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Abstract. Data mining has become an important task for researchers
in the past few years, including detecting anomalies that may represent
events of interest. The problem of anomaly detection refers to discover-
ing the patterns that do not conform to expected behavior. This paper
analyzes recent studies on the detection of anomalies in time series. The
goal is to provide an introduction to anomaly detection and a survey
of recent research and challenges. The article is divided into three main
parts. First, the main concepts are presented. Then, the anomaly detec-
tion task is defined. Afterward, the main approaches and strategies to
solve the problem are presented.
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1 Introduction

In many real-world applications including load demand forecasting [25], geogra-
phy [10], human activity recognition [14], stock return [16] and others [6], the
data is collected in the form of time series. Anomaly detection in this type of
data refers to discovering any abnormal behavior within the data encountered in
a specific time interval. Anomaly detection has been widely used in several appli-
cation areas. For instance, cardiologists are interested in identifying anomalous
parts of ECG signals to diagnose heart disorders [24]. Economists are interested
in anomalous parts of share prices to analyze and build economic models[18]. Me-
teorologists are interested in anomalous parts of weather data to predict future
consequences [26].

Consistent with [7], we can define an anomaly as a point in time where the
system’s behavior is unusual and significantly different from previous normal
behavior. An anomaly can mean a change with positive consequences, such as
an increase in the number of sales on a sales website, and a change with negative
consequences, such as a change in the rotation frequency of a jet engine’s turbine.
In either case, whether positive or negative, the similarity is that anomalies must
often be considered and carefully taken into account.

Anomalies can be temporal if the temporal sequence of data is relevant;
i.e., the data maybe anomalous only in a specific temporal context. Temporal
anomalies are often subtle and hard to detect in real applications. Detecting
temporal anomalies in applications is valuable as they can allow reactions (e.g.
serve as an early warning for problems with the underlying system, or decision
support for adjustments in order to benefit from the anomaly).
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This article aims to provide an organized overview of existing research to
detect anomalies in time series. The objective is to provide an understanding
of the problem of detecting anomalies and how existing techniques are related.
The next section provides some definitions. In Section 3, a brief overview of time
series anomaly detection techniques is reported.

2 Definitions

A time series is an ordered list of observations X =< x1, ..., xn >, where each
value xp is an observation collected at time p. Let Sp = xp, xp+1 + ...+ xp+m−1

be the subsequence of size m, which starts at the position p of the time series
X. Figure 1 presents an example of the time series, where O1 is an example of
a subsequence.

Fig. 1. Time series

2.1 Time-series patterns

We briefly describe some main properties of time series important for anomaly
detection methods.

We can say that a time series has a trend if the observed mean µ is not
constant, but varies over time. The trend can have a linear behavior. The time
series in Figure 2 has a positive trend over the years.

The seasonality is the recurrence of oscillations periodically. A time series
is seasonal if it is influenced by seasonal aspects such as year, period, or year.
Thus, there is always a fixed-term, where the oscillation reappears. Figure 3
shows a seasonal time series with annual house sale values.The seasonality can
be observed, since the real estate market is generally not active at the beginning
of the year and sales generally increase in the middle of the year, decreasing
again at the end of the year.
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Fig. 2. Sample time-series showing a constant trend

Fig. 3. Sample time-series showing yearly home sales

A stationary time series is one whose properties do not depend on the
instant at which the series is observed [12]. Thus, time series that have trends,
or seasonality, are not stationary, as these properties affect the value of the time
series at different times. On the other hand, a series of white noise is stationary
because it doesn’t matter when it’s observed, it looks the same at all times.

The given definition assumes that a stationary series will have the following
characteristics:

1. The verification of constant mean, shown that there is no trend in the series.
2. Throughout the series period, there is a constant autocorrelation
3. The series does not show periodic movements, indicating that there is no

seasonality

2.2 Anomalies

Several studies have attempted to define the condition of anomalous data. In [11],
Hawkins defined anomaly as: ”an observation that deviates so much from other
observations that it raises the suspicion that a different mechanism generated
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it.” In [23], Barnett and Lewis present another interpretation of this definition:
”an outlier is an observation (or subset of observations) that appears to be
inconsistent with the rest of this dataset.” We can then generalize the definition
of anomalies as described in [6] ”patterns in data that do not conform to a well-
defined notion of normal behavior”.

Activities such as a system failure, error in the capture of information by a
sensor, or even earthquakes are examples of reasons for anomalies in the data.
Even in different scenarios, all of these anomalies produce important information
for analysts. The importance of analyzing and understanding these occurrences
is an important point for detecting anomalies.

Anomaly types We can understand the problem of detecting anomalies for
time series to identify outliers concerning some standard or usual signal. While
there are many types of anomalies, let’s focus on the most important types [6].

1. Point anomaly: A point anomaly happens when an observation or a set of
several individual observations diverges from the other set of observations.
One can observe a punctual discontinuity in a period of time outside the
normality of the values. For example, a purchase with a very high amount
within a set of credit card transactions. This type is closest to the concept
presented in [11].

2. Contextual anomaly: An apparently normal observation may diverge when
analyzed within a specific context, such as a period of time or a certain lo-
cation. For example, low temperatures are normal in the winter period but
are contextual anomalous when they occur in the summer, where high tem-
peratures are expected.

3. Collective anomalies: It occurs when no individual observation is an
anomaly in itself, but a group of these observations, when combined, ex-
hibit behavior that diverges from the rest of the data. In the stock market,
for example, the fall in the price of an asset does not deviate significantly
from the normal range, but the combination of successive falls indicates a
collective anomaly.

The contextualization and understanding of the type of anomaly to be identified
can help choose the best detection model.Each approach is aimed at certain
types of anomalies, having certain advantages and disadvantages according to
the subjective definition of normal observations and anomalies in a given context.

Anomaly Detection Several works provide an overview of techniques for de-
tecting outliers [1]. Anomaly detection is also known as outlier detection, event
detection, novelty detection, drift detection, change point detection, failure de-
tection, or misuse detection [6]. These different approaches and terms converge
towards the same purpose: detecting abnormal patterns that deviate from the
rest of the data, called anomalies or outliers.
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Anomaly detection is a broad field that has been studied in the context of a
large number of application domains, such as intrusion detection, fraud detec-
tion, failure detection in industry 3.0, system health monitoring, event detection
in network sensors, and detection of disturbances in the ecosystem [27]. Due to
the great diversity of types and techniques, it is necessary to understand the
properties of anomalies:

1. Temporality: anomalies can be temporal when associated with some tempo-
ral information. These are usually anomalies found in time series as well as
streaming data and medical data.

2. Labeling: Some datasets have a set of labeled anomalies, where the location of
each instance in the dataset is indicated. In general, this set of labeled anoma-
lies represents only a subset of the anomalies present. Annotated anomalies
are used by supervised learning methods, where the method learns through
examples to detect new anomalies.

3. Dimensionality: anomalies can present univariate data when represented in
only one dimension or multivariate when presenting a set of variables. Mul-
tivariate data is generated, for example, on sensors.

Anomaly Detection in Time Series Detecting anomalies in temporal data
differs from detecting non-temporal data. In non-temporal data, as in spatial
data, it is possible to detect an anomaly by its location in less dense or more
distant regions. Another way is to calculate the deviation from the anomalous
observations to the rest of the data. In this domain, it is understood that the
observations are independent of each other.

When we look at the temporal data sets, we can see that this premise is not
true, as the observations are not completely independent of each other. Previous
observations may influence new observations. Thus, the variation between values
tends to be smooth and gradual, without major variations.

Take, for example, a list of ten values with the pricing of the value of an asset
in the stock market, measured every one minute: $12, $15, $16, $18, $17, $42,
$43, $18, $19, $18. Since these points are dependent on each other, we can see
that the sudden increase to the value of $42 could be an anomaly.

Anomaly detection methods for time series can be divided into two main
categories [1]. There are methods that are based on time series prediction, which
represent most of the statistical methods [27]. Another category are methods
that are based on unusual forms of the time series. We will present some of these
approaches in the next section.

3 Anomaly Detection Approaches For Time Series

In this section, we discuss various anomaly detection applications. We organize
the approaches into three categories: statistics-based, cluster-based, and matrix
profile-based.
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3.1 Statistical Based Approaches

We present some stationary linear autoregressive models. Most of the methods
used in time series are linked to linearity and stationarity. A process is stationary
when its mean, variance and autocovariance are invariant with respect to time,
such as, for example, the Auto-Regressive (AR) and Moving Averages (MA) and
Auto-Regressive Moving Averages (ARMA) models.

Autoregressive Model (AR) In an autoregressive model, denoted by AR, we
project the variable of interest based on the linear combination of a finite set of
values before to the variable (independent variables) and an error value [13].

Thus, an autoregressive model of order p, AR(p), can be written as:

Zt = ϕ1Zt−1 + ϕ2Zt−2 + . . .+ ϕpZt−p + at (1)

where at is white noise and the terms Zt−1, Zt−2, . . . , Zt−p are terms that
are independent of at. This model assumes that the current value of the series is
a linear combination of the past p values of the series and a white noise at. We
refer to Equation 1 as an AR(p) model, an autoregressive model of order p.

Autoregression-based techniques were extended to detect contextual anoma-
lies in time series. Initially, the AR(p) model is fitted to the data. Then, for
each Zt instance, the residual of the instance is determined for calculating the
anomaly score. This residual is the instance value that falls outside the regres-
sion model. Thus, the anomaly is scored as the difference between the estimated
value and the residual value [6].

Moving Average Model (MA) Instead of using, as in Autoregressive Model
(AR), the p observations prior to the variable of interest, a Moving Average
Model (MA) considers the last q errors εt, εt−1, . . . , εt−q prediction in a regression
model. We refer to this model as an MA (q), a moving average model of order
q [13]:

Zt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (2)

where the θ1, θ2, . . . , θq are the parameters of the model, c is the expectation
of Zt (often assumed to equal 0), and the εt, εt−1, . . . , εt−q are the white noise
error terms.

It is important to note that this is a moving average model used to predict
future values, unlike smoothing models, where average values are used to elimi-
nate some of the randomnesses of the data. Therefore, we consider that each Zt

comes to be considered a weighted moving average of the latest forecast errors.
In the model of Equation 2, the moving average of the previous q observations,

also called the MA of order q, is considered to calculate the current estimated
value. The next step includes checking that the estimated value is within the
predefined confidence band. Confidence band is the interval defined as a multiple
of the standard deviation of the moving average of the previous period. If the
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value is greater than the maximum expected value (higher confidence band), it
is then flagged as an anomaly.

Autoregressive Moving Average Model (ARMA) Autoregressive Moving
Average (ARMA) models play a key role in time series modeling, being widely
used for time series analysis and prediction. The ARMA model is a combination
of the Autoregressive (AR) model, which describes the analytical component
of the signal, and the Moving Average (MA) model, which describes the noise
component of the signal. Its linear structure also presents a substantial simplifi-
cation of linear prediction. Compared to pure AR or MA models, ARMA models
provide the most efficient linear model in stationary time series, given the ability
to model the unknown process with minimal parameterization [28].

An autoregressive and moving average (ARMA) model denoted by ARMA(p,
q), combining the AR(p) and MA(q) models, can be written in a single equation
in the form:

Zt = c+εt +θ1εt−1 +θ2εt−2 + . . .+θqεt−q +ϕ1Zt−1 +ϕ2Zt−2 + . . .+ϕpZt−p (3)

Let Zt be the sign Z at time t. We assume that Zt linearly depends on the
previous values Zt−1, . . . , Zt−p where p is the order of the autoregression. Thus,
we have from AR that ϕ1, . . . , ϕp are auto-regression parameters that can be
learned from historical data and used to predict or find similar time series, c is
a constant, and εt N(0, σ2) is Gaussian noise. From MA we have θ1, . . . , θq are
learnable parameters of the model, µ is the expectation of Zt and εti N(0, σ2)
are the terms of Gaussian noise.

Using historical data, we can select p and q in ARMA(p,q) model and learn
the model coefficients θ and φ based on which we can make a future prediction.
A substantial deviation from the prediction result in a time-series anomaly. We
can define substantial as two standard deviation from a moving average of Z.
The model parameteters θ and φ are learned via Maximum Likelihood Estima-
tion (MLE). Given the simplicity of the model it may be sufficient for many
applications.

The ARMA model has the advantage of having a clear mathematical and
statistical basis. However, there are some disadvantage, like the selection of the
best values for p and q in order to find a better model for detecting anomalies
[4]. If high values are used, the generated model will find a large number of
false-negatives, thus, a low number of anomalies. In contrast, using small values
for p and q, the generated model will identify a high number of false positives,
that is, label a large number of observations as anomalies, which actually are
not. There are some ways to adjust the model, such as the use of correlograms,
the use of cross-validation [1] and the Box-Jenkins method [3].

3.2 Clustering-Based Approaches

Clustering-based approaches are used to group similar datasets into clusters.
Although clustering and anomaly detection tasks are different in nature, sev-
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eral clustering-based anomaly detection techniques have been developed. During
the clustering process, these approaches consider the identified observations and
clusters and then detect the anomalies [6].

We can group these techniques into two groups based on different assump-
tions. In first, the dataset is grouped into similar data clusters. Instances that
do not belong to any cluster are marked as anomalies. Several algorithms do not
force all instances to belong to a cluster; thus, identified clusters are removed
from the dataset, and residual instances are noted as anomalies. A disadvan-
tage of these techniques is that they are not optimized to identify anomalies, as
their initial objective is to identify clusters. Among these techniques, we have
DBSCAN [9] as the most used.

In the second group of techniques, initially, the dataset into clusters, using a
clustering algorithm. Then, the distance of each instance to the centroid of the
nearest cluster is calculated. Instances that are further away from your centroid
are marked as anomalies. A series of anomaly detection techniques that follow
this approach have been proposed using different clustering algorithms, among
these, the most notorious K-Means clustering [20].

Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) Density-based spatial clustering of applications with noise (DBSCAN)
is a data clustering non-parametric algorithm [9]. The method is significantly
effective in identifying clusters of arbitrary shape and sizes, identifying and sep-
arating noise from the data, and detecting “natural” clusters and their arrange-
ments within the data space, without any preliminary information about the
groups.

Given a set of points in some space, DBSCAN groups points that are inti-
mately very close together (points with many nearby neighbors), marking them
as outliers (anomalies) points that are isolated in low-density regions (whose
closest neighbors are very far away) [5]. Two important user-defined parameters
are required: neighborhood distance epsilon (eps) and a minimum number of
points minpts. For a given point, the points in the eps distance are called neigh-
bors of that point. If the total number of points neighboring a point is greater
than minpts, this group is called a cluster.

DBSCAN labels the data points in three categories: 1) core: the points that
have at least minpts number of points in the eps distance; 2) border: those that
are not core points but are the neighbors of core points; 3)outlier (anomalous):
those that do not belong to any cluster. Emadi et al. [8] propose an algorithm
based on DBSCAN to detect anomalies in Wireless Sensor Networks.

K-Means Clustering One of the most explored techniques for grouping data
is the K-means [20]. It is a cluster based on centroids that partitions the dataset
into k clusters of similar instances. We can define the k-means algorithm in a
sequence of steps. Initially, the number K of clusters is defined. Then, the k
centroids are initialized, which can be done by arbitrary choice. Then, for each
object, the distance to the centroid of all clusters and connected to the nearest
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centroid is calculated. Then the centroids of the modified clusters are recalcu-
lated. Finally, the distance from the objects to the centroids is recalculated,
updating the connections with the nearest ones. This last step is repeated until
there are no more updates [17].

Originally, the k-means approach was not defined to work with time series.
One of the possibilities to use k-means as anomaly detection in time series is
through the use of the sliding window [19] approach. With this approach, a set
of subsequences of equal lengths of the same time series is generated. In this set,
the k-means algorithm is applied until it converges on the searched k clusters.
To perform the anomaly search, the distance between each subsequence and its
associated centroid is computed. This subsequence is marked as an anomaly if
this distance value is greater than a defined threshold value δ. One of the biggest
challenges of this approach is the correct parameterization of the k amounts of
clusters.

3.3 Matrix Profile Technique

In 2016, Yeh et al. [29] published a novel technique to perform all-pairs-similarity-
search on two time-series, producing two new series: the Matrix Profile and the
Matrix Profile Index. The Matrix Profile is defined as a data structure containing
the z-normalized Euclidean distances between each subsequence of the first series
and its closest corresponding subsequence of the second time series. The Array
Profile Index contains the index of the closest matching substring in the second
series for each substring. By itself, the Matrix Profile can be used to detect
anomalies in contexts where anomalies are defined by unique behavior [22]. In
fact, in the Matrix Profile vector the anomalies can be detected in the points
with high values, because the distance of the subsequences represented by these
points to their closest matching subsequence is high.

In general, given two series of n real values, S1 ∈ Rn and S2 ∈ Rn and a
subsequence length m, the Matrix Profile M ∈ Rn−m+1 and a Matrix Profile
Index I ∈ Rn−m+1 are new series such that for each i ∈ [0, n−m], Ii contains the
index of the start of the subsequence of S2 with length m that best matches S1i,m
and Mi contains the corresponding distance. In the case a self-join is performed
where S1 = S2, an additional constraint is added to prevent trivial matches,
where subsequences match themselves or nearby subsequences, called exclusion
zone. The default distance measure used is the z-normalized Euclidean distance,
which removes the effect of a changing data offset over time and thus focuses
more on shape instead of amplitude. Typical causes of a changing offset are
wandering baselines in sensors or natural phenomena (e.g., the gradual change
in temperature throughout seasons) [22].

Figure 4 shows an example of the application of the matrix profile in a time
series for the detection of anomalies. In this figure, the top image represents a
time series, and the bottom image its matrix profile. The top 3 anomalies are
marked in red, i.e., the three points where the matrix profile has high values.



10 H. Borges et al.

Matrix profile is usually able to detect subsequences with unusual shapes
in the data. It can be used for detecting point anomalies and also collective
anomalies (i.e., a sequence of abnormal points).

Fig. 4. Matrix Profile Anomaly Detection Example

In the rest of this section, we present the main algorithms for calculating the
Matrix Profile.

STAMP The Matrix Profile was originally published together with the STAMP
(Scalable Time Series Anytime Matrix Profile) [29], an anytime algorithm to
calculate the Matrix Profile over a time series and the corresponding Index.
Internally, STAMP uses a similarity search algorithm called MASS [21] that
under z-normalized Euclidean iteratively calculates the distance profile of each
subsequence, which is the distance of the subsequence to every subsequence, by
using the Fast Fourier Transform (FFT).

The STAMP is outlined in Algorithm 1. In line 2, the length of TB is ex-
tracted. In line 3, the matrix profile PAB and matrix profile index IAB are ini-
tialized. From lines 4 to line 6, the distance profiles D are calculated, using each
subsequence B[idx] in the time series TB and TA. The pairwise minimum for
each element in D is performed with the paired element in PAB (i.e., min(D[i],
PAB [i]) for i = 0 to length(D) -1). Then, as the minimum pair operations are
performed, IAB [i] is updated with idx (when D[i] ≤ PAB [i]). Finally, the results,
i.e., PAB and IAB , are returned in line 7. In this format, STAMP computes the
matrix profile for the general similarity join. It is possible to change the algo-
rithm to compute the self-similarity join matrix profile of a time series TA, just
by replacing TB in line 2 with TA, replace B with A in line 5, and ignore trivial
matches in D when performing ElementWiseMin in line 6.
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The overall complexity of the algorithm is O(n2 log n) where n is the length of
the time series. Since all subsequences are compared using the MASS algorithm,
the n log n factor comes from the FFT subroutine.

Algorithm 1: STAMP (TA, TB ,m)

Input: Two time series, TA and TB

Interested subsequence length m
Output: A matrix profile PAB and associated matrix profile index IAB of TA

join TB

1 begin
2 nB ← Length(TB)
3 PAB ← infs, IAB ← zeros, idxes ← 1 : nB −m+ 1
4 for each idx in idxes do
5 D ← MASS(B[idx], TA)
6 PAB , IAB ← ElementWiseMin(PAB , IAB , D, idx)

7 return PAB , IAB

STOMP The STOMP algorithm is similar to STAMP [15] in that it can be
seen as highly optimized nested loop searches, with the repeated calculation
of distance profiles as the inner loop. However, while STAMP must evaluate
the distance profiles in random order (to allow its anytime behavior), STOMP
performs an ordered search. It is by exploiting the locality of these searches that
STOMP can reduce the time complexity by a factor of O(log n). STOMP uses
the z-normalized Euclidean distance di,j , as shown below, of two time series
subsequences Ti,m and Tj,m using their dot product, QTi,j :

di,j =

√
2m

(
1− QTi,j −mµiµj

mσiσj

)
(4)

Here m is the subsequence length, µi is the mean of Ti,m, µj is the mean of
T(j,m), σi is the standard deviation of Ti,m, and σj is the standard deviation of
Tj,m. Note that QTi,j can be decomposed as:

QTi,j =

m−1∑
k=0

Ti+kTj+k (5)

The time required to compute di,j depends only on the time required to
compute QTi,j . To solve this problem, STOMP pre-computes and stores the
means and standard deviation in O(n) space and time, thus, it takes O(1) to
compute di,j [30].

The pseudo-code of STOMP algorithm is shown in Algorithm 2. It begins in
line 1 by computing the matrix profile length l. In line 2, it calculates the mean



12 H. Borges et al.

Algorithm 2: STOMP (T,m)

Input: A time series T and a subsequence length m
Output: Matrix profile P and the associated matrix profile index I of T

1 begin
2 n← Length(T ), l← n−m+ 1
3 µ, σ ← ComputeMeanStd(T,m)
4 QT ← SlidingDotProduct(T [1 : m], T ), QTfirst ← QT
5 D ← CalculateDistanceProfile (QT, µ, σ)
6 P ← D, I ← ones // initialization
7 for i=2 to l do
8 for j=l downto 2 do
9 QT [j]← QT [j−1]−T [j−1]×T [i−1] +T [j+m−1]×T [i+m−1]

10 QT [1]← QTfirst[i]
11 D ← CalculateDistanceProfile (QT, µ, σ, i)
12 P, I ← ElementWiseMin (P, I,D, i)

13 return P, I

and standard deviation of every subsequence in T . Line 3 calculates the first dot
product vector QT with the algorithm in TABLE I. Line 5 initializes the matrix
profile P and matrix profile index I. The loop in lines 6-13 calculates the distance
profile of every subsequence of T in sequential order, with lines 7-9 updating QT
according to (5). Then update QT [1] in line 10 is done with the pre-computed
QTf irst in line 3. Line 11 calculates distance profile D according to Equation
(4). Finally, line 12 compares every element of P with D: if D[j] < P [j], then
P [j] = D[j], I[j] = i.

The time complexity of STOMP is O(n2). Thus, it can achieve a O(log n)
factor speedup over STAMP[15]. The O(log n) speedup makes little difference
for small datasets, however, when considering the datasets with millions of data
points, this O(log n) factor begins to produce a significant performance gain.

SCRIMP++ An extension of STOMP is proposed in [31]. SCRIMP is an
anytime algorithm that computes the matrix profile algorithm combining the
anytime component of STAMP with the speed of STOMP. The optimization of
SCRIMP++ is performed using the incremental calculation of the D diagonals
of the scalar product of Equation 4, as follows:

Qi,j = Qi−1,j−1 − ti−1tj−1 + ti+m−1tj+m−1 (6)

Equation 6 presents the incremental approach, where the values of the di-
agonal cells can be calculated using the cell value previously calculated. This
approach reduces the number of operations required for the new calculation.

Algorithm 3 shows the pseudo-code of SCRIMP++. Line 2 precomputes the
means and standard deviations of all subsequences in T. In line 4, matrix profile
P and matrix profile index I are initialized. In lines 6-16, the diagonals of the
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Algorithm 3: The SCRIMP++ Algorithm

Input: A time series T and a subsequence length m
Output: Matrix profile P and matrix profile index I of T

1 begin
2 n← Length(T )
3 µ, σ ← ComputeMeanStd(T,m)
4 P ← inf, I ← ones
5 Orders ← RandPerm(m/4 + 1 : n−m+ 1)
6 for k in Orders do
7 for i=1 to n-m+2-k do
8 if i = 1 then
9 q ← DotProduct(T1,m, Tk,m)

10 else
11 q ← q − t1ti+k−2 + ti+m−1ti+k+m−2

12 d← CalculateDistance(q, µi, σi, µi+k−1, σi+k−1)
13 if d < Pi then
14 Pi ← d, Ii ← i+ k − 1

15 if d < Pi+k−1 then
16 Pi+k−1 ← d, Ii+k−1 ← i

17 returnP, I

distance matrix are iteratively evaluated, being chosen in random order. Figure
5 shows an example of this process. Diagonal distance values, such as d1,k, d2,k,
. . . , dn−m+2−k,n−m+1 are calculated one by one. If di,i+k−1, for any i < n−m+1,
referenced by d in line 12, is less than Pi (line 13) or Pi+k−1(line 15), then the
associated matrix profile and index values are updated. The iterative algorithm
can be interrupted by the user to analyze the matrix profile and index values.

AAMP In many applications it is preferred to not normalize the time-series
data because the anomalies can be deteted based on the point values, and not the
shapes. AAMP [2] has been designed for such applications. It is an efficient al-
gorithm for computing matrix profile with the pure (non-normalized) Euclidean
distance. AAMP is executed in a set of iterations, such that in each iteration
the distance of subsequences is computed incrementally. The time complexity
of AAMP is O(n × (n − m)) with small constants, where n is the time series
length and m the subsequence length. The experiments reported in [2] show
that the performance of AAMP is significantly better than that of STAMP and
SCRIMP++ (an improved version of STOMP).

The main idea behind AAMP is that for computing the distance between
subsequences it uses diagonal sliding windows, such that in each sliding window,
the Euclidean distance is incrementally computed only between the subsequences
that have a precise difference in their start position. Let Ti = 〈ti, ti+1, . . . , ti+m−1〉
and Tj = 〈tj , tj+1, . . . , tj+m−1〉 be two subsequences. The sliding windows in
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Fig. 5. A SCRIMP++ iteration evaluates a randomly selected diagonal, thus updating
the matrix profile

AAMP allow to use Equation 7 for incremental computation of the distance
between subsequences Ti and Tj (denoted by Di,j) by using the yet computed
distance between subsequences Ti−1 and Tj−1 (denoted as Di−1,j−1):

[H]Di,j =
√
D2

i−1,j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2 (7)

Algorithm 4: AAMP algorithm

Input: T : time series; n: length of time series; m: subsequence length
Output: P : Matrix profile;

1 begin
2 for i=1 to n do
3 P[i] = ∞ ;

4 for k=1 to n-m-1 do
5 dist = Euc Distance(T1,m, Tk,m)
6 if dist < P[1] then
7 P[1] = dist;

8 if dist < P[k] then
9 P[k] = dist;

10 for i=2 to n - m + 1 - k do

11 dist =
√

(dist2 − (ti−1 − ti−1+k)2 + (ti+m−1 − ti+m+k−1)2

12 if dist < P[i] then
13 P[i] = dist;

14 if dist < P[i+k] then
15 P[i+k] = dist;

Algorithm 4 shows the pseudo-code of AAMP. Initially, the algorithm sets
all the values of the matrix profile to infinity (i.e., maximum distance). Then,
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it performs n − m − 1 iterations using a variable k (1 ≤ k ≤ n − m − 1).
In each iteration k, the algorithm compares each subsequence Ti,m with the
subsequence that is k positions far from it, i.e., Ti,m+k. To do this, AAMP
firstly computes the Euclidean distance of the first subsequence of the time
series, i.e., T1,m, with the one that starts at position k, i.e., Tk,m. This first
distance computation is done using the normal formula of Euclidean distance.
Then, in a sliding window, the algorithm incrementally computes the distance
of other subsequences with the subsequences that are k position far from them,
and this is done by using Equation 7 in O(1). If the computed distance is smaller
than the previous minimum distance that is kept in the matrix profile P , then
it is updated with this new lower value.

4 Conclusion

In this paper, we presented a survey of anomaly detection methods in time series
datasets. We firstly presented the main concepts related to anomalous data in
different applications, and then defined the anomaly detection task. Afterwards,
we described the important approaches for anomaly detection in three main
categories: statistical based, clustering based, and matrix profile based.
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