First-principles DFT simulations of MoS$_2$ for the non-enzymatic detection of cortisol
Gabriele Boschetto1, Stefania Carapezzi1, Aida Todri-Sanial1
1LIRMM, Université de Montpellier, CNRS, Montpellier, France

Atomically thin two-dimensional (2D) materials have been—and are still currently being—extensively studied due to their unique mechanical, electrical, and optical properties, which enable the development of innovative devices and technologies. Within the vast chemical space of transition metal dichalcogenides (TMDs), single-layer molybdenum disulphide (MoS$_2$) is without doubt one of the most studied material due to its stability and its direct optical band gap of 1.8 eV, which make it the ideal candidate to be used in a wide range of nanoelectronic devices, going beyond conventional CMOS technology.$^{(1)}$

Here we look at MoS$_2$ in the context of biosensing, and we study such material as the core component of field-effect biosensors for the detection of cortisol. We want to bridge the gap between materials’ properties and device physics and to do so, we carry out first-principles atomistic computer simulations in the framework of density functional theory (DFT).

Recently, MoS$_2$ has been studied as a sensing platform for detecting mainly gas and small biological molecules, such as glucose.$^{(2)}$ Enzymatic biosensing is the most common approach, however, non-enzymatic sensing can provide higher sensor stability and prompt response at the expense of chemical selectivity. Here, we are interested in the non-enzymatic detection of cortisol in human sweat as a mean to monitor the risk of cardiovascular diseases. However, it is not known if such analyte interacts in a suitable way with MoS$_2$, and if so, how. Thus, we thoroughly explore the MoS$_2$/cortisol interaction in terms of both structural, electronic, and charge transfer properties to assess viable sensing mechanisms. We also study the impact of some of the most used metal dopants employed in lab-scale experiments, such as Ni, Pt, Pd, in order to modulate the sensing platform with respect to bare MoS$_2$.

Overall, our work ultimately aims to obtain a deep understanding of the properties of MoS$_2$ when used as a sensor to drive the design of devices towards better performance.

References
