
On Preventing SAT Attack with Decoy Key-Inputs
Quang-Linh Nguyen, Marie-Lise Flottes, Sophie Dupuis, and Bruno Rouzeyre

LIRMM, Université de Montpellier, CNRS
Montpellier, France

firstname.lastname@lirmm.fr

Abstract—The globalized supply chain in the semiconductor
industry raises several security concerns such as IC overproduc-
tion, intellectual property piracy and design tampering. Logic
locking has emerged as a Design-for-Trust countermeasure to
address these issues. Original logic locking proposals provide a
high degree of output corruption – i.e., errors on circuit outputs –
unless it is unlocked with the correct key. This is a prerequisite for
making a manufactured circuit unusable without the designer’s
intervention. Since the introduction of SAT-based attacks – highly
efficient attacks for retrieving the correct key from an oracle
and the corresponding locked design – resulting design-based
countermeasures have compromised output corruption for the
benefit of better resilience against such attacks. Our proposed
logic locking scheme, referred to as SKG-Lock, aims to thwart
SAT-based attacks while maintaining significant output corrup-
tion. The proposed provable SAT-resilience scheme is based on
the novel concept of decoy key-inputs. Compared with recent
related works, SKG-Lock provides higher output corruption,
while having high resistance to evaluated attacks.

Index Terms—Logic Locking, SAT Attack, Design-for-Trust,
Hardware Security, IP Protection, Overproduction

I. INTRODUCTION

The outsourcing business model currently dominates the
semiconductor industry. As manufacturing costs have become
prohibitive, outsourcing the fabrication process to offshore
foundries has become a major trend. This leads to increasing
exposure of hardware design Intellectual Property (IP) to
external and possibly unreliable actors. Besides, hardware
reverse-engineering techniques have become more advanced.
Due to the loss of control over IP usage and the increasingly
advanced adversaries in the supply chain, several threats, such
as Integrated Circuit (IC) overproduction, counterfeiting, IP
piracy and Hardware Trojan insertion, have become major
sources of cybersecurity concern [1], [2].

Numerous recent Design-for-Trust approaches introduce
preventive mechanisms at design time [3]. Among them, one
of the most studied and most versatile approaches is logic
locking [4]. Logic locking inserts logic controlled by additional
key-inputs into a design, in order to lock it with a secret key
[5]. Unless this secret key value is applied to the key-inputs,
the circuit remains malfunctioning. Therefore, in following
stages of the IC production flow, untrusted entities, without
any knowledge about the key, are hindered from maliciously
using the logic-locked IP. After production, the circuits are
unlocked, by the design house or a trusted partner, before being
released into the market.

Primitive logic locking techniques introduced the concept
of inserting key-controlled gates, referred to as key-gates [6]–

Fig. 1: Key-gate insertion based logic locking (K0K1 = 01).

[9]. An example of XOR/XNOR key-gate insertion is shown
in Fig. 1. However, such logic locking techniques are highly
susceptible to the SAT attack [10], the most effective and
the most studied attack on logic locking. This attack uses a
Boolean satisfiability (SAT) solver, the locked netlist and an
unlocked circuit to efficiently prune out wrong key values.

Provably secure logic locking against the SAT attack is
based on exponentially increasing its computing time [11]–
[14]. However, regarding this type of techniques, a funda-
mental trade-off has been identified between SAT resilience
and output corruption [15]. Indeed, the output corruption is
so limited that the circuit is mostly functional despite being
supplied with a wrong key value [16].

In this paper, we present a novel logic locking technique,
namely SKG-Lock, based on so-called switchable key-gates
and additional decoy key-inputs. We theoretically validate
that SKG-Lock achieves maximum resilience against the SAT
attack, regardless of the number of switchable key-gates and
their corruptibility. We also provide evaluations of attack
resilience, output corruption and overhead of SKG-Lock, along
with comparisons with state-of-the-art techniques.

The rest of the paper is organized as follows. Section II
provides background on logic locking and output corruption,
then SAT-based attacks and existing countermeasures. Section
III presents our proposed logic locking scheme, SKG-Lock,
along with security analysis against the SAT attack. Experi-
mental results for the evaluations of security, output corruption
and overhead are shown in Section VI. Finally, Section V
concludes the paper.

II. BACKGROUND

A. Output Corruption Metrics for Logic Locking

A logic locking technique should ensure that the locked
circuit behaves erroneously upon the application of a wrong
key value. Thus, output corruption is an important criteria
for logic locking. It is measured, not only by the frequency

of observed corruption, but also by the breath of circuit
outputs that are corrupted. Let us define two metrics of output
corruption, corruption rate and corruption coverage.

Definition 1 (Corruptibility): Corruptibility1of a key-gate (or
a key-controlled structure) is the probability of corruption at
its insertion signal if a wrong key value is supplied.

For example, XOR/XNOR key-gates (cf. KG0 and KG1

in Fig. 1) have a 100% corruptibility whereas a point-function
lock (cf. Fig. 2) has a corruptibility of 1/2n.

Definition 2 (Output corruption rate): Output corruption
rate presents the probability of observing erroneous values on
the outputs of a locked circuit. It is measured by the percentage
of input patterns that lead to errors at circuit outputs when any
incorrect key value is applied.

Referring back to the example in Fig. 1, the output cor-
ruption rate is 62.5%; even though each key-gate has high
corruptibility, the corruption is masked if the signal S2 is 0.

Note that a high output corruption rate may not be sufficient
for preventing the usage of locked circuits. For instance, in
the image processing domain, even if the least significant bit
of the output is always wrong (100% output corruption rate),
the circuit can still be useful.

Definition 3 (Output corruption coverage): Output corrup-
tion coverage presents the magnitude of corruption propagated
to circuit outputs. It is characterized by the percentage of the
circuit outputs that can be affected by all corrupted signals.

For example in Fig. 1, O0 and O1 are in the fanout of KG0

and KG1 and can be impacted by corruption at S0 and S1;
thus, the output corruption coverage is 100%.

B. SAT Attack

The SAT attack [10] is an oracle-guided attack, with the
following threat model. The attacker has the access to two
fundamental assets: (i) the locked netlist, i.e., the netlist
containing previously inserted logic locking structure, (ii) an
oracle, i.e., an unlocked IC with accessible scan chains.

The SAT attack is an iterative process. In each iteration,
the attack chooses two key values from two key equivalence
classes and finds a so-called Distinguish Input Pattern (DIP)
that results in different output values for the two key values.
The detected DIP is then applied to the oracle to obtain the
golden output. By adding the observed disagreement between
the locked netlist and the oracle as constraints to the SAT
solver, the attack is able to suppress at least one class of
key values, which may contain multiple values. The key
search space is reduced iteratively until no more DIP can be
identified. Finally, the SAT solver deduces the correct key.

C. Provable SAT Countermeasures

The most notable countermeasures against SAT attack are
SARLock [11] and Anti-SAT [12], [14]. Their SAT resilience
is based on maximizing the number of iterations of the attack.

1It is also referred to as error rate in the literature [13], [17].

Locked CircuitPI PO

Key ...

X
O
R

...

Point Function Lock

n

Fig. 2: Point-function based logic locking.

The general structure of these techniques is depicted in
Fig. 2: a structure based on a point-function – a Boolean
function that outputs the value 1 for exactly one input
pattern – is inserted beside the locked circuit. It contains two
comparators connected in parallel. The point-function lock
only corrupts the circuit output for one corresponding key
value per input pattern. The SAT attack picks such a pattern
as a DIP and is able to rule out only one key value. This
leads to a maximum number of iterations 2n, n being the
number of circuit inputs connected to the point-function lock;
and the key size is n for SARLock or 2n for Anti-SAT.

Definition 4 (SAT resilience level): SAT resilience level of a
logic locking technique is n-secure if the number of iterations
returned by the SAT attack on its locked circuits is 2n [13].

Note that the corruptibility of point-function lock is 1/2n.
Due to a low number of interconnections with the locked
circuit, its output corruption coverage is inherently insufficient.

D. Advanced Defenses and Attacks
A number of secure logic locking techniques has been re-

cently proposed. Stripped Functionality Logic Locking (SFLL)
[13] provides a solution for measurable trade-off between
attack resilience and output corruption. In SFLL-HDh, the
parameter h, the Hamming distance between the input and
the key, can be configured so that the output corruption rate
is increased, however, at the cost of decreasing SAT-attack
resilience. More recently, CAS-Lock [18] was proposed to
avoid conforming to the security-corruptibility trade-off. By
improving the Anti-SAT structure, it is able to achieve high
SAT resilience with sufficient corruption rate.

Several variants of the SAT attack have also been proposed
[19]. The AppSAT attack [17] is an approximate version of the
SAT attack. Instead of finding the exact secret key, AppSAT
returns a key value that renders the circuit "approximately"
functional. Compared to the baseline SAT attack, the App-
SAT attack has additional capabilities of error estimation and
random query reinforcement. Therefore, it can avoid being
trapped into solving the key for the point-function lock. Hence,
the resulting key is expected to reduce the output corruption
rate as low as that of a point-function lock.

III. PROPOSED LOGIC LOCKING SCHEME

A. Basic Components
The two fundamental components of SKG-Lock are Switch-

able Key-Gates (SKGs) and a Switch Controller (SWC), as

...

sw0
sw1

swn-1

KD
PI

n
sw2

X
N
O
R

S
S'

sw
KA KA = 1

KA = 0

S

sw
KA

S'

(a) (b)

Fig. 3: Basic structure of SKG-Lock components. (a) Switch
controller. (b) Switchable key-gates.

shown in Fig. 3.
We introduce two sets of key-inputs, the Activation Key

(KA) and the Decoy Key (KD):
• KA is connected to the SKGs. Inserting the correct value

of KA nullifies all SKGs and unlocks the circuit. This
KA value is set by the designer during the design phase.

• KD is connected to the SWC. It sets the input patterns
that trigger the SKGs (through the switch-signals, denoted
as sw in Fig. 3). KD is not involved in the circuit
unlocking, i.e., the circuit can be unlocked irrespective
of the KD value.

Note that KD is treated as a key-input in the same way
as KA. They both come from a protected memory and are
physically indistinguishable. They are controllable inputs in
the locked netlist used in oracle-guided attacks.

An SKG has three inputs, two control signals — KA and
switch-signal sw — and one signal S from the locked circuit
(cf. Fig. 3.b). Hence, compared to a traditional XOR key-gate,
in an SKG, the additional switch-signal enables the control of
its corruptibility. To make an SKG corrupt the signal S, both
of its control signals have to be asserted. Therefore, corruption
only happens when an incorrect value is inserted at the KA

key-input and 1 is set on the switch-signal (in case of SKGs
with positive switch2).

The SWC determines the activity of SKGs by controlling
their switch-signals. Its inputs are KD and an equal number of
circuit inputs3. A general design for an SWC is a comparator,
constructed with a row of XNOR gates and a cascade of AND
gates (cf. Fig. 3.a). Multiple switch-signals can be outputted
from the SWC, one from each node in the AND cascade. The
output at the end of the cascade swn−1 is essentially the output
of a point-function between KD and PI . Therefore, swn−1

presents low corruptibility (1/2n) but maximal complexity
for the SAT attack, as shown in the following section. Other
switch-signals from the upstream of the cascade have higher
activity. Thus, SKGs driven by them have higher corruptibility.

B. Light-weight SAT-Proof Lock

We present in Fig. 4 a lightweight point-function lock
based on basic components of SKG-Lock, referred to as
SKG-Locklw. It contains an SWC and an SKG. The only

2SKGs with negative switch can be constructed with an OR gate and an
XNOR gate.

3Circuit inputs can include primary inputs and pseudo primary inputs
(outputs of flip-flops in a sequential circuit).

PI

nKD

Locked Circuit

sw

PO
KA

X
N
O
R

...

SWC

SKG

Fig. 4: Light-weight SAT-proof lock constructed by an SWC
and an SKG.

SKG
PI PO

sw

SKG S0'S0

m

n

n

KD

KA

S1'S1

...SWC

...

Fig. 5: General architecture of SKG-Lock.

switch-signal sw is the output of the point-function in the
SWC. We show subsequently that this structure achieves an
n-secure SAT resilience level.

Notations & Assumptions: Without loss of generality, we
can assume that the size of KD and circuit PI is n; the correct
value of each bit of KA is 1 for every SKG; and each SKG
is inserted at a different circuit output so that any corruption
is observed at an output. A DIP produced at i-th iteration by
the SAT attack is denoted as Xi. The estimated number of
iterations of SAT attack is N .

Proof for SAT resilience: Wrong key values that can be
ruled out by a DIP Xi satisfy the following condition:

(KA = 0) ∧ (~KD = ~Xi) (1)

For any given Xi, there is one way to select KA and one
way to select KD to satisfy the condition in (1). Thus, each
iteration identifies only one wrong key value. Hence, the
number of iterations required by the SAT attack to eliminate
all (2n) wrong key values is N = 2n. The circuit is n-secure
against SAT attack.

SKG-Locklw achieves the same SAT resilience as SAR-
Lock and Anti-SAT. Moreover, it only requires half of the
hardware as it contains one comparator instead of two in
other techniques. Using SKG-Locklw standalone, however, is
not practical: as KA is only 1 bit, the ratio of correct keys
over key space is 1/2; the low output corruptibility (1/2n)
issue remains; its structure is isolated from the locked circuit
structure.

C. SKG-Lock Architecture

The general version of SKG-Lock comprises of several
SKGs with different corruptibility. Its architecture is illustrated
in Fig. 5. m SKGs (hence the size of KA) are inserted in the
locked circuit. An SWC, with n circuit inputs and n-bit KD

as its inputs, produces n switch-signals used for controlling
the inserted SKGs. Note that, in the case where n 6= m,
several SKGs may be driven by the same switch-signal or
certain switch-signals may be unconnected. The ratio of
correct keys over key space of SKG-Lock is 1/2m.

Any existing key-gate insertion strategy for logic locking
[6]–[9] can be used for SKG insertion in SKG-Lock. Fault-
based strategy [8] selects signals with the highest fault impact
in the circuit so that key-gates inserted at chosen signals have
high output corruption rate and coverage. For this proposal,
we therefore choose to insert SKGs using the fault-based
strategy, to maximize output corruption for SKG-Lock.

Note that the use of several switch-signals and SKGs
creates multiple connections between the SWC and the
locked circuit. Thus, our SKG-Lock architecture, in its
nature, achieves structural entanglement without requiring
any compound structural obfuscation technique, such as wire
entanglement used in Anti-SAT [14].

Proof for SAT resilience: We consider the case where the
circuit is locked with two SKGs: one SKG is driven by swn−1

and another SKG is driven by swn−2 (cf. Fig. 3).
The condition for any wrong key value identified by a given

Xi is:[
(~KA[0] = 0, ~KA[1] ∈ B) ∧ (~KD = ~Xi)

]
∨[

(~KA[0 : 1] = ~10) ∧ (~KD[0 : n− 2] = ~Xi[0 : n− 2])
]

(2)

Thus, when ~KA[0] = 0, the set of wrong key eliminated by
Xi has the following form:

(~KA[0] = 0, ~KA[1] ∈ B, ~KD = ~Xi) (3)

There is a one-to-one matching between KD and Xi. Thus,
any input pattern can be selected as a DIP to identify a unique
set of wrong keys in the form of (3). Therefore, the total
number of SAT iterations is N = 2n. The circuit is n-secure
against SAT attack.

This proof holds for the case where there are more than two
SKGs. The same SAT-resilience level is achieved as long as
there is at least one SKG connected with swn−1.

IV. RESULTS

We implemented SKG-Lock on ISCAS’85 and MCNC
benchmarks. We set in each benchmark an equal size of KA

and KD, m = n (hence the total key size is 2n). The n
circuit inputs connected to the SWC were randomly selected.
n SKGs were inserted using fault-based strategy and n switch-
signals were used, each of which was driving each SKG.
The experiments were executed on an 8-core Intel processor
running at 1.90GHz with 16 GB RAM. ModelSim was used
for simulation and measuring output corruption. To evaluate
output corruption rate, we calculated the percent of applied
patterns that produced errors at circuit outputs. Output cor-
ruption coverage was calculated as the percent of accumulated

10 11 12 13

210

211

212

213

n

N
um

be
r

of
SA

T
ite

ra
tio

ns

des
c7552

seq
i8

c5315
dalu

Fig. 6: Evaluation of SAT resilience vs. key size n.

123456789101112
212

213

214

215

Number of switch-signals

N
um

be
r

of
SA

T
ite

ra
tio

ns

des
c7552

seq
i8

c5315
dalu

Fig. 7: Evaluation of SAT resilience vs. output corruption
(n = 12). The fewer switch-signals, the lower output corrup-
tion (only 1 switch-signal is equivalent to a point-function).

number of corrupted circuit outputs throughout the simulation.
Synopsys Design Compiler, with a 65nm technology library,
was used for estimating overheads.

A. Security Evaluation

We first show the evaluation of SKG-Lock against the SAT
attack [10] (using the provided tool) to validate the proof in
Section III-C.

The evaluation of SAT resilience of SKG-Lock with in-
creasing key size4(by increasing n) is shown in Fig. 6. The
expected number of iterations for each case is 2n in order to
be n-secure against the SAT attack. The observed numbers of
SAT iterations5are bigger than the expected numbers.

We further investigated the relation between SAT resilience
and output corruption. To create lower output-corruption con-
figurations of SKG-Lock, high-corruptibility switch-signals
can be left unused, and low-corruptibility ones can be con-
nected to several SKGs. Thus, we restricted the number of
switch-signals and the selection was made according to the
decreasing corruptibility order. The number of used switch-
signals ranges from n down to 1, where n stands for the
base configuration (all switch-signals are used and each is
connected to an SKG) and 1 stands for the point-function
configuration (only swn−1 is used for all SKGs).

We report in Fig. 7 the result of circuits with n = 12. We
expect 12-secure against SAT in every case. Once again, each

4To better observe the trends, we experiment with small key sizes.
5The SAT computation time is proportional to the number of iterations.

TABLE I: COMPARISON OF SAT RESILIENCE LEVEL

Techniques SARLock Anti-SAT SFLL-HDh CAS-Lock SKG-Locklw SKG-Lock
SAT resilience level n n n−

⌈
log2

(
n
h

)⌉
n n ≥ n †

† Higher level can be achieved with lower-corruption configurations.

obtained number of SAT iterations is higher than expected. A
remarkable point is that lower output-corruption configurations
are inclined to have higher gain in iterations. Several of the
evaluated circuits achieve 13-secure up to 15-secure.

The cause of the extra iterations (up to several times the
expected number) could stem from the locations of inserted
SKGs. From the proofs in Section III, the bits in a DIP
that differentiate it from another belong to the part of circuit
inputs connected to the SWC. However, propagating SKGs
corruption to circuit outputs involves controlling several circuit
inputs, not only the ones connected to the SWC. Moreover,
with a restricted number of switch-signals, more SKGs have
the same corruptibility such that there could be masking or
interference among corruptions from SKGs. Thus, inputs that
are not connected to the SWC may also be taken into account
(in addition to the connected ones) when the attack identifies
DIPs. Hence, there is a significant gain in SAT iterations.

The comparison of security level against SAT attack of
SKG-Lock with other SAT-resilient techniques is presented
in Table I (n is the number of circuit inputs connected to
the key-controlled block). Whereas SARLock, Anti-SAT
and LW-SKG are n-secure but with exponentially reduced
corruptibility of 1/2n, SFLL-HD enables trading resilience for
better corruptibility (

(
n
h

)
/2n). SKG-Lock achieves n-secure

level while having significant output corruption, as shown in
the following Section.

We also evaluated SKG-Lock against the AppSAT attack
(using the tool from [20]). We used the same attack configura-
tion as in [17]: 50 random queries were applied after every 12
SAT iterations and the settlement threshold was 5. We applied
AppSAT on SKG-Lock with n = 32 and ran the attack ten
times on each benchmark. The accuracy of the approximate
keys found by the attack — directly related to the output
corruption generated by this key — is of interest.

The results are shown in Table II. With the benchmark seq,
AppSAT cannot converge and, hence, did not return any result
in ten runs. With other benchmarks, AppSAT was able to con-
verge; however, it always produced an inaccurate key. The KA

part of the obtained keys are different from our predefined KA

values for several bits (the average number of different bits of
10 key values is reported in the column "Accuracy #DiffBits").
We measured the output corruption with the produced keys: for
each key value, we applied 1,000,000 random input patterns
and compared the outputs observed from the locked circuit
to the golden outputs. Columns "#Patterns" (the number of
input patterns that produce corrupted outputs), "Rate" (output
corruption rate) and "Coverage" (output corruption coverage)
in Table II show the average results of 10 obtained key
values. It is apparent that AppSAT failed to reduce the output
corruption of SKG-Lock to a point-function corruptibility

TABLE II: APPSAT ATTACK EVALUATION (n = 32)

Accuracy Output Corruption
Bench Converged #DiffBits #Patterns Rate Coverage

/32 /1000000 (%) (%)
des Yes 2.5 1527 0.153 4.8

c7552 Yes 4.3 7274 0.73 18.6
seq No - - - -
i8 Yes 5.9 1025 0.103 71.5

c5315 Yes 5 38683 3.87 28.13
dalu Yes 7.5 9281 0.93 100

TABLE III: OUTPUT CORRUPTION EVALUATION (n = 64)

Bench Corruption Rate (%) Corruption Coverage (%)
SKG-Lock CAS-Lock SKG-Lock CAS-Lock

des 49.4 23.47 100 0.8
c7552 49.6 8.79 58.88 0.93
c5315 23.9 12.46 78.05 1.63

i8 11.6 8.89 100 1.235
dalu 31 3.12 100 25

Average 33.1 11.35 87.39 5.59

(1/232 in this case). The observed corruption rates range from
0.1% to 4%, indicating that the circuit, if run at 1MHz, may
produce several thousands of errors each second. Moreover, we
also observed sufficient output corruption coverage on several
benchmarks. This result is indeed in line with the result in
[21] concluding that the AppSAT attack is not effective against
logic locking techniques where different key values correspond
to different amounts of output corruption.

B. Output Corruption Evaluation

We simulated each circuit 1,000,000 times, each time with
a random input pattern and a random wrong key value. We
measured and compared the output corruption of SKG-Lock
and CAS-Lock with the SAT resilience level of 64-secure.
For CAS-Lock, the CAS-Lock block is inserted at a high-
controllability signal in the circuit; the inserted block contains
a cascade of AND gates followed by an OR gate, which allows
highest corruptibility among all configurations of CAS-Lock.

Table III presents these results. As can be seen, SKG-Lock
achieves better results than CAS-Lock in both metrics. One
can notice that, due to the scattering of SKGs throughout the
circuit, SKG-Lock is able to affect all circuit outputs in several
cases. Conversely, CAS-Lock only corrupts one signal in the
circuit, thereby affecting only a few outputs.

In comparison, for the same SAT resilience, SARLock,
Anti-SAT and SFLL-HD0 have a corruption rate of 1/264 =
5.4e−18%.

C. Overhead Evaluation

The overhead of SKG-Lock was evaluated in terms of area,
power and delay overheads. We used the same benchmarks
as in Section IV-B. We also provide comparison with the
overheads of SARLock, Anti-SAT, CAS-Lock and SFLL-HD
h = 0 (with the same SAT resilience level).

des c7552 c5315 i8 dalu

0

50

100

150
A

re
a

ov
er

he
ad

(%
)

des c7552 c5315 i8 dalu

0

20

40

60

D
el

ay
ov

er
he

ad
(%

)

des c7552 c5315 i8 dalu

0

100

200

300

Po
w

er
ov

er
he

ad
(%

)

SKG-Lock
SARLock
Anti-SAT
CAS-Lock

Fig. 8: Overhead evaluation and comparison with related works (n = 64). Benchmarks are in decreasing size order.

These results are presented in Fig. 8. SKG-Lock has higher
overheads than SARLock, Anti-SAT and CAS-Lock in some
cases but the differences are acceptably small. The results of
SFLL-HD are not reported since they are extremely higher
than others (e.g. for the benchmark dalu, 574.5% in area,
341.4% in delay and 4552.6% in power); its high overheads
are due to added comparators and Hamming Distance counters.

In fact, for SKG-Lock, the numbers of additional gates in
each benchmark are quite similar: 350 (des), 281 (c7552), 344
(c5315), 408 (i8) and 441 (dalu). For benchmark des, the
additional gate count scales rather linearly with the key size
n: 230 (n = 32), 312 (48), 350 (64) and 412 (80). Therefore,
the area overhead of SKG-Lock is dependent of the key size
rather than of the benchmark size.

V. CONCLUSION

In this paper, we proposed a novel SAT-resilient logic
locking scheme, SKG-Lock. SKG-Lock architecture is based
on switchable key-gates and a switch controller controlled by
decoy key-inputs.

Thanks to the proposed control of SKGs, our solutions, both
SKG-Locklw and SKG-Lock, are provably secure against the
SAT attack. Improved from SKG-Locklw by taking advantage
of multiple SKGs, the proposed SKG-Lock provides tremen-
dously higher output corruption, better structural entanglement
and better resilience against SAT-based attacks. Compared to
state-of-the-art works, SKG-Lock provides significant output
corruption and high attack resilience, while incurring accept-
able overhead.

Because the proposed architecture enables structural entan-
glement between the inserted logic and the locked circuit, we
expect substantial resistance against structure analysis attacks
[14], [22]. The SWC, whose structure is similar to point-
function, can be obfuscated by inserting key-gates to make it
less detectable by signal probability analysis. This evaluation
will be a part of the future development for SKG-Lock.

ACKNOWLEDGMENT

This work is funded by project MOOSIC ANR-18-CE39-
0005 of the French National Research Agency (ANR).

REFERENCES

[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor,
and Y. Makris, “Counterfeit Integrated Circuits: A Rising Threat in
the Global Semiconductor Supply Chain,” Proceedings of the IEEE,
vol. 102, pp. 1207–1228, Aug. 2014.

[2] S. Dupuis, M. Flottes, G. D. Natale, and B. Rouzeyre, “Protection
Against Hardware Trojans With Logic Testing: Proposed Solutions and
Challenges Ahead,” IEEE Design Test, vol. 35, pp. 73–90, Apr. 2018.

[3] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining Trust in VLSI De-
sign: Design-for-Trust Techniques,” Proceedings of the IEEE, vol. 102,
pp. 1266–1282, Aug. 2014.

[4] M. Yasin, J. Rajendran, and O. Sinanoglu, Trustworthy Hardware
Design: Combinational Logic Locking Techniques. Analog Circuits and
Signal Processing, Cham: Springer International Publishing, 2020.

[5] S. Dupuis and M.-L. Flottes, “Logic Locking: A Survey of Proposed
Methods and Evaluation Metrics,” J Electron Test, vol. 35, pp. 273–
291, June 2019.

[6] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in DATE, pp. 1069–1074, Mar. 2008.

[7] S. Dupuis, P. Ba, G. D. Natale, M. Flottes, and B. Rouzeyre, “A novel
hardware logic encryption technique for thwarting illegal overproduction
and Hardware Trojans,” in IOLTS, pp. 49–54, July 2014.

[8] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and
R. Karri, “Fault Analysis-Based Logic Encryption,” IEEE Transactions
on Computers, vol. 64, pp. 410–424, Feb. 2015.

[9] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On Improving
the Security of Logic Locking,” IEEE TCAD, vol. 35, pp. 1411–1424,
Sept. 2016.

[10] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in HOST, pp. 137–143, IEEE, May 2015.

[11] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SAR-
Lock: SAT attack resistant logic locking,” in HOST, pp. 236–241, May
2016.

[12] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”
in CHES, vol. 9813, pp. 127–146, 2016.

[13] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran,
and O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To
Practice,” in CCS, pp. 1601–1618, ACM Press, 2017.

[14] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic
Locking,” IEEE TCAD, vol. 38, pp. 199–207, Feb. 2019.

[15] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the Trilemma in Logic
Encryption,” in ICCAD, pp. 1–8, Nov. 2019.

[16] M. Zuzak, Y. Liu, and A. Srivastava, “Trace Logic Locking: Improving
the Parametric Space of Logic Locking,” IEEE TCAD, 2020.

[17] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in HOST, pp. 95–100,
May 2017.

[18] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock: A
Security-Corruptibility Trade-off Resilient Logic Locking Scheme,”
IACR TCHES, pp. 175–202, 2020.

[19] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu,
A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, “Keynote: A Disquisition
on Logic Locking,” IEEE TCAD, 2019.

[20] K. Shamsi, “Netlist encryption and obfuscation suite.”
https://bitbucket.org/kavehshm/neos/src/master/.

[21] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” in ASP-DAC, pp. 271–276,
Jan. 2018.

[22] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
Attacks on Logic Locking and Camouflaging Techniques,” IEEE TETC,
2017.

