
HAL Id: lirmm-03366078
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03366078v1

Submitted on 5 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Computations in Heterogeneous Multicore
Systems with Statistical Regression on Program Inputs

Junio Cezar Ribeiro da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye
Gamatié, Fernando Magno Quintão Pereira

To cite this version:
Junio Cezar Ribeiro da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié, Fernando Magno
Quintão Pereira. Mapping Computations in Heterogeneous Multicore Systems with Statistical Re-
gression on Program Inputs. ACM Transactions on Embedded Computing Systems (TECS), 2021, 20
(6), pp.#112. �10.1145/3478288�. �lirmm-03366078�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03366078v1
https://hal.archives-ouvertes.fr

1

Mapping Computations in Heterogeneous Multicore
Systems with Statistical Regression on Program Inputs

JUNIO CEZAR RIBEIRO DA SILVA, Universidade Federal de Minas Gerais

LORENA LEÃO, Universidade Federal de Minas Gerais

VINICIUS PETRUCCI, Universidade Federal da Bahia and University of Pi�sburgh

ABDOULAYE GAMATIÉ, LIRMM, Univ. Montpellier, CNRS

FERNANDO MAGNO QUINTÃO PEREIRA, Universidade Federal de Minas Gerais

A hardware con�guration is a set of processors and their frequency levels in a multi-core heterogeneous system.

�is paper presents a compiler-based technique to match functions with hardware con�gurations. Such a

technique consists in using multivariate linear regression to associate function arguments with particular

hardware con�gurations. By showing that this classi�cation space tends to be convex in practice, this paper

demonstrates that linear regression is not only an e�cient tool to map computations to heterogeneous

hardware, but also an e�ective one. To demonstrate the viability of multivariate linear regression as a way to

perform adaptive compilation for heterogeneous architectures, we have implemented our ideas onto the Soot

Java bytecode analyzer. Code that we produce can predict the best con�guration for a large class of Java and

Scala benchmarks running on an Odroid XU4 big.LITTLE board; hence, outperforming prior techniques such

as ARM’s GTS and CHOAMP, a recently released static program scheduler.

CCS Concepts: •So�ware and its engineering→ Compilers; •Computing methodologies→ Parallel
programming languages; Machine learning;

ACM Reference format:
Junio Cezar Ribeiro da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié, and Fernando Magno �intão

Pereira. 2021. Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on

Program Inputs. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2021), 35 pages.

DOI: 10.1145/3478288

1 INTRODUCTION
Several modern computer architectures combine, into a single device, fast and slow processing

cores able to execute the same set of instructions (Kumar et al. 2004; Orgerie et al. 2014; Singh et al.

2020). Fast cores perform computations e�ciently, but are power-hungry; Slow cores show the

inverse behavior. �e ARM big.LITTLE design, ubiquitous in smartphones, is an example of such

technology (Hähnel and Härtig 2014). As an illustration, the Apple A14, launched in September of

2020, has two high-performance cores called Firestorm and four energy-e�cient cores called Icestorm,

all running the ARMv8.4-A instruction set (Gurman et al. 2020). �e combination of heterogeneous

processors featuring multiple frequency levels gives programmers many con�gurations to choose

from when running their applications. However, performing this choice is challenging (Azhar et al.

2019; Nejat et al. 2020; Nishtala et al. 2017; Paul et al. 2020; Petrucci et al. 2015).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1539-9087/2021/1-ART1 $15.00

DOI: 10.1145/3478288

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:2 Ribeiro, et al.

A recent solution to this problem is CHOAMP, a compilation technique invented by Sreelatha et
al. (Sreelatha et al. 2018). CHOAMP uses supervised machine learning to map program functions

to the con�guration that best �ts them. Sreelatha et al. capture characteristics of the target

architecture’s runtime behavior. From this knowledge, they predict the ideal con�guration to a

program, given its syntactic characteristics. Sreelatha et al.’s approach is fully static: interventions

on the program remain con�ned into the compiler, and no extra runtime support is required from

the hardware. �is approach has been made popular by Shelepov et al. (Shelepov et al. 2009)’s

HASS system, a scheduler for same-ISA heterogeneous systems.

We observe that CHOAMP and HASS share a fundamental shortcoming: they do not consider

program inputs when performing mapping decisions. As we explain in Section 2, there exist

programs for which the best hardware con�guration for a given function varies depending on the

function’s inputs. We make the case that inputs are key to determine good mappings between

programs and con�gurations supported by the evidence that such mappings do not necessarily

converge to a single, ideal con�guration, as the size of inputs grows.

Our Solution. In this paper, we introduce a compilation approach to map program parts to

hardware con�gurations. Our technique explicitly takes function inputs into consideration when

deciding which hardware con�gurations to use. Input-based code optimizations are not a new idea,

as we explain in Section 5.3; however, to the best of our knowledge, this paper is the �rst to use

related techniques to �nd optimized hardware con�gurations for programs running on big.LITTLE

architectures. As we discuss in Section 3, our idea is based on statistical regression on the values of
program inputs. Given a function foo, a collection of its inputs {t1, t2, . . . , tm} available for training,

plus a set of hardware con�gurations {h1,h2, . . . ,hn}, we run foo(ti), 1 ≤ i ≤ m, onto a sample of

the con�guration space {hj | 1 ≤ j ≤ n}. Training gives us the ideal con�guration for each input,

in terms of a measurable goal, such as runtime or energy consumption. When producing code for

foo, we augment its binary representation with this knowledge to predict the best con�guration for

potentially unseen inputs.

Our Results. We have implemented our technique in Soot (Vallée-Rai et al. 1999), a bytecode

optimizer, and have evaluated it onto an Odroid XU4 big.LITTLE architecture. Soot lets generate

code that, at runtime, changes the hardware con�guration per program function, based on train-

ing knowledge. We call this code generator the Jinn-C compiler, a tool that reads and outputs

Java bytecodes. As we explain in Section 4, we have evaluated Jinn-C on the Program Based

Benchmark Suite (Shun et al. 2012) used by Acar et al (Acar et al. 2018), and on programs from

Renaissance (Prokopec et al. 2019). We have evaluated Jinn-C with two objective functions: runtime

and energy consumption. We measure energy for the entire board using physical probes, following

Bessa et al’s methodology (Bessa et al. 2017). Below we summarize the bene�ts of our solution in

the context of the existing literature:

• Simple: we show that, for typical parallel code, the value of scalar inputs and the size of

aggregate inputs yield useful information to feed linear regression models, because the

function that maps these values to optimized hardware con�gurations form a convex space.

• E�ective: in most of our benchmarks, ten input sets are already su�cient to let us train a

predictor to a high level of accuracy. Variety is, of course, important: the more di�erent

the inputs we have, the more accurate the predictions we perform.

• E�cient: our approach does not require active runtime monitoring. Inputs must be

evaluated upon function invocation, and only then. Evaluation amounts to one vector-

matrix multiplication, and is proportional to the number of function arguments (not to

their sizes) times the number of valid hardware con�gurations. Training is costly, but this

cost is paid o�ine, before programs run in production mode.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:3

• Semi-Automatic: our approach requires minimum user interference. Developers annotate

which functions must be adapted. No further interventions are necessary.

• Easily-deployable: our solution does not require runtime monitoring; thus, it can be

deployed in any modern hardware and operating system, independent on them providing

advanced runtime capability such as performance counters. We require only the capability

to change the hardware con�guration at runtime.

Convex Space. �is journal paper extends an earlier conference paper of ours (da Silva et al. 2020),

with more experiments and a more detailed explanation of our technique. �e most important

addition over that �rst publication is an empirical demonstration that statistical functions that

map program inputs to hardware con�gurations tend to be convex. As we show in Section 4.4,

convexity means that by varying only one function argument, while �xing the others, the ideal

con�guration is unlikely to oscillate, for instance, going from hi to hj and then back to hi . We have

not found one single case, among 18 benchmarks, each with 14 di�erent input sets, where such

oscillations could be discerned. �e consequence of this observation, discussed in Section 4.4.2,

is that derivative-based search methods are expected to converge to an optimal result, and linear

regression is capable to accurately predict this optimum. We emphasize that this observation shows

an intuitive tendency that has been veri�ed in the benchmarks used in this paper, for the inputs

available to them. Although it is easy to construct benchmarks whose space of (inputs × ideal

hardware con�gurations) is not convex, we believe that such benchmarks are unlikely to emerge

as part of well-known algorithms, as we explain in Section 4.4.

2 OVERVIEW
�e term hardware con�guration is used with di�erent meanings by di�erent researchers, thus we

shall restrict ourselves to the following de�nition:

De�nition 2.1 (Hardware Con�guration). Let Π = {π1,π2, . . . ,πn} be a set of n processors, and

let Freq be a function that maps each processor to a list of possible frequency levels. A hardware

con�guration is a set of pairsh = {(π , f) | π ∈ Π, f ∈ Freq(π)}. If (πi , fj) ∈ h, for some fj ∈ Freq(πi),
then processor πi is said to be active in h with frequency fj , otherwise it is said to be inactive.

Example 2.2 (Hardware Con�guration). �e HardKernel Odroid XU4 has four big cores {b0,b1,b2,b3}

and four LITTLE cores {L0,L1,L2,L3}. Big cores have 19 frequency levels {200MHz, 300MHz, . . . ,
1.9GHz, 2.0GHz}. LITTLE cores have 14 {200MHz, . . . , 1.5GHz}. �is SoC supports any number of

active processors; however, big cores must always use the same frequency level. �e same is true

for LITTLE cores. An example of hardware con�guration is {b0,b2}×2.0GHz, {L1,L2,L3}×1.3GHz.

�e notion of hardware con�guration leads to an interesting problem in the �eld of adaptive
compilation. In the words of Cooper et al (Cooper et al. 2005), “an adaptive compiler uses a compile-
execute-analyze feedback loop to �nd the combination of optimizations and parameters that minimizes
[optimizes] some performance goal, such as code size or execution time”. In this paper we are interested

in solving the adaptive compilation problem introduced by De�nition 2.3.

De�nition 2.3. Input-Aware Scheduling in Single-ISA Heterogeneous Architectures

(Isha) Input: a function F , its input i , a set of hardware con�gurations H = {h1, . . .hn}, and a

cost function O i
F : H 7→ R, which determines the cost of running F with input i on con�guration

h ∈ H . Examples of cost functions include runtime, energy, energy-delay product, throughput, etc.

Output: a con�guration h ∈ H that minimizes O i
F .

As Section 3 explains, we insert code at the entry point of functions to switch the hardware

con�guration; hence, providing a solution to Isha. From that region on, the program will run in

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Ribeiro, et al.

the chosen con�guration, until its execution �ow �nds the entry point of another function that has

also been instrumented. Any function might run at any hardware con�guration, for although we

target a heterogeneous architecture, big and LITTLE cores run the same instruction set. Notice that

moving computations across cores bears a cost: cores do not share L1 caches, and big and LITTLE

clusters do not share the L2 cache, although all the cores share the main memory (Weber et al.

2017, Sec.2.2). �is cost is embedded in the numbers that we report in Section 4. In other words,

the speedups or regressions that we observe experimentally already include the cost of warming

up caches due to switching computation between cores.

2.1 Program Inputs and Hardware Configuration
Compilers, such as Gcc or Clang, do not try to capitalize on di�erences between cores when

producing binary programs: the same executable runs in both cores. Nevertheless, we know of

research artifacts that take these di�erences into consideration; for example, CHOAMP is a recent

technique in this direction (Sreelatha et al. 2018). CHOAMP matches program features, such as

branches, barriers, reductions and memory access operations with the ideal con�guration for each

function. CHOAMP has been evaluated on the OpenMP version of the NAS benchmark suite (Bailey

et al. 1991) with great bene�t, producing code that was 65% more energy-e�cient than the default

Linux scheduler.

A�er CHOAMP trains a regression model, the same core con�guration decision applies for a

function, regardless of its actual inputs. �is shortcoming of purely static approaches has been

well-known. �oting Nie and Duan: “since the properties they have collected are based on the given
input set, those o�ine pro�ling approaches are hard to adapt to various input sets and therefore will
drastically a�ect the program performance” (Nie and Duan 2012). We corroborate this observation

and show that it is possible to �nd di�erent programs for which the ideal hardware con�guration

varies according to their inputs. Example 2.4 illustrates this �nding with an actual experiment.

Example 2.4. Function task in Figure 1 inserts into a global map all the values stored in a

stream. Values are associated with a key, whose size varies according to the formal parameter

keySize. Task has a synchronized block; hence, it can be safely executed by multiple threads. �e

number of threads is an implicit input. �ese three values: size of input stream, size of keys, and

number of threads, form a three-dimensional space, which Figure 1 illustrates. �e ideal hardware

con�guration for task varies within this space. Figure 2 illustrates this variation for 3× 25 di�erent

input sets. �e notation XbYL denotes X big cores, and Y LITTLE cores. In this experiment, we

have set Freq(b) = 1.8GHz, for any big core b, and Freq(L) = 1.5GHz, for any LITTLE core L.

�e construction of a key, at line 5 of Figure 1 is a CPU-heavy, synchronization-free task.

�e larger the key, the more incentive we have to use the big cores. However, the updating of

globalMap at line 9 is a synchronization-heavy task: the more synchronization we have, the

heavier is the penalty on the big cores, relative to the LITTLE ones. Indeed, as already observed

by Kim et al. (Kim et al. 2014), context switches are more expensive in the big than in the LITTLE

cores. Reasons for this heavier penalty include the larger pipelines used in the big cores. Whereas

the ARM A15 (big) core features a pipeline with 15 integer and up to 25 �oating point stages,

the A7 (LITTLE) core features a pipeline with only 8 stages (Weber et al. 2017, Sec.2.2). Memory

accesses are also more expensive (relative to execution cycles) on the faster cores: L2 latency for

big cores is 21 cycles while for LITTLE cores it is 10 (Greenhalgh 2011). Furthermore, the larger

the input streams, the more o�en we access the synchronized region between lines 7 and 10 of

Figure 1. We can observe results similar to those seen in Example 2.4 in algorithms like Integer

Sort, a benchmark used by Sreelatha et al. (Sreelatha et al. 2018), which we re-evaluate in Section 4.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:5

// The number of threads is a hidden input
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update globalMap
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

T	=	4	

T	=	8	

T	=	16	
T	=	32	

0	

2000	

4000	

6000	

8000	

10000	

10^2	
10^3	

10^3	
10^4	

T
hr

ea
ds

s.size()

ke
yS

ize

Fig. 1. (Le�) A program whose behavior can be computation-heavy or synchronization-heavy, depending on

its inputs. (Right) The search space formed by the program’s inputs. (Taken from da Silva et al. (2020)).

oox 2b0Lx

4b0Lox ox

4b0Lx o ox

o o 4b0Lo o

4b0Loooo

keySize

s.
si

ze
 (

)

1 2 3 4 5

5

4

3

2

1

4T

xxx 2b0Lx

4b4L4b4Lx x-

4b4Lx 4b4L 4b4Lo

4b4L 4b4L 4b4L4b4L 4b4L

4b4L4b4L4b4L4b4L4b4L
8T

xxx 2b0Lx

oox -x

ox o ox

o o ox o

ooooo
16T

0b2L, 0b4L, 2b0L, 4b0L, 4b4L

0b4L, 2b0L, 4b0L, 4b4L

10
10
10

10
10

10 10 10 10 10

4b0L, 4b4Lo
-

x

Fig. 2. Ideal configuration for di�erent parameters of the task function (Fig. 1), for 4, 8 and 16 threads,

measured on an Odroid XU4 with the userspace governor. Default configuration is 4b4L. Names in boxes

indicate the best configuration(s) for that input. ’X’ indicates setups with three or more configurations tied

as best. To produce these charts, we followed a methodology to be described in Section 4.4. Even considering

4 threads, there is benefit to enable more than four processors, as the Java virtual machine creates threads for

garbage collection and JIT compilation, for instance (Taken from da Silva et al. (2020)).

Notice that allowing a program to use more threads does not necessarily mean that this program

will draw larger bene�t from con�gurations with more cores. �is counterintuitive behavior

happens because more cores might provoke more thread con�icts in synchronization-heavy se�ings.

Example 2.5 elaborates on this observation.

Example 2.5. Figure 2 shows that when the Task function runs with eight threads, the con�gura-

tion with full resources (4b4L) is o�en chosen. However, once 16 threads are employed to generate

keys, sometimes not all the cores are used in the fastest con�guration. Figure 3 provides numbers

to explain this behavior. For small key sizes, collisions between threads happen frequently. In this

se�ing, 1b0L is the best con�guration, regardless of the number of threads considered (even though

running times are short, the con�dence level of this result is above 99%). Once key size increases,

time spent on synchronization becomes less important, and extra cores start to be advantageous.

Notice that past certain point (a�er keys with 10,000 bits), just-in-time compilation triggers, and the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Ribeiro, et al.

0.E+00	

1.E+05	

2.E+05	

3.E+05	

4.E+05	

5.E+05	

6.E+05	

7.E+05	

10^1	 10^2	 10^3	 10^4	 10^5	

0.E+00	

5.E+05	

1.E+06	

2.E+06	

2.E+06	

3.E+06	

10^1	 10^2	 10^3	 10^4	 10^5	

0.E+00	

1.E+06	

2.E+06	

3.E+06	

4.E+06	

5.E+06	

6.E+06	

7.E+06	

8.E+06	

10^1	 10^2	 10^3	 10^4	 10^5	

0b1L	 1b0L	 0b4L	 4b0L	 4b4L	

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(N

an
os

ec
on

ds
)

keySize (Number of bits in the key)

4 Threads

8 Threads

16 Threads

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

keySize (Number of bits in the key)

0.001	

0.01	

0.1	

1	

10	

10^1	 10^2	 10^3	 10^4	 10^5	

0.001	

0.01	

0.1	

1	

10	

10^1	 10^2	 10^3	 10^4	 10^5	

0.01	

0.1	

1	

10	

10^1	 10^2	 10^3	 10^4	 10^5	

4 Threads

8 Threads

16 Threads

Fig. 3. Average waiting time and total running time of function Task (Figure 1) considering di�erent key

sizes, and di�erent numbers of threads. To perform this experiment, we have modified Task to use Java’s

ReentrantLock class. This new version of Task is slower, due to the need to log events; hence, we present

total running times to give the reader some perspective on the program’s behavior.

average waiting time decreases by approximately 50%. Yet, the total application time still increases,

due to the excess of calculations required by the large keys.

Example 2.5 shows that two facts increase the average time that threads spent on critical sections:

the total number of working threads that the program uses, and the total number of cores where

these threads execute. �erefore, adding more resources to thread rich programs can cause them to

run more slowly due to extra con�icts. Such complex tradeo�s make the problem of choosing ideal

hardware con�gurations a non-trivial endeavor.

2.2 Accounting for Energy E�iciency
Choosing good hardware con�gurations becomes more challenging, once we consider energy as a

dimension of e�ciency. Low-frequency cores tend to be more power-e�cient than high-frequency

processors; hence, there is incentive to use them to save energy. However, low-frequency cores

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:7

tend to take longer to �nish tasks; possibly, using more energy to perform a job. �is observation

is critical in ba�ery-powered devices, such as smartphones. �e next example analyzes such

power-performance tradeo�s. In this experiment, we are measuring the actual power consumed in

the entire board, which includes not only its CPUs but also its peripherals, such as memory and

cooling. To this end, we use the apparatus described by da Silva et al. (2018), which samples power

at 20KHz.

Example 2.6. We have used the power measurement apparatus shown in Figure 4(a) to plot

runtime and energy consumption for the function task earlier seen in Fig. 1, considering two

di�erent input sets. Figure 4(b) shows the power pro�le of Task for a synchronization-free set

of inputs (top) and for a synchronization heavy set (bo�om). Following Silva et al. (da Silva et al.

2018), we call the chart relating runtime and energy a constellation. �e constellation in Figure 4(c)

shows the behavior of task for the synchronization-free input. In this case, the size of keys is very

large, and the number of insertions in the globalMap is very low, thus con�icts seldom happen.

On the other hand, if we make the size of keys very small, and the size of the stream very large,

then we obtain a rather di�erent constellation, which Figure 4(d) outlines. �is constellation shows

how Task performs in a synchronization-heavy environment.

30	

60	

90	

120	

4	 8	 12	 16	 20	 24	 28	 32	 36	

20	

40	

60	

80	

100	

4	 8	 12	 16	

E
ne

rg
y

(J
)

E
ne

rg
y

(J
)

Time (s) Time (s)

1B4L

0B4L

2B2L
2B1L
2B0L

3B3L
3B2L
3B1L
3B0L

4B4L

1B3L

0B3L
4B3L

0B2L

4B2L

0B1L

4B0L
4B1L

1B0L
1B1L
1B2L

4B3L

4B2L4B1L

4B0L

0B1L

0B4L

3B4L
3B3L
3B2L
3B1L

3B0L

0B3L

1B0L

1B2L
1B3L
1B4L

1B1L
0B2L

2B3L

2B0L
2B1L

Best time and energy

Worst time
and energy

Odroid
XU4

Synchronization
circuit

Power
meter

// This function is still multi-threaded
void syncFreeTask(Stream<Value> s, long keySize,
 Map<BigInteger, Value> privateMap) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update the map (private per thread)
 Value value = s.next();
 privateMap.put(key, value);
 }
}

1
2
3
4
5
6
7
8
9

10
11

(a)

(c)

(b)

(d)

8 Threads

35

45

55

65

75

85

7 8 9 10 11 12 13 14

En
er

gy
 (J

)

10

30

50

70

90

2 7 12 17 22

En
er

gy
 (J

)

1b0L

0b1L1b1L2b0L
1b2L
0b2L

4b1L

3b2L
3b3L
4b2L
4b3L

0b3L
1b3L
2b1L

0b4L

2b2L

1b4L
3b1L
4b0L

3b0L

2b3L

2b0L

3b0L

1b0L
0b3L 0b2L

0b1L

0b4L

1b1L
3b2L
3b1L4b0L

4b4L
4b1L

4b2L

4b3L 3b4L
3b3L

2b1L

2b3L
2b3L
1b4L
1b3L
1b1L

 (b)

8 Threads

0 1 2 3 4 5

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0 2 4 6 8 10 12

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0
6

10
16
20

0
6

10
16
20

0 2 4 6 8 10 12

0 1 2 3 4 5

 P
ow

er
 (W

)
 P

ow
er

 (W
)

Time (s)

Time (s)

Odroid
XU4

Power
MeterSynchronization

Circuit

(b)

8 Threads

(c) (d)

En
er

gy
 (J

)

10

30

50

70

90

35
45
55

65

85

75

2 7 12 17 22 7 9 11 1312108 14
Time (s)

2b4L

3b4L

4b4L 1b2L

(a)

Time (s)

Fig. 4. (a) The energy measurement apparatus adopted in this paper. (b) Power charts for configuration

4b4L with synchronization-free inputs (top) and synchronization-heavy inputs (bo�om). (c) Time vs energy

constellation for the synchronization-free input set. (d) The constellation for the synchronization-heavy input

set. Big cores run at 2.0GHz and LITTLE cores run at 1.5GHz. (Taken from da Silva et al. (2020))

Example 2.6 shows how changes in inputs modify the disposition of hardware con�gurations in

the constellations. �e best energy and time con�guration in the CPU-heavy se�ing, 4b4L, is one

of the worst con�gurations in the synchronization-heavy se�ing. Such dramatic changes make

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Ribeiro, et al.

it very di�cult for a completely static approach to �nd energy-e�cient hardware con�gurations

for program parts. �e size and type of program inputs are only known at runtime. To handle the

lack of information at compile time, existing prior work (David et al. 2014; Nishtala et al. 2017;

Petrucci et al. 2015) resorts to online monitoring; however, this may pose a potential overhead on

the system as the number of programs and hardware con�guration increase.

3 MULTIVARIATE LINEAR REGRESSION OF PROGRAM INPUTS
We apply statistical regression on the arguments of a function to determine the ideal hardware

con�gurations for di�erent inputs of that function. �e pipeline in Figure 5 summarizes how code

is modi�ed in order to implement this idea. To ease our presentation, we shall be using source

code in our examples, as seen in Figure 5. However, our solution works at the Java bytecode level

and our interventions happen within the compiler –more precisely in the program’s intermediate

representation. Our techniques could have been applied directly onto Java sources or even onto

a di�erent programming language. Nevertheless, working at the bytecode level lets us optimize

programs wri�en in di�erent languages that run on the Java Virtual Machine. In Section 4 we shall

validate our techniques using Java and Scala benchmarks.

3.1 Multiple Linear Regression
�e key ingredient of our work is the application of multivariate regression onto the arguments

of functions. Linear regression empowers a prediction model that matches function parameters

with resource-e�cient hardware con�gurations. We extend our regression model to a multivariate

system, as the output is a vector (of ideal con�gurations). In this model, we de�ne a number of

dependent variables, grouped into a matrix C , plus a number of independent variables, grouped

into a matrix A. �e goal of the regression model is to determine a matrix Θ that approximates

the product C = σ (AΘ). In this case, σ is the so�max function, applied on the rows of the matrix

product AΘ. If Z is a 1 × n vector, e.g., a line of AΘ, then σ (Z) is also an 1 × n vector, whose jth

element is de�ned as: σ (Z)j = eZ j /
∑n

1
eZk . �e so�max function receives a vector of real numbers,

and produces a vector of the same size normalized over a probability distribution. Every σ (Z)j is a

number between 0.0 and 1.0, and the sum of all the elements within σ (Z) is 1.0.

Example 3.1. Figure 6 presents a formula for regression involving a function f that has three

formal parameters. We assume a universe of �ve valid con�gurations (0b1L, 1b0L, 1b1L, 2b0L and

2b1L). �e frequency level is immaterial for this example: big and LITTLE cores run at a certain

�xed frequency, which is not necessarily the same for the two clusters. In this example we have a

training set containing four samples, each one representing a di�erent invocation of function f ,

ideally with di�erent actual arguments.

�ematrixA of independent variables. As Example 3.1 illustrates, the matrixA encodes known

values of function arguments. �ese values are called the training set of our regression. If we are

analyzing a function with n arguments, and our training set containsm function calls, then A is a

matrix withm rows and n+1 columns. �e extra column is the all-ones vector 1
m

, which represents

intercepts – constants that allow us to handle a scenario in which the training set contains only

null values. �is all-ones column is the �rst column of matrix A in Figure 6.

Example 3.2. Figure 7 shows how ten di�erent samples of function Task, from Fig. 1, are organized

into a matrix A of independent variables.

�ematrix C of dependent variables. C represents the ideal hardware con�guration for each

input in the training set. If we admit k valid con�gurations, and our training set has m samples,

thenC is anm × k matrix. Each line ofC is a unitary vector ei , which has all the components set to

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:9

void task(Stream<Value> s, long keySize) {
 Bundle b = new Bundle(0xA33F0251);
 b.addConfig(Env.getCurrentConfig());
 b.addVar((double)s.size());
 b.addVar((double)keySize);
 b.addVar((double)Thread.activeCount());
 b.startTimer();
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 b.endTimer();
}

Soot
add profiling
instrumentation

.jar/.class
instrumented
for training Bash+Java

Driver (java)
I/O hooks

List of
inputs

Training result:
(inputs, configs)

Python
Regression
Analysis

Soot
add prediction
instrumentation

.jar/.class
instrumented
for production

Regression
Coefficients

(matrix !)

@AdaptiveMethod
@HiddenInput (expr=“Thread.activeCount()”)
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

void task(Stream<Value> s, long keySize) {
 …
 config = // predicted configuration for
 // (s.size(), keySize, Thread.activeCount());
 Regression.changeConfig(config);
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 // Restore original configuration (See Fig.14)
}

Annotated
.jar/.class

Annotated
.java/.kt

Javac/Kotlinc
Pre-process
annotations

Fig. 5. The execution pipeline of Jinn-C, as shown in our previous work (da Silva et al. 2020).

zero, except its ith index, which is set to one. If Cji = 1, then i is the best con�guration for input j.
�e next example illustrates these notions with actual data.

Example 3.3. Figure 8 reuses the ten samples seen in Example 3.2 to build the matrix of dependent

variables. �is matrix has one line per sample, and one column per con�guration of interest. �is

example considers only 10 out of the 4,654 possible con�gurations of the Odroid XU4 board.

�is need for bounding the search space might prevent us from discovering good optimization

opportunities; however, it ensures that our methodology is practical. Section 4 discusses the criteria

used to build the search space of allowed con�gurations.

Finding the parameter matrix Θ. �e problem of constructing a predictor based on multivariate

linear regression consists in �nding a matrix Θ that maximizes correct predictions on the training

set. �e underlying assumption is that if Θ approximates the behavior of the training set, then it is

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Ribeiro, et al.

!00 !01 !02 !03 !04
!10 !11 !12 !13 !14
!20 !21 !22 !23 !24
!30 !31 !32 !33 !34

0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1

0b
1L

1b
0L

1b
1L

2b
0L

2b
1L

1 "01 "02 "03
1 "11 "12 "13
1 "21 "22 "23
1 "31 "32 "33

training inputs

function arguments

×#=

Best(f("01, "02, "03)): 1b0L

Best(f("11, "12, "13)): 0b1L

Best(f("21, "22, "23)): 2b1L

Best(f("31, "32, "33)): 2b1L

C A ϴ

Fig. 6. Formula to train a 3-ary function f (α0,α1,α2). The goal of multivariate linear regression is to find the

coe�icients Θ that approximate the product C = σ (AΘ). Training set contains four samples.

1 4 10 100,000

1 4 100 1,000

1 4 10,000 100

1 8 100 100

1 8 1,000 10,000

1 8 10,000 10

1 16 1 10,000

1 16 10 1,000

1 16 100 10

1 16 10,000 100,000

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

Threads
s.siz

e()
keyS

ize
intercepts

1b0L

4b0L

4b2L

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L m
atrix A

 w
ith training inputs

Fig. 7. Training set for the Task method (Fig. 1). The table on the right is matrix A of independent variables

(taken from da Silva et al. (2020)).

likely to yield good results on the test set. �ere exist e�cient techniques to �nd Θ –gradient descent
being the best well-known (Cauchy 1847). Our model is based on multivariate linear regression;

thus, searches happen over a linear space. By a linear search space, we mean that, for each element

(i, j) inC , we have that: Ci j = Θ0j + αi1Θ1j + . . . + αimΘmj . In other words, non-linear expressions

such as αipαiq do not contribute to the value ofCi j . Because our model involves only searches over

a linear space, gradient descent converges to a global optimum (Shi 2004).

Example 3.4. Figure 9 shows a possible matrix Θ that gradient descent �nds for the Task function,

when given the training set seen in Figures 7 and 8. Once we apply the so�max function onto

the product AΘ we obtain a predicted matrix C ′, which approximates the target matrix C , e.g.,

C ′ = σ (AΘ). Each line of C ′ adds up to
1

1.00. �e largest value in each line i of C ′ determines the

ideal con�guration for the input set Ai . �e matrix Θ seen in Figure 9 led us into aC ′ that correctly

matches the target C in all but two inputs. Some misses are expected. If we resort to more complex

regression models, for instance, with non-linear components, then we might �nd a Θ that correctly

1
We are using only two decimal digits; hence, rounding errors prevent us from obtaining 1.00 in every line.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:11

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

1b0L

4b0L

4b2L

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

m
atrix C

 w
ith ideal configurations

1b0L 4b0L 4b2L 4b4L
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Fig. 8. Matrix of independent variables built for ten di�erent invocations of function Task in Figure 1 (taken

from da Silva et al. (2020)).

predicts every row of C . However, this matrix, which �ts too well the training set, might not yield

good predictions on unseen inputs.

1b
4L

4b
0L

4b
2L

4b
4L

!=

Goal matrix C Matrix A

Matrix ϴ

1b
4L

4b
0L

4b
2L

4b
4L

Predicted matrix C’

×

✔

✘

✔

✔

✔

✔

✔

✔

✘

✔

1.00 0.00 0.00 0.00

0.00 0.67 0.01 0.33

0.00 0.00 0.22 0.78

0.00 0.57 0.30 0.13

0.00 0.06 0.00 0.94

0.00 0.00 0.39 0.61

1.00 0.00 0.00 0.00

0.01 0.89 0.01 0.09

0.00 0.59 0.37 0.05

0.00 0.00 0.00 1.00

-0.0125 0.0114 0.0006 -0.6481

-0.1964 0.0472 0.0166 -0.0759

-0.1763 -0.0008 0.0000 0.0002

0.0010 -0.0003 -0.0050 0.0000

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Fig. 9. The result of multivariate linear regression produced by the training set seen in Examples 3.2 and 3.3

(taken from da Silva et al. (2020)).

Using Θ to carry out predictions. �e single output of regression is the matrix Θ. Once we �nd

a suitable Θ, we can use it to predict the ideal con�guration for inputs that we have not observed

during training. To this e�ect, as we shall be�er explain in Section 3.3, the constants in Θ are

hardcoded into the binary text that we generate for the function f under analysis. If f is invoked

with a set of inputs Ai , then the expression σ (AiΘ) is computed on-the-�y. �e result of this

evaluation determines the active con�guration.

Example 3.5. Figure 10 uses the matrix Θ found in Figure 9 to guess the best con�guration

for four unseen input sets. �ese inputs appear as dark spheres in Figure 10. In this example, Θ

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Ribeiro, et al.

correctly predicts the ideal con�guration for three out of four samples. In one case, the last input in

Figure 10, we wrongly predict the best con�guration as 4b2L, whereas empirical evidence suggests

that it should be 4b4L.

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

1b4L 4b0L

4b4L

1b4L

1b0L

4b0L

4b2L

1.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

0.01 0.68 0.26 0.05

0.00 0.00 0.57 0.43

✔

✘

✔

✔

1b
4L

4b
0L

4b
2L

4b
4L

Unseen inputs Predictions

1 4 1 10000

1 8 10 1E+05

1 16 1 100

1 16 10000 10

Fig. 10. The matrix Θ (see Figure 9) used to predict ideal configurations for unseen inputs. Light-grey points

form the training set. Inputs in the test set are dark-grey. (taken from da Silva et al. (2020))

3.2 Engineering the Training Phase
Users of Jinn-C specify which methods must be optimized. For each one of these methods, Jinn-C

singles out its inputs, and instrument them to produce regression data. Are considered inputs: the

formal parameters of methods, the global variables used within these methods and the number of

active threads. Regression data consists of the size of these inputs. �e technique used to obtain

these sizes depends on the type of input. Currently, we use the following heuristics:

Primitive types: the size of a primitive type is its own value.

Wrappers: types such as Integer or Double, which work as wrappers of primitive types, give us a

size through their value() methods, e.g., intValue() for Integer.

Arrays and Strings: we derive the size of such types via the length property.

Collections: we derive the size of collections by invoking their size() method.

Other classes: we search within the declaration of the type, or in any of its super-types, for a

method called size(); otherwise, we search for a property called length. If such names are

not to be found, an error ensues.

Example 3.6. Figure 11 shows two instrumented programs. Pro�ling code is inserted in the

programs’ intermediate representation –source code is used only for readability. Instrumentation is

performed by a singleton object Instrumenter, which stores “bundles” of data. Each bundle contains

an identi�er, a hardware con�guration, the independent variables of the adaptive method, and the

runtime for those variables. Identi�ers map methods to bundles. Multiple invocations of the same

method will produce one bundle per call.

3.2.1 Profiling, Logging and Training. Currently, we use a pro�ling infrastructure wri�en as

a combination of Java code and bash scripts. �e part implemented in Java consists of a service

that runs the program that we want to optimize in a controlled environment. �is driver has two

responsibilities: warming up the target program and changing hardware con�gurations before

every pro�ling experiment.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:13

void visit(final int NT) throws ... {
 Bundle b = new Bundle(0xFF4AC08D);
 b.addConfig(getCurrentConfig());
 b.addInt(visited.length); // array
 b.addInt(graph.size()); // class has size()
 b.addInt(NT); // primitive type
 Instrumenter.save(b);
 b.startTime();
 Vector<Visitor> bots = new Vector<Visitor>(NT);
 for (int i = 0; i < NT; i++) {
 bots.add(new Visitor(graph, i));
 }
 for (Visitor v : bots) { v.start(); }
 for (Visitor v : bots) { v.join(); }
 b.stopTime();
}

void count(final int START, final int END) {
 Bundle b = new Bundle(0xFF4AC08E);
 b.addConfig(getCurrentConfig());
 b.addInt(START); // primitive type
 b.addInt(END); // primitive type
 b.addInt(forkJoinPool.getActiveThreadCount());
 Instrumenter.save(b);
 b.startTime();
 for (int j = START; j <= END; j++) {
 SingleCounter aux = counters[elements[j]];
 synchronized (aux) {
 aux.value += 1;
 }
 }
 b.stopTime();
}

Fig. 11. Instrumented version of two programs. Grey code is from the original method. (Le�) Breadth-first

search. (Right) Sorting application. (taken from da Silva et al. (2020))

Jinn-C receives an annotated program P , a set of di�erent inputs I = {ι1, ι2, . . . , ιm} of P , and

a set of acceptable hardware con�gurations H = {h1,h2, . . . ,hn}. It will test the program a pre-

determined number of times for each pair (h, ι),h ∈ H , ι ∈ I . �e best con�guration for each input

ι is chosen among the most frequent winner. �e objective function that determines the winner

is con�gurable. Currently, we consider time, energy consumption and energy-delay product. In

case of ties, we choose the con�guration with the least resources. Resources are ordered according

to the number of big cores, the number of LITTLE cores, the frequency of the big cores and the

frequency of the LITTLE cores, in this sequence.

1.0

1.2

1.4

1.6

1.8

1.0

1.5

2.0

2.5

0.00

0.05

0.10

0.15

0.20

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

4 10 100.000 4 100 1.000 4 10.000 100 8 1.000 10.000

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Fig. 12. Training output produced by the driver on a few inputs seen in Figure 7. Y-axis is runtime.

Example 3.7. Figure 12 shows a typical output produced during Jinn-C’s training phase, con-

sidering runtime as the objective function. In this experiment, each pair formed by a hardware

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Ribeiro, et al.

con�guration and an input is sampled ten times. Vectors at the bo�om of Figure 12 are the inputs

passed to function Task (Fig. 1). �ese vectors are the independent variables in the regression

model. Vectors at the top of Figure 12 are the best con�gurations. �ese vectors will give us the

dependent variables used in the regression.

Complexity of the Training Phase. Training involves running the target program in every

valid hardware con�guration with every available input. �erefore, the asymptotic complexity of

this phase is determined by the number of valid hardware con�gurations, the number of input

sets available to run the program and the complexity of the program itself. In other words, the

instrumented program P will have to be pro�led |H | × |I | times; H being the set of valid hardware

con�gurations and I the set of available inputs. �e third column of Table 1 (Page 17) reports

training times observed when evaluating the benchmarks used in this paper. �e longest time was

225 minutes; the shortest 21 minutes. Section 4.1 provides more details about these costs.

3.3 Generation of Adaptive Code
�e product of training is a matrix Θ of �oating-point numbers. Θ is hardcoded into the production

code that we want to optimize. Such step happens in the phase labeled “add prediction instrumen-

tation” in Figure 5. �e instrumentation that we add into a function f of interest evaluates the

expression σ (AiΘ), where Ai is a 1 × n vector. �e size of Ai is one plus the number of inputs of

the target function. �e expression σ (AiΘ) yields a 1 × k vector of probabilities, whose elements

add up to 1.0, where k is the number of hardware con�gurations considered as targets. �e largest

element within σ (AiΘ) determines the next con�guration that will be used during the current

invocation of f . �erefore, the complexity of choosing a hardware con�guration is proportional to

the number of function arguments (n) times the number of valid hardware con�gurations (k). As

we shall discuss in Section 4, this time tends to be too short to be of practical consequence.

Example 3.8. Figure 13 shows the production version of our running example, the function

Task, originally seen in Figure 1. �e dashed box outlines the code that we add to Task to change

the current hardware con�guration. We show, on the right of the �gure, the key methods used

to change and restore the current hardware con�guration. �e matrix Θ seen in the production

version of function Task was found a�er training, as Example 3.4 explains.

4 EVALUATION
�is section demonstrates the e�ectiveness of our technique when optimizing bytecodes that run

on top of the Java Virtual Machine. To this end, we shall provide answers to the following research

questions:

RQ1 – Training: what is the training time required by Jinn-C, and how does it compare to

CHOAMP’s?

RQ2 – Speed: what is the speed gain obtained by Jinn-Cwhen compared to competing techniques?

RQ3 – Energy: what is the energy improvement that Jinn-C delivers on top of existing techniques?

RQ4 – Convexity: is convexity a common property of the space formed by the mapping of

function arguments to ideal hardware con�gurations?

We compare Jinn-C with two approaches: Sreelatha et al. (Sreelatha et al. 2018)’s CHOAMP,

and ARM’s GTS (Je� 2013). GTS, short for Global Task Scheduling, is Linux’ heterogeneity-aware

scheduler in our big.LITTLE system. Yet, before delving into numbers, we introduce the runtime

environment we have used to evaluate Jinn-C.

�e Hardware. Experiments were performed in an Odroid XU4 development board. �is device

is powered by a Samsung Exynos 5422 SoC with four ARM Cortex A15 cores, running at up to

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:15

// Returns the product A×θ
double[] mul(double[] A, double[][] θ);

// Applies the σ function onto d
double[] softmax(double[] d);

// Returns the index that holds the largest
// value within vector pred
int indexLargestElement(double[] pred);

// Get the i-th hardware configuration
Config getConfiguration(int i);

// Get the configuration currently in use
Config getCurrentConfiguration();

// Change the configuration currently in use
// to the new configuration g
void changeConfiguration(Config g);

void task(Stream<Value> s, long keySize) {
 double Theta[][] = {{-0.0125, 0.0114, 0.0006, -0.6481},
 {-0.1964, 0.0472, 0.0166, -0.0759},
 {-0.1763, -0.0008, 0.0000, 0.0002},
 {0.0010, -0.0003, -0.0050, 0.0000}};
 double A[] = {1.0, s.size(), keySize, Thread.activeCount()};
 double P[] = Regression.softmax(Regression.mul(A, Theta));
 int i = indexLargestElement(P);
 Config originalConfig = Regression.getCurrentConfiguration();
 Config config = Regression.getConfiguration(i);
 Regression.changeConfiguration(config);
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 changeConfiguration(originalConfig);
}

Fig. 13. The production version of function Task, first seen in Figure 1.

2.0GHz, and four Cortex A7 cores running at up to 1.5GHz. �e board features 2GB of LPDDR3

RAM. To measure the energy consumed exclusively by speci�c functions, we send signals to the

synchronization circuit seen in Figure 4-a through one of the board’s GPIO pin. Code to emit the

signal is inserted into Java bytecodes via Soot, immediately before the invocation of a function of

interest, and immediately a�er that function returns. We use the energy measurement framework

proposed by Bessa et al. (Bessa et al. 2017). Power is measured by a National Instruments DAQ USB

6009 device, at a rate of 12,000 samples per second.

�e So�ware Stack. We use Oracle’s OpenJDK/JRE 11 LTS and Soot 3.2.0 to process bytecodes. No

modi�cations have been made in the Java Virtual Machine –transformations performed by either

Jinn-C or CHOAMP happen at the bytecode level, and are carried out via Soot. To mitigate the

e�ect of JIT compilation in the execution time of benchmarks, each application has a warm-up stage

before actual execution (details in Table 1). We have used Python 3.4 and Scikit Learn (Pedregosa

et al. 2011) to implement regression. Python was also used, in addition to GNU Bash 4.4.19, to

generate the suite of micro-benchmarks used to train CHOAMP. �e Operating System in the

Odroid XU4 used in our experiments is the GNU/Linux Ubuntu 18.04 LTS with kernel 4.17.

�e Benchmark Suite. �is paper uses the 18 benchmarks shown in Table 1. Eight of them were

taken from Acar et al. (Acar et al. 2018), who had selected nine programs from Problem Based
Benchmark Suite (PBBS) (Shun et al. 2012) to evaluate concurrency models. �e version of PBBS

used by Acar et al. (Acar et al. 2018) was implemented in C/C++, so we had to re-implement all the

benchmarks in Java. We removed DelaunayTriangulation from our collection, because we could

not ensure that its parallel implementation always produces the same output. �e triangulation

varies depending on how threads are scheduled; hence, the output of di�erent versions of this

benchmark might not be equal.

We chose six programs from the Renaissance benchmark collection, which was recently released

by Prokopec et al. (Prokopec et al. 2019). Renaissance contains 21 benchmarks. All the programs in

that collection come with only one set of input values. We chose only six benchmarks because we

had to understand and augment each program with more inputs. We have also added veri�cation

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Ribeiro, et al.

code to these benchmarks to check execution correctness. �e six benchmarks that we chose

are implemented in Scala. Our criterion when picking up programs was simplicity: we selected

benchmarks that were easy to modify. We have opted for Scala programs to demonstrate that

Jinn-C can deal well with languages other than Java.

In addition to PBBS and Renaissance, Jinn-C is distributed with four typical parallel algorithms.

CollinearPoints and randomNumComp were taken from public repositories; HashSync, was

adapted from Butcher’s book; and insertAndAdd was adapted from Zhang et al. (2020)’s Figure 3.

Table 1 presents an overview of the benchmarks, as well as basic characteristics of their code.

We recall an observation already made by Prokopec et al., when introducing the Renaissance

Benchmark Suite: the source code of the benchmarks is relatively small; however, they cause

the invocation of hundreds of di�erent methods, potentially millions of times. Many of these

methods belong to the Java Standard Library (e.g., java.util.*, java.lang.System, etc). �ree

of the Renaissance programs: textscAls, ChiSqare and DecTree also rely heavily on Apache’s

spark engine. �e two last columns of Table 1 report the static and dynamic count of methods

invoked by each benchmark. To derive these numbers, we use Oracle’s VisualVM pro�ler on the

default inputs of each benchmark. Notice that numbers produced through this pro�ling technique

cannot be exactly reproduced: small variations are expected due to internal operations of the Java

Virtual Machine, concerning, for instance, the activation of the garbage collector or the just-in-time

compiler. Example 4.1 clari�es this observation for SpanningForest. �e choice of benchmark in

this case is arbitrary, because the other programs that we evaluate show similar behavior.

Example 4.1. �e benchmark called SpanningForest is part of the Problem Based Benchmark

Suite. It computes a series of minimum spanning trees –one per connected component– of

undirected graphs. �is benchmark’s source code contains 410 lines of code, grouped into 31

methods organized in �ve java �les. We adapt the method called “benchmark”, which receives

a list of edges and an integer denoting the number of threads that will be created to process

these edges. By default, this benchmark receives a graph with 120 nodes and 1,000 edges. With

these default inputs, “benchmark” causes the invocation of 1,905 di�erent methods. Out of this

lot, 1,874 are either part of the Java Standard Library (in classes like java.util.ArrayList or

java.util.concurrent.Executors), or are part of the Java Virtual Machine. In a single run of

this benchmark with default inputs, these methods were invoked 106,462 times. �ese numbers,

1,874 and 106,462, might vary due to internal operations of the JVM.

Available Inputs. Each benchmark comes with a default input set. We have augmented every one

of them with 13 additional inputs. We tried, as best as our knowledge of the benchmark allowed it,

to maximize the diversity of inputs, having data of di�erent sizes. Ten of these inputs, randomly

chosen, are used for training. When evaluating the model trained for a benchmark, we use four

unseen and randomly chosen inputs. Sections 4.2 and 4.3 further discuss the impact of di�erent

inputs in the execution time and energy consumption of the applications. �e separation of inputs

into training and evaluation sets is random.

Choice of regression target. We optimize one method per benchmark: the routine invoked by

the benchmark’s main function. �is approach is equivalent to doing regression on inputs of the

whole program. In other words, in practice, we are tuning the entire program; not a single method

of it. As previously mentioned, each of these adapted functions will, during a normal execution of

the benchmark, cause the invocation of many methods external to the benchmark’s source code.

All these activations will run in the hardware con�guration determined by the regression model.

To give the reader some perspective on this approach, Table 1 contains in the last two columns the

number of di�erent functions that are a�ected by the change in hardware con�guration (stCalls),
plus the number of times that these functions are dynamically invoked (dyCalls).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:17

Source Benchmark TTime Lang. LoC W stCalls dyCalls

Jinn-C collinearPoints 32m1 J 565 3 576 3,724

Jinn-C hashSync 94m7s J 73 3 649 3,838

Jinn-C insertAndAdd 47m30s J 130 4 645 47,978

Jinn-C randomNumComp 26m7s J 89 6 631 3,399

(Shun et al. 2012) bfs 42m33s J 353 4 736 13,713,590

(Shun et al. 2012) radixSort 20m51s J 501 4 2,045 13,821

(Shun et al. 2012) sampleSort 26m17s J 414 3 625 3,173

(Shun et al. 2012) su�xArray 30m12s J 316 3 288 162,976,109

(Shun et al. 2012) removeDuplicates 30m31s J 174 4 1,204 12,341

(Shun et al. 2012) convexHull 56m30s J 499 5 246 28,488,450

(Shun et al. 2012) nearestNeighbors 30m29s J 715 3 1,335 3,664,153

(Shun et al. 2012) spanningForest 21m40s J 410 4 1,905 106,462

(Prokopec et al. 2019) als 80m12s S/J 97 1 165,108 2,123,294

(Prokopec et al. 2019) philosophers 21m15s S/J 146 1 10,446 96,129

(Prokopec et al. 2019) futureGenetic 26m8s S/J 115 1 909 8,426

(Prokopec et al. 2019) �nagleHTTP 225m10s S/J 119 1 785 1,554

(Prokopec et al. 2019) chiSquare 27m15s S/J 101 1 185,202 3,523,326

(Prokopec et al. 2019) decTree 64m22s S/J 129 1 836,283 5,717,648

Table 1. Benchmarks used for evaluating Jinn-C. Column TTime shows time to train each benchmark, which

will be further explained in Section 4.1. Lang. contains the source language of benchmarks: J stands for

Java and S for Scala. Column W shows the number of warm-up executions performed by each application.

StCalls approximates the number of methods invoked by a benchmark running with default inputs; dyCalls
approximates the number of times that those functions are invoked. These numbers were produced with

Oracle’s VisualVM profiler; hence, small variations are to be expected. collinearPoints finds three points

on the same line; hashSync inserts in a concurrent table; randomNumComp has several long sequences of

branches that are hard to predict; and insertAndAdd implements parallel operations on a Database.

On the Choice of Hardware Con�gurations. When training Jinn-C and CHOAMP, we follow

the methodology proposed by Sreelatha et al (Sreelatha et al. 2018). �us, we consider a universe of

six con�gurations: 4b4L (4 big and 4 LITTLE cores), 4b0L, 0b4L, 2b2L, 2b0L and 0b2L. LITTLE cores

run at maximum frequency: 1.5GHz. Big cores are statically set to run at either 1.6GHz or 1.8GHz

(instead of using the maximum 2.0GHz frequency level) due to known thermal issues (da Silva et al.

2019, Sec-4.2). GTS is allowed to choose among any possible hardware con�guration involving

big and LITTLE cores, and the di�erent frequency levels available in the hardware. For the

sake of reproducibility and to be�er understand the impacts of our technique, we have disabled

Dynamic Voltage and Frequency Scaling (DVFS) when using either Jinn-C or CHOAMP, but not

GTS. Regardless of the methodology used to choose hardware con�gurations, thread scheduling

uses Linux’ default Heterogeneous Multi-Processor (HMP) scheduler (Rezki and Wool 2015), which is

integrated into the kernel’s Completely Fair Scheduler (CFS). �us, threads might switch between

big and LITTLE cores. �e higher the CPU utilization of a thread, the higher the likelihood that it

will run on a big core.

On the Implementation of CHOAMP. CHOAMP is a system that, di�erent from our approach,

relies on the syntax of the program text –and on its implied semantics– to predict ideal hardware

con�gurations. CHOAMP represents this text of code as a set of characteristics that are useful for

training and prediction. Such characteristics, also called prime features by its authors, are split into

two di�erent groups: language dependent and independent. Language independent features, such

as number of branches or memory accesses, are easier to identify and port, as they tend to appear in

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Ribeiro, et al.

Prime Feature Lang.Dep. OpenMP Java VM

Branch operations No - -

Memory operations No - -

Atomic operations Yes omp atomic atomic

Barriers Yes omp barrier CyclicBarrier, Phaser

Critical Sections Yes omp critical Synchronized

False Sharing No - -

Flush operations Yes omp �ush not used

Table 2. Prime features and their correspondent Java VM implementation.

most languages. On the other hand, features that depend on a speci�c programming language need

to be adapted when porting the technique to new environments. CHOAMP was initially designed

to work with OpenMP applications implemented in C; therefore, some of the prime features used

by Sreelatha et al. depend on OpenMP constructs. Our re-implementation of CHOAMP targets

Java applications running on Hotspot; thus, some of its features had to be adapted to our needs.

Table 2 presents the list of program characteristics originally used by CHOAMP for OpenMP and

the new version of them, adapted to the JVM.

Most language dependent features �nd correspondents in the Java standard library, as is the case

of the omp atomic pragma, which we derived from classes in the package java.util.concurrent.
atomic. For instance, the occurrence of method incrementAndGet(), from the AtomicInteger
class, would add an “Atomic Operation” to the feature vector of the function where incrementAnd
Get() is invoked. However, some features like �ush operations, proposed by Sreelatha et al. (Sree-

latha et al. 2018), were not reused in our implementation, due to a lack of correspondents.

Training and Tuning Following Sreelatha et al., we have trained the probabilistic model of

CHOAMP by running it on a set of generic micro-benchmarks. As the original training set was

wri�en in C and OpenMP, we had to create a new training set that suits Java. �e micro-benchmarks

we used were directly based on the scripts made public by Sreelatha et al. �ese scripts generate

hundreds of micro-benchmarks. �e user adjusts the intensity of each prime feature through

command line inputs. We used the originals generator scripts at h�ps://bitbucket.org/jkrishnavs/

openmp-eigenbench, adjusting the code to Java. We also used the same range and intensity of

features as used in the original work of CHOAMP. Sreelatha et al. have proposed three di�erent

regression models for CHOAMP. We have experimented with all of them, and end up choosing the

linear �t, because, in our setup, it yields be�er results than the �adratic and Gaussian predictors.

�is result in on par with the �ndings of Sreelatha et al.

4.1 RQ1: Training
Jinn-C and CHOAMP require training to adjust the parameters of the regression models. While this

cost is paid once by CHOAMP, when performing the training over a set of generic micro-benchmarks,

Jinn-C pays this cost for each application that it optimizes. CHOAMP uses micro-benchmarks for

training; Jinn-C uses the application itself. �e training time of CHOAMP is computed over a set of

285 micro-benchmarks over all the hardware con�gurations mentioned in our experimental setup.

In our hardware, we took about 780 minutes to train our implementation of CHOAMP.

To train Jinn-C, we follow the methodology described in Section 3.2.1. Jinn-C’s training time

depends on the target application’s run time, and on the number of available inputs. Table 1 shows

the training time of each benchmark. Using ten inputs and ten allowed hardware states (clock

speed × hardware con�gurations) per benchmark, we took 903 minutes to train the 18 programs

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://bitbucket. org/jkrishnavs/openmp-eigenbench
https://bitbucket. org/jkrishnavs/openmp-eigenbench

Mapping in Parallel Heterogenous Architectures 1:19

used in this section. �e longest time, three hours and 45 minutes was spent in Renaissance’s

finagleHTTP. PBBS’s radixSort gave us the fastest training time: 20 minutes and 51 seconds.

Once the benchmark is trained, no further pre-processing is required. �e product of training, the

code earlier seen in Figure 13, is embedded directly into a program’s bytecode, and runs in constant

time. Training’s overhead bears no impact once the optimized code runs. �e only overhead that is

imposed onto optimized programs comes from the matrix multiplication that happens once a hot

function is invoked, as we have discussed in Section 3.3. As we will see in Section 4.2, this runtime

overhead is too low to be reliably measured.

4.2 RQ2: Speed
Figure 14 summarizes the comparison of the three di�erent schedulers, when the objective function

that Jinn-C and CHOAMP minimize is the execution time of target applications. We have tested

each benchmark with four input sets, adopting a signi�cance level α = 0.05; i.e., a con�dence level

of 95%. So, if the results reported by, for instance, Jinn-C and CHOAMP cannot be distinguished

with a con�dence of more than 95%, then we consider them as originating from the same population.

�us, we use Student’s Test to measure the p-value of two populations, and consider signi�cant

results with a p-value less than 0.05. White boxes with le�ers in Figure 14 identify the technique

which achieved the best result for a combination of benchmark and input. J stands for Jinn-C, C

for CHOAMP and G for GTS; X means that the winning systems have produced results statistically

similar (p-value greater than 0.05). Above each input set, we show the con�guration that Jinn-C

chose for that input. �e grey box, at the right of the name of each benchmark, is the con�guration

that CHOAMP chooses for that benchmark.

We notice that in 26 cases, out of 72 combinations of [benchmarks × inputs], Jinn-C achieved

be�er results when compared to the other techniques. In other 42 cases, Jinn-C was at least as

fast as GTS or CHOAMP. CHOAMP, in turn, accounted for 3 best results, and GTS for only one, in

hashSync’s In4. �ese numbers show that Jinn-C usually outperforms the two other techniques

considered in this paper; however, Jinn-C’s performance still depends on a good choice of inputs

for training. Example 4.2 highlights this fact. Further discussion about the importance of �nding

good training sets shall appear in Example 4.6 (Page 27).

Example 4.2. Jinn-C performed rather poorly in collinearPoints, due to an unfortunate choice

of training inputs. Indeed, the 10 training inputs chosen when optimizing collinearPoints �nd

in 4b4L their best con�guration. However, coincidentally, three of the test inputs ask for 4b0L. It

su�ces to switch one of the test and training inputs to put Jinn-C on pair with the other schedulers.

�is experiment shows that con�gurations impact in non-trivial ways the behavior of applications.

All the winning con�gurations, regardless of the technique, converged to the frequency of 1.8GHz

whenever at least one big core was present. �e most recurring con�gurations were 4b4L (16x for

CHOAMP and 37x for Jinn-C), 0b4L (2x/11x), 4b0L (17x for Jinn-C only), 2b0L (4x for Jinn-C only),

and 0b2L (2x for Jinn-C only). Example 4.3 further emphasizes the importance of the hardware

con�guration in the behavior of a program.

Example 4.3. Considering chiSqare’s last input (workers = 2, SIZE = 1, 023, 464), Jinn-C

prediction of the con�guration 4b0L led to a mean run time of 8.18 seconds, while CHOAMP

decision led to 8.47 and GTS to 9.00. For its second input (workers = 4, SIZE = 2, 250, 467), we

observed Jinn-C prediction (4b0L) leading to mean run time of 17.00 seconds, CHOAMP to 18.70

and GTS to 17.76. In every case, p-values comparing these populations were less than 0.008.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Ribeiro, et al.

●
●

●

●

●

●

●

2

3

4

5

In1 In2 In3 In4

collinearPoints

●

●

●●● ●

●

●●

●

●

●
●

0

2

4

6

8

In1 In2 In3 In4

randomNumComp

●

●

0

1

2

3

4

5

In1 In2 In3 In4

hashSync

●

●●
● ●0

10

20

30

40

In1 In2 In3 In4

bfs

●

●

●
●

●

●

●

0.050

0.075

0.100

0.125

0.150

In1 In2 In3 In4

spaningForest

●● ●●0

10

20

30

In1 In2 In3 In4

insertAndAdd

●

●

●

●

●
●

1

2

In1 In2 In3 In4

nearestNeighbors
●

●

●

●●

●

●

●

●

0.4

0.8

1.2

1.6

In1 In2 In3 In4

convexHull

●

●

1.5

2.0

2.5

3.0

In1 In2 In3 In4

removeDuplicates

●

● ●●

●● ●1

2

In1 In2 In3 In4

suffixArray

●
●
● ●

●

● ●●● ● ●

0

5

10

15

In1 In2 In3 In4

sampleSort

● ●
●

●

●
0.2

0.4

0.6

In1 In2 In3 In4

radixSort

●●

●

●

10

20

30

In1 In2 In3 In4

philosophers
●

● ●

●

20

40

60

80

In1 In2 In3 In4

futureGenetic

●

●

●

●

1.0

1.5

2.0

2.5

In1 In2 In3 In4

finagleHttp

●

●
●

●

●

27.5

30.0

32.5

35.0

37.5

In1 In2 In3 In4

decTree

●

●

●

●

10

15

In1 In2 In3 In4

chiSquare

●

●

●

●20

40

60

80

In1 In2 In3 In4

als

JJJ

J

X

X

4b0L 4b0L 4b0L
4b4L
4b4L

X X

4b4L 4b4L

4b4L 4b4L 4b4L

0b4L
0b2L 0b2L 0b4L 4b4L

4b4L 4b4L
4b4L

4b4L
4b0L 4b4L 4b0L 4b4L

4b4L
0b4L 0b4L 0b4L 0b4L

4b4L
4b4L

XX

X X

X X

J

X X X

J X

X

X X

X

G

J

J J

J

CX

4b4L 4b0L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 4b4L 4b4L 4b0L 4b0L 4b0L 4b0L 4b4L 4b4L 4b4L 4b4L

4b4L 4b4L 4b4L 4b4L

4b4L 4b4L 4b4L

4b4L
4b0L 4b4L 4b4L 4b4L

4b4L
2b0L 4b0L 2b0L 4b0L

4b4L
4b4L 4b4L 4b4L 4b4L

0b4L
4b0L 4b0L 4b0L 4b0L

4b4L
4b0L 0b4L 0b4L 0b4L

4b4L
2b0L 2b0L 0b4L 0b4L

X

X

X X J

J

J J X X X C

X X X

X J

J J J J J

J

X

J

X X

XJ

J

C

X

J

XX

X

4b4L 4b4L 4b4L

J

XX

XX

Fig. 14. Execution time of benchmarks from Table 1. Y -axis shows time in seconds. X -axis shows di�erent

experiments; each experiment uses di�erent inputs. Boxplots are ordered by Jinn-C, CHOAMP and GTS.

4.3 RQ3: Energy
Figure 16 compares CHOAMP, GTS and Jinn-C regarding energy consumption. �e clock speed of

1.6GHz was the most common among all the schedulers, except for one input set of radixSort,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:21

when CHOAMP chose to use 1.8GHz. GTS can choose any possible frequency levels from 200MHz

to 1.8GHz in the big cluster and from 200MHz to 1.5GHz in the li�le one. �is �exibility may lead

to performance degradation because GTS increases frequency gradually, even in computation-

intensive programs. Even with several warm-up rounds, GTS might take an excessively long time

to achieve maximum frequency levels for some applications. �us, Jinn-C outperforms GTS mostly

due to its ability to choose high-performance hardware con�gurations, such as 4b4L at 1.6GHz,

immediately. GTS, in turn, needs a warm-up period to arrive at them.

Figure 16 shows that Jinn-C achieved the best results in 20 experiments (out of 72); GTS won in

2, and CHOAMP in 6. In 44 experiments there was no clear winner. �is di�culty to pinpoint a best

technique is due to the fact that we measure energy for the entire board. �erefore, peripherals

like the fan and the memory bus increase the variance of results. �is decision was no accident: we

believe that measuring energy for the entire boards provides a more realistic assessment of the

behavior of our techniques if adopted in production. CHOAMP has chosen the 0b4L con�guration

at 1.6GHz for almost all the samples in this evaluation. �is behavior is due to some features,

such as branching and memory operations, dominating the others in most of the functions that

constitute a benchmark. It is possible to improve this behavior by scaling the relative importance

of the features; however, this optimization is out of the scope of this work.

On the In�uence of Execution History. Execution history impacts the energy consumed by di�erent

programs. Take as an example the entry corresponding to hashSync in Figure 16. Although Jinn-C

and CHOAMP predicted the same con�guration for the second input set (In2), the former consumed

marginally more energy. �is behavior is even more surprising once we consider that Jinn-C’s

and CHOAMP’s code run within about the same time, as Figure 14 reveals. �e culprit of this

counter-intuitive result is the board state at the time measurement started. �e warm-up phase, in

this case, is responsible for giving Jinn-C’s and CHOAMP’s code di�erent starting states. In the

discussion that follows, we shall separate the execution of a benchmark into two parts: warm-up,

when the target routine is called a number of times to stabilize the Java Virtual Machine; and

measurement, when the behavior of the benchmark is actually gauged.

Hysteresis. Figure 15 shows the power pro�le of hashSync, including warm-up and measurement

phases. Invocations in the warm-up stage use di�erent inputs than in the measurement stage. As

a result, our technique predicted the con�guration 4b4L for the last warm-up invocation, which

is di�erent than 0b4L, the con�guration predicted at measurement. �e use of big cores during

warm-up increased the amount of energy consumed by the board in the measurement step, due to

a well-known phenomenon: the hysteresis of power dissipation.

�e mean power dissipated by Jinn-C’s version of hashSync in Figure 15(a) was 4.68W. CHOAMP’s

was 4.09W, as seen in Figure 15(b). Jinn-C’s program consumes more energy (9.47J vs 8.22J). How-

ever, if we �x the hardware con�guration in the warm-up phase of Jinn-C’s code, then the average

dissipation goes down to 3.95W. Figure 15(c) reports the power pro�le of this setup. �e only

di�erence between the executions of Jinn-C in Figures 15 (a) and (c) is the con�guration used in

the warm-up stage. �ere is no statistically signi�cant di�erence between the amount of energy

consumed by CHOAMP and Jinn-C when both warm-up with the same hardware con�guration.

�is behavior caused by di�erences between con�gurations chosen at warm-up and measurement

phases only a�ects Jinn-C. CHOAMP always chooses the same hardware con�guration per function,

and GTS increases frequency gradually. �e only further impact that this di�erence had in Jinn-C’s

behavior was observed in decTree and collinearPoints. In both cases, only for the last input set

(In4), and only when measuring running time (Fig. 14). �e need to change con�guration when

moving from warm-up to measurement has cost Jinn-C’s code some time. Nevertheless, when

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Ribeiro, et al.

1
2

3
4

5
6

0
1

2
3

4
5

6
0

2
4

6
0

8
10 Warm up

JINN-C
Predicted

4b4L

Measured run
JINN-C

Predicted
0b4L

Measured
runWarm up

(c)
Warm up

Fixed
Configuration

0b4L

Measured run
JINN-C

Predicted
0b4L

Energy = 9.477 J (mean of 10x) - P-value to (b) = 0.000

Energy = 8.224 J (mean of 10x)

Energy = 8.139 J (mean of 10x) - P-value to (b) = 0.362

iP
ow

er
 (W

)

Time (s)

Time (s)

Time (s)

iP
ow

er
 (W

)
iP

ow
er

 (W
)

(b)

(a)

43210

43210

43210

Fig. 15. Power consumption of hashSync with (a) Jinn-C, (b) CHOAMP, and (c) Jinn-C with fixed configuration

at warm-up. P-values below 0.05 indicate that executions of Jinn-C’s and CHOAMP’s code are statistically

di�erent. For this benchmark, CHOAMP (b) predicted 0b4L as the best configuration for the parallel kernel.

This configuration is used in all warm-up stages and in the measurement phase.

reporting the results in this paper, we have opted to let the hardware con�guration �uctuate during

warm-up, as this is the expected behavior of Jinn-C, once it is deployed in production.

4.4 RQ4: Convexity
A convex space is a region within a Euclidean Space whose intersection with any line results in a

continuous line segment. If the convex space can be described by a function, then said function is

also called convex. Convex functions are very important in classi�cation problems. Firstly, because

exploration methods based on derivatives, like gradient descent, converge to the optimal solution

when applied on them (Boyd and Vandenberghe 2004). Secondly, as we discuss in Section 4.4.2,

disjoint convex sets are linearly separable. �us, linear techniques, like the one employed in this

paper, tend to yield good results when used to classify such sets.

In our se�ing, the search space is a function that maps program inputs to hardware con�gu-

rations. �is function is discrete, because its image is a �nite set of hardware con�gurations. As

a consequence of convexity, if we �x all the program inputs and vary one of them, then every

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:23

●

●

●

●

●
●

●●

●●

●
●

●

20

30

40

In1 In2 In3 In4

collinearPoints

●●●
●●●

0

20

40

60

In1 In2 In3 In4

randomNumComp
●

●

●

●

●

●● ●

●

●
●
●

●

0

10

20

30

40

In1 In2 In3 In4

hashSync

●

●

0

100

200

In1 In2 In3 In4

bfs

●

●

●

●

●

●

●
●

0.6

0.9

1.2

1.5

In1 In2 In3 In4

spaningForest

●

●
●

●●

●

●

●0

50

100

150

200

In1 In2 In3 In4

insertAndAdd

●

●

●

●

●

●
●

●

●

●

10

20

30

In1 In2 In3 In4

nearestNeighbors

●

●
●

●

5

10

In1 In2 In3 In4

convexHull

●

●

●

●

●

●

10

15

20

25

30

In1 In2 In3 In4

removeDuplicates

●●

●

●

●

●●● ●

●

●

●

●

5

10

15

20

In1 In2 In3 In4

suffixArray

● ●

●

●

●

●
●●

●●
●●

0

50

100

In1 In2 In3 In4

sampleSort

● ● ●

●

●

●

●

●

●

2

4

6

8

In1 In2 In3 In4

radixSort

●●
● ●

●0

100

200

300

In1 In2 In3 In4

philosophers

●

●●

●
●

●
●

●●0

100

200

300

400

500

In1 In2 In3 In4

future−genetic

●

● ●

●

8

12

16

20

In1 In2 In3 In4

finagle−http

●

●

●

●

●
●

●●200

300

400

500

In1 In2 In3 In4

dec−tree

●

●●

●

●

●

●

●

●

75

100

125

150

In1 In2 In3 In4

chi−square

● ●

●

●●

●

● ●●

●

●

200

400

600

In1 In2 In3 In4

als

JJJ

X

X

4b4L 4b0L 4b0L
0b4L-1.8

4b4L

X

0b4L 0b4L

0b4L 0b4L 0b4L

0b4L
0b2L 0b2L 0b4L 2b0L

0b4L 0b4L
2b0L

0b4L
4b4L 0b4L 0b4L 4b4L

0b4L
0b4L 0b4L 0b4L 0b4L

0b4L
0b4L

X

X X

J X

C X

4b4L 0b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 4b4L 4b4L 4b0L 4b0L 2b0L 4b0L 2b2L 4b4L 2b2L 2b2L

4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 0b4L

0b4L
4b0L 4b4L 4b4L 4b4L

0b4L
4b0L 2b0L 4b0L 2b0L

0b4L
4b4L 4b4L 4b4L 4b4L

0b4L
4b0L 4b0L 4b0L 4b0L

0b4L
4b0L 0b4L 0b4L 0b4L

0b4L
2b0L 2b0L 0b4L 0b4L

X X X XC

X

X X C CX

X X

X

X

J X

4b4L 4b4L 4b4L

C X

J

G X

J J

J J

X X X

X G

X J J

J J J J

C X X X XX

J J X

X

X X J

J X X

X

X

X

X

X

Fig. 16. Energy consumed by the benchmarks in Table 1. Y -axis shows energy in Joules. X -axis shows di�erent

experiments. Boxplots are sorted as in Figure 14.

region covered by the same optimal con�guration is continuous. In other words, while varying

this single input monotonically, we will not leave a region r where a certain con�guration h is

the best, �nd a new region r ′ governed by a di�erent con�guration h′, only to �nd h again later,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Ribeiro, et al.

once we cross the boundary between r ′ and a third region r ′′. Notice that convexity is a tendency,

not a principle: it is possible to implement programs whose space of optimal con�gurations is not

convex, as Example 4.4 demonstrates.

Example 4.4. �e space formed by ideal hardware con�gurations associated with i in unlikely,

below, is non-convex:

void unlikely(int i) {
if (10 <= i && i <= 100) sync_intensive();
else comp_intensive();}

�e unlikely routine receives one input, namely, the integer i. If i is less than 10 or greater

than 100, it invokes a computationally intensive procedure; otherwise, it invokes a synchronization

intensive one. �e optimal con�gurations for these two pieces of code di�er. �e space occupied

by the optimal hardware con�guration for comp intensive, i.e., [−∞, 10[∪], 100,+∞], is non-

continuous; hence, concave.

4.4.1 Space Exploration. �e program discussed in Example 4.4 is unlikely to exist in the real-

world. To support this statement, Figure 17 provides a glimpse of the best hardware con�gurations

for di�erent inputs of four benchmarks in our collection. Each matrix in Figure 17 associates a pair

of inputs with the hardware con�gurations that yielded the shortest execution times for those inputs.

In this experiment, we chose the two benchmarks from our collection that contain two inputs. We

have augmented this set with hashSync and futureGenetic, to �t the �gure into a 2 × 2 matrix

(for aesthetic reasons). However, to avoid having to draw a 3D-�gure, we have �xed one input for

each benchmark: number of Generations for futureGenetic, and number of workers, for

hashSync. �e computational time involved in the production of each �gure follows: radixSort:

1 hour and 37 minutes; Philosophers: 2 hours and 24 minutes; futureGenetic: 55 hours and

53 minutes; and hashSync: 58 hours and 12 minutes. �e four tables in Figure 17 show convex

spaces: any sequence of rows or columns traverses a continuous region, as Example 4.5 illustrates:

Example 4.5. Consider hashSync in Figure 17(c). If we �x the value for keySize in 10
6
, and

vary s.size() in the set {10, 10
2, 10

3, 10
4, 10

5}, we observe that each one of the continuous intervals

[10, 10], [10
2, 10

2] and [10
3, 10

5] is governed by the same set of optimal hardware con�gurations.

Dealing with variance: To arrive at this result, we had to account for small time variations. To

generate the data in every table seen in Figure 17, we considered 5 × 5 combinations of inputs,

and the hardware con�gurations used in the previous sections. We run each pair of inputs with

every con�guration of interest 20 times. To reduce variance, we removed the four fastest and the

four slowest samples; hence, considering 12 executions per input per con�guration. Nevertheless,

this expedient only would not be enough to mitigate the problem of high variance, mostly when

considering input se�ings with small runtimes.

To mitigate variance for small inputs, we consider not the best, but the set of best hardware

con�gurations per input. For each input, we ��ed our linear regression model using the least

squares method to estimate the model parameters. We analyze the di�erences among group means

with standard analysis of variance (ANOVA) (Fisher 1918); hence, generalizing the T-test beyond

two means. In the context of this work, we consider groups of hardware con�guration; and the

null hypothesis states that samples from di�erent hardware con�gurations came from the same

probability distribution. �us, the null hypothesis means that there is no statistical di�erence

between the execution time of di�erent hardware con�gurations. We checked if the data were

statistically signi�cant considering a con�dence of 95%, i.e., a P-value less than 0.05. ANOVA is

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:25

1684 126

75

125

25

100

50El
em

en
ts

workers

4b0L 4b4L

RadixSort

101010 1010

10

10

10

10

10Ite
ra

tio
ns

insertions

HashSync

1

2

3
4

2 3 4 5 6

4b4L, 4b0L, 0b4L, 2b0L, 0b2L
4b4L, 4b0L, 0b4L, 2b0L

4b4L
2b0L

4b4L, 4b0L

1062 84

50

90

10

70

30

C
hr

om
os

om
es

workers

FutureGenetic

4b0L
0b4L

4b0L, 0b4L

1062 84

12

50

3

25

6

M
ea

ls

philosophers

Philosophers

4b4L, 4b0L, 0b4L, 2b0L, 0b2L

0b4L

(b)(a)

(d)(c)

0b4L, 0b2L, 2b0L

5

x103x104

Fig. 17. Best configurations for 4 benchmarks used in our evaluation. The charts exemplify the convex space

over benchmarks inputs. HashSync and FutureGenetic receive 3 inputs each, but for this experiment we fixed

the number of workers in HashSync to 16 and the number of generations in FutureGenetic to 5000.

an omnibus test –it analyzes the data as a whole; hence, we performed a post-hoc test to �nd out

where the di�erences among the groups were.

�e post-hoc test consists of a series of T-tests between each pair of con�gurations. �e sig-

ni�cance level is adjusted to avoid spurious positives. To that end, we used the Bonferroni cor-

rection (Bonferroni 1936; Dunn 1958). Each individual hypothesis is tested with a threshold of

α/n, where α is the signi�cance level for the entire set of comparisons, e.g., 0.05, and n is the

number of statistical tests performed. �us, analogously to the ANOVA test, if the resulting P-value

is lower than the signi�cance level given by the Bonferroni correction, then the null hypothesis

can be rejected. Rejection of the null hypothesis is equivalent to assume that the two groups of

con�gurations present a statistically signi�cant di�erence.

Monotonicity and Convexity. As Example 4.4 shows, Convexity is a tendency, not a rule.

Nevertheless, we believe that convexity is common because the asymptotic behavior of most

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Ribeiro, et al.

2×102

2×103

2×104

2×105

2×106

2 6 10 14 18

Number of Threads

InsertAndAdd

N
um

be
r o

f I
ns

er
tio

ns

0b4L, 4b0L, 4b4L0b4L

0b2L

0b2L, 0b4L

4b4L

0b2L, 0b4L, 2b0L

0b2L, 0b4L, 2b0L, 4b4L

(a)

5×101

5×102

5×103

5×104

5×105

2 6 10 14 18

Number of Threads

RemoveDuplicates

N
um

be
r o

f E
le

m
en

ts

(b)

0b4L

4b4L

0b4L, 2b0L, 4b0L, 4b4L

0b2L, 0b4L, 2b0L, 4b0L, 4b4L

Fig. 18. Best hardware configuration, considering running time as the objective function. InsertAndDouble

receives four inputs. We fixed the “initial capacity” in 5,000 and the “change threshold” in 500. RemoveDupli-

cates receives three inputs. We fixed the “size of the keys” in 16 bytes. This choice of values is arbitrary, and

was necessary to give us 2D figures.

algorithms is described by monotonic –therefore convex– functions. �e running time of algorithms

tend to be governed by convex functions ranging on their inputs. �is observation can also be

projected onto parallel algorithms, once we consider the number of threads as an input. In other

words, variations in the running time of a parallel algorithm tend to be described by (typically

decreasing) monotonic functions ranging on the number of available threads (Keller et al. 2000).

As an example, Figure 18 shows the best hardware con�guration for two of our benchmarks,

considering running time as the objective function. In this case, we are varying, in addition to

some input, the number of available threads. It is possible to observe the convex shape of the space

delimited by the best hardware con�gurations for these benchmarks.

4.4.2 Separability. In the context of classi�cation problems, the main bene�t of convexity is

separability. �e Hyperplane Separation �eorem (Boyd and Vandenberghe 2004, Ch.4) states that

two disjoint convex sets are linearly separable. In other words, if C1 and C2 are closed convex sets

such that C1 ∩C2 = ∅, then there exists a linear function д(x) = wTx +w0 such that д(x) > 0 for

every x ∈ C1 and д(x) < 0 for every x in C2. Function д is called a linear discriminant, because it

can distinguish points from C1 and C2 (Chan 2020).

In this paper, we use multivariate linear regression to build linear discriminants. As already

mentioned in Section 2.1, these functions range on the space formed by program inputs. Completely

chartering this space would involve applying the methodology discussed in Section 3.2 to every

possible combination of inputs that a program might use. �is task is impractical—if at all possible;

thus, in Section 4.4.1 we have evaluated a handful of inputs for a few benchmarks. �is evaluation

indicates that, at least for these benchmarks, the regions in the search space covered by similar

hardware con�gurations tend to be convex.

Figure 17 shows that the regions in which speci�c hardware con�guration excel are not dis-

joint. In other words, the same set of function arguments could be mapped to di�erent hardware

con�gurations with similarly good e�ects. Nevertheless, the linear discriminants that we build

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:27

4b0L

0b1L

4b4L

Input X

In
pu

t Y

4b0L

0b1L

4b4L

Input X

In
pu

t Y

(x1, y1)
(x0, y0)

(x2, y2)

́
́

́

In
fe

rr
ed

 s
ep

ar
at

io
n

4b0L

0b1L 4b4L

Input X

In
pu

t Y

In
fe

rre
d

se
pa

ra
tio

n

(a) (b) (c)

(x1, y1)
(x0, y0)

(x2, y2)

́
́

́

(x3, y3)
́

Fig. 19. (a) An ideal representation of the space of best hardware configurations, with three convex sets. (b)

Approximation of this space a�er training with three inputs covering two convex sets. (c) Approximation of

this space a�er training with inputs that cover all the convex sets. White regions are misclassified zones.

are disjoints, for, in case of ties, we choose the con�guration with less resources as explained in

Section 3.2.1. �is said, the accurate classi�cation of regions into the right hardware con�gurations

still depends on a good assortment of inputs. Example 4.6 illustrates this fact.

Example 4.6. Figure 19 (a) shows an idealized representation of the search space for a hypothetical

program
2
. �is space is formed by three convex sets mapping inputs to con�gurations 4b0L, 0b4L

and 4b4L. A perfect classi�cation model would �nd the three lines that separate these regions. In

practice, classi�cation approximates these lines by maximizing the distance between the known

inputs. In this example, we have three of them. �e white regions in each �gure show points for

which classi�cation would give wrong answer. �e more inputs are used in training, the smaller

these regions tend to be, as the comparison between Figures 19 (b) and (c) illustrates. For a concrete

discussion about the impact of training inputs on the quality of the classi�cation model, we refer

the reader to Example 4.2 (Page 19).

5 RELATEDWORK
Our work explores a type of machine learning technique –multivariate linear regression– to solve

an instance of program scheduling in heterogeneous architectures. �ere exists vast literature about

uses of machine learning in compilers (Wang and O’Boyle 2018) and Ashouri et al. (Ashouri et al.

2018). Equally abundant is the material about scheduling in heterogeneous multi-core systems. For

a comprehensive overview on this topic, we recommend the survey recently carried out by Singh

et al. (2020). In the rest of this section, we discuss some of this research, focusing on scheduling,

with the intention to explain how our work stands within the contemporary literature.

5.1 A General Overview on Program Scheduling in Heterogeneous Systems
�e general problem of scheduling computations in heterogeneous architectures has a�racted

much a�ention, as Mi�al and Ve�er have discussed (Mi�al and Ve�er 2015). Table 3 provides a

taxonomy of previous solutions to this problem. We group them according to the level at which

they are implemented, and to the way they answer each of the following four questions:

• Architecture: do they apply to Single or Multi-ISA systems?

2
We say “idealized” because, in practice, we would not be able to determine the best hardware con�gurations for every

input set, due to imprecisions in the measurement apparatus. Imprecisions are especially present when considering small

inputs, which tend to cause short running times.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Ribeiro, et al.

Work Level Arch. Source Input Auto Runtime Learn

(Poesia et al. 2017) C Multi Yes No Yes No Yes

(Barik et al. 2016) C Multi Yes No Yes Yes No

(Rossbach et al. 2013) C/L Multi Yes No No Yes No

(Luk et al. 2009) C/L Multi Yes No No Yes No

(Joao et al. 2012) A/L Multi Yes No No No No

(Lukefahr et al. 2016) A Multi No No Yes No No

(Van Craeynest et al. 2012a) A Multi No No Yes No No

(Imes et al. 2015) L Multi Yes No No Yes Yes

(Nishtala et al. 2017) O Single No No Yes Yes Yes

(Petrucci et al. 2015) O Single No No Yes Yes No

(Reddy et al. 2020) O Multi No No Yes Yes No

(Delimitrou and Kozyrakis 2014) O Multi No No Yes Yes Yes

(Augonnet et al. 2011) L Multi Yes No No No No

(Piccoli et al. 2014) O/C Single Yes No Yes Yes No

(Tang et al. 2013) O/C Multi Yes No Yes Yes No

(Cong and Yuan 2012) O/C Multi Yes No Yes Yes No

(Sreelatha et al. 2018) C Single Yes No Yes No Yes

Jinn-C C Single Yes Yes Yes No Yes

Table 3. Di�erent solutions to the problem of finding ideal hardware configurations. We consider the

following levels: Architecture (A), Operating System (O), Compiler (C) or Library/Programming model (L).

• Source: is the program’s code modi�ed?

• Input: is the approach input-aware?

• Auto: is user intervention required to choose con�guration?

• Runtime: is runtime information exploited?

• Learn: is there any adaptation to runtime conditions?

Perhaps the most important di�erence among the several strategies proposed to �nd ideal hardware

con�gurations concerns the moment at which said strategy is used. In the rest of this section, we

consider the following three possible choices: at compilation time, at runtime, or both.

Static Solutions. Purely static approaches work at compilation time. �ey might be applied by

the compiler, either automatically, i.e., without user intervention (Cong and Yuan 2012; Jain et al.

2016; Luk et al. 2009; Poesia et al. 2017; Rossbach et al. 2013; Sreelatha et al. 2018; Tang et al.

2013), or not. In the la�er case, users can use annotations (Mendonça et al. 2017), domain speci�c

programming languages (Luk et al. 2009; Rossbach et al. 2013) or library calls (Augonnet et al.

2011) to indicate where each program part should run. �e main bene�t of static techniques is low

runtime overhead: because every scheduling decision is taken before the program runs, no dynamic

checks are necessary to schedule computations. However, these techniques tend to be in�exible:

they are unable to take runtime information into consideration; hence, the same program phase is

always scheduled in the same way. In Table 3, techniques implemented at either the compiler or

library levels are purely static.

Dynamic Solutions. Purely dynamic approaches take into account runtime information. �ey can

be implemented at the architecture level (Joao et al. 2012; Lukefahr et al. 2016; Rangan et al. 2009;

Van Craeynest et al. 2012a; Yazdanbakhsh et al. 2015), or at the virtual machine (VM)/OS level (Barik

et al. 2016; Gaspar et al. 2015; Nishtala et al. 2017; Petrucci et al. 2015; Somu Muthukaruppan

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:29

et al. 2014; Zhang and Ho�mann 2016). By leveraging runtime information, the system can use

environment information, unknown at compilation time. Examples of such information include

varying input sizes and resource demands. However, there may be some overhead on accurately

collecting and processing runtime data. Besides, because scheduling decisions are taken on-the-

�y, usually the scheduler cannot spend much time weighing choices. �us, even though these

algorithms use runtime information, they might still take suboptimal decisions, due to their inability

to spend much time solving hard scheduling problems.

Hybrid Solutions. Approaches that mix static and dynamic techniques are called hybrid. Examples

of hybrid solutions to scheduling include works from Piccoli et al. (2014), Cong and Yuan (2012),

and Tang et al. (2013). Piccoli et al (Piccoli et al. 2014) have used a compiler to instrument a program

with guards that determine, based on input sizes, where each loop should run. Cong and Yuan (Cong

and Yuan 2012), in turn, use the compiler to partition a program in regions of similar behavior, and

rely on runtime information to schedule computation so as to minimize the energy consumed by

each region. Finally, Tang et al. (Tang et al. 2013) use a compiler to populate a program code with

markers, so that low-priority applications can manage their own contentiousness to ensure the QoS

of high-priority co-runners. None of these previous work use any form of learning technique to

tune the behavior of the scheduler, as Table 3 indicates in the column Learn. Guards, once created,

behave always on the same way.

5.2 Scheduling in Single-ISA Heterogeneous Systems
Much a�ention has been dedicated to the problem of �nding good placements of computation

on heterogeneous multicore systems, as Mi�al et al. (Mi�al 2016) has summarized. However,

we emphasize that a large part of this literature concerns the design of scheduling heuristics

implemented at the level of the hardware or the operating system (Cai et al. 2016; Garcia-Garcia

et al. 2018; Masci�i et al. 2020; Mi�al 2016; Neto et al. 2018; Park et al. 2018; Van Craeynest et al.

2012b). �is section describes works that, like Jinn-C, can be auto-tuned to characteristics of the

runtime environment, and that have been speci�cally designed for big.LITTLE architectures. By

characteristics of the runtime environment we mean the nature of the inputs or the behavior of

the hardware. We leave out of this comparison scheduling algorithms that rely on worst-case

execution estimates of tasks, such as Masci�i et al. (2020)’s or Roeder et al. (2021). In other words,

no assumptions are made on the time or energy budget of a given task.

Table 4 categorizes these techniques along the following lines:

• Granularity: what is the data used for training? Most of the techniques use runtime

information (R) –available via performance counters. CHOAMP relies on features mined

from the program’s syntax (S). We use the program’s inputs to perform predictions (I).

• Training: when does learning occur? O�-line (o�) systems calibrate prediction before the

target program runs; on-line (on) systems do it while the program executes.

• Data: what is the source of training data? OS-based o�-line systems usually rely on micro-

benchmarks (µ-benchs) to perform calibration. CHOAMP uses features of the program,

which it extracts from its syntax. Techniques used in servers can rely on the target program

itself as the source of training data, for said program is bound to run for a long time.

• Target: in which scenario is the technique meant to be used? Most of the papers that

deal with Isha (De�nition 2.3), ours included, present solutions for embedded devices and

smartphones (clients). Sloop, SaC, Octopus-Man and Hipster guarantee QoS in servers.

• Level: the di�erent adaptive techniques that we list in Table 4 either run on the operating

system (OS), or are implemented at the compiler’s level (CP).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Ribeiro, et al.

Approach Gran. Tr. Data Target Level

Oct-Man (Petrucci et al. 2015) R on self server OS

SaC (Azhar et al. 2019) R on self server. OS

Sloop (Azhar et al. 2017) R/S on self server OS/CP

Sparta (Donyanavard et al. 2016) R o� µ-bench client OS

DyPO (Gupta et al. 2017) R o� µ-bench client OS

Tzilis et al (Tzilis et al. 2019) R o�-line µ-bench client OS

Hispter (Nishtala et al. 2017) R o�/on µ-bench+self server OS

CHOAMP (Sreelatha et al. 2018) S o� µ-bench client CP

SIAM (Krishna and Nasre 2018) S+I o� self client CP

Jinn-C I o� self client CP

Table 4. Recent solutions to Isha. Granularity (Gran.) uses R for runtime, S for syntax and I for input.

Training (Tr.) uses on for on-line and o� for o�-line. Level uses OS for operating system and CP for compiler.

Two systems that solve Isha (De�nition 2.3) in big.LITTLE architectures at the compiler level are

Sreelatha et al. (Sreelatha et al. 2018)’s CHOAMP, and Krishna et al. (Krishna and Nasre 2018)’s SIAM.

We have compared Jinn-C with CHOAMP extensively in this paper. SIAM, in turn, is a system that

targets speci�cally graph algorithms parallelized via OpenMP. It consists of a prediction model

that, given a particular shape of a graph, determines the best data-structure format and hardware

con�guration for that shape. We could, in principle, adapt it to implement some of our benchmarks,

such as spanningForest and BFS –graph-based algorithms. However, this implementation would

involve providing each algorithm with di�erent graph representations –a task to be paid at a

non-negligible programming cost.

5.3 Input-Aware Program Autotuning
Our work is centered around the idea that characteristics of the input can be used to determine the

behavior of a program. Autotuning techniques that take decisions based on inputs are well-known.

Even relatively old libraries such as FFTW (Frigo and Johnson 2005) provide code that is optimized

for di�erent input sizes (Guarrasi et al. 2013). And more recent work (Esper et al. 2021; Teich

et al. 2021) has demonstrated that input-awareness can be used to keep programs running in

multi-core systems within the limits of predetermined energy or time requirements. Along these

lines, a direction of research that has been much explored concerns the matching of inputs with

data-structures (Costa and Andrzejak 2018; Jung et al. 2011; Schiller et al. 2016). We emphasize that

none of these previous techniques embed regression code into the compiled program, in order to

bestow on said program the ability to choose hardware con�gurations based on input value.

In this regard, recent work by Oliveira et al. (2021) have shown that the implementation of data

structures bear much impact upon the energy consumption of mobile applications. From their

observations, Oliveira et al. provide developers with a number of recommendations to code energy

e�cient so�ware, following a methodology previously proposed by Couto et al. (2020). �is line

of work aims at building tools that work like code linters: tools that point out potential power

ine�ciencies to programmers. �is modus operandi is made clear by Melfe et al. (2018). �is paper,

in contrast, describes an automatic optimization: our code transformation works at the compiler

level, and does not require intervention from users.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Mapping in Parallel Heterogenous Architectures 1:31

6 CONCLUSION
�is paper presented an end-to-end code generation technique that matches programs to hardware

con�gurations in heterogeneous multicore systems. �is paper is centered around the thesis that

the values of a function’s arguments provide enough information to predict the best hardware

con�guration for that function. Our technique is able to outperform, be it in energy consumption,

be it in execution time, the default Linux scheduler for ARM (the Global Task Scheduler), and

CHOAMP, a recently released tool that predicts the best hardware con�guration to a parallel

program based on its syntax.

Limitations and Future Work. As any pro�ler-based technique, Jinn-C has limitations. Its e�ec-

tiveness depends on having adequate training inputs for each program that it optimizes. However,

the more inputs are used, the longer the training time, as observed in Section 3.2. We speculate

that it might be possible to remove the need of training per application if we use static-pro�ling

techniques (Ball and Larus 1993; Wu and Larus 1994) to infer, at compilation time, how the inputs

of a program might in�uence that program’s behavior. In terms of engineering, we believe that the

techniques that we advocate in this paper could be ported to programming environments other

than the JDK’s ecosystem. For instance, to port our technique to C/OpenMP, Jinn-C could be

reimplemented in LLVM (La�ner and Adve 2004). In this regard, LLVM would �ll in that se�ing the

role that Soot has �lled in this paper. Notice that our techniques do not depend on static program

features, so feature engineering would not be necessary for portability. We leave the investigation

of such possibilities as future work.

So�ware. Jinn-C is available at h�ps://github.com/lac-dcc/JINN-C under the GPL-3.0 License. De-

tails about this project can be found at h�ps://homepages.dcc.ufmg.br/∼juniocezar/intelligentDVFS

ACKNOWLEDGMENTS
�is work has been made possible by the support of the following agencies: ANR (the CONTINUUM

project: grant ANR-15-CE25-0007-01); CNPq (Grants PDE-202896/2017-0 and 406377/2018-9);

FAPEMIG (Grant PPM-00333-18) and CAPES (Edital CAPES PrInt). While working on this project,

Junio Cezar was the recipient of a scholarship generously donated by Google LLC (Research Awards
for Latin America—LARA).

REFERENCES
Umut A. Acar, Arthur Charguéraud, Adrien Gua�o, Mike Rainey, and Filip Sieczkowski. 2018. Heartbeat Scheduling:

Provable E�ciency for Nested Parallelism. In PLDI. ACM, New York, NY, USA, 769–782.

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. 2018. A Survey on Compiler

Autotuning Using Machine Learning. Comput. Surv. 51, 5 (2018), 96:1–96:42. DOI:h�p://dx.doi.org/10.1145/3197978

Cedric Augonnet, Samuel �ibault, Raymond Namyst, and Pierre-Andre Wacrenier. 2011. StarPU: A Uni�ed Platform for

Task Scheduling on Heterogeneous Multicore Architectures. Concurr. Comput. : Pract. Exper. 23, 2 (2011), 187–198.

Muhammad Waqar Azhar, Miquel Pericàs, and Per Stenström. 2019. SaC: Exploiting Execution-Time Slack to Save Energy

in Heterogeneous Multicore Systems. In ICPP. ACM, New York, NY, USA, 26:1–26:12. DOI:h�p://dx.doi.org/10.1145/

3337821.3337865

M. Waqar Azhar, Per Stenström, and Vassilis Papaefstathiou. 2017. SLOOP: QoS-Supervised Loop Execution to Reduce

Energy on Heterogeneous Architectures. ACM Trans. Archit. Code Optim. 14, 4, Article 41 (2017), 25 pages. DOI:
h�p://dx.doi.org/10.1145/3148053

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. �e NAS Parallel Benchmarks&Mdash;Summary

and Preliminary Results. In Supercomputing. ACM, New York, NY, USA, 158–165.

�omas Ball and James R. Larus. 1993. Branch Prediction for Free. SIGPLAN Not. 28, 6 (1993), 300–313. DOI:h�p:

//dx.doi.org/10.1145/173262.155119

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/lac-dcc/JINN-C
https://homepages.dcc.ufmg.br/~juniocezar/intelligentDVFS
http://dx.doi.org/10.1145/3197978
http://dx.doi.org/10.1145/3337821.3337865
http://dx.doi.org/10.1145/3337821.3337865
http://dx.doi.org/10.1145/3148053
http://dx.doi.org/10.1145/173262.155119
http://dx.doi.org/10.1145/173262.155119

1:32 Ribeiro, et al.

Rajkishore Barik, Naila Farooqui, Brian T. Lewis, Chunling Hu, and Tatiana Shpeisman. 2016. A Black-box Approach to

Energy-aware Scheduling on Integrated CPU-GPU Systems. In CGO. ACM, New York, NY, USA, 70–81.

Tarsila Bessa, Ghristopher Gull, Pedro �int ao, Michael Frank, José Nacif, and Fernando Magno �int ao Pereira.

2017. JetsonLEAP: A framework to measure power on a heterogeneous system-on-a-chip device. Science of Computer
Programming 33, 1 (2017), 1–37.

Carlo Emilio Bonferroni. 1936. Teoria statistica delle classi e calcolo delle probabilità. (1936).

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press, New York, NY, USA.

Paul Butcher. 2014. Seven Concurrency Models in Seven Weeks (1st ed.). Pragmatic Bookshelf, Raleigh, NC, US.

Haoran Cai, Qiang Cao, Feng Sheng, Manyi Zhang, Chuanyi Qi, Jie Yao, and Changsheng Xie. 2016. Montgol�er: Latency-

aware power management system for heterogeneous servers. In IPCCC. IEEE, Washington, DC, USA, 1–8.

M. Augustine Cauchy. 1847. Méthode Générale pour la résolution des systèmes d’Équations simultanées. Comptes Rendus
Hebd. Séances Acad. Sci. 25, 10 (1847), 536–538.

Stanley Chan. 2020. Linear Separability. (2020). Lecture Notes on Machine Learning - STAT598.

Jason Cong and Bo Yuan. 2012. Energy-e�cient Scheduling on Heterogeneous Multi-core Architectures. In ISLPED. ACM,

New York, NY, USA, 345–350.

Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika Subramanian, Linda Torczon, and Todd

Waterman. 2005. ACME: Adaptive Compilation Made E�cient. In LCTES. ACM, New York, NY, USA, 69–77.

Diego Costa and Artur Andrzejak. 2018. CollectionSwitch: A Framework for E�cient and Dynamic Collection Selection. In

CGO. Association for Computing Machinery, New York, NY, USA, 16–26. DOI:h�p://dx.doi.org/10.1145/3168825

Marco Couto, João Saraiva, and João Paulo Fernandes. 2020. Energy Refactorings for Android in the Large and in the Wild.

In SANER, Kostas Kontogiannis, Foutse Khomh, Alexander Chatzigeorgiou, Marios-Ele�herios Fokaefs, and Minghui

Zhou (Eds.). IEEE, New York, NY, USA, 217–228. DOI:h�p://dx.doi.org/10.1109/SANER48275.2020.9054858

Junio Cezar Ribeiro da Silva, Lorena Le ao, Vinı́cius Petrucci, Abdoulaye Gamatié, and Fernando Magno �int ao Pereira.

2019. Scheduling in Heterogeneous Architectures via Multivariate Linear Regression on Function Inputs. Technical Report

LIRMM-02281112. CNRS.

Junio Cezar Ribeiro da Silva, Lorena Le ao, Vinı́cius Petrucci, Abdoulaye Gamatié, and Fernando Magno �int ao Pereira.

2020. Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on Inputs. In SBESC. IEEE,

USA, 42–49.

Junio Cezar Ribeiro da Silva, Fernando Magno �intão Pereira, Michael Frank, and Abdoulaye Gamatié. 2018. A Compiler-

Centric Infra-Structure for Whole-Board Energy Measurement on Heterogeneous Android Systems. In ReCoSoC. IEEE,

Washington, DC, USA, 1–8.

Florian David, Gael �omas, Julia Lawall, and Gilles Muller. 2014. Continuously Measuring Critical Section Pressure with

the Free-lunch Pro�ler. SIGPLAN Not. 49, 10 (2014), 291–307.

Christina Delimitrou and Christos Kozyrakis. 2014. �asar: Resource-e�cient and QoS-aware Cluster Management. In

ASPLOS. ACM, New York, NY, USA, 127–144.

Bryan Donyanavard, Tiago Mück, Santanu Sarma, and Nikil Du�. 2016. SPARTA: Runtime Task Allocation for Energy

E�cient Heterogeneous Many-cores. In CODES. ACM, New York, NY, USA, 27:1–27:10.

Olive Jean Dunn. 1958. Estimation of the Means for Dependent Variables. Annals of Mathematical Statistics. 29 (1958),

1095–1111. Issue 4.

Khalil Esper, Stefan Wildermann, and Jürgen Teich. 2021. A Comparative Evaluation of Latency-Aware Energy Optimization

Approaches in Many-Core Systems (Invited Paper). In NG-RES (OpenAccess Series in Informatics (OASIcs)), Marko Bertogna

and Federico Terraneo (Eds.), Vol. 87. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:12.

DOI:h�p://dx.doi.org/10.4230/OASIcs.NG-RES.2021.1

Ronald A. Fisher. 1918. �e Correlation Between Relatives on the Supposition of Mendelian Inheritance. Philosophical
Transactions 52 (1918), 399–433.

M. Frigo and S.G. Johnson. 2005. The Design and Implementation of FFTW3. Proc. IEEE 93, 2 (2005), 216 –231. DOI:
h�p://dx.doi.org/10.1109/JPROC.2004.840301

Adrian Garcia-Garcia, Juan Carlos Saez, and Manuel Prieto. 2018. Contention-Aware Fair Scheduling for Asymmetric Single-

ISA Multicore Systems. IEEE Trans. Computers 67, 12 (2018), 1703–1719. DOI:h�p://dx.doi.org/10.1109/TC.2018.2836418

Francisco Gaspar, Luis Taniça, Pedro Tomás, Aleksandar Ilic, and Leonel Sousa. 2015. A Framework for Application-Guided

Task Management on Heterogeneous Embedded Systems. ACM Trans. Archit. Code Optim. 12, 4 (Dec. 2015), 42:1–42:25.

Peter Greenhalgh. 2011. Big.LITTLE processing with ARM cortex-A15 & cortex-A7. (2011). h�ps://www.eetimes.com/

document.asp?doc id=1279167

Massimiliano Guarrasi, Giovanni Erbacci, and Andrew Emerson. 2013. Auto-tuning of the FFTW Library for Massively

Parallel Supercomputers. (2013).

Ujjwal Gupta, Chetan Arvind Patil, Ganapati Bhat, Prabhat Mishra, and Umit Y. Ogras. 2017. DyPO: Dynamic Pareto-Optimal

Con�guration Selection for Heterogeneous MpSoCs. Trans. Embed. Comput. Syst. 16, 5s (2017), 123:1–123:20. DOI:

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://dx.doi.org/10.1145/3168825
http://dx.doi.org/10.1109/SANER48275.2020.9054858
http://dx.doi.org/10.4230/OASIcs.NG-RES.2021.1
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/TC.2018.2836418
https://www.eetimes.com/document.asp?doc_id=1279167
https://www.eetimes.com/document.asp?doc_id=1279167

Mapping in Parallel Heterogenous Architectures 1:33

h�p://dx.doi.org/10.1145/3126530

Mark Gurman, Debby Wu, and Ian King. 2020. Apple Aims to Sell Macs With Its Own Chips Starting in 2021. (2020).

Accessed on July 2021.

Marcus Hähnel and Hermann Härtig. 2014. Heterogeneity by the Numbers: A Study of the ODROID XU+E Big. LITTLE

Platform. In HotPower. USENIX Association, Berkeley, CA, USA, 3–3.

Connor Imes, David H. K. Kim, Martina Maggio, and Henry Ho�mann. 2015. POET: a portable approach to minimizing

energy under so� real-time constraints. In RTAS. IEEE, New York, NY, USA, 75–86. DOI:h�p://dx.doi.org/10.1109/RTAS.

2015.7108419

A. Jain, M. A. Laurenzano, L. Tang, and J. Mars. 2016. Continuous shape shi�ing: Enabling loop co-optimization via near-free

dynamic code rewriting. In MICRO. IEEE, New York, NY, USA, 1–12.

Brian Je�. 2013. big.LITTLE Technology moves towards fully heterogeneous Global Task Scheduling. Technical Report. ARM.

White paper.

José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Pa�. 2012. Bo�leneck Identi�cation and Scheduling in Multithreaded

Applications. In ASPLOS. ACM, New York, NY, USA, 223–234.

Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande. 2011. Brainy: E�ective Selection of Data

Structures. In PLDI. ACM, New York, NY, USA, 86–97. DOI:h�p://dx.doi.org/10.1145/1993498.1993509

Jörg Keller, Christoph Kessler, and Jesper Larsson Trä�. 2000. Practical Pram Programming. John Wiley & Sons, Inc., USA.

J. M. Kim, S. K. Seo, and S. W. Chung. 2014. Looking into heterogeneity: when simple is faster. (2014). h�ps://news.

ycombinator.com/item?id=8714613.

Jyothi Krishna and Rupesh Nasre. 2018. Optimizing Graph Algorithms in Asymmetric Multicore Processors. Trans. on CAD
of Integrated Circuits and Systems 37, 11 (2018), 2673–2684. DOI:h�p://dx.doi.org/10.1109/TCAD.2018.2858366

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas. 2004. Single-ISA

Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance. SIGARCH Comput. Archit. News 32,

2 (2004), 64. DOI:h�p://dx.doi.org/10.1145/1028176.1006707

Chris La�ner and Sarita V. Adve. 2004. LLVM: a compilation framework for lifelong program analysis transformation. In

CGO. IEEE, New York, US, 75–86. DOI:h�p://dx.doi.org/10.1109/CGO.2004.1281665

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors

with Adaptive Mapping. In MICRO. ACM, New York, NY, USA, 45–55.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. G. Dreslinski, T. F. Wenisch, and S. Mahlke. 2016. Exploring

Fine-Grained Heterogeneity with Composite Cores. Transactions on Computers 65, 2 (2016), 535–547.

Agostino Masci�i, Tommaso Cucino�a, and Mauro Marinoni. 2020. An Adaptive, Utilization-Based Approach to Schedule

Real-Time Tasks for ARM Big.LITTLE Architectures. SIGBED Rev. 17, 1 (2020), 18–23. DOI:h�p://dx.doi.org/10.1145/

3412821.3412824

Gilberto Melfe, Alcides Fonseca, and João Paulo Fernandes. 2018. Helping developers write energy e�cient Haskell through

a data-structure evaluation. In GREENS@ICSE, Ivano Malavolta, Rick Kazman, and João Saraiva (Eds.). ACM, New York,

NY, USA, 9–15. DOI:h�p://dx.doi.org/10.1145/3194078.3194080

Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira, Guido Araújo, and Fernando Magno �intão Pereira.

2017. DawnCC: Automatic Annotation for Data Parallelism and O�oading. Transactions on Architecture and Code
Optimization 14, 2 (2017), 13:1–13:25.

Sparsh Mi�al. 2016. A Survey of Techniques for Architecting and Managing Asymmetric Multicore Processors. Comput.
Surv. 48, 3 (2016), 45:1–45:38. DOI:h�p://dx.doi.org/10.1145/2856125

Sparsh Mi�al and Je�rey S. Ve�er. 2015. A Survey of CPU-GPU Heterogeneous Computing Techniques. Comput. Surv. 47, 4

(2015), 69:1–69:35.

Mehrzad Nejat, Madhavan Manivannan, Miquel Pericas, and Per Stenstrom. 2020. Coordinated Management of Processor

Con�guration and Cache Partitioning to Optimize Energy under QoS Constraints. In IPDPS. IEEE, USA, 303–313. DOI:
h�p://dx.doi.org/10.1109/IPDPS.2019.00040

Jose Leal Domingues Neto, Se-Young Yu, Daniel F. Macedo, José Marcos S. Nogueira, Rami Langar, and Stefano Secci. 2018.

ULOOF: A User Level Online O�oading Framework for Mobile Edge Computing. IEEE Trans. Mob. Comput. 17, 11 (2018),

2660–2674. DOI:h�p://dx.doi.org/10.1109/TMC.2018.2815015

Pengcheng Nie and Zhenhua Duan. 2012. E�cient and Scalable Scheduling for Performance Heterogeneous Multicore

Systems. J. Parallel Distrib. Comput. 72, 3 (2012), 353–361.

Rajiv Nishtala, Paul M. Carpenter, Vinicius Petrucci, and Xavier Martorell. 2017. Hipster: Hybrid Task Manager for

Latency-Critical Cloud Workloads. In HPCA. IEEE, New York, NY, USA, 409–420.

Wellington Oliveira, Renato Oliveira, Fernando Castor, Gustavo Pinto, and João Paulo Fernandes. 2021. Improving

energy-e�ciency by recommending Java collections. Empir. So�w. Eng. 26, 3 (2021), 55. DOI:h�p://dx.doi.org/10.

1007/s10664-021-09950-y

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://dx.doi.org/10.1145/3126530
http://dx.doi.org/10.1109/RTAS.2015.7108419
http://dx.doi.org/10.1109/RTAS.2015.7108419
http://dx.doi.org/10.1145/1993498.1993509
https://news.ycombinator.com/item?id=8714613
https://news.ycombinator.com/item?id=8714613
http://dx.doi.org/10.1109/TCAD.2018.2858366
http://dx.doi.org/10.1145/1028176.1006707
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1145/3412821.3412824
http://dx.doi.org/10.1145/3412821.3412824
http://dx.doi.org/10.1145/3194078.3194080
http://dx.doi.org/10.1145/2856125
http://dx.doi.org/10.1109/IPDPS.2019.00040
http://dx.doi.org/10.1109/TMC.2018.2815015
http://dx.doi.org/10.1007/s10664-021-09950-y
http://dx.doi.org/10.1007/s10664-021-09950-y

1:34 Ribeiro, et al.

Anne-Cecile Orgerie, Marcos Dias de Assunção, and Laurent Lefevre. 2014. A Survey on Techniques for Improving

the Energy E�ciency of Large-scale Distributed Systems. ACM Comput. Surv. 46, 4 (2014), 47:1–47:31. DOI:h�p:

//dx.doi.org/10.1145/2532637

Jinsu Park, Seongbeom Park, and Woongki Baek. 2018. RPPC: A Holistic Runtime System for Maximizing Performance

Under Power Capping. In CCGRID. IEEE, Washington, DC, USA, 41–50.

Suraj Paul, Navonil Cha�erjee, Prasun Ghosal, and Jean-Philippe Diguet. 2020. Adaptive Task Allocation and Scheduling on

NoC-Based Multicore Platforms with Multitasking Processors. ACM Trans. Embed. Comput. Syst. 20, 1, Article 4 (2020),

26 pages. DOI:h�p://dx.doi.org/10.1145/3408324

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M. Blondel, P. Pre�enhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

Vinicius Petrucci, Orlando Loques, Daniel Mossé, Rami Melhem, Neven Abou Gazala, and Sameh Gobriel. 2015. Energy-

E�cient �read Assignment Optimization for Heterogeneous Multicore Systems. ACM Trans. Embed. Comput. Syst. 14, 1

(2015), 15:1–15:26.

Guilherme Piccoli, Henrique N. Santos, Raphael E. Rodrigues, Christiane Pousa, Edson Borin, and Fernando M. �intão

Pereira. 2014. Compiler Support for Selective Page Migration in NUMA Architectures. In PACT. ACM, New York, NY,

USA, 369–380.

Gabriel Poesia, Breno Campos Ferreira Guimarães, Fabricio Ferracioli, and Fernando Magno �intão Pereira. 2017. Static

placement of computation on heterogeneous devices. PACMPL 1, OOPSLA (2017), 50:1–50:28.

Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomı́r Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, �omas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite for

Parallel Applications on the JVM. In PLDI. ACM, New York, NY, USA, 31–47.

Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. 2009. �read Motion: Fine-grained Power Management for Multi-core

Systems. In ISCA. ACM, New York, NY, USA, 302–313.

Basireddy Karunakar Reddy, Amit Kumar Singh, Bashir M. Al-Hashimi, and Geo� V. Merre�. 2020. AdaMD: Adaptive

Mapping and DVFS for Energy-E�cient Heterogeneous Multicores. Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 10

(2020), 2206–2217. DOI:h�p://dx.doi.org/10.1109/TCAD.2019.2935065

Uladizislau Rezki and Vitaly Wool. 2015. Doing big.LITTLE right: li�le and big obstacles. (2015).

Julius Roeder, Sebastian Altmeyer, Benjamin Rouxel, and Clemens Grelck. 2021. Energy-aware Scheduling of Multi-version

Tasks onHeterogeneous Real-time Systems. In SAC. ACM, New York, NY, USA, 1–10.

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis Fe�erly. 2013. Dandelion: A Compiler and

Runtime for Heterogeneous Systems. In SOSP. ACM, New York, NY, USA, 49–68.

Benjamin Schiller, Clemens Deusser, Jerónimo Castrillón, and �orsten Strufe. 2016. Compile- and run-time approaches for

the selection of e�cient data structures for dynamic graph analysis. Appl. Netw. Sci. 1 (2016), 9. DOI:h�p://dx.doi.org/10.

1007/s41109-016-0011-2

Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Je�ery, Alexandra Fedorova, Nestor Perez, Zhi Feng Huang, Sergey

Blagodurov, and Viren Kumar. 2009. HASS: A Scheduler for Heterogeneous Multicore Systems. SIGOPS Oper. Syst. Rev.
43, 2 (2009), 66–75.

Zhen-Jun Shi. 2004. Convergence of Line Search Methods for Unconstrained Optimization. Appl. Math. Comput. 157, 2

(2004), 393–405. DOI:h�p://dx.doi.org/10.1016/j.amc.2003.08.058

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat

Tangwongsan. 2012. Brief Announcement: �e Problem Based Benchmark Suite. In SPAA. ACM, New York, NY, USA,

68–70.

Amit Kumar Singh, Somdip Dey, Klaus D. McDonald-Maier, Basireddy Karunakar Reddy, Geo� V. Merre�, and Bashir M.

Al-Hashimi. 2020. Dynamic Energy and �ermal Management of Multi-core Mobile Platforms: A Survey. Des. Test 37, 5

(2020), 25–33. DOI:h�p://dx.doi.org/10.1109/MDAT.2020.2982629

�annirmalai Somu Muthukaruppan, Anuj Pathania, and Tulika Mitra. 2014. Price �eory Based Power Management for

Heterogeneous Multi-cores. In ASPLOS. ACM, New York, NY, USA, 161–176.

Jyothi Krishna Viswakaran Sreelatha, Shankar Balachandran, and Rupesh Nasre. 2018. CHOAMP: Cost Based Hardware

Optimization for Asymmetric Multicore Processors. Trans. Multi-Scale Computing Systems 4, 2 (2018), 163–176.

Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou So�a. 2013. ReQoS: Reactive Static/Dynamic Compilation

for QoS in Warehouse Scale Computers. In ASPLOS. ACM, New York, NY, USA, 89–100.

Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Rolo�, Wolfgang Schröder-Preikschat, and Stefan Wildermann.

2021. Run-Time Enforcement of Non-functional Program Properties on MPSoCs. In A Journey of Embedded and
Cyber-Physical Systems - Essays Dedicated to Peter Marwedel on the Occasion of His 70th Birthday, Jian-Jia Chen (Ed.).

Springer-Verlag, Berlin, Heidelberg, 125–149. DOI:h�p://dx.doi.org/10.1007/978-3-030-47487-4 9

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://dx.doi.org/10.1145/2532637
http://dx.doi.org/10.1145/2532637
http://dx.doi.org/10.1145/3408324
http://dx.doi.org/10.1109/TCAD.2019.2935065
http://dx.doi.org/10.1007/s41109-016-0011-2
http://dx.doi.org/10.1007/s41109-016-0011-2
http://dx.doi.org/10.1016/j.amc.2003.08.058
http://dx.doi.org/10.1109/MDAT.2020.2982629
http://dx.doi.org/10.1007/978-3-030-47487-4_9

Mapping in Parallel Heterogenous Architectures 1:35

Stavros Tzilis, Pedro Trancoso, and Ioannis Sourdis. 2019. Energy-E�cient Runtime Management of Heterogeneous

Multicores using Online Projection. TACO 15, 4 (2019), 63:1–63:26.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java

Bytecode Optimization Framework. In CASCON. IBM Press, Indianapolis, US, 13–.

Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer. 2012a. Scheduling Heterogeneous

Multi-cores �rough Performance Impact Estimation (PIE). In ISCA. IEEE, New York, NY, USA, 213–224.

Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer. 2012b. Scheduling Heterogeneous

Multi-cores �rough Performance Impact Estimation (PIE). In ISCA. IEEE Computer Society, Washington, DC, USA,

213–224.

Zheng Wang and Michael F. P. O’Boyle. 2018. Machine Learning in Compiler Optimization. Proc. IEEE 106, 11 (2018),

1879–1901. DOI:h�p://dx.doi.org/10.1109/JPROC.2018.2817118

Anton Weber, Kim-Anh Tran, Stefanos Kaxiras, and Alexandra Jimborean. 2017. Decoupled Access-Execute on ARM

big.LITTLE. CoRR abs/1701.05478 (2017), 1–25. arXiv:1701.05478 h�p://arxiv.org/abs/1701.05478

Youfeng Wu and James R. Larus. 1994. Static Branch Frequency and Program Pro�le Analysis. In MICRO. ACM, New York,

NY, USA, 1–11. DOI:h�p://dx.doi.org/10.1145/192724.192725

A. Yazdanbakhsh, J. Park, H. Sharma, P. Lot�-Kamran, and H. Esmaeilzadeh. 2015. Neural acceleration for GPU throughput

processors. In MICRO. IEEE, New York, NY, USA, 482–493.

Huazhe Zhang and Henry Ho�mann. 2016. Maximizing Performance Under a Power Cap: A Comparison of Hardware,

So�ware, and Hybrid Techniques. In ASPLOS. ACM, New York, NY, USA, 545–559.

Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib Kamil, Saman Amarasinghe, and Julian

Shun. 2020. Optimizing Ordered Graph Algorithms with GraphIt. In CGO. Association for Computing Machinery, New

York, NY, USA, 158–170. DOI:h�p://dx.doi.org/10.1145/3368826.3377909

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://dx.doi.org/10.1109/JPROC.2018.2817118
http://arxiv.org/abs/1701.05478
http://arxiv.org/abs/1701.05478
http://dx.doi.org/10.1145/192724.192725
http://dx.doi.org/10.1145/3368826.3377909

	Abstract
	1 Introduction
	2 Overview
	2.1 Program Inputs and Hardware Configuration
	2.2 Accounting for Energy Efficiency

	3 Multivariate Linear Regression of Program Inputs
	3.1 Multiple Linear Regression
	3.2 Engineering the Training Phase
	3.3 Generation of Adaptive Code

	4 Evaluation
	4.1 RQ1: Training
	4.2 RQ2: Speed
	4.3 RQ3: Energy
	4.4 RQ4: Convexity

	5 Related Work
	5.1 A General Overview on Program Scheduling in Heterogeneous Systems
	5.2 Scheduling in Single-ISA Heterogeneous Systems
	5.3 Input-Aware Program Autotuning

	6 Conclusion
	Acknowledgments
	References

