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Vertical Line Fault Mechanism Induced by
Heavy Ions in an SLC NAND Flash

V. Gupta1, A. Bosser2, L. Matana Luza3, D. Söderström4, A. Javanainen4, H. Kettunen4, J. Praks2, K.-O.
Voss5, A. Virtanen4, L. Dilillo3

Abstract

The vertical line fault mechanism occurring in NAND flash devices under heavy-ion irradiation is described in detail.
The location where the fault is generated as well as the recovery sequence are identified.

Index Terms

Radiation testing, heavy-ion, NAND Flash, SEE, SEFI, Vertical error, Vertical line, column error.

I. INTRODUCTION

FLASH memories have been widely used for mass storage in spacecraft embedded systems in the last decade.
When compared to other types of non-volatile memories, NAND Flash achieves high density in a small area.

However, the Floating Gate (FG) technology and the peripheral circuity used in the NAND Flash architecture are
susceptible to radiation effects [1]. Besides, technology scaling to deep sub-micron levels has increased these
memories’ susceptibility to Single-Event Effects (SEE).

NAND Flash devices have been extensively tested using different sources of radiation such as in [2], [3]. Proton-
induced effects and their sensitivity in SLC (Single-Level Cell) and MLC (Multiple-Level Cell) devices are approached
in [4]. In [5] the authors compare the effects of electron irradiation with results from Co-60 Total Ionizing Dose (TID)
measurements. The fluence dependence for SEEs with heavy-ion irradiation is investigated in [6]. Besides, studies
have been published regarding failure mechanisms in the peripheral circuitry such as the charge pump [7], and the
contribution of the Page Buffer (PB), as well as the duration of data storage in that buffer concerning the overall
upset rate [8].

The present study was driven by the MTCube project, which calls for a 1-Unit CubeSat to expose several types
of memories fabricated with both legacy and emerging technologies to space radiation, including the NAND Flash
device studied in this paper. The device has been irradiated with heavy-ion beams in static (retention) and dynamic
mode, after having been written with different test patterns. A previously seldom-reported failure mode [2] [9] is
described in detail, along with the location of the radiation-induced fault within the device and a recovery sequence.

II. EXPERIMENTAL SETUP

The Device Under Test (DUT) is a 32 Gib Asynchronous Single-Level Cell (SLC) NAND Flash memory manufac-
tured by Micron Technology (MT29F32G08ABAAA). The DUT nominal operating voltage is 3.3 V and consists of
one Logical Unit (LU), which is divided in two planes; each plane has 2048 blocks (one plane stores even-numbered
blocks, and the other stores the odd-numbered blocks); each block has 128 pages, and each page can store one
8-bit word per column, with a total of 8192 columns per page.

All specimens utilized in our experiments were delidded before irradiation using chemical means; all of these
passed functional tests and were fully operational before irradiation.

This study is based on data from three separate test campaigns. The first test campaign took place using a broad
beam at GANIL (Grand Accélérateur National d’Ions Lourds) (Caen, France) and involved two specimens. The primary
xenon beam was degraded in order to reach an LET (Linear Energy Transfer) in silicon of 26.75 MeV.cm2/mg at the
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TABLE I
FACILITIES AND BEAMS USED FOR THE IRRADIATIONS

Facility Ion
Energy
(MeV)

Effective LET
(@ DUT surface)

(MeV.cm2/mg)

Range to
Bragg peak
in Si (µm)

GANIL Xe 6005 26.75 700

RADEF

N 139 1.8 (0◦) and 2.1 (30◦) 202
Ne 186 3.6 (0◦) and 4.2 (30◦) 146
Ar 372 10.1 (0◦) and 11.7 (30◦) 118
Fe 523 18.5 (0◦) and 21.4 (30◦) 97
Kr 768 32.1 (0◦) 94
Xe 1217 60.0 (0◦) and 69.3 (30◦) 89

GSI Ca 230.4 15.6 55

DUT surface at normal incidence, and the tests were performed in air. GANIL provided the values displayed in Table
I.

The second test campaign was carried out using the broad beam of the RADiation Effects Facility (RADEF) at
the University of Jyväskylä, Finland. Tests were performed on three specimens in vacuum, with effective LETs (LET
accounting for beam incidence angle on the DUT, which varied from 0◦to 30◦) ranging from 1.8 to 69.3 MeV.cm2/mg.
The values given in Table I were calculated using SRIM [10].

The third test campaign was carried out on a single specimen at GSI, using the UNILAC microbeam. Only one
species was used (calcium at 230.4 MeV at normal incidence), yielding a surface LET in silicon of 15.6 MeV.cm2/mg
(calculated using SRIM). Areas of interest on the die were identified with the aid of a colinear microscope, then
selectively irradiated.

In the GANIL and RADEF test campaigns, the devices were irradiated and tested using test sockets. Due to the
geometry of the GSI microbeam facility, test sockets could not be used, so the DUT was directly soldered on a PCB
during this test campaign. The specimen irradiated at GSI had previously been irradiated with a broad muon beam,
accumulating a total ionizing dose of about 5.5 krad. Nevertheless, the device was fully functional at the start of the
GSI campaign.

Whether mounted on test sockets or directly soldered to a PCB, the DUTs were connected to FPGA-based
controllers. Although located in the test chamber, the FPGAs were not exposed to the beam to ensure reliable
operation. During each test run, when a bit error was detected, the wrong word along with other information such
as the address and the time-stamp was transmitted to a computer for storage and processing.

The memory devices were tested under three different modes: unbiased static mode, biased static mode, and
dynamic read mode. The static modes used either a solid ‘1’, solid ‘0’ and checkerboard patterns, and the chosen
pattern was stored on the memory before the irradiation. The pre-irradiation and post-irradiation data were then
compared to detect the bit flips. In dynamic read mode, the memory was written with a solid ‘0’ pattern, then
irradiated while being read continuously.

Due to the very large capacity of the memory, only 512 Mib out of 32 Gib (64 blocks) were considered for the
static tests, and 8 Mib (one block) for the dynamic tests. Several erase, write, and read operations were performed
between test runs, before and after Power Cycles (PC), to sensitize and observe the errors occurring during the test
runs, and also to ensure that the memory was error-free and fully functional before the next run.

III. RESULTS AND DISCUSSION

The test results were analyzed with house-made Scilab data processing scripts. Three different types of failures
were identified: isolated word errors, small cluster of word errors, and vertical lines. Since the main subject of this
study is the failure mode generating vertical lines, the other types of failures will just be introduced.

A. Single-bit upsets, clusters of SBUs and MBUs

The simplest failure mode observed consists in SBUs (Single-Bit Upsets), which were detected:
• with nitrogen (LET 1.8 to 2.1 MeV.cm2/mg), only in a few biased and unbiased static tests using a solid ‘0’

pattern;
• with neon and all heavier ions (LET 3.6 to 69.3 MeV.cm2/mg), in all tests (bias and unbiased static as well as

dynamic) using a solid ‘0’ patterm.
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An erase operation was able to correct these SBUs without the need to carry out a PC. SBUs were never observed
when using a solid ’1’ pattern. This behaviour is consistent with multiple previous reports in the literature, and is due
to the fact that cells holding a data value of ’1’ are in a discharged state [1].

Small clusters of SBUs and MBUs were also observed, each affecting the same column position on a few
consecutive pages.

B. Vertical Lines

The most dramatic observed failure mode were vertical lines of errors (VLs). Individual VLs occur within a single
memory plane; they span all the blocks within the plane (meaning they affect either all the even blocks, or all the
odd blocks), and affect only the words of a single column. Several VLs affecting different columns may occur at once
during a test, over one or both planes. VLs can be seen on the bitmap in Fig. 1, computed using data from a static
test with xenon at GANIL.

Fig. 1. Bitmap obtained after a static irradiation at GANIL, using xenon and a solid ‘0’ pattern. Each pixel represents one word; words appear
as a red pixel if they suffered at least one bit upset, and white otherwise. Black lines are overlayed on top of the image to indicate block limits;
each block is made of 128 pages (lines) of 8192 columns each. Zoom-ins are added to enhance visibility of parts of an intermittent VL (left) and
of a continuous VL (right). Both VLs span the whole height of the bitmap.

When considering test runs carried out with a broad beam, VLs did not occur in unbiased static mode. In static
tests (with both solid ’1’ and ’0’ patterns) and dynamic tests, VLs did not occur at an effective LET of 4.2 MeV.cm2/mg
(neon irradiation at 30◦), but they did occur at an effective LET of at least 10.1 MeV.cm2/mg (argon irradiation at
normal incidence). Hence, the LET threshold for the appearance of those VLs is somewhere between these two
values.

Vertical lines may either be continuous (with all words of the column exhibiting bit errors) or discontinuous (with
sparse word errors along the column). Within a VL, the affected words tend to share the same data pattern. To be
more precise, most data bit positions have identical values across all the words of a given VL, although the value
of one or two bit positions may fluctuate randomly.

Unlike SEUs, VLs persist when attempts are made to overwrite the erroneous data. Furthermore, the set of columns
affected by VLs and the error pattern of the affected words is affected by write and erase operations, and by power
cycles.

However, erase operations alone or power cycles alone are not sufficient to eliminate a VL. Indeed, in most cases,
VLs persist after several erase operations or several power cycles, and only disappear when the device is overwritten
after both an erase operation and a power cycle were applied, regardless of the order. (In a few rare instances, VLs
were found to disappear spontaneously.)

Table II illustrates the behaviour of vertical lines observed after a biased static irradiation at RADEF, using xenon
at a normal incidence (LET 60 MeV.cm2/mg). This behaviour is typical of observations made on other test runs.

As can be seen from Table II, the device was written with a solid ‘0’ data pattern, then irradiated with xenon,
and read back. In addition to SBUs, MBUs and clusters of MBUs affecting a total of 305 words (not represented in
the table), memory plane #1 initially exhibited five VLs, at column positions 571, 1595, 3775, 4290 6701. The error
pattern was consistent within each VL (give or take one or two bit positions), and differed from VL to VL. The device
was then erased, and the data was read. All SBUs, MBUs and clusters of MBUs were overwritten successfully.
Among the previously observed VLs, only those at positions 3775 and 6701 remained, but their error patterns were
completely modified. The remaining VLs had seemingly vanished. Following that, the device was again written with
a solid ‘0’ pattern, and its data was read. The original set of five VLs reappeared, each with its original error pattern.
Power supply to the device was then cycled, after which its data was read. A slightly different set of VLs was now
observed, at positions 571, 1595, 3775, 6338, 6701, and every word of each VL had all bits set to ‘1’ (0xFF). Power
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TABLE II
HEXADECIMAL DATA VALUES IN VERTICAL LINES OBSERVED ON PLANE 1 DURING A STATIC SOLID ‘0’ TEST. ‘-’ MEANS CORRECT DATA.

OPERATION

VL COLUMN
ADDRESS 571 1595 3775 4290 6338 6701

W0, irrad, R0 24/26 24/26/34 2 8B/9B - 4/14/34

E, R1 - - E2/E3/E6/E7 - - 7D

W0, R0 24/26 24/26/34 2 8B/9B - 4/14/34

PC, R0 FF FF FF - FF FF

PC, R0 FF FF FF - FF FF

E, R1 - - - - - -

W0, R0 - - - - - -

Fig. 2. Device cross section for vertical lines as a function of effective LET. The dynamic cross section is extrapolated from a single memory
plane to the whole device. The error bars were calculated using Poisson statistics. Below 10 MeV.cm2/mg, no VLs were detected, so the cross
section was arbitrarily set at 1.0× 10−7 cm2 for this semi-log plot. Data taken from the RADEF test campaign.

supply to the device was cycled again, and its data read again, with exactly the same results. Finally, the device
was erased, its data read, and all words at last contained the expected data (0xFF). The device was written with
a solid ‘0’ pattern, and only returned two isolated single-bit errors - these are believed to be due to damage to the
cells themselves.

The cross section for VL occurrence for the whole device as a function of effective ion LET is displayed on Fig.
2; these were calculated using the data from the RADEF test campaign. The static and dynamic cross sections are
reported separately. While static tests are carried out on memory blocks from both memory planes, dynamic tests
are only carried out on one block; since each VL only affects one memory plane, the dynamic device cross section
was extrapolated by doubling the cross section observed from the only memory plane which was used during the
dynamic tests.

Once the VL failure mode was observed, the authors set to identify its origin on the die using the GSI microprobe
facility. The DUT was subjected to a dynamic read test, in which a solid ‘0’ data pattern was first written, then read
constantly under irradiation. Fig. 3 exhibits a photograph of the DUT die; in two occasions, and only when irradiating
the area identified by the frame, the DUT exhibited VL failure mode. This area was identified by Gerardin et al., who
studied the same device, to contain the page buffers and sense amplifiers [11].

The authors propose two basic failure mechanisms which can explain the occurrence of these vertical lines of
errors:

1) A stuck bit in the data buffer : During a block read operation, one page at a time is loaded in the data buffer,
which is then serially sent out of the memory. If one bit of the data buffer is stuck to a value, which is the
opposite of the value stored in the memory (e.g. stuck to ‘1’ when ‘0’ are stored in the memory), at each page
read, the very same error will appear at the same location. Since the pages are represented by horizontal lines
of pixels, the errors appear at the same position on each horizontal line of the bitmap, creating a VL of errors.
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Fig. 3. Top-down photograph of the specimen irradiated at GSI. The narrow, oblique white band represents the area where the beam was
scanned when VLs were observed.

This failure mechanism can explain the shape and extent of the VLs, but alone it cannot explain why an erase
cycle is necessary for recovery, as the erase action does not affect the data buffer.

2) The control electronics of the failing bit line: If the faulty behavior is not due to the data buffer, it must depend
on malfunctions at the bit line level and, in particular, its control logic, since it is very unlikely that a single
particle or multiple particles would upset hundreds of cells at once and in that specific arrangement. For this
reason, the failure must concern one of the elements in the column which are involved in the sensing action of
the read operation. For example, in the event of a particle hit which would generate a large amount of charge,
the concurrent effects of a triggered micro-latch-up and charges trapped in the bit line access transistor [8]
result in partial or total inhibition of the access to the bit line. All access to the column will be affected and
generating a VL. In order to stop the failing process, it is necessary to carry out both a PC, which inhibits the
micro-latch-up, and an erase operation, which restores the access transistor.

IV. CONCLUSION

This paper reports on a failure mode in SLC NAND flash memories. Schmidt et al. and Oldham et al. reported
comparable Vertical Errors in a study of SEE occurrences in Micron NAND flash [2][9]. However, to the best of
the authors’ knowledge, so far no study reported any detail on this failure mode (dependence on data pattern,
persistence, resilience to erase operations or power cycles, and origin of the fault within the device). The origin of
the radiation-induced fault leading to this failure mode is either the device’s page buffers or sense amplifiers.

This failure mode has the potential to cause large-scale data corruption, because it affects word columns across
entire memory planes, and cannot be resolved by simply overwriting erroneous data. The only possible mitigation
strategy for the end user is to cycle power to the device and erase all blocks in the affected plane, which inevitably
leads to data loss. While this strategy is impractical for applications where the device cannot be erased, other
applications in high-radiation environments which use flash memories for temporary data storage could benefit from
regularly “flushing” these devices (performing an erase and power cycle).

REFERENCES

[1] M. Bagatin, G. Cellere, S. Gerardin, A. Paccagnella, A. Visconti, and S. Beltrami, “TID Sensitivity of NAND Flash Memory Building Blocks,”
IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp. 1909–1913, aug 2009.

[2] T. R. Oldham, R. L. Ladbury, M. Friendlich, H. S. Kim, M. D. Berg, T. L. Irwin, C. Seidleck, and K. A. LaBel, “SEE and TID Characterization
of an Advanced Commercial 2Gbit NAND Flash Nonvolatile Memory,” IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3217–3222, dec 2006.

[3] M. Bagatin, S. Gerardin, A. Paccagnella, G. Cellere, A. Visconti, and M. Bonanomi, “Increase in the Heavy-Ion Upset Cross Section of
Floating Gate Cells Previously Exposed to TID,” IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3407 – 3413, dec 2010.

[4] M. Bagatin, S. Gerardin, A. Paccagnella, A. Visconti, A. Virtanen, H. Kettunen, A. Costantino, V. Ferlet-Cavrois, and A. Zadeh, “Single Event
Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 464–470,
jan 2017.

[5] F. Irom, L. D. Edmonds, G. R. Allen, W. Kim, and S. Vartanian, “Electron Irradiation of Samsung 8-Gb NAND Flash Memory,” IEEE Trans.
Nucl. Sci., vol. 65, no. 1, pp. 27–33, jan 2018.

[6] D. Chen, E. Wilcox, R. L. Ladbury, H. Kim, A. Phan, C. Seidleck, and K. A. LaBel, “Heavy Ion Irradiation Fluence Dependence for Single-Event
Upsets in a NAND Flash Memory,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 332–337, jan 2017.

[7] M. Bagatin, S. Gerardin, A. Paccagnella, and V. Ferlet-Cavrois, “Single and Multiple Cell Upsets in 25-nm NAND Flash Memories,” IEEE
Trans. Nucl. Sci., vol. 60, no. 4, pp. 2675–2681, aug 2013.

[8] M. Bagatin, S. Gerardin, G. Cellere, A. Paccagnella, A. Visconti, S. Beltrami, R. Harboe-Sorensen, and A. Virtanen, “Key Contributions to
the Cross Section of NAND Flash Memories Irradiated With Heavy Ions,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 3302–3308, dec 2008.

[9] H. Schmidt, D. Walter, M. Bruggemann, F. Gliem, R. Harboe-Sorensen, and A. Virtanen, “Heavy ion see studies on 4-gbit nand-flash
memories,” in 9th European Conf. on Radiation and Its Effects on Components and Systems, Sep. 2007, pp. 1–4.



7

[10] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nuclear Instruments and Methods
in Physics Research B, vol. 268, pp. 1818–1823, Jun. 2010.
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