
HAL Id: lirmm-03345800
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03345800v3

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Approximation of Degree Constrained Spanning
Problems in Graphs under Non Uniform Capacity

Constraints
Miklós Molnár

To cite this version:
Miklós Molnár. On the Approximation of Degree Constrained Spanning Problems in Graphs un-
der Non Uniform Capacity Constraints. [Research Report] LIRMM (UM, CNRS). 2021. �lirmm-
03345800v3�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03345800v3
https://hal.archives-ouvertes.fr

On the Approximation of Degree Constrained
Spanning Problems in Graphs under
Non-Uniform Capacity Constraints

Miklós Molnár

LIRMM, University of Montpellier, CNRS, Montpellier, France
molnar@lirmm.fr

Abstract. Degree constrained spanning tree problems with minimum
cost in graphs are known and have been analyzed in depth. Usually the
degree constraints are due to limited definitive budget of the graph nodes.
For these NP-hard problems, spanning trees are the solutions if they ex-
ist and the optimum can not be approximated within a constant factor.
Recently, analyses have been published to solve the degree constrained
spanning problem when the constraints represent a limited momentary
capacity of the nodes. Different positive integer upper bounds are asso-
ciated with nodes to limit their degree for each visit. Since finding the
minimum cost degree constrained spanning structure is NP-hard, heuris-
tics are needed. Previously the case of homogeneous degree constraint
has been analyzed. This paper focus on the spanning problem with het-
erogeneous capacity-like degree bounds. Any solution of minimum cost
corresponds to an earlier proposed generalization of the tree concept, i.e.
to a hierarchy. We investigate on the conditions of its existence, on the
computation by heuristics and on the possibility of its approximation.
Keywords: Graph theory, spanning problems, degree constrained min-
imum spanning tree, hierarchy, degree constrained minimum spanning
hierarchy, inhomogeneous constraints, conditions for existence, heuris-
tic, approximation

1 Introduction

Connected structures spanning the nodes in graphs with minimum cost are im-
portant in several domains, for instance for efficient broadcast / multicast com-
munications in networks and for routing in micro-circuits. In our analysis we
suppose undirected graphs. In the simplest cases, the set or a given sub-set of
nodes should be spanned with minimum cost. It is well-known that the sub-graph
which spans the set of nodes with minimum cost is a minimum spanning tree
(MST), and several polynomial-time algorithms to find such a tree are known.
The partial spanning with minimum cost (the Steiner problem in graphs) is
NP-hard.

Some applications must meet additional constraints. Various constrained
spanning problems have been analyzed in graphs (cf. examples in [16,5,18]).
Here we are interested in the degree constrained spanning problem. Each node

v ∈ V of the graph G = (V,E) is assigned a positive integer value D(v) which
represents the maximum degree of the node in any spanning structure. This
degree is potentially different from the degree of v in G indicated by d(v). In
the literature we can find several propositions to span the node set of a graph
respecting budget type degree bounds [6] [4]. In these cases, nodes have limited
budgets and can not exceed the given limits in the spanning structures (which
are trees). For instance, when the bounds are uniform and equal to 2, the tree is
a path, and the problem corresponds to the Hamiltonian path problem. Degree
constrained spanning tree problems are hard to solve and unfortunately constant
factor approximations do not exist for them [17].

It is not always possible to span the nodes using trees with respect to the
degree constraints [3]. If the degree bound does not correspond to a definitive
budget but to a momentary limited capacity of the node, more advantageous
solutions can be found. For example, in optical networks, the capacity of dupli-
cation of the switches may be limited for each incoming light, but a wavelength
can be reused several times in a switch when it returns to that one (cf. [15]). As
a result, the optical broadcast/multicast route may be different from a spanning
tree. In [2], the authors propose a special walk returning to some nodes when the
use of spanning trees is not possible due to the absence of nodes which may have
a degree greater than two in the spanning structure. The proposed walk visits
the nodes by using a Depth First Search algorithm on a spanning tree. This walk
visits nodes at most twice. If the constraints could be greater than 2, branching
nodes are possible, and the spanning structure could be a hierarchy crossing
certain nodes several times [13]. In the case where the capacity constraints are
uniform in the node set, a hierarchy based solution and its approximation have
been proposed [14]. The analysis of this NP-hard minimum spanning problem
shows that a hierarchy based solution always exists and the minimum spanning
hierarchy can be approximated. We propose here the analysis of cases where
momentary capacity constraints are not uniform but heterogeneous. We are in-
vestigating the following questions:

– In which cases is it possible to span the set of nodes while respecting het-
erogeneous constraints?

– How to formulate and compute the optimum (with minimum cost)?
– Can the eventual solution be approximated?

To the best of our knowledge, our analysis is the first for non-uniform de-
gree constrained spanning problems supposing capacity (and not budget-like)
limitations. We demonstrate that, similarly to the case with uniform capacity
bounds, the optimal solution of the problem is a hierarchy and we formulate
necessary and sufficient conditions to find it. The minimum cost spanning hi-
erarchy problem, similarly to the minimum constrained spanning tree problem,
is NP-hard. In some cases the optimal solution can be approximated. Finding
a good approximated solution is very profitable to several applications (e.g., in
networks).

In the following sections, we propose a quick presentation of the well-known
and discussed degree constrained spanning tree problems, followed by the defi-

nition of hierarchies and the analyzed capacity constrained spanning problems
(cf. Section 2). Necessary and sufficient conditions for a solution to exist are
formulated in Section 3. The hardness of the problem is also presented and a
heuristic algorithm to compute a good solution is proposed in Section 4 and
Section 5 analyzes approximations. The performance of the proposed heuristic
is illustrated in Section 6. The last section gives some perspectives.

2 Degree Constrained Spanning Problems

We target graph spanning problems, where a single connected structure should
span the entire set of nodes while respecting constraints on node degrees. We
have no further restriction on the spanning structure, which can be a connected
sub-graph or another connected structure (e.g., a trail, etc).1

2.1 Notations

The most important notations used in the paper are as follows.
G = (V,E) : the undirected graph to span
V : the set of nodes in G
E : the set of edges in G
{n,m} ∈ E : an edge between nodes n and m
c(n,m) : cost associated with the edge {n,m}
d(v) : the degree of the node v ∈ V in G
D(v) : a positive integer associated with the node v ∈ V ;

upper bound for the degree of the node occurrences
Vm ⊆ V : the sub-set of nodes with degree bound m
vi : i-th occurrence of v ∈ V in a hierarchy
T = (P, F) : a tree
P : the set of nodes in T
F : the set of edges in T
M : the highest degree bound
Θ(v) : the set of nodes in P corresponding to the node v ∈ V
We propose a clear distinction between two categories of degree constraints:

– budget-like constraints: in this case the total number of adjacent nodes is
limited in the spanning structure and the node can not have more adjacent
nodes than its limit,

– capacity-like constraints: the number of adjacent nodes is limited for each
visit of the node in the spanning structure.

First, let us quickly analyze the problems, where the constraints on the degree of
nodes are budget-like constraints and the nodes can participate to the covering
until their budget is exhausted.

1 In our approach, the spanning structure of a graph G is given by a homomorphic
mapping which associates each node of G to at least one node of a connected graph
H (cf. 2.3).

2.2 Minimum Spanning Trees under Budget-like Degree Constraints

If the objective is to cover a set of nodes with a connected structure while
respecting budget-like degree constraints, any optimal solution, if it exists, is a
tree. Since cycles are useless in the connected structure. Let us suppose that
there are cycles in the solution. Deleting one edge from each cycle, the node set
remains covered but the cost of the solution is smaller.

The basic problem was formulated as follows.

Definition 1 (Degree Constrained Minimum Spanning Tree - DCMST)
Given an undirected graph G = (V, E) with nonnegative costs c(e) on the edges
e ∈ E and with positive integer degree bounds D(v) on the nodes v ∈ V . In the
DCMST problem, the objective is to find a spanning tree in which the degree of
any node v is at most D(v) and the total cost is minimized.

The degree bounds can be uniform or not in the node set. In homogeneous
case of bounds, an integer B is given and the maximum degree of any node
in the spanning tree is at most B. For instance, if B = 2, no node can have
a degree more than 2, and any solution is a minimum Hamiltonian path. The
degree constrained spanning tree problem is NP-hard, and a solution do not
always exist.

In [17], the authors present the problem as a hard network design problem.
Their analysis fits in the frame of a generic bi-criteria optimization where the first
objective corresponds to the respect of the budget (degree) constraints, and the
second to the minimization of the cost. The paper also specifies the sub-graphs to
solve the problem. The investigated classes are spanning trees, Steiner trees and
generalized Steiner trees. The authors prove the hardness of the proposed opti-
mizations and give some negative results on the approximations. The DCMST
problem is not in APX: there is no polynomial-time ρ-approximation algorithm
minimizing the cost when respecting the degree constraint, even when the same
upper bound is supposed for all of the nodes. The case with non-uniform degree
constraints was also shown to be NP-hard using a reduction from the Traveling
Salesman Problem (cf. [5]). It is known that it is not always possible to span
the nodes using trees with respect of the degree constraints [3]. As observed
in [5], a spanning tree solution of the degree bounded problem may exist iff∑

v∈V D(v) ≥ 2 · |V |− 2. The partial spanning problem with non-uniform upper
bounds cannot be approximated within (2 − ε, ρ) for any ε > 0 and ρ > 1 [17].
For any ε > 0 and ρ > 1, there is no polynomial-time (τ − ε, ρ)-approximation
algorithm for this problem, where τ is the lower bound on the performance ratio
of any algorithm for finding minimum Steiner trees. In unweighted graphs con-
strained by a uniform degree bound MB, Fürer and Raghavachari proposed an
(1,MB + 1)-approximation algorithm for the degree constrained MST [9]. The
paper [20] generalizes the result to weighted graphs.

When some nodes have a degree bound equal to 1, these nodes should be
considered as leaves in the spanning structure. A special spanning problem with
given leaf nodes can be formulated. The description of the terminal Steiner

problem is in [10] and approximation algorithms for the problem can be found
in [8] [22]

Remember that the objective of the mentioned spanning problems is to cover
the concerned nodes using a connected structure minimizing the cost while sat-
isfying the degree constraints. The constraints are budget constraints, and span-
ning trees are the cost optimal structures. It means that a node belongs only
once to the optimal solution. In the case of momentary capacity limitation of the
nodes, and supposing that this capacity can be renewed, the optimal solution
can return several times to the nodes. The model has been presented in [14] for
uniform degree bounds. The relaxation of the supposition that the solution cor-
responds to a tree is beneficial, since the problem can be solved even if spanning
trees satisfying the constraints do not exist.

An optimal solution always corresponds to a spanning hierarchy. Hereafter,
the reader can find a brief review of the hierarchies corresponding to the mini-
mum cost solutions.

2.3 Hierarchies

The generalization of the tree concept based on graph homomorphism permits
an accurate definition [13]. To simplify, let us suppose undirected graphs but the
definition for digraphs is trivial.

Definition 2 (Hierarchy) Let G = (V,E) be an arbitrary graph and let T =
(P, F) be a tree. Let h : P → V be a homomorphic function which associates a
node v ∈ V to each node p ∈ P . The application (T, h,G) defines a hierarchy in
G.

Since a node v ∈ V can be associated with several nodes in P , a hierarchy can
return several times to nodes and pass several times through edges: it corresponds
to a ”non-elementary tree” in the graph G. In hierarchies certain nodes are
eventually branching nodes; they are the node occurrences corresponding to the
branching nodes of the tree T . Figure 1 illustrates a hierarchy in an undirected
graph. Some nodes of the graph (namely the nodes c and d) participate on
different levels of the hierarchy shown in the labeled tree T . In the figure, the
labels are identifiers of nodes in G. More details can be found in [13].

Hierarchies generalize trees. Trees are special hierarchies without repeating
nodes (applying an injective mapping h), and therefore inherit the properties of
hierarchies. Notice that the sub-graph of G corresponding to a hierarchy (the
projection) can contain cycles inG but the hierarchy itself preserves the structure
of a tree. In the following, we use the term hierarchy to reference the defined
tree-like structure and we use the term image of the hierarchy for the sub-graph
implicated in G. Hierarchies allow the exact definition of the degree constrained
spanning problem with capacity-like constraints.

2.4 Node Capacity Constrained Spanning Problems

Definition 3 (Node Capacity Constrained Minimum Spanning Problems)
In a graph G positive costs c(e) are associated with edges e ∈ E, and positive

a ab

bc

c

c

d d de

e

f

f

a)
b)

Fig. 1. Example of a hierarchy in a undirected graph

degree bounds D(v) are associated with nodes v ∈ V . The bounds represent the
instantaneous maximum capacity of the nodes. The problem consists in finding
the minimum cost structure spanning the node set V , s.t. the degree constraints
are respected for each visit of the nodes.

The solution of the problem has been identified in [13].

Proposition 1. Any connected structure of minimal cost spanning a set of
nodes in a connected graph under limited instantaneous capacities of the nodes
is a hierarchy.

Proof. To simplify, let us suppose that the solution exists (the reader can find
the conditions in Section 3). Let the spanning structure be given by the homo-
morphism based triplet (H,h,G). To obtain a connected spanning structure, H
should be a connected graph. Let us suppose that there exists an optimal solu-
tion that is not a hierarchy, but another connected structure covering the nodes
and respecting the degree constraints for each visit of the nodes in G. In this
case, H is not a tree but another connected graph. Therefor, it contains loops.
Trivially, edges can be removed from loops without removing nodes and thus
preserving the node coverage of G. The structure cannot be optimal in terms of
cost. The connected graph H of minimum cost is a tree, so the triple corresponds
to a hierarchy.

Solutions are Degree Constrained Minimum Spanning Hierarchies (DCMSHs),
and the computation of this kind of solutions is the DCMSH problem. Figure 2
illustrates the interest of the hierarchies in the degree capacity constrained span-
ning problems. Let us suppose that the cost of any edge in the graph G is one.
The different constraints on the node degrees are indicated in the figure. The
minimum cost connected spanning of this graph is required in respect of the con-
straints. Trivially, such a spanning tree does not exist but there is a spanning
hierarchy satisfying the constraints. It visits the node b twice, and each occur-
rence of this node respects the degree constraint as it is shown by the labeled
tree T of the solution.

a b c

d e f

a

b

b

c

d

e f

aa bb

Fig. 2. A degree constrained minimum cost spanning hierarchy

The solution with uniform capacity bounds and its approximation have been
presented in [14]. The approximation has been improved in [21]. An ILP based
exact formulation of this problem can be found in [12]. The image of the solution
in the case of homogeneous bounds was presented as a special trail: a k-trail for
a degree bound equal to k [19].

The DCMSH problem is NP-hard.

As it was demonstrated in [14] spanning hierarchies satisfying a homogeneous
degree constraint always exist. The following section discusses the conditions for
the existence of a feasible solution in the case of non-uniform bounds.

3 Necessary and Sufficient Conditions for the Existence
of a Solution

In this section, we show that a degree constrained spanning hierarchy does not
always exist in the cases where degree bounds are heterogeneous.

Remember, a hierarchy in G is given by a triplet (T, h,G), where T is a tree.
We use the notation Vd ⊆ V to indicate the sub-set of nodes with degree bound
d. For instance, in V1 the degree bound is one, consequently the nodes in this
set must be leaves in any spanning hierarchy.

Lemma 1. If the specified leaf node set V1 is empty, hierarchies spanning V and
satisfying the degree constraints exist.

Proof. A simple solution can be constructed as follows. Compute an MST in
G and perform a walk in a deep first search manner. In this walk, each node
occurrence has a degree at most two. The degree constraints are satisfied and
the node set is covered.

Trivially, Lemma 1 gives a sufficient condition. The complementary case is
when V1 is not empty. Necessary and sufficient conditions for this case are dis-
cussed in the following.

Lemma 2. If V1 contains a separator2, there is no hierarchy spanning V and
satisfying the degree constraints.

Proof. Let A and B be two non empty sub-sets of nodes separated by a separator
S ⊆ V1. Any path from a node in A to a node in B has to go through S but the
nodes in S can not be internal nodes in any path. Trivially, there is no possible
connection between nodes in A and nodes in B satisfying the degree constraints
imposed by V1.

Lemma permits to formulate a necessary condition: V1 must be free of any sepa-
rator. Note if V1 is not a separator but a separator sub-set of V1 exists, this later
isolates another sub-set of nodes in V1 which are unreachable from the remaining
graph. Consequently, a spanning hierarchy satisfying the degree constraints does
not exist. Figure 3 illustrates this case. Here, V1 = {b, c, d} is not a separator
but the set {b, d} is.

d

a cb

1

12

2

1

e

Fig. 3. V1 is not a separator, but contains a separator

Lemma 3 and lemma 5 indicate that the set V1 without separator is necessary
but not sufficient for the existence of a spanning hierarchy satisfying the degree
constraints. further sufficient conditions are given by Lemmas 4, 6, 7.

Lemma 3. If Vd = ∅,∀d > 2 (there is no node v with degree bound D(v) > 2)
and |V1| > 2 (there are more than two nodes with degree bound 1), there is no
hierarchy spanning V and satisfying the constraints.

Proof. A node v ∈ V1 must be a leaf in the spanning hierarchy T, h,G (and triv-
ially in the corresponding tree T). Since |V1| > 2, the tree T and the hierarchy
must have more than 2 leaves. Because Vd = ∅,∀d > 2, the degree of internal
nodes in T is equal to 2. T is a path and can not have more than two extremities.
The contradiction is trivial.

Lemma 4. If |V1| ≤ 2 and there is no separator in V1, hierarchies spanning V
and satisfying the constraints exist.

2 Remember that removing a separator from a connected graph, at least two connected
components are obtained

Proof. Let us suppose that there are two nodes a and b with degree bound 1
and they do not compose a separator. A complete graph MC (i.e. the metri-
cal closure) can be constructed in which the edges represent the shortest paths
between the extremities. In MC, Hamiltonian paths exist whose endpoints coin-
cide with a and b. Each Hamiltonian path corresponds to a Hamiltonian walk3

in the original graph covering the node set and respecting the degree constraints.
These walks are solutions. The same demonstration is trivially true with only
one node with degree bound 1. In this case, in the metrical closure one end of
the Hamiltonian paths can be freely chosen.

Lemma 5. Let us suppose that |V \ V1| = 1 in G and vb ∈ V \ V1. If the
degree bound D(vb) < |V1|, there is no hierarchy spanning V and respecting the
constraints.

Proof. To avoid any separator in G, the nodes in V1 should be connected to
vb. Suppose that a node a ∈ V1 is not connected to vb but to another node
b ∈ V1. b separates a from the other nodes. The nodes in V1 must be leaves in
any spanning hierarchy Moreover, there is no possible return from nodes in V1
to vb: there is only one occurrence of vb in any hierarchy. This occurrence of vb
can have at most D(vb) neighbors. Since |V1| > D(vb), all nodes in V1 can not
be connected to vb in any spanning hierarchy respecting the constraints.

Lemma 6. If |V \ V1| = 1, the nodes in V1 are neighbor nodes of the node vb ∈
V \ V1, and D(vb) ≥ |V1|, a spanning hierarchy respecting the degree constrains
exists.

Proof. The graph G is a star. Since the degree bound of the central node
D(vb) ≥ |V1|, the star itself satisfies the degree constraints.

Lemma 3 and Lemma 5 indicate cases where there are several nodes in V1 and
there is no spanning hierarchy respecting the degree constraints. The following
lemma formulates a condition to connect an arbitrary number of nodes in V1 to
a spanning hierarchy.

Lemma 7. Suppose G has no separator in V1. If |V \V1| ≥ 2 (there are at least
two nodes with degree bound greater than 1) and |V \ {V2 ∪ V1}| ≥ 1 (there is at
least one node with degree bound greater than 2), a spanning hierarchy respecting
the degree constrains exists.

Proof. We prove that one node with degree bound two and another with degree
bound greater than two are sufficient to construct spanning hierarchies for an
arbitrary number of nodes in V. Let b be a node with D(b) ≥ 2, and another

3 A Hamiltonian walk is not obligatory an elementary Hamiltonian path and it can
return several times to certain nodes

c with D(c) > 2. A degree constrained hierarchy spanning the node set can
be constructed as follows. Because there is no separator in V1, each node in
V \ ({b} ∪ {c}) can be connected to c with a path and each path respects the
degree constraints. Then groups with these paths can be created s.t. there are
D(c) − 2 paths in every group and in each group there is an occurrence of the
node c. Each group corresponds to a spider respecting the degree constraints
and having the occurrence of c as central node. The different occurrences of c
can be chained by a walk visiting the node b (having a degree bound at least 2)
s.t. the degree of each central nodes is at most D(c). The obtained structure is
a hierarchy spanning the node set and respecting the constraints.

Figure 4 illustrates a spanning hierarchy corresponding to Lemma 7. The
occurrences of the node c (having a limit of degree equal to 3) are the central
nodes of spiders which are connected by paths passing through the node b. Notice
that it is not the ”best” spanning hierarchy. The reader can easily find hierarchies
containing less edges while respecting the constraints.

c

b

a

c cb b

d

e

dd

f

b c

g

a

b

c

d

e

f

g3

2

1

2

1

1

1

a) b)

Fig. 4. Illustration of Lemma 7

The following theorem formulates necessary and sufficient conditions for the
existence of degree constrained spanning hierarchies.

Theorem 1. Let us name the conditions as follows:
A: the desired leaf set V1 is empty
B: there is no separator in V1
C: |V1| ≤ 2 (there are at most two nodes with degree bound 1)
D: |V1| > 2 and the nodes in V1 are neighbor nodes of a node v s.t. v ∈ Vm,m ≥
|V1|
E: |V \ V1| ≥ 2 (there are at least two nodes with degree bound greater than 1)
and
|V \ (V2 ∪ V1)| ≥ 1 (there is at least one node with degree bound greater than 2).

A hierarchy spanning all the nodes of a connected graph and respecting non-
uniform capacity degree constraints can be found, iff

A ∨ (B ∧ (C ∨D ∨ E))

Proof. Following Lemma 1, condition A is sufficient.
If A is not true, the second part of the expression i.e. B ∧ (C ∨ D ∨ E)

gives a sufficient condition for the existence of a solution as it can be proved
easily: in any case, V1 can not contain a separator (condition B is necessary, as a
consequence of Lemma 2) and one of the cases C,D or E must be true. Following
Lemmas 4, 6 and 7 these conditions linked to B are sufficient conditions.

If V1 is not empty and there is no separator in it, the expression C ∨D ∨ E
also gives a necessary condition, that is one of them should be true for the ex-
istence. We prove that if none of them are true, there is no spanning hierarchy
respecting the constraints. Let us suppose that none of them are true: there are
more than two nodes in V1 (¬C), and they are not neighbors of a node with
sufficiently large degree bound (¬D), and there is no node with degree bound
greater than 2 or another with degree bound 2 (¬E). Start our prove by ¬E. If
there is a single node with degree bound greater than 2, it must be the neighbor
node of the nodes in V1, but following ¬D, its bound is not sufficiently large.
If there is no node with degree bound greater than 2, there are only nodes in
V1 and in V2. Following ¬C, there are more than two nodes in V1. Therefor the
three conditions can not be false together (and another fourth condition can not
guarantee the spanning hierarchy).

4 A Heuristic

Since the particular case of the problem with uniform degree constraint is NP-
hard (cf. [12]), the more general problem with non-uniform constraints is NP-
hard.

Several algorithms can be used to compute an optimal solution. With the
modification of the ILP found in [12], an exact mathematical program of our
problem can be obtained. For instance, branch and bound, branch and price like
algorithms are candidates for the computation.

The approximation of the minimum spanning hierarchy under uniform ca-
pacity degree bound has been presented in [14] and improved in [21]. In the
present paper, approximations under non-uniform degree bounds are analyzed,
and a heuristic is proposed. The analysis of the conditions shows that the set of
leaf nodes in V1 strongly influences the solution. Sub-section 5.1 examines the
approximation when the leaf node set is not fixed: V1 = ∅. The problem is more
complex in Sub-sections 5.2 and 5.3 when we suppose that the set V1 is not
empty. First of all, the computation of a lower bound on the cost of an optimal
solution is presented and a heuristic algorithm is proposed (Sub-section 4.2).

4.1 A Lower Bound

The cost of a DCMST gives a trivial lower bound for the cost of any DCMSH:
the DCMST is the degree constrained spanning structure with minimal cost.

Unfortunately this tree does not always exist and it can not be computed or
approximated in polynomial time. Let us look at another spanning tree that can
serve for a lower bound of the cost of DCMSHs. A particular minimum spanning
tree can be built when a set V1 of leaf nodes is given: these nodes must be leaves
in the tree. It is the following.

Definition 4 (Minimum Spanning Tree with Specified Leaves - MSTSL)
Let G = (V,E) be a connected graph, and let V1 ⊂ V be a non empty sub-
set of desired leaves. Let us suppose that V1 does not contain any separator.
The degree of the other nodes is not limited in the spanning tree (for example
D(v) = d(v),∀v ∈ V \ V1). The problem MSTSL consists in finding a minimum
cost spanning tree covering the node set s.t. the nodes in V1 are leaves in the
tree.

Notice that some other nodes in V \ V1 can also be leaves in an MSTSL. A
more complex study can be found in [7], which gives sufficient conditions for a
graph to have a spanning tree with a specified set of leaves. It gives an Ore-
type condition for a graph to be k-leaf-connected. 4 Algorithm 1 computes the
MSTSL of a degree constrained graph.

Algorithm 1 COMPUTATION OF THE MSTSL

Require: A graph G = (V,E), the set V1 ⊂ V
Ensure: An MSTSL

V ← V \ V1 . Delete V1, the obtained graph is G′ = (V \ V1, E
′)

T ′ ← MST of G′ . e.g., using Kruskal’s algorithm
for each v ∈ V1 do

Ev ← set of adjacent edges of v with one extremity in V1

ev ← the edge with minimum cost in Ev

E′ ← E′ ∪ {ev} . Connect v to T ′ by the edge ev
end for
return T ′ . The result is the MSTSL

Lemma 8. Algorithm 1 computes an MSTSL in polynomial time.

Proof. The resulted tree is an MSTSL. G′ = (V \ V1, E′) is connected, since V1
does not contain any separator. T ′ is a tree which spans the whole node set. In
T ′ the nodes in V1 are leaves. Moreover T ′ is of minimum cost as it is proved
in the following. Let us suppose that a tree Tm exists having a smaller cost and
satisfies the constraints on the leaves. Let T ′m be the tree after the deletion of
leaves in V1 from Tm. In order to connect the leaves in V1 to T ′m, trivially the
edges having the smallest cost among the possibilities are used. Consequently,

4 A graph G = (V,E) is k-leaf-connected if |V | > k and for each subset S ∈ V with
|S| = k, G has a spanning tree T with S as the set of leaves.

the cost of T ′m must be less than the initial cost of T ′ which contradicts the fact
that the initial T ′ is an MST.

The result is computed in polynomial time. The initial MST T ′ is computed
in polynomial time (e.g., the complexity of Kruskal’s algorithm is Θ(|E| log |E|)).
The for each loop is executed at most |V | − 1 times. Trivially, |Ev| < |V |. To
find the minimum of edges O(|Ev|) operations are needed. Finally the complex-
ity of the second part (of the loop) is O(|V |2).

Lemma 9. If the given node set V1 contains a separator, the MSTSL does not
exist. In the opposite case (there is no separator in V1) the MSTSL exists.

Proof. The first part is the direct consequence of Lemma 2. If V1 contains a sepa-
rator, there is no spanning hierarchy (and consequently spanning tree) satisfying
the constrains. If there is no separator in V1, by construction (cf. Algorithm 1),
the MSTSL can be built. In the algorithm, after the deletion of V1, in the re-
mained connected graph the MST can be built and the reconnection of nodes to
the MST is also possible.

Theorem 2. Let us suppose that spanning hierarchies corresponding to the given
degree constraints exist, satisfying the conditions in Theorem 1. Then an MSTSL
with leaf nodes specified by V1 exists and its cost is a lower bound for the cost of
a DCMSH.

Proof. Satisfying the conditions in Theorem 1 guarantees there is no separator
in V1 and the MSTSL exists (Lemma 9).

In a DCMSH H, each node in V1 is a unique leaf occurrence (it is present
only once). Let us suppose that a node in V1 corresponds to two leaves in H.
One of them can be deleted and the results spans the node set. Consequently,
two occurrences of a node in V1 can not be in a cost minimum solution.

By deleting the leaf nodes in V1 from H, a hierarchy H ′ is obtained. The
deletion involves the deletion of the set E1 containing their adjacent edges (these
edges are also present only once in the hierarchy). The image I ′ of H ′ in G may
eventually contain cycles. Since a node of v ∈ V \ V1 can be associated with
several node occurrences in H and in H ′, it can have more than D(v) neighbors
in the image. I ′ does not necessarily respect the degree constraint. From each
eventual cycle in I ′, an edge can be deleted and a tree T ′ in G covering the
node set V \ V1 is obtained (it is possible that T ′ does not respect the degree
constraints either). By adding the deleted nodes in V1 using the edges in E1 to
T ′ a spanning tree T1 is created. It respects the constraints on the specified leaf
nodes in V1. Since T1 contains the edges that are present in H only once and
some edges are eventually deleted from the image I ′: c(T1) ≤ c(H). Since an
MSTLF TL exists and T1 is also a spanning tree respecting the constraints given
by V1, c(TL) ≤ c(T1).

Finally, c(TL) ≤ c(T1) ≤ c(H).

4.2 The Proposed Heuristic

We propose a heuristic computing hierarchies providing an approximate solution
to the DCMSH problem under non-uniform degree constraints. Since an MSTSL
in G is a lower bound for a DCMSH and it can be computed in polynomial time,
the heuristic computes an MSTSL. Then, this MSTSL is decomposed into a
set of edge disjoint stars. The decomposition can be seen as a tree TS of stars
in which each star (except the first) has a ”parent”. Each star is connected
to its ”parent” via its central node (which is a leaf in the ”parent” star. An
example of an MSTSL and its decomposition are shown in Figure 5. The degree
bounds are indicated in the nodes. The corresponding global tree TS of the
stars is also presented. A degree constrained spanning hierarchy with low cost is
computed in each star of the decomposition. Finally, these spanning hierarchies
are connected to form a unique hierarchy spanning the MSTSL (cf. Figure 6).
Algorithm 2 shows the outline of the proposition.

3

2

3

4

32

2

4

2

3

2

c1

c4

c3
c2

1
1

2

S1

S2

S3

S4

S1

S2

S4

S3

TS

Fig. 5. The decomposition of an MSTSL

Decomposition of a tree into a set of edge disjoint stars Algorithm 3
presents a simple decomposition of a tree M into a set of edge disjoint stars.
Let us suppose that there are more than three nodes in the tree (otherwise, the
tree itself is a star and a decomposition is not needed). The decomposition can
start with the unique neighbor node of an arbitrary leaf of M (e.g., node c1 in
Figure 5). This node is considered as the central node of the first star and the
nodes related to this central node are leaves in the star (S1 in the figure). If a
leaf in the star is not a leaf node in M , it is considered as the central node of a
following star. In our example, the nodes c2 and c3 are this kind of nodes in S1.
The decomposition continues in the newly detected stars until there is no longer
a leaf corresponding to a new center.

3

2

v2

v4

2
32

3

4

32

2

5

4

2

v1

v3

3

Fig. 6. The final hierarchy respecting the degree constraints

Algorithm 2 COMPUTATION OF AN APPROXIMATE DCMSH

Require: A graph G = (V,E) with degree constraints
Ensure: A degree constrained spanning hierarchy

M ← MSTSL of G . computation by Algorithm 1
Decomposition of M into a set SS of disjoint stars

. computation by Algorithm 3
for each star S ∈ SS do

ES ← Adjacent edges of node c in S . c is the central node in S
EP ← Adjacent edges of node c in P . c is a leaf in the parent star P
d(c)← |ES | . degree of the central node c in the star
dp(c)← |EP | . degree of c in the parent star
if d(c) + dp(c) < D(c) then

Sc ← S . the star corresponds to the constraints
else

Sc ← Degree constrained spanning hierarchy for S
. computation by Algorithm 4

end if
end for
Connect all hierarchies Sc to form a unique hierarchy H
return H . The result respects the degree constraints

Algorithm 3 DECOMPOSITION OF AN MSTSL

Require: An MSTSL M = (V,E)
Ensure: A set SS of edge disjoint stars

SS ← ∅
L← set of leaves in M
v ← a node from L . an arbitrary leaf
w ← the neighbor node of v
C ← {w} . set of possible center nodes of stars
while C is not empty) do

c← a node from C . the next center node
N ← the neighbor node set of c
S ← a star with c,N . the star centered by c
SS ← SS ∪ S
C ← C ∪ (N \ L) . eventual new center nodes

end while
return SS . The set of edge disjoint stars

Computation of a degree constrained hierarchy spanning a star Re-
member, the decomposition of the MSTSL results in a set of edge disjoint stars.
The crucial part of the solution is the computation of a degree constrained hier-
archy in a star. In this section we propose a polynomial-time algorithm to span
a star S with a hierarchy respecting the degree constraints. The outline of the
computation is the following.

1) IfD(c) ≥ d(c), the star itself satisfies the degree constraint; there is nothing
to do.

2) If D(c) < d(c) and there are more than two leaf nodes belonging to V1
and there is no node with degree greater than two, there is no solution (cf.
Theorem 1).

3) Otherwise, the star can be covered by a set SC = {Sci, i = 1 . . . nS} of
chained small stars. These small stars are not edge disjoint but in the solution,
the degree of each occurrence of c is limited by D(c). An example of this chain
of small stars in a star is illustrated in Figure 7. Notice that the dotted lines
indicate the connections to the parent star (explained later).

All leaves in S are connected to c at least once and some are duplicated.
Trivially, edges going to leaves in V1 can not be duplicated. Our objective is to
determine the set of duplicated edges to minimize the cost of the solution and to
find a cost bound. Let ES1 the set of edges going to a node in V1. To decide the
”best” duplications, the edges not in ES1 are sorted in increasing order of costs
in a list L. Let us indicate this first part of the list by LF . Then the edges in
ES1 are added at the end of the sorted list L. Let LS be this second part of the
list L. Based on this list, the chain of degree constrained stars can be organized
as it is described in the following.

Starting at the first edge and going up in LF , the best cost edges are selected
for duplications. Each duplication of an edge {c, w} adds a new occurrence of c
to the hierarchy. Let D(w) be the degree bound of w. D(w)− 1 returns from w

c3

c1

c2

v1

v2

v3

v4
v5

v7 v8v6

c5

v1

v2

v3

v4

v5 v6

v7

v8

v9

c

c4

v9

Fig. 7. Spanning hierarchy of a star computed by the proposed heuristic

are possible to small stars centered in new occurrences of c. Each small star can
cover at most D(c)− 1 leaves different from w. In one of the new occurrences of
c one adjacent edge should serve for the connection to the next neighbor star.
In this way (D(w) − 1) · (D(c) − 1) − 1 leaves different from w can be covered
by the small stars centered on the new occurrences of c. Each newly covered leaf
corresponds to an edge at the end of the list. This allows the coverage of the
corresponding end nodes while respecting the degree constraints.

c3

c4

v5

v7 v8v6

c5
(,)

v5

v6

v7

c

c

(,)c

v8

(,)

(,)

c

...

.

.

.

L

LS

LF

Fig. 8. One step of the algorithm

Figure 8 illustrates the selection of one edge for duplication from the list (and
consequently the selection of edges found at the end of the list). In this example,
D(c) = 3, v5 corresponds to w, and D(v5) = 3. This step results in the coverage
of 4 leaves (including v5).

In each step of the construction, the edges taken at the end of the list are
deleted from the list. With moving forward in LF , three cases are possible. If
there are edges which are not yet selected from LF , the construction continues as

described. If there is no more edges in L after the last selected one, the neighbor
nodes of c are covered by the connected degree constrained stars, one can stop
the construction. Otherwise (when LS is not empty but the last edge selected
for duplication is the last edge in LF , the procedure continues by returning at
the beginning of LF .

The algorithm still needs a precision. The example in Figure 7 indicates the
connections to the parent star. Except the first star (S1 in the decomposition in
Figure 5) the hierarchy spanning a star must be connected via its central node
to the hierarchy covering its parent star (the same node is a leaf in the parent
star). The number of connections is decided by the construction of the parent
hierarchy. For instance, the hierarchy covering S2 in Figure 5 must be connected
via the node c2 to the hierarchy spanning S1. In this example, the connection is
a simple edge {c1, c2}.

The connections can be created as follows. The spanning hierarchy Hc of Sc

with central node c must be connected to the hierarchy Hp spanning the parent
star Sp (except the hierarchy in the first star). The connection is made using
the node c which have a degree dp(c) ≤ D(c) in Sp. It is the number of adjacent
edges of c in Hp. In the first star of the decomposition, dp(c) = 0. Suppose
that c must have dc(c) > 0 adjacent edges in Hc. To connect the dp(c) + dc(c)
neighbors to c, k chained occurrences of c are needed (the previous computation
of k is not needed, the allocation of the nodes and edges is progressive with the
presented algorithm). In the chain the first and the last occurrences of c can
have D(c) − 1 adjacent edges, the middle occurrences can only have D(c) − 2
adjacent edges due to the edges used to chain the occurrences of centers. To
connect all neighbor edges, 2 · (D(c)− 1) + (k − 2) · (D(c)− 2) ≥ dp(c) + dc(c).

Consequently, k = ddp(c)+dc(c)−2
D(c)−2 e occurrences are needed. The dp(c) edges in

Hp can be connected arbitrarily to the occurrences of c (naturally the degree
constraints must be respected). The dc(c) edges in Hc must be selected and
connected to the occurrences of c from the previously described list. If dp(c) +
dc(c) ≤ D(c), a unique occurrence of c can ensure the connections. If dp(c) <
D(c), the first occurrence of c can serve to ensure the dp(c) connections to the
parent center node and the first D(c) − dp(c) − 1 edges in Hc. The remaining
edges in Hc must be connected to the next occurrences of c in the defined order.
If dp(c) = D(c), the first occurrence of c can have only D(c)− 1 adjacent edges
in Hc and the last edge is connected to the second occurrence of c, etc.

In the example of Figure 7, dp(c) = 2 and the first occurrence of c is connected
twice to Sp and these connections are indicated with dashed line. Algorithm 4
gives the pseudo code of this construction.

Unfortunately the presented heuristic does not always work when a DCMSH
exists. Theorem 1 summarizes conditions for the existence of a spanning hierar-
chy. To span a star with degree constrained hierarchies, these conditions must
be met. If there is no node with degree bound greater than two in the star S and
there are more than two leaves with degree bound one, S can not be spanned us-
ing a hierarchy respecting the degree constraints. That is, the proposed heuristic
does not work in this kind of stars despite the fact that an eventual spanning

Algorithm 4 DEGREE CONSTRAINED SPANNING OF A STAR

Require: A star S = (c ∪ VS , ES), central node c, degree constraints, degree dp(c) of
c in the parent star

Ensure: A labeled tree T = (P, F) corresponding to the solution (T, h, S)
VS1 ← VS ∩ V1

VS2 ← VS ∩ V2

if (VS1 6= ∅) ∧ (VS \ (VS1 ∪ VS2) = ∅) then
exit . There is no solution

end if
LS ← ∪w∈VS1(c, w) . List of edges going to nodes in VS1

LP ← sort(ES \ ES1) . Sorted list of the other edges
L← LP ∪ LS . Concatenation of the two lists
T ← c1 . Initialize T with the first occurrence of c
if D(c) = dp(c) then

e← first(L) . Retrieve and delete the first edge {c, v} of the list
Connect v to c1 in T using {c, v} . D(c)− 1 connections to parent node
Connect c2 to v in T using {c, v} . go and come
a← D(c)− 1 . number of possible new neighbors of c2

else . c1 can have the the adj. edges to the parent node
a← D(c)− dp(c) . number of possible new neighbors of c1

end if
n← 0
while (n < a) ∧ (L is not empty) do

e← last(L) . Retrieve and delete the last edge e = {c, v} of the list
Connect v to c1 in T using {c, v}
n← n + 1

end while
n← 0
while (n < D(c)) ∧ (L is not empty) do

if LP in L is empty then
L← LP ∪ L . Add newly a copy of LP to the remained list

end if
e← first(L) . Retrieve and delete the first edge e = {c, v} of the list
Connect v to the last occurrence of c using {c, v}
m← 0
while [(n < D(c)− 1) ∧ (m < D(v))] ∨ [(n = D(c)− 1) ∧ (m < D(v)− 1)] ∧ (L

is not empty) do
e← last(L) . Return and delete the last edge {c, v} of the list
Connect v to the last occurrence of c using {c, v}
m← m + 1

end while
n← n + 1

end while
return T . The labeled tree

hierarchy exists in the MSTSL. This latter hierarchy exists if there are nodes
with degree greater than two in other stars in the MSTSL.

5 Approximations

Remember the DCMSH problem is NP-hard. In this section we give some ideas
for its approximation. The approximation ratio found depends on the number
and position of desired leaf nodes given in V1. If there are a few numbers of
nodes in V1, guaranteed ratios can be found.

5.1 Case of V1 = ∅

If V1 = ∅, the cost of the DCMSH can always be approximated.

Theorem 3. Let us suppose that there is no node with degree bound 1 (V1 = ∅).
The cost of a DCMSH can be approximated within a ratio D

D−1 , where D =
minv∈V D(v).

Proof. An approximation scheme can be proposed starting from the MSTSL T
of G. (In this case T is also the MST.) As it is demonstrated in the proposed
heuristic, T can be decomposed into a set S = {Si, i = 1, ...k} of edge-disjoint
stars. Let us recall that in each star Si, a spanning hierarchy HSi) respecting the
degree constraint of the (eventually multiplied) central node ci can be built. Since
V1 = ∅, the eventual duplications concern the best cost edges in the construction
of HSi). In the worst case the duplicated best cost edges are in V2 and only one
return is possible from the leaves. The cost of the hierarchy HSi spanning the

star Si is bounded by D(ci)
D(ci)−1 · c(Si) where c(Si) is the cost of the star (cf. [14]).

The hierarchies HSi, i = 1, . . . , k spanning the k different stars can be connected,
and a hierarchy H spanning the node set V and respecting the degree constraints

is obtained. With D = mini=1,...,kD(ci), since D(ci)
D(ci)−1 ≤

D
D−1 , i = 1, . . . , k, the

cost of the spanning hierarchy is bounded:

c(H) =

k∑
i=1

c(HSi) ≤
k∑

i=1

d(ci)

d(ci)− 1
c(Si) ≤

D

D − 1
c(T)

In the worst case, the degree bound of all of the nodes is two, D is equal
to two and the ratio of costs is also two. Trivially, the heuristic proposed in
Section 4 provides this guarantee. If there are nodes with larger degree bounds,
the heuristic computes hierarchies closer to the optimum.

5.2 Case of 0 < |V1| ≤ 2

In this case, we suppose that V1 is not empty but it contains at most two nodes
which are not separators. We propose to analyze the case of |V1| = 2, but the
result is trivially true if there is only one node in V1.

Theorem 4. In the case of at most two beforehand specified leaves, the cost of
a DCMSH can be approximated within a factor 2.

Proof. Let a and b be the two specified nodes in V1 and let T be an MSTSL
having nodes a and b as leaves. Remember c(T) ≤ c(H), if H is a DCMSH.
Following T , a walk5 can be computed starting from a and ending at b. This
walk W contains the edges of T at most twice and corresponds to a spanning
hierarchy satisfying the degree constraints (the internal nodes in W have only
degree 2).
c(W) ≤ 2 · c(T) ≤ 2 · c(H).

Here too, sine the MSTSL is spanned by a walk, the ratio corresponds to the
worst case. If there are nodes with degree bound greater than two, the heuristic
proposed in Section 4.2 can compute better hierarchies with lower cost. Note
that the heuristic does not always find a solution as it is indicated at the end
of Section 4.2. It is the case when a and b are in a same star in the proposed
decomposition and the star does not contain any node with degree bound greater
then two.

5.3 Case of |V1| > 2

Unfortunately, in arbitrary graphs with |V1| > 2 an approximation with constant
factor can not be guaranteed from an MSTSL.

Theorem 5. Even if a DCMSH exists, it can not be approximated by a constant
factor from the corresponding MSTSL when |V1| > 2.

Proof. Let us suppose a simple graph (corresponding to a star) as follows. Let
a be a node with degree bound 3 and b the central node with degree bound 2.
Let us suppose that k nodes with degree bound 1 are connected to the node b.
Hence, a feasible solution exists. Consider the cost of the edges leading to leaves
in v1 being ε negligible to the cost of edge {a, b}. In this graph (cf. Figure 9), the
MSTSL corresponds to the graph itself and its cost is equal to 1 + k · ε. In the
DCMSH (indicated in the figure), the possible branching nodes are occurrences
of a. The cost of a path from a to an arbitrary leaf is 1 + ε. Since there are k
leaves: c(DCMSH) > k(1 + ε) The ratio between the costs is bounded.

c(DCMSH)

c(MSTSL)
>
k(1 + ε)

1 + k · ε
5 A walk is a sequence of (eventually duplicated) edges which joins a sequence of nodes

When ε tends to zero, the lower bound tends to k. When k tends to infinity,
the lower bound tends to infinity and can not be limited by a constant, valid for
all stars.

1
b

1

a a a

b

g

d

c

a

e

f 1

1

1

1

23
b b

dc e

b b b b

gf

w

w

w

w
w

Fig. 9. A particular star and its DCMSH

In some particular graphs, approximations based on an MSTSL can be found.
An example follows.

Lemma 10. Let us suppose that |V1| > 2 and a solution exists. Let Vc =
{vc(i), i = 1, . . . ,m} be the set of nodes in the MSTSL which are neighbors
of leaves in the MSTSL. Let Vc(i) be the set of nodes in V1 connected to vc(i).
If D(vc(i)) > |Vc(i)|+ 1,∀i, the DCMSH can be approximated from the MSTSL
within a constant factor.

Proof. Suppose the decomposition into a set of stars as in the proposed heuristic.
The nodes in Vc are centers in stars in the decomposition. In each star, the nodes
in Vc(i) can be attached to one occurrence of vc(i) and the remaining star can
be covered using further occurrence(s) of vc(i). More precisely, let us suppose
that L(i) is the set of leaves and M(i) = L(i) \ Vc(i) is the set of leaves out of
V1 in the star. Let Cs(i) and Cc(i) be the cost of the star and the sum of the
edge cost leaving to nodes in Vc(i) respectively.

The cost of the sub star generated by vc(i) ∪M(i) is Cm(i) = Cs(i)−Cc(i).
This part can be covered respecting the degree constraint with an approximation

ratio d(vc(i))
d(vc(i))−1 (cf. Theorem 3). The cost of the hierarchy spanning the star is:

C(Hi) ≤
d(vc(i))

d(vc(i))− 1
Cc(i) + Cm(i) <

d(vc(i))

d(vc(i))− 1
Cc(i) +

d(vc(i))

d(vc(i))− 1
Cm(i)

C(Hi) <
d(vc(i))

d(vc(i))− 1
Cs(i)

Similarly to the prove of Theorem 3, connecting the hierarchies spanning the
different stars, a hierarchy H spanning the node set and respecting the degree

constraints is obtained. Let CS be the set of central nodes of stars (Vc ⊆ CS).
With D = minci∈CS D(ci):

D(ci)

D(ci)− 1
≤ D

D − 1
,∀ci ∈ CS

If there are k stars in the decomposition:

c(H) =

k∑
i=1

c(Hi) ≤
k∑

i=1

d(ci)

d(ci)− 1
c(Si) ≤

D

D − 1
c(MSTSL)

Notice that the graph used in Theorem 5 shows an example where the MSTSL
is the same as the MST and the attempt to find an approximation for the costs
is based on the MSTSL. An approximation related to another subgraph (tree or
spanning hierarchy computable in polynomial time) can be found or not is an
open question.

6 Tests of the Heuristic

To illustrate the performance of the proposed heuristic, computations were per-
formed in random graphs. The algorithms are implemented using the LEDA /
C++ library [11]. A set of random graphs were generated using the Barabási-
Albert model [1]. In this model, firstly a small connected graph (a kernel) is
created and then new nodes are randomly connected to existing ones. In our
tests, the kernel of the generated graph is a tree of 4 nodes and all graphs finally
contain 100 nodes.

In each graph, the degree bounds of the nodes and the lengths of the edges
have been randomly generated. The degree bounds have been randomly selected
from the interval [1, Dmax] and the costs of edges from [1, Cmax]. For the pre-
sented computations, the maximal cost has been set by Cmax = 10, which allows
sufficient variance of the costs. The value of Dmax has been varied from 4 to 13.
For each value of Dmax 100 random graphs have been created. In the following
table, each line corresponds to the average values of 100 runs (using 100 different
graphs generated with the same parameters).

The first column shows the value of Dmax followed by the average number
|E| of (randomly) generated edges and the average number |V1| of nodes with
degree bound one. The next column indicates the number of graphs satisfying
the conditions for the existence of the solution. The columns C(MSTSL) and
C(Heur) contain the average cost values of the spanning trees with fixed leaves
and the degree constrained spanning hierarchies respectively. The last column
shows the ratio of these costs.

It is clear that as Dmax increases, there are less nodes with degree bound
one (the different degree bounds being equiprobable in the data generation).

Consequently the number of graphs in which the solution does not exist (because
of the non satisfaction of the conditions for the existence of a solution) decreases.
At the same time, the cost of the MSTSL converges towards the cost of the
MST and also the heuristic provides a solution with a cost value closer and
closer to the cost of the MSTSL.

7 Conclusion and Perspectives

In our study, new results on degree constrained minimum spanning hierarchies
in graphs with non-uniform capacity constraints are presented. As the solution
does not always exist, necessary and sufficient conditions for the existence are
formulated. Because the problem is NP-hard, a heuristic is proposed. In a set
of random graphs, the heuristic provides results close of the optimum. The exis-
tence of approximation ratios is also raised. In some cases, the problem can be
approximated. The set of specified leaves with degree bound 1 is crucial from
this point of view. If this set is large, the solution may not exist and the approx-
imation within a constant is an open question.

In future works, the approximation of spanning hierarchy problems with dif-
ferent degree constraints in various graphs should be analyzed largely and pow-
erful algorithms should be investigated to compute good spanning hierarchies
with guaranteed cost. We conjecture that in some cases, depending on positions
of leaves in V1, approximations may be found even if |V1| > 3. Another important
perspective is the analysis of partial spanning problems like degree constrained
Steiner problems. We believe that a good part of the results presented in this
paper can be applied in partial spanning cases.

Applications of the degree constrained spanning hierarchies can be found,
for instance, in optical broadcast / multicast routing. In these applications, ad-
ditional constraints (e.g., the uniqueness of the use of a wavelength in a fiber,
arc or edge in the graph the limited length of paths, etc;) exist, and the vari-

ous constraints should be fully satisfied. Analyzing these issues promises further
interesting challenges.

References

1. Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Rev. Mod. Phys., 74:47–97, Jan 2002.

2. Maher Ali and Jitender Deogun. Cost-effective implementation of multicasting in
wavelength-routed networks. IEEE J. Lightwave Technol., Special Issue on Optical
Networks, 18(12):1628–1638, 2000.

3. F. Bauer and A. Varma. Degree-constrained multicasting in point-to-point net-
works. In INFOCOM ’95: Proceedings of the Fourteenth Annual Joint Conference
of the IEEE Computer and Communication Societies (Vol. 1), page 369, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

4. Bruce Boldon, Narsingh Deo, and Nishit Kumar. Minimum-Weight Degree-
Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD
Parallel Machine. Parallel Computing, 22(3):369–382, 1996.

5. Dietmar Cieslik. The vertex degrees of minimum spanning trees. European Journal
of Operational Research, 125(2):278–282, September 2000.

6. N. Deo and S.L. Hakimi. The shortest generalized Hamiltonian tree. In Sixth
Annual Allerton Conference, pages 879–888, 1968.

7. Yoshimi Egawa, Haruhide Matsuda, Tomoki Yamashita, and Kiyoshi Yoshimoto.
On a spanning tree with specified leaves. Graphs Comb., 24(1):13–18, 2008.

8. Bernhard Fuchs. A note on the terminal Steiner tree problem. Inf. Process. Lett.,
87(4):219–220, 2003.

9. Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree
Steiner tree to within one of optimal. Journal of Algorithms, 17:409–423, 1994.

10. Guohui Lin and Guoliang Xue. On the terminal Steiner tree problem. Inf. Process.
Lett., 84(2):103–107, 2002.

11. Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

12. Massinissa Merabet, Miklós Molnár, and Sylvain Durand. ILP formulation of the
degree-constrained minimum spanning hierarchy problem. Journal of Combinato-
rial Optimization, 36(3):789–811, October 2018.

13. Miklós Molnár. Hierarchies to Solve Constrained Connected Spanning Problems.
Technical Report 11029, LIRMM, July 2011.

14. Miklós Molnár, Sylvain Durand, and Massinissa Merabet. Approximation of the
Degree-Constrained Minimum Spanning Hierarchies. In SIROCCO, pages 96–107,
2014.

15. Biswanath Mukherjee. Optical WDM Networks (Optical Networks). Springer-
Verlag, Berlin, Heidelberg, 2006.

16. Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted
minimum spanning tree problems. In Hermann A. Maurer, editor, Automata,
Languages and Programming, pages 460–470, Berlin, Heidelberg, 1979. Springer
Berlin Heidelberg.

17. R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt
Iii. Approximation algorithms for degree-constrained minimum-cost network-
design problems. Algorithmica, 31(1):58–78, 2001.

18. Stefan Ruzika and Horst W. Hamacher. A Survey on Multiple Objective Mini-
mum Spanning Tree Problems, pages 104–116. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

19. András Sebö, Alantha Newman, and Miklós Molnár. Travelling Salesmen on
Bounded Degree Trails. In Routing and Network Design Workshop, Bonn, Ger-
many, September 2015.

20. Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning
trees to within one of optimal. In STOC ’07: Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 661–670, New York, NY, USA,
2007. ACM.

21. Mohit Singh and Rico Zenklusen. k-trails: Recognition, complexity, and approxi-
mations. In Quentin Louveaux and Martin Skutella, editors, Integer Programming
and Combinatorial Optimization, pages 114–125, Cham, 2016. Springer Interna-
tional Publishing.

22. Fábio Viduani Martinez, José Coelho de Pina, and José Soares. Algorithms for
Terminal Steiner Trees. In Lusheng Wang, editor, Computing and Combinatorics,
pages 369–379, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

