints,
the second is the minimization of the cost. The paper indicates the sub-graphs
to solve the problem. The investigated classes are spanning trees, Steiner trees
and generalized Steiner trees. The authors prove the hardness of the proposed
optimizations. The DCMST problem is not in APX: there is no polynomial
time ρ-approximation algorithm minimizing the cost when respecting the degree
constraint even when the same upper bound is supposed for all of the nodes.

The case with non-uniform degree constraints was also shown to be NP hard
using a reduction from the Traveling Salesman Problem (cf. [2]). It is known
that it is not always possible to span the nodes using trees with respect of the
degree constraints [7]. With reference to the observation in [2], a spanning tree
solution of the degree bounded problem may exist if and only if

∑

v∈V

D(v) ≥ 2n− 2

where n = |V |. Heuristic solutions were proposed in several works (cf. [5] [6]
[12] [13] [14] [15] [16]). The partial spanning problem with non-uniform upper
bounds cannot be approximated with (2 − ǫ, ρ) for any ǫ > 0 and ρ > 1 [6].
For any ǫ > 0 and ρ > 1, there is no polynomial time (τ − ǫ, ρ)-approximation
algorithm for this problem, where τ is the lower bound on the performance ratio
of any algorithm for finding minimum Steiner trees.

In unweighted graphs constrained by uniform degree bounds corresponding to
the minimum possible maximum degree MB of possible spanning trees, Fürer
and Raghavachari proposed an (1,MB + 1)-approximation algorithm for the
degree constrained MST [17]. The paper [16] generalizes the result to weighted
graphs.

When some nodes have a degree bound equal to 1, this sub-set of nodes is
considered to be a leaf node set and these nodes must be leaves. The description
of the Steiner problem is in [11] and a 2ρ-approximation algorithm for the partial
spanning tree (leaf Steiner) problem can be found in [18].

Remember that the objective of the mentioned spanning problems is to cover
a given set of the nodes using a connected structure minimizing the cost and sat-
isfying the imposed degree constraints. If the constraints are budget constraints,
spanning trees are the cost optimal structures. That is, a node belongs only once
to the optimal solution (which is a sub-graph). In the case of momentary capac-
ity limitation of the nodes, and supposing that this capacity can be renewed,
the optimal solution can return several times in the nodes (the model has been
presented in [10] for uniform degree bounds). The relaxation of the supposition
that the solution corresponds to a tree is beneficial, the problem can be solved
even if spanning trees satisfying the constraints do not exist. The solution always
corresponds to a spanning hierarchy.

Before the reformulation of the degree constrained minimum cost spanning
problem with non-uniform constraints, we propose the brief review of the hier-
archies corresponding to the minimum cost solutions.



2.2 Hierarchies

The generalization of the tree concept was proposed in [19] using a simple def-
inition. Graph homomorphism permits an accurate definition [20]. The homo-
morphic mapping between a tree T and a graph G can be used to define an
eventually non-elementary tree in G called hierarchy. To simplify, let us suppose
undirected graphs but the extension for digraphs is trivial.

Definition 2 (Hierarchy) Let G = (V,E) be an arbitrary graph and T =
(W,F ) a tree. Let h : W → V be a homomorphic function which associates a
node v ∈ V to each node w ∈ W . The application (T, h,G) defines a hierarchy
in G.

Since a node v ∈ V can be associated with several nodes in W , a hierarchy
can ”return” several times to nodes and pass several times edges in G (as it
may be the case in walks): it corresponds to a ”non-elementary tree” in the
graph G. In hierarchies some nodes are eventually branching nodes (they are the
node occurrences corresponding to the branching nodes of the tree T ). Fig. 1
illustrates a hierarchy in an undirected graph. Some nodes of the graph (namely
the nodes c and d) participate on different levels of the hierarchy shown in the
labeled tree in Fig. 1/b). Notice that a hierarchy can also be given by two multi-
sets: H = (U,D) where U is the multi-set of the concerned nodes and D is the
multi-set of edges in H using the labels from G. More details can be found in
[20].
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Fig. 1. Example of a hierarchy in a undirected graph

Hierarchies generalize trees. Trees are special hierarchies without repetition of
nodes (applying an injective mapping h) and consequently inherit the properties
of hierarchies. Let us notice that the sub-graph of G generated by a hierarchy
(the projection) can contain cycles in G but the expanded hierarchy itself is a
tree. In the following, we use the term hierarchy to reference the defined tree-like
structure and we use the term image of the hierarchy for the sub-graph implicated



in the original graph. Hierarchies allow the exact definition of some constrained
spanning problems. In this paper, we analyze the degree constrained spanning
problem with inhomogeneous constraints when the constraints limit the degree
of nodes for a given visit. Some previous results are available concerning cases
with uniform degree bounds.

2.3 Degree Capacity Constrained Spanning Problems

The minimum cost connected sub-graph spanning the node set corresponds to a
minimum spanning tree [21] and, as we have already seen, the solution is a tree
even if there are budget like degree constraints. If the constraints are due to lim-
ited instantaneous capacities of the nodes, the minimum cost spanning structure
is always a hierarchy [20]. Fig. 2 illustrates the interest of the hierarchies in the
degree capacity constrained spanning problems. Let us suppose unity cost edges
and a uniform upper bound on the node degrees which is equal to three. The
minimum cost connected spanning of this graph is required such that the degree
of the nodes for each visit is limited to three (any node occurrence can not have
a degree 4 or greater in the spanning structure). Trivially, there is no spanning
tree but there is a spanning hierarchy satisfying the constraint. It uses the node
b twice, but each occurrence of this node respects the degree constraint as it is
shown in Fig. 2/b).
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Fig. 2. A minimum cost spanning hierarchy

In [10] it has been demonstrated that the cost optimal solution of the degree
constrained spanning problem with uniform capacity bounds corresponds to a
spanning hierarchy. Here, we will show that the optimal solution is a hierarchy
even if the degree bounds are non-uniform, and that such a solution exists.

Definition 3 (Node Capacity Constrained Minimum Spanning Problem)
Let G = (V,E) be an arbitrary connected graph with positive costs c(e) associ-
ated with edges e ∈ E. Here the positive integer degree bound D(v) represents the
instantaneous maximum capacity of the node v ∈ V . The problem is in finding
the minimum cost hierarchy spanning the node set V s.t. the degree constraints
are respected for each visit of the nodes.



In the case of uniform capacity bounds, the problem is NP-hard but the solu-
tion always exists [22]. The following section discusses the conditions of existence
for the solution in the cases of non-uniform bounds.

3 Necessary and Sufficient Conditions for Spanning

Hierarchies

We show that the degree constrained spanning hierarchy does not always exist in
the cases where degree bounds are heterogeneous. The following lemmas indicate
trivial conditions for the existence of a spanning hierarchy satisfying non-uniform
degree constraints.

Remember, a hierarchy in G is given by a triplet (T, h,G), where T is a tree.
We use the notation Vd ⊆ V to indicate the sub-set of nodes with degree bound
d.

Lemma 1. If V1 contains a separator1, there is no hierarchy spanning V and
satisfying the degree constraints.

Proof. A separator S divides the node set into (at least) two sub-sets A and B.
Any path from a node in A to an arbitrary node in B should traverse S but the
nodes in S can only be leaves in the connection. Trivially, there are no possible
connections between nodes in A and B satisfying the degree constraints imposed
by V1.

Lemma 2. If Vd = ∅, ∀d > 2 (there is no node with degree bound D(v) > 2)
and |V1| > 2 (there are more than two nodes with degree bound 1), there is no
hierarchy spanning V and satisfying the constraints.

Proof. To satisfy the degree constraint, a node v ∈ V1 must be a leaf in the span-
ning hierarchy (and trivially in T ). Since |V1| > 2, the tree T and the hierarchy
must have more than 2 leaves. Because Vd = ∅, ∀d > 2, the degree of internal
nodes in T is equal to 2 for all nodes. T must be a path and the hierarchy cor-
responds to a walk. A path (and an opened walk) has exactly two extremities.
The contradiction is trivial.

Lemma 3. If |V \ V1| = 1, and the only one potential non-leaf branching node
is vb ∈ Vd, d ≥ 2 and |V1| > d, there is no hierarchy spanning V and respecting
the constraints.

Proof. Occurrences of vb can be internal (and eventually branching) nodes in
the spanning hierarchy. One occurrence of vb ∈ Vd can have at most d neighbors
forming a star. The leaves VL of this star are in V1 and consequently they must

1 Remember that a set of nodes separating V in two independent non empty sub-sets
is a separator



be leaves in the spanning hierarchy. Since |V1| > d, the remaining nodes V1 \ VL

can not be connected to the star and can not be covered by any hierarhy re-
specting the degree constraints.

These lemmas give conditions for the nonexistence of spanning hierarchies.
The following theorem formulates necessary and sufficient conditions for their
existence.

Theorem 1. A hierarchy spanning the whole node set of a connected graph and
respecting heterogeneous degree constraints can be found, iff
a) there is no separator in V1 (separator nodes having a degree bound 1) and
b) |V1| ≤ 2 (there are at most two nodes with degree bound 1) or |V \ V1| ≥ 2
(there are at least two nodes with degree bound greater than 1) and |V \V2\V1| ≥ 1
(there is at least one node with degree bound greater than 2).

Proof. Following Lemmas 1, 2 and 3 conditions a) and b) are necessary. Notice
that condition b) is more permissive than Lemma 3. Moreover, these conditions
are sufficient as it is proved in the following.

The first condition in b) can be proved as follows. Let us suppose that there
are two nodes a and b with degree bound 1 and they do not compose a separator.
In this case, a Hamiltonian walk2 in which the extremities correspond to a and b

exists due to the following. Since these nodes do not form a separator, there is at
least a path between any node pair in the graph. A complete graph (for example
the metrical closure) can be constructed representing the shortest paths by edges.
In this complete graph, Hamiltonian paths exist in which the extremities coincide
with a and b. Each Hamiltonian path corresponds to a Hamiltonian walk in the
original graph covering the node set and respecting the degree constraints. The
same demonstration is trivially true with only one node with degree bound 1 or
without this kind of nodes. In these cases, in the metrical closure, one or both
ends of the Hamiltonian path can be freely chosen.

If there is at least one node with a degree bound greater than 2, let say the
node c, another with a degree bound at least 2, let say the node b, and there is
no separator composed from nodes having a degree bound 1, a degree bounded
hierarchy spanning the node set can be found as follows. Because there is no
separator composed from nodes in V1, each node in V \ b \ c can be connected to
c with a path and each path respects the degree constraints. Then groups with
these paths can be created s.t. there are D(c) − 2 paths in every group. Each
group corresponds to a spider respecting the degree constraints and having c as
central node. The different occurrences of c can be chained by a walk visiting the
node b (having a degree bound at least 2) s.t. the degree of the central nodes is
at most D(c). The obtained structure is a hierarchy spanning the node set and
respecting the constraints.

2 A Hamiltonian walk is not obligatory an elementary Hamiltonian path and it can
return several times to a node
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Fig. 3. Illustration of Theorem 1

Figure 3 illustrates a spanning hierarchy following the construction of Theo-
rem 1. The occurrences of the node c (having a degree bound 3) are the central
nodes of spiders which are connected by paths passing via the node b. Triv-
ially it is not the ”best” spanning hierarchy. In some cases, one can easily find
hierarchies containing less edges.

4 Hardness and Some Ideas for Computation

Theorem 2. The computation of the minimum cost hierarchy spanning the node
set of a connected graph and respecting non-uniform degree constraints is an NP-
hard problem if the solution exists.

Proof. The proof is similar to the proof in [22] for the case of homogeneous
degree bounds.

Let G = (V,E) be a connected graph and let D(v) be the positive integer
bound associated to node v ∈ V . Let G′ = (V ′, E′) be the graph obtained from
G by connecting D(v) − 2 new leaves to each vertex v ∈ V s.t. D(v) > 2 as it
is illustrated in Figure 4. Let L be the newly added set of leaves. Following the
construction: V ′

1 = V1

⋃
L and V ′

i
= Vi, ∀i > 1.

Let us suppose that G′ corresponds to the conditions of Theorem 1 and
admits a solution. For this the following conditions should be held: a) There is
no separator in V ′

1 . It is the case when there is no separator in V1 (since the new
leaves do not form a separator).
b) The first part of this condition corresponds to |V ′

1 | ≤ 2. It is satisfied in
the cases where |V1| + |V2| ≤ 2. Following the second (alternative) part of the
condition: |V ′ \ V ′

1 | ≥ 2 and |V ′ \ V ′

2 \ V ′

1 | ≥ 1. Trivially V ′ \ V ′

1 = V \ V1 and
V ′

2 = V2. Consequently this part is true if |V \ V1| ≥ 2 and |V \ V2 \ V1| ≥ 1.
The degree constrained minimum spanning hierarchy of G′ contains all edges

leaving to the new leaves. The degree constraints in the attachment vertices are
respected, iff G is covered by a Hamiltonian walk, in which the degree of nodes



is at most 2. The computation of this latter is NP-hard [23].
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Fig. 4. The initial graph G and the completed graph G′

Several algorithms can be used to compute the optimal solution. For instance
with a small modification of the ILP found in [22], an exact mathematical pro-
gram for the computation can be obtained. Branch and bound, branch and price
like algorithms are also candidates for the computation, but they are out of scope
of the recent study.

5 Approximation

The approximation with a constant ratio of the minimum spanning hierarchy
under uniform capacity degree bound has been presented in [10]. In the recent
study the possibility of guaranteed approximations of the cases with non-uniform
degree bounds is analyzed. At first, we propose a particular spanning tree (cf.
sub section 5.1), where an eventual leaf node set is given (the given nodes must
be leaves in the spanning tree). The analysis of the conditions in the previous
section indicates that the set of leaves V1 strongly influences the solution. Sub
section 5.2 examines the cases where the leaf node set is not fixed: V1 = ∅. The
problem is more complex in sub sections 5.3 and 5.4 when this leaf node set V1

is not empty.
First of all, a potential lower bound of costs is proposed.

5.1 A Lower Bound

Let us examine the construction of a particular spanning tree when a set V1 of
nodes is given s.t. these nodes should be leaves in the tree. Notice that the nodes
in the set V1 should be leaves in the solution, but some another nodes in V \ V1

can also be leaves.



Definition 4 (Minimum Spanning Tree with Fixed Leaves - MSTFL)
In the connected graph G = (V,E) with D(v) > 0 strictly positive degree bounds
on the nodes, let V1 ⊂ V be a non empty sub-set of desired leaves. Let us suppose
that V1 does not contain any separator. The degree of the other nodes is not
limited in the covering: for example D(v) = dG(v), ∀v ∈ V \ V1. The problem
consists in finding a minimum cost spanning tree covering the node set s.t. the
nodes in V1 are leaves in the tree.

Note: V1 should be free of any separator. If V1 is not a separator but a separator
sub-set of V1 exists, this later isolates another sub-set of leaves in V1 which are
unreachable from the remaining graph. Consequently, a spanning tree (and a
spanning hierarchy) satisfying the degree constraints does not exist. Figure 5
illustrates this case. Here, V1 = {b, c, d} is not a separator but the set {b, d} is.

d

a cb
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2
1

e

Fig. 5. V1 is not a separator, but contains separators

Lemma 4. To find the MSTFL in which the nodes in V1 are leaves polynomial
time algorithms can be used.

Proof. The following greedy algorithm computes the solution.
Let G′ = (V \ V1, E

′) the graph obtained by deleting the desired leaves from
G. G′ is connected, since V1 does not contain any separator.

Let T ′ be the MST in G′. T ′ can be computed in polynomial time.
Let Ev be the set of adjacent edges of the node v ∈ V1 s.t. the other extremity

of the edge is not in V1. Let ev be the edge with minimum cost in Ev. Connecting
each node v ∈ V1 to T ′ by the edge ev produces a tree T ′′.

T ′′ is a tree which spans the whole node set and in which the nodes in V1 are
leaves. Moreover it is with the minimum cost as it is proved in the following.

Let us suppose that a tree Tm exists with less cost and satisfying the con-
straints on the leaves. Let T ′

m be the tree after the deletion of leaves in V1 from
Tm. In order to connect the leaves in V1 to T ′

m, trivially the less cost edges are
used. Consequently, the cost of T ′

m must be less than the cost of T ′ which is
contrary the fact that T ′ is an MST.

Trivially, if V1 does not contain any separator, the MSTFL exists.
In the following, we focus on the approximation of degree bounded minimum

spanning hierarchies.



A polynomial time calculable lower bound for the cost of the minimum span-
ning hierarchy respecting the degree constraints can be found.

Lemma 5. Let us suppose that spanning hierarchies corresponding to the given
degree constraints exist, satisfying the conditions in Theorem 1. Then the MSTFL
with leaf nodes fixed by V1 exists and its cost is a lower bound for the spanning
hierarchies, and in this manner for the minimum spanning hierarchy H, corre-
sponding to the given degree constraints.

Proof. In the minimum spanning hierarchy H respecting the constraints, each
node in V1 is a unique leaf occurrence. By deleting these nodes a hierarchy H ′

is obtained. The deletion involves the deletion of a set E1 of edges leading the
the deleted leaves (these edges are also present only once in the hierarchy). The
image I ′ of H ′ in G may eventually contain cycles. From each cycle in I ′, an
edge can be deleted to obtain a tree T ′ in G covering the node set V \ V1. (It is
possible that T ′ does not respect the degree constraints.) By adding the deleted
nodes in V1 using the edges in E1 to T ′ a spanning tree T1 corresponding to the
fixed leaf nodes in V1 is created. Since at least one spanning tree (T1) with fixed
leaf nodes given by V1 exists, the MSTLF (indicated here by T ) exists. Moreover
c(T ) ≤ c(T1) ≤ c(H).

The eventual approximations depend strongly on the number and the posi-
tion of the desired leaf nodes. If there are a few numbers of desired leaves in V1,
guaranteed ratios can be given.

5.2 Case of V1 = ∅

If V1 = ∅, trivially the MSTFL corresponds to the MST.

Lemma 6. Let us suppose that there is no node with degree bound 1 (V1 = ∅).
The problem can be approximated from the MST and a trivial ratio corresponds
to D

D−1 where D = minv∈V D(v). In the worst case, the minimum of degree
bounds is equal to 2 and the ratio is also 2.

Proof. Similarly to the case with uniform degree bounds, an approximation
scheme can be proposed starting from the MST T ∗ of G [10]. T ∗ can be covered
by a set S = {Si, i = 1, ...k} of stars. In each star Si, a spanning hierarchy re-
specting the degree constraint of the (eventually multiplied) central node vc

i
can

be built. The cost of the hierarchy spanning the star Si is limited by
d(vc

i
)

d(vc

i
)−1c(Si)

where c(Si) is the cost of the star. These hierarchies spanning the stars can be
connected as described in [10], and a hierarchy H spanning the node set V and
respecting the degree constraints is obtained. Moreover, since D = minv∈V D(v):

d(v)

d(v)− 1
≤

D

D − 1
, ∀v ∈ V



If there are k stars in the decomposition:

c(H) =

k∑

i=1

c(HSi) ≤
k∑

i=1

d(vc
i
)

d(vc
i
)− 1

c(Si) ≤
D

D − 1
c(T ∗)

Figure 6 illustrates the proposed decomposition. The degree bound d(v) is
indicated for each node v ∈ V . Since this value can be greater than the degree
of the node in the MST, spanning hierarchies respecting the degree bounds
are computed in the different stars and reconnected to form the final hierarchy
spanning the MST as it is indicated by Figure 7.
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Fig. 6. An MST and its decomposition into a set of stars

5.3 Case of 0 < |V1| ≤ 2

In this case, we suppose that V1 is not empty but it contains at most two nodes
which are not separators.

At first we propose to analyze the case of |V1| = 2. Let a and b be the two
nodes in V1. a and b must be leaves in any solution but other leaves may also
exist. Following Theorem 5, the MSTFL having nodes a and b as fixed leaves
gives a lower bound for the cost of the optimum.

Lemma 7. The minimum spanning hierarchy in the case of non-uniform degree
bounds and at most two fixed leaves can be approximated by a factor 2.
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Fig. 7. The connected final hierarchy spanning the MST and respecting the degree
constraints

Proof. If V1 6= ∅, following Theorem 1 the optimal hierarchy H exist. Then,
following Lemma 4 the MSTFL also exists. Let T2 be this minimum spanning
tree of the graph having nodes a and b as leaves. c(T2) ≤ c(H) Trivially, fol-
lowing T2, a trail can be computed starting from a and ending at b. This trail t
contains the edges of T2 at most twice and corresponds to a spanning hierarchy
satisfying the degree constraints (the internal nodes in t have only degree 2).
c(t) ≤ 2 · c(T2) ≤ 2 · c(H).

5.4 Case of |V1| > 2

As Theorem 1 indicates, in some cases there is no solution. In this section we
suppose that conditions of existence of the solution are satisfied and we focus
on the approximation.

Unfortunately, in arbitrary graphs with arbitrary positive degree bounds, an
approximation with constant factor can not be guaranteed from the MSTFL.

Lemma 8. Even if the solution exists (the conditions of its existence are sat-
isfied), the non-uniform degree constrained minimum spanning hierarchy can
not be approximated by a constant factor from the corresponding MSTFL when
|V1| > 2.

Proof. Let us construct a graph (corresponding to a star) as follows. Let a be a
node with degree bound 3 and b the central node with degree bound 2. Nodes
with degree bound 1 are connected to these nodes without creating any separator.
The solution exists. Let us suppose that k nodes with bound 1 are connected to
the node b. Consider the cost of the edges leading to leaves being ǫ negligible to
the cost of edge {b, c}. In this graph (cf. Figure 8), in the DCMSH the costly
edge {b, c} should be repeated 3(k − 2)-times if k > 3 and this edge should be



repeated k times if k ≤ 3. Edges leaving to nodes in V1 can be covered only once.
In any case:

c(DCMSH) ≥ k(1 + ǫ)

The MSTFL having nodes in V1 as leaves is the graph itself. The ratio between
the costs is bounded.

c(DCMSH)

c(MSTFL)
≥

k(1 + ǫ)

1 + kǫ

When ǫ tends to zero, the lower bound tends to k. when k tends to infinity,
the lower bound tends to infinity (to 1+ǫ

ǫ
) and can not be limited by a constant

valid for all stars.
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Fig. 8. A particular graph and its coverage by the optimal hierarchy

Notice that the example used in Lemma 8 shows an example where the
MSTFL is the same that the MST. Consequently, the constant approximation
is not possible either using the MST.

It is an open question whether an approximation can be found using another
sub-graph, tree or polynomial time computable spanning hierarchy as reference
or not.

6 Perspectives

An important perspective is the analysis of partial spanning problems like degree
bounded Steiner problems. We suppose that a good part of the recent results
can be applied in partial spanning cases.

Important research work should investigate the fast computation of advan-
tageous spanning hierarchies for constrained spanning problems and for various
related applications. These spanning problems have applications, for instance, in
optical multicast routing. In this kind of applications, additional constraints may
exist and the different constraints should altogether be satisfied. The analysis of
these problems promises further interesting challenges.
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