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Abstract

Themathematical theory of probabilities does not refer to the notion of an individual random object.
For example, whenwe toss a fair coin 𝑛 times, all 2𝑛 bit strings of length 𝑛 are equiprobable outcomes
and none of them is more “random” than others. However, when testing a statistical model, e.g., the
fair coin hypothesis, we necessarily have to distinguish between outcomes that contradict thismodel,
i.e., the outcomes that convince us to reject this model with some level of certainty, and all other
outcomes. The same question arises when we apply randomness tests to some hardware random
bits generator.

A similar distinction between random and non-random objects appears in algorithmic informa-
tion theory. Algorithmic information theory defines the notion of an individual random sequence
and therefore splits all infinite bit sequences into random and non-random ones. For finite sequences
there is no sharp boundary. Instead, the notion of randomness deficiency can be defined, and se-
quences with greater deficiency are considered as “less random” ones. This definition can be given
in terms of randomness tests that are similar to the practical tests used for checking (pseudo)random
bits generators. However, these two kinds of randomness tests are rarely compared and discussed
together.

In this survey we try to discuss current methods of producing and testing random bits, having
in mind algorithmic information theory as a reference point. We also suggest some approach to
construct robust practical tests for random bits, and describe software tools that we have developed.

The short version of this report appeared as [55].
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Chapter 1

Statistics and tests

1.1 Testing a statistical hypothesis
Probability theory is nowadays considered as a special case of measure theory: a random variable
is a measurable function defined on some probability space that consists of a set Ω, some 𝜎-algebra
of the subsets of Ω, and some 𝜎-additive measure defined on this 𝜎-algebra. A random variable
determines a probability distribution on the set of possible values.

When probability theory is applied to some “real world” case, it provides a statistical hypothesis
that is a mathematical model of the process. For example, for 𝑛 trials and the fair coin the corre-
sponding model is the uniform distribution on the set 𝔹𝑛 of all possible outcomes, i.e., on all 𝑛-bit
binary strings. Each string has probability 2−𝑛. The set 𝔹𝑛 can be considered as a probability space,
and 𝑖th coin tossing is represented by a random variable 𝜉𝑖 defined on this space: 𝜉𝑖(𝑥1𝑥2…𝑥𝑛) = 𝑥𝑖.

Having a mathematical model for a real-life process, we need some way to check whether this
model is adequate or not. Imagine that somebody gives us a coin, or a more advanced random bits
generator. This coin can be asymmetric, and the bit generator can be faulty. To check whether this is
the case, we need to perform some experiment and look at its results. Assume, for example, that we
toss a coin and get 85 heads in a row, as it happened to Rosencrantz and Guildenstern in Stoppard’s
play [58, Act 1]. Should we reject the fair coin hypothesis? Probably we should — but how can we
justify this answer? One can argue that for a fair coin such an outcome is hardly possible, since its
probability is negligible, namely, equals 2−85. However, any other sequence of 85 heads and tails has
the same negligible probability — so why this reasoning cannot be applied to any other outcome?

To discuss this problem in a more general case, let us introduce suitable terminology. Consider
some set 𝑋 of possible outcomes. We assume that 𝑋 is finite. Fix some statistical model 𝑃, i.e., a
hypothetical probability distribution on 𝑋. A randomness test is an event 𝑇 ⊂ 𝑋 that has small prob-
ability according to 𝑃. If an experiment produces an outcome that belongs to 𝑇, the test is not passed,
and we may reject 𝑃. This approach has two main problems. The first problem, mentioned earlier,
is that in most cases every individual outcome 𝑥 ∈ 𝑋 has negligible probability, so the singleton {𝑥}
is a test that can be used to reject 𝑃. We discuss this problem later. Now let us comment on the
other problem: how to choose the threshold value for the probability, i.e., how small should be the
probability of 𝑇 to consider 𝑇 as a valid randomness test.

In practice, the statistical model is often called the null hypothesis. Usually we have some ex-
perimental data that, as we hope, exhibit some effect. For example, we may hope that a new drug
increases the survival rate, and indeed we see some improvement in the experimental group. How-
ever, this improvement could be just a random fluctuation while in fact the survival probability
remains unchanged. We formulate the null hypothesis based on the old value of the survival proba-
bility and then apply some test. The rejection of the null hypothesis means that we do not consider
the data as a random fluctuation, and claim that the new drug has at least some effect.¹

¹Of course, we simplified the situation in this example: rejecting the null hypothesis saying that the drug has no
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In this approach, the choice of the threshold value obviously should depend on the importance of
the question we consider. Any decision based on statistical considerations is inherently unreliable,
but an acceptable level of this unreliability depends on the possible consequences of awrong decision.
The more important the consequences are, the smaller threshold for statistical tests is needed. The
choice of the threshold value is often debated. For example, there is a paper [3] signed by 72 authors
that proposes “to change the ⟨…⟩ threshold for statistical significance from 0.05 to 0.005 for claims
of new discoveries”. It may look ridiculous — obviously both the old threshold and the new one are
chosen arbitrarily — but it reflects the existing situation in natural sciences. Other people point out
that fixing a threshold, whatever it is, is a bad practice [1].

1.2 Randomness tests
Now let us address the other problem mentioned above. After the experiment is made, we can find a
set 𝑇 of very small measure that contains the actual outcome of the experiment, and declare it to be a
randomness test. For example, Rosencrantz could toss a coin 85 times, write down the sequence 𝑥 of
heads and tails obtained, and then try to convince Guildenstern that the fair coin hypothesis should
be rejected, because the set 𝑇 = {𝑥} is a test that has probability 2−85 according to the hypothesis
and still the actual outcome is in 𝑇.

This argument is obviously wrong, but it is not that easy to say what exactly is wrong here. The
simplest — and rather convincing — answer is that the test should be fixed before the experiment.
Indeed, if Rosencrantz showed some sequence of heads and tails to Guildenstern and after that the
coin tossing gave exactly the same sequence, this would be a very convincing reason to reject the
null hypothesis of a fair coin.

Still this answer is not universal. Imagine that we buy a book called “A Million Random Digits”².
We open it and find that it is filledwith zeros. Dowe have reasons to complain? If we have said “Look,
this book is suspicious; may be it contains only zeros” before opening the book, then we definitely do
— but what if not? Or what if we find out that the digits form the decimal expansion of 8.5𝜋? Note
that this hypothesis hardly can come to our mind before we study the book carefully.

Sometimes the experiment is already in the past, so we look at the data already produced, like
Kepler did when analyzing the planet observations. Probably, in this case we should require that
the test is chosen without knowing the data, but it is (a) more subjective and (b) rarely happens in
practice, usually people do look at the data before discussing them.

On the other hand, even the test formulated before the experiment could be dubious. Imagine
that there are many people waiting for an outcome of the coin tossing, and each of them declares
her own statistical test, i.e., a set of outcomes that has probability at most 𝜀. Here 𝜀 is some small
number; it is the same for all tests. After the experiment it is found that the outcome fails one of
the tests, i.e., belongs to the small set declared by one of the observers. We are ready to declare that
the null hypothesis is rejected. Should we take into account that there were many tests? One can
argue that the probability to fail at least one of the 𝑁 tests is bounded by 𝑁𝜀, not 𝜀, so the result
is less convincing than the same result with only one observer. This correction factor 𝑁 is often
called the Bonferroni correction and is quite natural. On the other hand, the observer who declared
the failed test could complain that she did not know anything about other observers and it is a
completely unacceptable practice if actions of other people beyond her control and knowledge are
considered as compromising her findings. And it is difficult to answer in a really convincing way to
this complaint.

In fact, this is not only a philosophical question, but also an important practical one. If a big
laboratory with thousand researchers uses threshold value 0.05 for statistical significance, then we
effect is not enough. We want to be convinced that the drug effect is beneficial.

²By the way, one can still buy such a book [48] now (August 2019) for 50.04 euro, or 903.42 euro, if you prefer the
first edition, but agree to get a second-hand copy.
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could expect dozens of papers coming from this lab where this threshold is crossed — even if in fact
the null hypothesis is true all the time.

There are no universally accepted or completely convincing answers to these questions. How-
ever, there is an important idea that is a philosophical motivation for algorithmic information theory.
We discuss it in the next section.

1.3 “Remarkable” events as tests
Recall the example with zeros in the table of random numbers and the corresponding singleton test
that consists of the zero sequence. Even if we have not explicitly formulated this test before reading
the table, one can say that this test is so simple that it could be formulated before the experiment.
The fact that all outcomes are heads/zeros is remarkable, and this makes this test convincing.

This question is discussed by Borel [7]. He quotes Bertrand who asked whether we should look
for a hidden cause if three stars form an equilateral triange. Borel notes that nobody will find
something strange if the angle between two stars is exactly 13∘42′51.7″, since nobody would ask
whether this happens or not before the measurement (“car on ne se serait jamais posé cette question
précise avant d’avoir mesuré l’angle”). Borel continues:

La question est de savoir si l’on doit faire ces mêmes réserves dans le cas où l’on constate
qu’un des angles du triangle formé par trois étoiles a une valeur remarquable et est, par
exemple, égal à l’angle du triangle équilatéral ⟨…⟩ Voici ce que l’on peut dire à ce sujet
: on doit se défier beaucoup de la tendance que l’on a à regarder comme remarquable
une circonstance que l’on n’avait pas précisée avant l’expérience, car le nombre des cir-
constances qui peuvent apparaître comme remarquables, à divers points de vue, est très
considérable [7, p. 112–113]³

This quotation illustrates a trade-off between the probability of the event specified by some random-
ness test and its “remarkability”: if there are𝑁 events of probability at most 𝜀 that are “as remarkable
as the test event” (or “more remarkable”), then the probability of the combined test event is at most
𝑁𝜀. In other words, we should consider not an individual test, but the union of all tests that have
the same probability and the same (or greater) “remarkability”.

The problem with this approach is that we need to quantify somehow the “remarkability”. The
algorithmic information theory suggests to take into account the Kolmogorov complexity of the
test, i.e., to count the number of bits needed to specify the test. More remarkable tests have shorter
descriptions and smaller complexity. The natural way to take the complexity into account is to
multiply the probability by 𝑂(2𝑛) if the complexity of the test is 𝑛, since there is at most 𝑂(2𝑛)
different descriptions of size at most 𝑛 bits and therefore at most 𝑂(2𝑛) tests of complexity at most
𝑛.

However, the word “description” is too vague. One should fix a “description language” that de-
termines which test corresponds to a given description, i.e., to a given sequence of bits. Algorithmic
information theory does not fix a specific description language; instead, it defines a class of descrip-
tion languages and proves that there are optimal description languages in this class. Optimality is
understood “up to 𝑂(1) additive term”: a language 𝐿 is optimal if for any other language 𝐿′ in the
class there exist a constant 𝑐 (depending on 𝐿′) with the following property: if a test 𝑇 has description
of length 𝑘 via 𝐿′, it has a description of length at most 𝑘 + 𝑐 via 𝐿. This implies that two different
optimal languages lead to complexity measures that differ at most by 𝑂(1) additive term.

³The question is whether we should have the same doubts in the case where one of the angles of a triangle formed
by tree stars has some remarkable value, for example, is equal to the angle of an equilateral triangle. ⟨…⟩ Here we could
say the following: one should resist strongly to the tendency to consider some observation that was not specified before
the experiment as remarkable, since the number of circumstances that may look remarkable from different viewpoints
is quite significant.
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Probably this 𝑂(1) precision is the best thing a mathematical theory could give us. However,
if one would like to define “the gold standard” for valid use of statistical tests, this is obviously
not enough, and one should fix some specific description language. It looks like a difficult task
and there are no serious attempts of this type. Still one could expect that this language should be
domain-specific and take into account the relations and constants that are “naturally defined” for
the objects in question. This is discussed in details by Gurevich and Passmore [14]. The authors
note that questions about statistical tests and their validity do arise in courts when some statistical
argument is suggested as evidence, but there are no established procedures to evaluate statistical ar-
guments.⁴ One could also mention a similar (and quite important) case: statistical “fingerprints” for
falsified elections. There are many examples of this type (see the survey [53] and references within).
Let us mention two examples that illustrate the problem of “remarkable post factum observations”.
Figure 1.1 (provided by Kupriyanov [26]) presents the official results of the “presidential elections”

Figure 1.1: “Putin’s grid” in 2018 [26]. Note that vertical and horizontal lines are formed by data
points, they are not the added grid lines.

in Russia in 2018 and is constructed as follows: for every polling station where both the reported
participation rate and the fraction of votes for de facto president of Russia (Putin) exceed 80%, a cor-
responding grey point is shown. If several points coincide, a darker/bigger point appears. Looking
at the “grid lines” formed by these points (for integer percentages; more visible lines appear for the
percentages that are multiples of 5), one probably agrees that such a remarkable grid has negligible
probability to appear naturally for any kind of elections. However, it is far from obvious which
statistical test should be considered here and how can we quantitatively estimate its complexity and
its probability.

Related example is provided by “referendum results” in Crimea (Ukraine). As noted byAlexander
Kireev [24], the “official results” in Sevastopol (Crimea) include the following data: total numbers
of registered voters (306258), total number of ballots (274101) and the number of “yes for the annex-
ation” votes (262041). The two main ratios (the participation rate and “yes” rate) are suspiciously
round: 274101/306258 = 0.895000294 and 262041/274101 = 0.95600162. Indeed, in both cases the

⁴In this paper some thought experiments and one real story are considered as examples. One of the thought ex-
periments is as follows: the wife of a president of a state lottery turns out to be its winner. Recently I learned
that this example is not so far from the real life as one could think: in 2000 BBC reported that “Zimbabwean Pres-
ident Robert Mugabe has won the top prize [about $2600] in a lottery organised by a partly state-owned bank”
(http://news.bbc.co.uk/2/hi/africa/621895.stm).
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numerator can be obtained by multiplying the denominator by the integer number of promilles and
rounding to the closest integer. Probably most statisticians would agree that this coincidence is re-
markable and has very small probability, but it is difficult to agree on a specific quantitative estimate
of the corresponding probability after a suitable Bonferroni correction.⁵

1.4 Randomness tests in algorithmic information theory
Algorithmic information theory (also called Kolmogorov complexity theory) is outside the scope of
this survey⁶, but let us mention a few results that have philosophical importance and should be kept
in mind when discussing randomness at any level.

Roughly speaking, algorithmic information theory says that randomness is incompressibility.
More precisely, a binary string looks plausible as an outcome of a fair coin (does not convince us to
reject the fair coin hypothesis) if it is incompressible, i.e., if there is no program that produces this
string and is much shorter than the string itself. In other words, we

• define Kolmogorov complexity of a string as the minimal length of a program that produces it;
in this definition we use some optimal programming language that makes complexity minimal
up to an 𝑂(1) additive term;

• note that all 𝑛-bit strings have complexity at most 𝑛 + 𝑂(1), since a trivial program “print 𝑥”
has almost the same size as 𝑥;

• note that at most 2−𝑐 fraction of 𝑛-bit strings have complexity less than 𝑛 − 𝑐, so this is a
very small minority for non-negligible values of 𝑐; we treat members of this minority as non-
random strings.

This approach is consistent with what we said above about valid tests for randomness as simple
sets of small probability. Namely, we consider a test that consists of highly compressible strings,
and note that this test is universal in some sense, i.e., it is as sensitive as any other test, up to an
𝑂(1)-constant.

Technically speaking, there is a result that relates complexity to the randomness deficiency in
terms of tests. We state this result for a simple case (uniform distribution on the set of strings of
given length; see the textbook [56, Section 14.1] for a more general statement). It uses the notion of
conditional complexity C(𝑥|𝑢) of a string 𝑥 given some 𝑢 (an integer) defined as the minimal length
of a program that produces 𝑥 given 𝑢 as an input.

Consider some integer function 𝑑(𝑥) defined on bit strings. Call it a deficiency function if it
satisfies two requirements:

• 𝑑(𝑥) is lower semicomputable, i.e., 𝑑(𝑥) can be presented as a limit of a non-decreasing com-
putable sequence of integers (uniformly in 𝑥), and

• for every 𝑘, the fraction of 𝑛-bit strings such that 𝑑(𝑥) > 𝑘, is 𝑂(2−𝑘).

Such a deficiency function determines, for every 𝑛, a series of tests for uniformly distributed
𝑛-bit strings, where the 𝑘th test set for 𝑛-bit strings consists of strings of length 𝑛 such that 𝑑(𝑥) >

⁵A rough estimate is attempted in the survey mentioned above [53, p. 49–50]. It takes into account other information
about the case. Both anomalies, the integer grid and round percentages, appeared in earlier “elections”, so it is not really
fair to call them “post factum observations”. For the Crimea’s “referendum results” the upper bound for the probability
after the correction is estimated as 0.1%.

⁶The short introduction can be found in the lecture notes [52] or in the introductory part of the textbook [56]. The
algorithmic statistics, the part of algorithmic information theory that deals specifically with the statistical hypotheses
and their testing, is discussed in two surveys [60, 61].
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𝑘. In terms of the next section, 2𝑑(𝑥) is a probability bounded test up to a constant factor. The
second requirement guarantees that the test sets have small probability according to the uniform
distribution. The first one means, informally speaking, that the test is “semi-effective”: if 𝑥 has some
peculiar property that makes it non-random, then we will ultimately discover this property and 𝑑(𝑥)
will become large, but we never can be sure that 𝑥 does not have properties that make it non-random,
since 𝑑(⋅) is not required to be computable.

Proposition 1. Among the deficiency functions there is a maximal one up to 𝑂(1), i.e., a deficiency
function 𝑑 such that for every other deficiency function 𝑑′ we have 𝑑(𝑥) ⩾ 𝑑′(𝑥)−𝑐 for some 𝑐 and all 𝑥.
This maximal function is equal to 𝑛 − C(𝑥|𝑛) + 𝑂(1) for 𝑛-bit strings 𝑥.

This result shows that the difference between length and complexity is the “universal measure
of non-randomness” that takes into account all regularities that make a string 𝑥 non-random. It is
easy to prove also that if a string 𝑥 belongs to a simple small set, then its deficiency is large, thus
confirming the informal idea that a small set exhibits non-randomness of its elements.

There are many results about randomness deficiencies in this sense, but we cannot go into the
details here and return instead to some other topics that are important for practical randomness
tests.

1.5 Families of tests and continuous tests
The law of large numbers says that for independent Bernoulli trials, e.g., for fair coin tossing, the
number of successful trials is with high probability close to its expectation, i.e., to 𝑛/2 for 𝑛 coin
tossings. Therefore, large deviation is a rare event and can be used as a randomness test: as the
deviation threshold increases, the probability of the event “the deviation exceeds this threshold”
decreases, usually rather fast.

Instead of fixing some significance level and the corresponding threshold one could consider a
family of tests: for every significance level 𝜀 we consider a set 𝑇𝜀 of measure at most 𝜀. It consists
of the outcomes where deviation exceeds some threshold that depends on 𝜀. As 𝜀 decreases, the
threshold increases, and the set 𝑇𝜀 and its measure decrease.

Such a family of tests can be combined into one non-negative function 𝑡(𝑥) defined on the set of
possible outcomes, if we agree that 𝑇𝜀 is the set of outcomes where 𝑡(𝑥) ⩾ 1/𝜀. Here we use 𝑐 = 1/𝜀
as the threshold instead of 𝜀 to simplify the comparison with expectation-bounded tests discussed
below. In this language the bound for the probability of 𝑇𝜀 can be reformulated as

Pr[𝑡(𝑥) ⩾ 𝑐] ⩽ 1/𝑐 for every 𝑐 > 0 (∗)

Informally speaking, 𝑡(𝑥) measures the “rarity”, or “randomness deficiency” of an outcome 𝑥: the
greater 𝑡(𝑥) is, the less plausible is 𝑥 as an outcome of a random experiment.

Functions 𝑡 that satisfy the condition (∗) are called probability-bounded randomness tests [4].
Sometimes it is convenient to use the logarithmic scale and replace 𝑡 by log 𝑡. Then the condition (∗)
should be replaced by the inequality Pr[𝑡(𝑥) ⩾ 𝑑] ⩽ 2−𝑑. Note that a similar condition was used for
deficiency functions in Section 1.4.

The condition (∗) is a consequence of a stronger condition ∫ 𝑡(𝑥) 𝑑𝑃(𝑥) ⩽ 1 where 𝑃 is the prob-
ability distribution on the space of outcomes. In other terms, this stronger requirement means that
the expected value of 𝑡 (over the distribution 𝑃) is at most 1, and the condition (∗) is its consequence,
guaranteed by Markov’s inequality. The functions 𝑡 that satisfy this stronger condition are called
expectation-bounded randomness tests [4].

In fact these two notions of test are rather close to each other: if 𝑡 is a probability-bounded test,
then 𝑡/ log2 𝑡 is an expectation-bounded test up to𝑂(1)-factor. Moreover, the following general result
is true:
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Proposition 2. For everymonotone continuous function 𝑢∶ [1, +∞] → [0,∞] such that∫∞
1 𝑢(𝑧)/𝑧2 𝑑𝑧 ⩽

1 and for every probability-bounded test 𝑡(⋅) the composition 𝑢(𝑡(⋅)) is an expectation-bounded test.

The statement above [10] is obtained by applying Proposition 2 to 𝑢(𝑧) = 𝑧/ log2 𝑧.
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Chapter 2

Randomness tests

2.1 Where do we get randomness tests?
As we have mentioned, different classical results of probability theory can be used as randomness
tests. Take for example the law of large numbers. It says that some event, namely, a large deviation
from the expected value, has small probability. This event can be considered as a test set. Mathe-
matical statistics provides a whole bunch of tests of this type for different distributions, including
𝜒2-test, Kolmogorov–Smirnov test, and others.

Another source of statistical tests, though less used in practice, is provided by the probabilistic
existence proofs. Sometimes we can prove that there exists an object with a given combinatorial
property, say, a graph with good expansion properties, and the proof goes as follows. We consider
a probabilistic process that constructs a random object. In our example this object is a graph. We
prove that with high probability this random object satisfies the combinatorial property. Now we
use the bit source that we want to test as a source of random bits for the algorithm. If we find out
that the object constructed by the algorithm does not have the combinatorial property in question,
we conclude that a rare event happened, and our source of random bits failed the test.

One should also mention tests inspired by algorithmic information theory (see, e.g., a 1992 paper
by Maurer [34]) Each file compressor (like zip, bzip, etc.) can be considered as a random test.
Assume that we have a sequence of bits, considered as a file, i.e., a sequence of bytes. If this file
can be compressed by 𝑛 bytes for some non-negligible 𝑛, say, by a dozen of bytes, then this bit
sequence fails the test and can be considered as non-random one. Indeed, the probability of this
event is at most 256−𝑛, up to a factor close to 1. The Bonferroni correction here says that we should
multiply this probability by the number of popular compressors, but even if we assume that there
are thousands of them in use, it usually still keeps the probability astronomically small.

There is also a general way to construct probability-bounded tests. It is called “𝑝-values”, and
the two previous examples of randomness tests can be considered as its special cases. Consider an
arbitrary real-valued¹ function 𝐷 defined on the space of outcomes. The value 𝐷(𝑥) is treated as
some kind of “deviation” from what we expect, so we use the letter 𝐷. Then consider the function

𝑝𝐷(𝑥) = Pr[{𝑦 ∶ 𝐷(𝑦) ⩾ 𝐷(𝑥)}].

(defined on the same set of outcomes). In other words, for every threshold 𝑑 we consider the set

𝑇𝑑 = {𝑦∶ 𝐷(𝑦) ⩾ 𝑑}

of all outcomes where the deviation is at least 𝑑, and measure the probability of this event, thus
“recalibrating” the deviation function. In this language, 𝑝𝐷(𝑥) is the probability of the event 𝑇𝐷(𝑥),

¹This trick in a more general situation where the values of𝐷 are elements of some linearly ordered set, is considered
in a paper by Gurevich and Vovk [15].
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the chance to have in a random experiment of the given type the same deviation as it happened now,
or a larger one.

Proposition 3.
(a) For every 𝑐 ⩾ 0, the probability of the event 𝑝𝐷(𝑥) ⩽ 𝑐 is at most 𝑐.
(b) If each value of function 𝐷 has probability at most 𝜀, then the probability of the event 𝑝𝐷(𝑥) ⩽ 𝑐

is between 𝑐 − 𝜀 and 𝑐.

Proof. The probability 𝑝𝑑 = Pr[𝑇𝑑] decreases (more precisely, does not increase) as 𝑑 increases. The
function 𝑑 ↦ 𝑝𝑑 is left-continuous since the inequalities 𝐷 ⩾ 𝑑′ for all 𝑑′ < 𝑑 imply 𝐷 ⩾ 𝑑. However,
it may not be right-continuous, and a similar argument shows that the gap between the value of 𝑝𝑑
and the right limit lim𝑑′→𝑑+0 𝑝𝑑′ is the probability of the event {𝑥∶ 𝐷(𝑥) = 𝑑}. Now we add to
this picture some threshold 𝑐, see Figure 2.1. It may happen (case 1) that 𝑐 is among the values

𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 ⩾ 𝑑0

Pr[𝐷(𝑥) = 𝑑0] ⩽ 𝜀

Pr[𝐷(𝑥) ⩾ 𝑑0] = 𝑐
𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 > 𝑑0

gap ⩽ 𝜀

Pr[𝐷(𝑥) > 𝑑0] = Pr[𝑝𝐷(𝑥) ⩽ 𝑐]
𝑑

𝑝𝑑

𝑐

𝑑0

𝑝𝑑 ⩽ 𝑐 ⇔ 𝑑 ⩾ 𝑑0

Pr[𝐷(𝑥) ⩾ 𝑑0] = 𝑐

Figure 2.1: Proof of Proposition 3

𝑝𝑑. This case is shown on the left and right pictures (Figure 2.1). On the right picture the function
𝑝𝑑 is constant on an interval where there are no values of 𝐷 or these values have probability 0.
Case 2: the threshold 𝑐 may fall in a gap between some value of 𝑝𝑑 and the right limit in the same
point (denoted by 𝑑0), as shown in the middle picture. The size of the gap is the probability of the
event 𝐷(𝑥) = 𝑑0 and is at most 𝜀 according to our assumption. For the left and right pictures the
inequality 𝑝𝐷(𝑥) ⩽ 𝑐 means that 𝐷(𝑥) ⩾ 𝑑0, and the probability of the event 𝑝𝐷(𝑥) ⩽ 𝑐 is exactly
𝑝𝑑0 = 𝑐, so both statements (a) and (b) are true. In this case the value of 𝜀 does not matter. For the
middle picture 𝑝𝐷(𝑥) ⩽ 𝑐 when 𝑑 > 𝑑0, and the probability of this event is not the value of 𝑝𝑑 when
𝑑 = 𝑑0 but the right limit of 𝑝𝑑 as 𝑑 → 𝑑0 + 0. Still the difference does not exceed 𝜀 according to the
assumption in (b), and again both statements are true.

Remark 1. This proof is given for the general case (𝑋 may be infinite); in the finite case the function
𝑝𝑑 has only finitely many values, and the graph is a finite family of horizonal lines.
Remark 2. Proposition 3 obviously implies that the function 1/𝑝𝐷(𝑥) is a probability-bounded test.
This observation allows us to construct many probability-bounded tests, starting from almost any
random variable 𝐷. For example, we get a test from a probabilistic existence proof if we let 𝐷 be the
function that appears in the combinatorial statement, e.g., the second eigenvalue for the probabilistic
proof that expander graphs exists. The only caveat is that we need to compute the function 𝑑 ↦ 𝑝𝑑,
and this is usually not so easy. This function is often replaced by some its approximation, and this
may lead to problems; see the discussion below.
Remark 3. If we apply this procedure to a function 𝐷 that is already a probability-bounded test, then
by definition we get some new test 𝑡 = 1/𝑝𝐷 such that 𝑡(𝑥) ⩾ 𝐷(𝑥) for all 𝑥. In general, the function
𝑡 could exceed 𝐷 if the inequality in the condition (∗), Section 1.5, is strict.
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2.2 Secondary tests
There is an important type of randomness tests that can be called “secondary tests”. Tests of this
type were already mentioned in the classical book of Knuth [25, Section 3.3.1, B] and are extensively
used in practical test suites [29]. Recall Proposition 3 and assume for a while that every individual
value of 𝐷 has very small probability, so we may assume that there are (almost) no gaps in the graph
of 𝑝𝑑. Then Proposition 3 says that the random variable 𝑝𝐷 is uniformly distributed on [0, 1]. Repeat
the test 𝑁 times, using fresh random bits (from the generator we are testing) for each repetition.
Assuming that the null hypothesis is true, we get𝑁 independent reals that are uniformly distributed
in [0, 1]. Then we may apply any test for the independent uniformly distributed variables, e.g., the
Kolmogorov–Smirnov test for this distribution.

This procedude converts any 𝑝-value test for a random bits generator that has negligible probabil-
ities of individual values into a “secondary test” that could be much more sensitive. Knuth describes
a similar trick, but he does not use the recalibration using 𝑝-values and applies the Kolmogorov–
Smirnov (KS) test directly to the values of 𝐷 and the distribution that should appear if the null
hypothesis is true:²

…We should observe that the KS test may be used in conjunction with the 𝜒2 test…
Suppose we have made, say, 10 independent 𝜒2 tests of different parts of a random
sequence, so that values𝑉1, 𝑉2, … , 𝑉10 have been obtained. It is not a good policy simply to
count how many of the 𝑉’s are suspiciously large or small. This procedure will work in
extreme cases, and very large or very small values may mean that the sequence has too
much local nonrandomness; but a better general method would be to plot the empirical
distribution of these 10 values and to compare it to the correct distribution…This would
give a clearer picture of the results of the 𝜒2 tests, and in fact the statistics 𝐾+

10 and 𝐾−
10

[from KS test] could be determined as an indication of the success or failure… [Speaking
about an example discussed earlier:] Notice that all 20 observations in Fig. 4 (c) [a figure
from Knuth’s book that we do not reproduce] fall between the 5 and 95 percent levels,
so we would not have regarded any of them as suspicious, individually; yet collectively
the empirical distribution shows that these observations are not at all right [25, Section
3.3.1, p. 50–51].

We return to the use of secondary tests in practical test suites in the next section.

2.3 Testing (pseudo)randomness in practice
There are several suits of randomness tests that are often used. The early history of randomness tests
(as well as pseudorandom number generators) is described by Knuth [25, Section 3.3]. He starts with
𝜒2 and Kolmogorov–Smirnov tests, explains secondary testing (see the quote in the previous section)
and also describes several ad hoc tests.

2.3.1 Diehard

Later George Marsaglia developed a diehard series of tests that were included (as C and Fortran
sources) in a CD that he prepared [29]. That CD also included a collection of files with “random” bits,
constructed by combining the output of hardware random bits generators with some deterministic
pseudorandom sequences, see below Section 4.1. The description of the tests could be found in
Marsaglia’s papers [28, 31]; see also the file tests.txt in the source code of the tests [29].

²This is an equivalent approach since KS-test gives the same result after any monotone recalibration of the empirical
values and theoretical distribution.
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However, there are some problems with these tests. They heavily use the secondary test ap-
proach but not always in a correct way. First, one of the tests computes 𝑝-values for data that are
not independent, as the following description, copied verbatim from the source code, shows:

This is the BIRTHDAY SPACINGS TEST

Choose m birthdays in a year of n days. List the spacings

between the birthdays. If j is the number of values that

occur more than once in that list, then j is asymptotically

Poisson distributed with mean m^3/(4n). Experience shows n

must be quite large, say n>=2^18, for comparing the results

to the Poisson distribution with that mean. This test uses

n=2^24 and m=2^9, so that the underlying distribution for j

is taken to be Poisson with lambda=2^27/(2^26)=2. A sample

of 500 j’s is taken, and a chi-square goodness of fit test

provides a p value. The first test uses bits 1-24 (counting

from the left) from integers in the specified file.

Then the file is closed and reopened. Next, bits 2-25 are

used to provide birthdays, then 3-26 and so on to bits 9-32.

Each set of bits provides a p-value, and the nine p-values

provide a sample for a KSTEST.

As we see from this description, the different 𝑝-values use overlapping bits (2–25, 3–26, etc.) of the
same numbers. There is no reason to expect that they are independent, contrary to the requirements
of the Kolmogorov–Smirnov test. This description also exhibits another problem that appears in
many tests from diehard suite. We use some asymptotic approximation, in this case the Poisson
distribution, instead of the true distribution, ignoring the approximation error for which we have
no upper bounds. Moreover, even if the error can be upper-bounded for the primary test, this upper
bound does not translate easily into a bound for an error in the secondary test where we use the
approximate distribution for recalibrating the deviations. The same problem appears in rank 6 × 8
test (Kolmogorov–Smirnov test is applied to dependent variables).

Sometimes even the parameters of approximate distribution are only guessed. For example, in
the description of one of the tests (named OQSO)Marsaglia writes about the distribution: “Themean
is based on theory; sigma comes from extensive simulation”. For the other one (called “parking lot
test”) even the mean is based on simulation: “Simulation shows that 𝑘 should average 3523 with
sigma 21.9 and is very close to normally distributed. Thus (𝑘 − 3523)/21.9 should be a standard
normal variable, which, converted to a uniform variable, provides input to a KSTEST based on a
sample of 10”. Here KSTEST is the Kolmogorov–Smirnov test for uniform distribution. The arising
problem is described by Marsaglia as follows:

NOTE:Most of the tests in DIEHARD return a 𝑝-value, which should be uniform on [0, 1)
if the input file contains truly independent random bits. Those 𝑝-values are obtained
by 𝑝 = 𝐹(𝑋), where 𝐹 is the assumed distribution of the sample random variable 𝑋 —
often normal. But that assumed 𝐹 is just an asymptotic approximation, for which the
fit will be worst in the tails. Thus you should not be surprised with occasional 𝑝-values
near 0 or 1, such as .0012 or .9983. When a bit stream really FAILS BIG, you will get 𝑝’s
of 0 or 1 to six or more places. By all means, do not, as a Statistician might, think that
a 𝑝 < .025 or 𝑝 > .975 means that the RNG has “failed the test at the .05 level”. Such 𝑝’s
happen among the hundreds that DIEHARD produces, even with good RNG’s. So keep
in mind that “𝑝 happens”.

This note combines two warnings. One is quite general and is related to the question of many tests
applied to one sequence, see the discussion of the Bonferroni correction above, Section 1.2. The
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Figure 2.2: Many tests are based on approximation. The graph (a) shows the distributions of the
output of Knuth’s run test [25, Section 3.3.2] for several runs on data from bittbabbler generator
with sample size 1000. They all seem to deviate from the uniform distribution on [0, 1] significantly
(and in a similar way). Is this because of a bad generator or a bad approximation? Probably the
latter, since for samples of size 10000 (as recommended by Marsaglia [29]) the curve is much closer
to the diagonal showing the theoretical uniform distribution on [0, 1].

other one that should be separated from the first (but is not) is that diehard tests are not really tests
in statistical sense, since they use the approximate distribution for recalibration (cf. Figure 2.2) and
therefore small 𝑝-values could appear more often than they should.

Some other tests (not included in diehard) were later suggested by Marsaglia and Tsang [30] (as
well as other authors, see below).

2.3.2 Dieharder

A decade later Robert Brown [9] produced an extended version of the diehard test suite, called
dieharder. The code was rewritten and published under GNU public license, integrated with GNU
statistical library and parametrized, so now one can vary the sample size and the number of 𝑝-values
easily. New tests were added and other improvements made. The resulting package is supported by
mainstream Linux distributions. The package involves an extensive documentation. In particular,
the man page says:

A failure of the distribution of 𝑝-values at any level of aggregation signals trouble. ⟨…⟩
The question is, trouble with what? Random number tests are themselves complex com-
putational objects, and there is a probability that their code is incorrectly framed or that
roundoff or other numerical — not methodical — errors are contributing to a distortion
of the distribution of some of the 𝑝-values obtained.

In this quote two problems are noted: the coding errors in the tests, and the problems related to the
mathematical flaws in the approximate data used to construct the tests. The suggested solution for
both problems is the same: testing these tests on “reference” random number generators. The man

page says:

There are a number of generators that we have theoretical reasons to expect to be ex-
traordinarily good and to lack correlations out to some known underlying dimension-
ality, and that also test out extremely well quite consistently. By using several such
generators and not just one, one can hope that those generators have (at the very least)
different correlations and should not all uniformly fail a test in the same way and with
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the same number of 𝑝-values. When all of these generators consistently fail a test at
a given level, I tend to suspect that the problem is in the test code, not the generators,
although it is very difficult to be certain…
Tests (such as the diehard operm5 and sums test) that consistently fail at these high
resolutions are flagged as being “suspect” ⟨…⟩ and they are strongly deprecated! Their
results should not be used to test random number generators pending agreement in the
statistics and random number community that those tests are in fact valid and correct
so that observed failures can indeed safely be attributed to a failure of the intended null
hypothesis.

Unfortunately, dieharder-3.31.1, the last version available (as of March 2021), also has some
problems (see Section 7.1 for details). One of them, affecting almost all tests, is the incorrect code
that computes the Kolmogorov – Smirnov statistic. This code produces incorrect values, sometimes
even impossibly small values, and in this case the computation of 𝑝-value gives 1. Indeed, in this case
with probability 1 the deviation will be bigger than this impossibly small value. This is (correctly)
interpreted as the test failure. Fortunately, it seems that for larger sample sizes the error in the
statistics computation becomes less important.

2.3.3 NIST test suite

In 2000 the National Institute of Standards published a description of a test suite for randomness,
including the source code. Now there exists an updated version [37].³

The description starts with some general words about randomness: “For example, a physical
source such as electronic noise may contain a superposition of regular structures, such as waves or
other periodic phenomena, which may appear to be random, yet are determined to be non-random
using statistical tests” (p. 1-2). Then the authors speak about two types of possible errors: Type
I (rejecting a good generator) and Type II (accepting a bad one) and about probabilities of these
errors. However, their comments are misleading. Authors explain that a Type I error probability
is a probability for a random sequence to get into the rejection set under a null hypothesis 𝐻0 —
and this is correct. But then they say something confusing about the Type II errors: “Type II error
probability is ⟨…⟩ 𝑃(accept 𝐻0|𝐻0 is false)” [37, p.1-4]. While 𝐻0 is a statistical hypothesis (model),
namely, the assumption that the bits are independent and uniformly distributed, the words “𝐻0 is
false” do not define any distribution, so one cannot speak about this conditional probability. The
authors acknowledge this by saying “The probability of a Type II error is denoted as 𝛽. ⟨…⟩ Unlike
𝛼 [the probability of a Type I error], 𝛽 is not a fixed value. ⟨…⟩ The calculation of Type II error 𝛽 is
more difficult than the calculation of 𝛼 because of the many possible types of non-randomness” —
but still one could conclude from what the authors say that Type II error probability is well defined
and is some number, though difficult to compute. This is a gross misunderstanding.

Then the authors explain the meaning of 𝑝-values, but again their explanations sound confusing,
to say the least: “If a P-value for a test is determined to be equal to 1, then the sequence appears to
have perfect randomness” (page 1-4). In reality the value 1 is not much better than the value 0, since
the correctly computed 𝑝-values have uniform distribution. Even more strange is the following
remark: “For a P-value ⩾ 0.001, a sequence would be considered to be random with a confidence of
99.9%. For a P-value < 0.001, a sequence would be considered to be non-randomwith a confidence of
99.9% [37, p. 1-4, line 6 from below]. The second part could be interpreted in a reasonableway, though
one should be cautious here, especially in the case of many tests. But the first part is completely
misleading. Of course, one test that did not fail convincingly does not mean that the sequence is
random with high confidence!

³The original version contained 16 randomness tests. In 2004 some errors in two tests were pointed out [23]. Cor-
recting these errors, the revised version (2010) deleted one of the tests (the Lempel – Ziv test) and corrected the other
one (the Fourier spectral test).
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General remarks about tests constitute Part I of [37]. Parts II and III consist of the description
and commentary for 15 tests. Some are similar to the tests in diehardwhile some other are different.
The final Part IV, “Testing strategy and the Result Interpretation”, recommends two ways to analyze
the results of the tests. When several runs of a test produce a sequence of 𝑝-values, two forms of
analysis of this sequence are recommended: “Proportion of Sequences Passing a Test” (4.2.1) and
“Uniform Distribution of 𝑃-values” (4.2.2). Both are some variants of secondary tests: assuming that
the distribution of 𝑝-values is uniform in [0, 1], authors recommend to look at the proportion of
values exceeding some threshold and to compare it with the Bernoulli distribution (4.2.1), or divide
the interval [0, 1] into some number of bins and apply 𝜒2-test (4.2.2). This approach replaces the
Kolmogorov–Smirnov test used by Marsaglia in diehard, and in dieharder.

As for the case of dieharder, many tests from the NIST collection use approximations for com-
puting 𝑝-values. The only warning about the consequences of this approach appears in the last
section (p. 4-3):

In practice, many reasons can be given to explain why a data set has failed a statistical
test. The following is a list of possible explanations. The list was compiled based upon
NIST statistical testing efforts.
(a) An incorrectly programmed statistical test. ⟨…⟩
(b) An underdeveloped (immature) statistical test.
There are occasions when either probability or complexity theory isn’t sufficiently de-
veloped or understood to facilitate a rigorous analysis of a statistical test. Over time,
statistical tests are revamped in light of new results. Since many statistical tests are
based upon asymptotic approximations, careful work needs to be done to determine
how good an approximation is.
(c) An improper implementation of a random number generator. ⟨…⟩
(d) Improperly written codes to harness test input data. ⟨…⟩
(e) Poor mathematical routines for computing P-values. ⟨…⟩
(f) Incorrect choices for input parameters.

It is hardly surprising that with such a relaxed approach to statistical testing (“over time, sta-
tistical tests are revamped”) the authors have included two bad tests in the original version of the
document, see the paper [23] where the errors are noted. It is instructive to look at the errors in these
tests. The first error, in the Fourier spectral test, happened because the expectation and variance of
the approximating normal distribution were computed incorrectly. The second is more interesting,
since two different (and quite predictable) problemswith the 𝑝-values approach appeared at the same
time. First, the distribution of the test statistics based on the Lempel–Ziv compression algorithmwas
not computed exactly but was approximated using some presumably good pseudo-random number
generator as reference. The experiments with other generators made in the paper [23] showed that
this approximation is dubious. The other problem could be related to the non-negligible probability
of individual values. As we have mentioned, in this case the distribution of the 𝑝-values differs
from the uniform one. The results of numerical experiments described in the paper suggest that this
could be the reason for the rejection of truly random sequences. In the current version of the NIST
document⁴ this test is excluded (it contains 15 tests instead of 16).

⁴Unfortunately, the current version of the NIST report [37] was not checked carefully either. For example, the
description of the serial test (section 2.11.4, (5)) contains conflicting instructions for computing 𝑝-values: the example
includes division by 2 that is missing in the general formula. The C code follows the example, not the general formula.
Also the values of igamc function in this section are incorrect, while the correct values do appear few lines later, in
Section 2.11.6.
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Chapter 3

Robust randomness tests

3.1 Comparison with a trusted randomness source
There are different ways to deal with errors in statistical tests. Finding and correcting the coding
errors is a general problem for all software, and tests are no exceptions here. One may argue that,
since errors are anyway possible for many reasons (see the list above), we should not insist on the
mathematical correctness of tests, just deleting the tests when they are discovered to be incorrect.
Still the other approach is to do whatever we can to avoid errors that could be avoided. In this
section we explain, following the technical report [54], how one could avoid problems related (a) to
the approximation errors while computing 𝑝-values, and (b) to the non-negligible probabilities of
individual outcomes. This will be done in two steps.

Let us assume for now (in this section) that a reference generator that is truly random is available.
But instead of using the reference generator to find the approximate distributions or to look for sus-
picious tests, as suggested by the authors of dieharder and NIST tests, we use it directly. Recall that
the we used the Kolmogorov–Smirnov test to check that the distribution of 𝑝-values is consistent
with the uniform distribution, and our problem was that due to approximation errors and non-zero
probabilities of individual deviation values the distribution of 𝑝-values is not exactly uniform under
the null hypothesis. However, there is a version of the Kolmogorov–Smirnov test that deals with
two samples. Here the null hypothesis is that the two samples are formed by independent random
variables with the same distribution, but nothing is assumed about this distribution.

Therefore, we may proceed as follows. The first sample of 𝑝-values is constructed using the
random numbers generator that we test, as before. The second sample is constructed exactly in
the same way but using the reference generator. Then we apply the Kolmogorov–Smirnov test
for two samples. This procedure remains valid even if the formulas used to convert the deviations
into 𝑝-values are only approximately true, or even completely wrong, since even completely wrong
formulas would be the same for both generators, the one we test and the reference one. So we can
omit the recalibration step completely and just consider the samples of deviations.
Remark 4. In fact, only the ordering is important, so the Kolmogorov–Smirnov test for two samples
can be presented as follows. We have two arrays of reals, 𝑥1, … , 𝑥𝑛 (one sample) and 𝑦1, … , 𝑦𝑚 (another
sample). Then we combine them into one array of length 𝑛 + 𝑚 and sort this array, keeping track
of the origin: elements that came from the first and second samples are marked by letters 𝑋 and 𝑌
respectively. In this way we get a sequence of 𝑛 + 𝑚 letters 𝑋 and 𝑌 that contains 𝑛 letters 𝑋 and
𝑚 letters 𝑌, and consider some test statistic for the following null hypothesis: all ( 𝑛 +𝑚

𝑚 ) sequences
of this type are equiprobable. The Kolmogorov–Smirnov test uses some specific statistic, namely, the
maximal difference between the frequencies of 𝑋’s and 𝑌’s in all prefixes, but the same approach
can be used with any other test for this distribution.

The procedures to compute Kolmogorov–Smirnov 𝑝-values for two samples are included in the
R source code [47]. There is a simple combinatorial algorithm (the follows the definition directly)
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that works quite well; it would be exact if not the rounding errors for floating-point reals. Also
the R source includes some asymptotic approximation, but no error bounds for it, so it should not
be trusted too much. For more certainty, we rewrote rewrite the exact algorithm using integers
of arbitrary lengths (it is still reasonably fast for samples that contain several thousands values),
though floating point version is much faster. We used it for preliminary estimates (and check the
findings with exact algorithm). See Section 7.2 for details.
Remark 5. In this way we get a test that does not depend on the approximations to the distributions
that we do not know how to compute. However, there is some price for it. Since now the refer-
ence generator is an additional source of random variations, we need more samples to get the same
sensitivity of the test. This increase, however, is rather modest.

3.2 Testing without a trusted randomness source
We constructed a randomness test that does not rely on unproven assumptions about distributions
that we cannot compute exactly. However, it uses a reference generator that is assumed to be truly
random, and this is crucial. Obviously, if we use a faulty reference generator to test a truly random
one, the test will fail (the procedure is symmetric, so we get exactly the same result when testing a
faulty random generator against a truly random reference). In some sense, we constructed only a
“randomized test of randomness”. This is unsatisfactory, but can be easily avoided using the follow-
ing trick.

Let us consider 𝑛 deviation values 𝑑1, … , 𝑑𝑛 obtained by using bits from the generator we are
testing. Then construct the other sample, 𝑑′1, … , 𝑑′𝑚, but this time let us use not the reference gener-
ator but the bitwise xor of the bits from the reference generator and fresh bits from the generator
we are testing. Then we apply the Kolmogorov–Smirnov test to these two samples. If

1. the generator that we are testing is truly random, and

2. the reference generator and the test generator are independent,

then the probability to fail the test is guaranteed to be small due to Kolmogorov–Smirnov’s result.
Remark 6. Of course, if the reference generator is not independent with the one that we want to
test, the correctness claim is no more true. For example, if during the second part the reference
generator produces the same bits as the generator we are testing, the xor bits will be all zeros.
However, the independence condition looks much easier to achieve. For example, the reference bits
could be produced in different place, or in advance, or can even be an output of a fixed deterministic
pseudorandom generator.
Remark 7. If the reference generator produces truly random bits that are independent from the
output of the generator we are testing, then xor-bits are also truly random. So our new test is as
sensitive as the previous one (the comparisonwith the reference generator) if the reference generator
is truly random, but the correctness of the new test does not depend on the assumption of true
randomness for the reference generator.
Remark 8. There is one small problem that we have not mentioned yet: while sorting the array of
deviations, we may have ties. If some value from the first sample coincides with some value from
the second sample, then the letter (𝑋 or 𝑌 in our notation, see above) is not well defined. However,
we can break the ties randomly, using the bits of the generator we are testing. In this way we may
assume that these bits are truly random when bounding the probability of Type I error.
Remark 9. The same idea can be used even for “informal” tests. For example, imagine that we
construct some image based on the bits we test, and then people look at this image and decide
whether it looks similar to the pictures of the same type that use reference generator or there are
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some visible differences¹. Recalling the interactive non-isomorphism proof and using the same trick
as before, we can make a robust test. Take 2𝑛 disjoint bit blocks from the generator under testing.
Use 𝑛 of them to create images, and do the same for other 𝑛 blocks but use the bitwise xor of these
blocks and 𝑛 blocks of the same size from some other origin. As a source of these auxiliary blocks
one may use a reference generator, or the binary representation of 𝜋, or any other source. The only
requirement is that the auxiliary blocks should be fixed before sampling our generator. If a human
expert (or a machine-learning algorithm), looking at the resulting 2𝑛 images, can correctly classify
them into two groups according to their origin, then the generator fails the test, and the probability
of this for a true random bits generator is 2−2𝑛, up to a poly(𝑛)-factor.

One can also consider a more advanced version of this test. Several experts say how “random”
the images are. Then the images are ordered according to their approval ratings and Kolmogorov–
Smirnov test for two samples is used.

In the following sections we show two specific examples of this approach used in our experi-
ments.

3.3 An example of a robust estimate based on 𝜒2-tests
We analyzed the random bits produced by the quantum random bits generator produced by IDQuan-
tique, using the observations made in [19] (see also [20]. These observation are discussed in Sec-
tion 6.6. For now it is enough to know that there is an utility called ent that can be applied to any
file and produces some floating point number, called 𝜒2-value. According to the man page (Ubuntu
20.04) for this utility, “the chi-square distribution is calculated for the stream of bytes in the file”; we
have not looked at the source code to check this since for us it is enough to know that this number
is some (deterministic) function of the file contents.

We get 40 files from Quantis device (without postprocessing), each containing 200 megabytes.
Then we applied ent tool to the first 20 of them, getting 20 𝜒2-values (or whatever the ent tool
computes). For the other 20 files, we performed xor-operation with some fixed 200 megabytes file.
This file was obtained from BitBabbler generator described in Section 6.8, but it does not matter for
the validity of the test.

Assuming that the null hypothesis is true, i.e.,Quantis device produces independent random bits,
we conclude that all these 40 files are obtained as independents samples from the same distribution
(uniform distribution on the bit sequences of size 200 megabytes). Therefore, the ent values of
these files are 40 independent samples from some distribution. But the experimental data clearly
contradict this assumption: for the first 20 files the results were

615.07, 555.99, 624.12, 611.18, 575.19, 559.00, 557.75, 674.92, 670.97, 624.57, 622.26, 696.87,
619.98, 606.93, 590.63, 527.77, 692.10, 586.60, 635.59, 720.00,

while for the second group of 20 files (xor-files) the results were

249.60, 236.93, 241.85, 279.96, 235.00, 240.56, 246.62, 268.19, 243.42, 238.83, 281.28, 239.48,
265.41, 247.28, 269.42, 252.13, 262.96, 263.75, 243.03, 247.77.

Note that all the values from the second group are smaller that all values of the first group. This event
has probability 1/(40

20
) < 10−11 under our null hypothesis. Note that this test was chosen before the

experiments, and no other runs with less significant results were observed. This 𝑝-value is robust;
it does not depend on any approximations used in the derivation of 𝜒2-test. The results cannot be
affected by (theoretically possible) bugs in ent utility, though, of course, we still need to be sure that

¹This is not a purely theoretic possibility: the documentation for some hardware random bit generators contains
pictures of this type.
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the files were really obtained from the Quantis device, correctly xor-ed with the same file, and the
same ent utility was applied to all of the 40 files.

Note also a significant gap between the values in both groups. This difference per se does not
guarantee anything since we want to avoid any assumptions about the behavior of the ent tool, but
still is remarkable.

In fact, the deficiencies of the Quantis device are visible on much smaller (though still large)
samples than 8 Gbytes (used in this example). One of the robust test described in Section 3.3, namely
the sts_serial test, provides (among about 60 𝑝-values) values smaller that 10−8, so even after
Bonferroni correction the 𝑝-value is less than 10−6. (This happened for a dozen for 1 𝐺𝑏 files in our
experiments, so one can combine these 𝑝-values to get an astronomically small one.) See also [19, 20]
and the discussion of their results in Section 6.6.

3.4 Spectral tests
The approach described above can use any function. So one can just write an arbitrary program (or
use arbitrary utility instead of ent) and get reliable test results (a small 𝑝-valuewill indicate problems
with the generator, and this conclusion does not rely on any assumption about the function.

Still the sensitivity of the tests cannot be guaranteed in any sense. The extreme case: if the func-
tion is constant, that all the 𝑝-values (returned by 2-sample Kolmogorov–Smirnov test as described)
equal 1. So we need to look for a “non-trivial” functions that have a good chance to make a good
test. A natural source of candidates is provided by probabilistic arguments.

There are many cases where the existence of a combinatorial structure with required properties
Besides other applications, randomgenerators are used to produce “random” combinatorial struc-

tures (matrices, graphs, and so on). For example, most random graphs of small degree enjoys the
properties of expanders [18], which are used in various applications (it is enough to mention that
expander are used to construct error correcting codes with good properties). So it is interesting
to verify whether pseudo-random generators passing standard statistical tests can produce pseudo-
random generators that are in some natural sense similar to a “typical” random graph.

On of the approaches to the definition of expanders uses spectral properties of graphs: an ex-
pander is a graph where all eigenvalues except for one are relatively small. We tested this property
for graphs produced by pseudo-random generators mentioned in the previous section. Notice that
such an experiment can be interpreted as one more non-conventional test of randomness.
Observed results : The pseudo-random generators that pass the standard test of Dieharder produce
graphs with spectral properties that look indistinguishable with the graphs obtained from good
physical generators of random bits. With the generators that fail standard test of Dieharder, we
obtained pseudo-random graphs with visibly unusual spectral properties, so that we can reliably
distinguish these graphs from ones obtained with good physical random generators. However, they
do not fail the “spectral” tests in the same way.

Generator 3 described in Section 6.11 fails the tests of DieHarder, but it provides graphs with
pretty good spectral properties (similar to those of the “truly” random graphs). On the other hand,
Generator 4 fails the spectral test dramatically (we obtain graphs with spectra that are significantly
bigger than what we have with truly random graphs).

Even if this difference is large enough to conclude that these generators are not perfect, such
an imperfection of the spectral radius can be arguably ignores in some applications where we need
random graphs with “expander” properties. We believe that this is an interesting avenue for the
future research.
Interpretation: The results of our experiments suggest that graphs with good enough “expander prop-
erties” can be obtained with a rather simple pseudo-random generators, with cheap computations
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and very short random seed. Possibility of usage of such expanders in applications (e.g., in construc-
tions of error correcting codes) deserves a more thorough research. In particular, it is interesting to
investigate spectral properties of pseudo-random uniform and bipartite graphs with fixed degrees
of vertices, and the maximal sizes of pseudo-random graphs (with respect to the seed provided to a
generator) that allows to maintain necessary spectral properties.

3.5 Kolmogorov – Smirnov and other robust tests
One could use Kolmogorov – Smirnov test directly, without using any other test. Let us consider
the bit stream we are testing as a sequence 𝑥0, 𝑥1, 𝑥2, … of 16-bit integers (or bytes, or blocks of some
other fixed size). Consider an arbitrary property of an integer (a block). Then we use this property
as a selection rule: we split our sequence into two subsequences. If 𝑥2𝑖 satisfies the property, we put
𝑥2𝑖+1 in one subsequence, if not, we put to the other one. For a truly random sequence of bits we
get two random subsequences with the same distribution, so we can apply Kolmogorov – Smirnov
test to them. In this way we get a robust test that does not need to use any reference generator.

A similar approach may be used to test independence of two generators (say, left and right
channel in stereo-noise, or several hardware generators in the same device of in different devices).
For that we use the data from one generator to split the data from the other generator into two
subsequences. However, in this way the null hypothesis involves the independence between two
generators and also between different samples from the same generator. Therefore a small 𝑝-value
can appear also for two independent generators if different samples from one of the generators
are dependent (the extreme case is when both sequences are chosen randomly and independently
between 0, 1, 0, 1, … and 1, 0, 1, 0, …).

There are also other theoretical approaches that could give valid 𝑝-values. First, the compression
algorithms provide such a test: if 𝑛-bit file is compressed by more than 𝑐 bits, the probability of this
event (for a randomfile) is atmost 2−𝑐. Second, one can considermartingales, i.e., functions 𝑥 ↦ 𝑚(𝑥)
defined on binary strings with non-negative values such that 𝑚(Λ) = 0 for empty string Λ, and

𝑚(𝑥) = 𝑚(𝑥0) + 𝑚(𝑥1)
2 .

The martingale inequality guarantees that the event “𝑚 is at least 𝑐 on some prefix of a infinite
sequence generated by a fair coin” has probability at most 1/𝑐. See [56] for more details.
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Chapter 4

Hardware randomness generators

4.1 How it started
Randomness is ubiquitous — from the coin tossing and cosmic rays to the thermal noise in audio
and video recordings, Brownian motion, quantum measurements and radioactive decay. So one
may think that constructing a good randomness generator is an easy task. However, if we require
that the output distribution is guaranteed with high precision, the problem becomes much more
difficult. Coins may be biased, the independence between the two consecutive coin tosses may be
not absolute, the circuit with the noise is affected also by some undesirable signals that may not be
random, etc. In addition, some technical errors could happen.

For an illustration one may look at the sequences of bits provided by Marsaglia [29]. Among
them there are two bit sequences that he got from two devices he bought (one from Germany, one
from Canada) and a third bit sequence produced (as Marsaglia says) by some hardware random
generator in California. The names are canada.bit, germany.bit and calif.bit. The devicemakers
claimed that the bits produced by their devices are perfectly random. However, applying diehard

tests to these sequences, Marsaglia found that they are far from being random. In fact, looking at two
of them (Canada and Germany), one could guess one of the reasons for their non-randomness [11].
Namely, splitting the bit sequences into bytes (integers in 0… 255 range) and searching for the two-
byte substring 10 10, we find that this substring does not appear at all (at least among the first 106
bytes I tested), while the expected number of occurrences is several dozens. To get an idea why this
happens, one may also count the substrings of the form 13 𝑥 and find out that one of them appears
much more often than the others: the substring 13 10 occurs more than four thousand times (instead
of expected few dozens).

If the reader worked a lot with Unix and MSDOS computers in 1990s, she would immediately see
a plausible explanation: the file was converted as a text file from Unix to MSDOS encoding. In Unix
the lines of a text file were separated just by byte 10, while in MSDOS they were separated by 13 10.
Converting 10 to 13 10, we make substrings 10 10 impossible and drastically increase the number of
substrings 13 10.

The third file calif.bit probably had some other history that did not involve Unix to MSDOS
conversion, but still fails the tests for the other reasons.¹

Marsaglia solved this problem by combining (xoring) the output of the hardware random gener-
ators with pseudorandom sequences obtained by some deterministic generators [29, file cdmake.ps]

The sixty 10-megabyte files of random numbers are produced by combining two or more
of themost promising deterministic generators with sources of random noise from three
physical devices (white noise), for those who feel that physical sources of randomness

¹We also tested the corrected files, replacing groups 13 10 by 10 in canada.bit and germany.bit. They still fail many
tests in the dieharder suite.

22



Figure 4.1: A fragment of table of random digits from [48]

are better than deterministic sources. Some of the files have white noise combined with
black noise, the latter from digital recordings of rap music. And a few of the files even
had naked ladies thrown into the mix, from pixel files on the network. The last two,
digitized music and pictures, are thrown in to illustrate the principle that a satisfactory
stream of random bits remains so after combination [xor-ing] with the bits of any file.

A similar combination of the hardware source of somehow random bits and post-processing was
used for the table of random digits published in 1955 [48] (see Figure 4.1 for a small fragment of it):

The random digits in this book were produced by rerandomization of a basic table gen-
erated by an electronic roulette wheel. Briefly, a random frequency pulse source, pro-
viding an average about 100,000 pulses per second, was gated about once per second by
a constant frequency pulse. Pulse standardization circuits passed the pulses through a
5-place binary counter. In principle the machine was a 32-place roulette wheel which
made, on the average, about 3000 revolutions per trial and produced one number per
second. A binary-to-decimal converter was used which converted 20 of the 32 numbers
(the other twelve were discarded) and retained only the final digit of two-digit num-
bers; this final digit was fed into an IBM punch to produce finally a punched card table
of random digits.
Production from the original machine showed statistically significant biases, and the
engineers had to make several modifications and refinements of the circuits before pro-
duction of apparently satisfactory numbers was achieved. The basic table of a million
digits was then produced duringMay and June of 1947. This table was subjected to fairly
extensive tests and it was found that it still contained small but statistically significant
biases. ⟨…⟩
[Comparing the results of tests before and after one month of continuous operations:]
Apparently themachine had been running down despite the fact that periodic electronic
checks indicated that it had remained in good order.
The table was regarded as reasonably satisfactory because the deviations from expecta-
tions in the various tests were all very small — the largest being less than 2 per cent —
and no further effort was made to generate better numbers with the machine. However,
the table was transformed by adding pairs of digits modulo 10 in order to improve the
distribution of the digits. There were 20,000 punched cards with 50 digits per card; each
digit on a given card was added modulo 10 to the corresponding digit of the preceding
card to yield a rerandomized digit. It is this transformed table which is published here
⟨…⟩
These tables were reproduced by photo-offset of pages printed by the IBM model 856
Cardatype. Because of the very nature of the table, it did not seem necessary to proof-
read every page of the final manuscript to catch random errors of the Cardatype. All
pages were scanned for systematic errors, every twentieth page was proofread ⟨…⟩
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We see that the same scheme was used here. However, the post-processing algorithms used in
both cases are far from perfect. The sum modulo 10 used by RAND is almost reversible (if we
know the resulting table and the first card, then we can reconstruct all the cards), so it cannot
significantly change the entropy or the Kolmogorov complexity of the data string. This entropy is
probably insufficient if simple tests fail on the string. The same can be said about xor-ing with a
(deterministic) pseudorandom sequence used by Marsaglia. In the latter case, the rap music and
naked ladies could save the day, assuming that these strings have enough complexity (generating
processes have enough entropy) and are independent from the data from the electronic devices. But
obviously one would like to have less frivolous and more regular procedure.

4.2 Random source and post-processing
Noise sources are cheap and easy to find. A classical example is a Zener diode which costs few cents;
the noise generated by it is strong enough to be captured by an inexpensive audio card that has
microphone inputs, and one can then try to convert this noise to a high-quality random bits (“white
noise”) using some processing called “conditioning” or “whitening”. Many commercial devices uses
this scheme (usually with a higher frequency and a lower precision than used in typical audio cards);
here is the description of one of devices of this type:

The TrueRNGHardware RandomNumber Generator uses the avalanche effect in a semi-
conductor junction to generate true random numbers. The avalanche effect has long
been used for generation of random number / noise and is a time-tested and proven
random noise source. The semiconductor junction is biased to 12 volts using a boost
voltage regulator (since USB only supplies 5V), amplified, then digitized at high-speed.
The digitized data is selected and whitened internal to the TrueRNG and sent over the
USB port with more than 400 kilobits/second of throughput. ⟨…⟩
Thenew entropymixing algorithm takes in 20 bits of entropy and outputs 8 bit to ensure
thatmaximum entropy is maintained. The algorithm usesmultiplication in a Galois field
similar to a cyclic redundancy check to mix the ADC inputs thoroughly while spreading
the entropy evenly across all bits [59].

On the other hand, one should be careful here, since the properties of Zener diodes are not guar-
anteed², as a simple experiment shows (Figure 4.2). It is quite possible that noise properties may
change over time and depend on the environment (exact voltage and current, temperature etc.) The
post-processing should somehow be robust enough to convert these varying types of noise into
random bits with the same uniform distribution.

The scheme of such a hardware random number generator is shown in a picture from NIST
publication [39] (Figure 4.3). In addition to the analog source and the conditioning block this scheme
also provides a “health tests” block, with the obvious goal to raise an alarm when, for example, the
analog noise source becomes broken for some reason, or drastically changed its parameters. The
circuit is called an “entropy source”, not a random bits generator, and the conditioning block is
optional, since in [39] a more complicated scheme is considered: the output of this block is subjected
to the next layer of conditioning before being sent to the customer. See below Section 4.4.

4.3 What we would like to have
The ideal situation can be described as follows. There exist

²The manufacturers of Zener diodes do not care much about the noise since the primary purpose of Zener diodes is
different (and somehow opposite): to produce a stable voltage.
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Figure 4.2: The noise signal and its spectrum for two Zener diodes from the same roll, digitized by
the same sound card (Behringer 1204usb) and analyzed by the same program (audacity).

Figure 4.3: A general scheme of a hardware entropy sources [39, p. 5]

• some mathematical property (E) of the output distribution of the (digital) noise source; its
informal meaning is that “there is enough randomness in the output of the noise source”;

• some hardware device for which the physicists guarantee (E) unless the device is visibly bro-
ken;

• a deterministic transformation (“conditioning”) and a mathematical theorem that guarantees
that the output of this transformation is distributed almost uniformly if its input has the prop-
erty (E).

Unfortunately, the current practice is rather far from this ideal. The NIST publication mentioned
above suggests the property “min-entropy is large” as (E). This means that each individual outcome
has small probability (by definition, the min-entropy of a distribution is at least 𝑘 if every outcome
has probability at most 2−𝑘). Here is what they say:

The central mathematical concept underlying this Recommendation is entropy. Entropy
is defined relative to one’s knowledge of an experiment’s output prior to observation,
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and reflects the uncertainty associated with predicting its value — the larger the amount
of entropy, the greater the uncertainty in predicting the value of an observation. There
are many possible measures for entropy; this Recommendation uses a very conservative
measure known as min-entropy, which measures the effectiveness of the strategy of
guessing the most likely output of the entropy source [39, p. 4].

However, min-entropy, being a very important notion, is still not enough to guarantee the good
distribution after any (deterministic) conditioning transformation. Namely, for any transformation
𝑇∶ 𝔹𝑛 → 𝔹 that maps 𝑛-bit strings into bits, there is a random variable 𝜉 with values in 𝔹𝑛 that
has min-entropy at least 𝑛 − 1 (almost maximal) such that 𝑇(𝜉) is a constant. Indeed, one of the
preimages 𝑇−1(0) and 𝑇−1(1) has size at least 2𝑛−1, and we may let 𝜉 be uniformly distributed in this
preimage.

Moreover, even a stronger requirement than highmin-entropy, introduced long ago byM. Santha
and U. Vazirani [50], is not enough. This requirement, for a sequence of random Boolean variables
𝜉1, 𝜉2, … , 𝜉𝑛, says that

Pr[𝜉𝑚 = 1|𝜉1 = 𝑥1, … , 𝜉𝑚−1 = 𝑥𝑚−1] ∈ (12 − 𝛿, 12 + 𝛿)

for every 𝑚 ⩽ 𝑛 and for every (𝑚 − 1)-bit string 𝑥1…𝑥𝑚−1. Here 𝛿 ∈ (0, 1/2) is some constant.
Assume for example that 𝛿 = 1/6; then the requirement says that whatever bits we have observed,
the conditional probabilities to have 0 and 1 as the next bit differ at most by factor 2, being in the
interval (1/3, 2/3). This implies that min-entropy (and Shannon entropy) grows linearly with 𝑛, but
is a much stronger condition, saying that in no circumstances we may predict the next bit reliably.
Still, as proven in [50], this condition is not enough to extract even one “whitened” bit: there is no
whitening algorithm that is better than the trivial one (taking the first bit). This claim can be slightly
generalized: no way to extract 𝑘 bits is better than the trivial one (just taking the first 𝑘 bits). Here
is the exact statement that implies this result.

Proposition 4. Let 𝐴 ⊂ 𝔹𝑛 be a subset that has uniform probability 𝑝 and let 𝛿 ∈ (0, 1/2). Then there
exists a sequence of 𝑛 random Boolean variables 𝜉1, … , 𝜉𝑛 that satisfies the Santha–Vazirani condition
for this 𝛿, such that

Pr[𝜉1…𝜉𝑛 ∈ 𝐴] ⩾ 𝑝𝛼,

where 𝛼 is a number such that (1/2)𝛼 = (12 + 𝛿).

Therefore, if the uniform probability of 𝐴 is (1/2)𝑘 for some 𝑘, then the probability of the event
𝜉1…𝜉𝑛 ∈ 𝐴 guaranteed by Proposition 4 (for some Santha–Vazirani source) is at least (1/2+𝛿)𝑘. This
means that no transformation 𝑇∶ 𝔹𝑛 → 𝔹𝑘 can be better (in terms of extracting min-entropy from
Santha–Vazirani source) than taking the first 𝑘 bits. Indeed, one of the points in 𝔹𝑘 has 𝑇-preimage
in 𝔹𝑛 of uniform probability at least (1/2)𝑘, and applying Proposition 4 to this preimage we conclude
that for some Santha–Vazirani source 𝜉1, … , 𝜉𝑛 the min-entropy of 𝑇(𝜉1…𝜉𝑛) is not better than just
for 𝜉1…𝜉𝑘: probability of some point in the image distribution is at least (1/2 + 𝛿)𝑘.

Proof. Weneed to construct a distribution on𝔹𝑛 that satisfies Santha–Vazirani condition and assigns
large probability to𝐴. We do it inductively, following the suggestion by Ruslan Ishkuvatov. The case
𝑛 = 1 is obvious. For 𝑛 > 1, we split 𝐴 into two parts 0𝐴0 and 1𝐴1 according to the first bit, where
𝐴0 and 𝐴1 are subsets of 𝔹𝑛−1 that can be considered as two faces of the Boolean cube. Let 𝑝0 and 𝑝1
be the probabilities of 𝐴0 and 𝐴1 according to the uniform distribution in 𝔹𝑛−1, so their average is
𝑝. Assume that 𝑝0 ⩽ 𝑝1, so 𝑝0 = 𝑝 −𝑥 and 𝑝1 = 𝑝 +𝑥 for some 𝑥 ∈ [0, 𝑝]. The induction assumption
gives two Santha–Vazirani distributions on 𝔹𝑛−1 that give large probabilities to 𝐴0 and 𝐴1, namely,
at least 𝑝𝛼0 and 𝑝𝛼1 . They can be combined into one distribution on 𝔹𝑛, we only need to chose the
probability (between 1/2 − 𝛿 and 1/2 + 𝛿) for the first bit, and then use the two Santha–Vazirani
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distributions provided by the induction assumption as conditional distributions. To maximize the
resulting probability, we should put maximal allowed weight on the face where the probability is
greater. It remains to prove then that

(12 − 𝛿)𝑝𝛼0 + (12 + 𝛿)𝑝𝛼1 = (12 − 𝛿) (𝑝 − 𝑥)𝛼 + (12 + 𝛿) (𝑝 + 𝑥)𝛼 ⩾ 𝑝𝛼.

For 𝛼 ⩽ 1, the function 𝑡 ↦ 𝑡𝛼 is concave, therefore the left hand side is a concave function of 𝑥,
and it is enough to check this inequality for endpoints 𝑥 = 0 (where it is obvious), and 𝑥 = 𝑝. In the
latter case we need to prove that (1/2 + 𝛿)(2𝑝)𝛼 ⩾ 𝑝𝛼, and this follows directly from the definition
of 𝛼.

Remark 10. A very simple proof for the case of 1-bit output [49] goes as follows. If 𝑝 ⩾ 1/2, then
for some Santha–Vazirani distribution with parameter 𝛿 one can achieve probability at least 1/2 + 𝛿.
Why? It is enough to spread the probability 1/2 + 𝛿 uniformly on a subset 𝐴′ ⊂ 𝐴 with uniform
probability 1/2, and spread the remaining probability 1/2 − 𝛿 uniformly on the complement of 𝐴′.

So the situation is far from ideal: large min-entropy and even stronger Santha–Vazirani condi-
tion are not enough to guarantee the correct distribution after whitening, for any fixed whitening
function. Still some practical solutions, i.e., some common sense recommendations that help us to
avoid obviously faulty generators, are needed, even if no theoretical guarantees are provided. In the
next section we look at the NIST approach to this problem.

4.4 Practical approaches
There are three documents produced by NIST that cover different aspects of random bits genera-
tion. The first, SP 800-90A [38], deals with algorithmic pseudorandom bits (or numbers) generators,
called there deterministic random bits generators³. Here the relevant mathematical theory is not the
algorithmic information theory but the complexity theory where the notion of (cryptographically
strong) pseudorandomnumber generatorwas introduced byManuel Blum, SilvioMicali andAndrew
Yao [6, 62]. This theory goes far beyond the scope of our survey.

Roughly speaking, such a generator is a polynomial-time algorithm that maps a truly ran-
dom seed into a (much longer) sequence of bits that is “indistinguishable” from a random one by
polynomial-size circuits. The indistinguishability means that no polynomial-size circuit can have
significantly different probabilities of (a) accepting the output of the generator for a truly random
seed, and (b) accepting a sequence of truly random bits. An equivalent definition says that there
is no way to predict by a polynomial-size circuit the next bit of the output sequence (for a random
seed) significantly better than by guessing.

The existence of generators with these properties is equivalent to the existence of one-way func-
tions [16], and this existence is an unproven assumption. This assumption implies P ≠ NP, while
the reverse implication is not known. For this reason we do not know any cryptographically strong
pseudorandom number generator for which this property can be proven. Moreover, since the con-
structions from [16] are quite complicated, practical pseudorandom generators may use stronger as-
sumptions, like hardness of factoring, or just have no theoretical justification at all. In fact, NIST [38]
not only recommends but also insists on using “allowed” methods to generate random bits from the
seed, and these methods are far from being justified mathematically, even in a very weak sense. For
example, one of the methods uses hash values for consecutive bit strings (see Figure 4.4). As ex-
plained in [38, page 37], “mechanisms specified in this Recommendation have been designed to use
any approved hash function and may be used by consuming applications requiring various security
strengths, providing that the appropriate hash function is used and sufficient entropy is obtained

³Note an oxymoron.
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Figure 4.4: Part of Figure 8 on p. 39 in [38] related to the random bit generation using a hash function
(the initialization part is omitted).

for the seed”. On the next page a list of these “approved” hash functions is provided that includes
SHA-1, SHA-224, SHA-512/224, SHA-256, SHA512/256, SHA-384, SHA-512. According to NIST [41]:

An approved hash function is expected to have the following three properties:
1. Collision resistance: It is computationally infeasible to find two different inputs to
the hash function that have the same hash value. That is, if hash is a hash function, it
is computationally infeasible to find two different inputs 𝑥 and 𝑥′ for which hash(𝑥) =
hash(𝑥′). Collision resistance is measured by the amount of work that would be needed
to find a collision for a hash function with high probability. If the amount of work is
2𝑁 , then the collision resistance is 𝑁 bits ⟨…⟩
2. Preimage resistance ⟨…⟩
3. Second preimage resistance ⟨…⟩

Obviously, for a specific function like SHA-1 or any other mentioned in the list above, the collision
resistance requirement makes no sense if understood literally: computation infeasibility means high
complexity of some function, and here we have no function. If somebody comes with a collision pair
𝑥, 𝑥′, the collision resistance in the naïve sense disappears starting from this moment, so it is not a
mathematical property of a hash function (a mathematical property cannot suddenly become false),
but some property of the current state of art (still measured in bits!). Moreover, the hash functions
mentioned above are obtained by a complicated ad hoc construction and there are no reasons to
believe that something similar to collision resistance can be proven. Finally, as it is mentioned [38,
p. 89],

Hash_DRBG’s [the random generator based on hash functions] security depends on the
underlying hash function’s behavior when processing a series of sequential input blocks.
If the hash function is replaced by a random oracle, Hash_DRBG is secure. It is difficult
to relate the properties of the hash function required by Hash_DRBG with common
properties, such as collision resistance, pre-image resistance, or pseudorandomness.

Indeed, it is impossible to relate the “required” properties with “common” properties, since a function
with no known collisions and high preimage resistance still may have much more 1s than 0s in
most of its outputs, or have the last bit always equal to 1, therefore being completely unsuitable
for Hash_DRBG.⁴ So the reference to the security properties of the allowed hash functions can only
create a false feeling of security.

The second NIST publication, SP 800-90B [39], describes the allowed constructions of the “en-
tropy source” (see Fig. 4.3 above) while the third one [40] “addresses the construction of RBGs from

⁴And the claim about the random oracle model is obviously true and obviously irrelevant.
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the mechanisms in SP 800-90A and the entropy sources in SP 800-90B” [39, p. 1]. The idea here is
that the whitening (conditioning) process is splitted into two stages. The first stage, described in SP
800-90B, does only some “rough” conditioning and may not produce a distribution that is very close
to the uniform one. We hope only that the entropy of its output is close to the output length or at
least is a significant fraction of the length. Then the second stage that may involve deterministic
random bits generators or not is used for “fine-tuning”.⁵

But what is meant by “entropy” in this description? As we have said, the NIST recommendations
claim to use min-entropy. Still there are some problems with this approach.

• There is no way to get a reliable lower bound for the min-entropy of a physical source. If there
is some isolated value that appears with probability 2−𝑘, the min-entropy is at most 𝑘, but one
needs to make Θ(2𝑘) trials to have a reasonable chance to see this value at least once.⁶

• Quite often the NIST recommendations treat the notion of entropy informally, as some mys-
tical substance that can be present in a binary string (and not in a random variable) and even
can be accumulated and/or condensed⁷. For example, it is written [39, p. 11] that “in all cases,
the DRBG [deterministic random bits generator] mechanism expects that when entropy in-
put is requested, the returned bitstring will contain at least the requested amount of entropy.”
The closest approximation to this interpretation is Kolmogorov complexity, but it is (a) non-
computable and (b) defined up to a constant, and different reasonable optimal programming
languages easily can give the values that differ by several thousands, so it does not make sense
to ask whether the complexity exceeds (say) 512 or not.

• Moreover, in some cases even more enigmatic explanations are given: “For the purposes of
this Recommendation, an 𝑛-bit string is said to have full entropy if the string is the result
of an approved process whereby the entropy in the input to that process has at least 2𝑛 bits
of entropy (see [ILL89] and Section 4.2)” [40, p. 11]. Here [ILL89] is the preliminary version
of [16] and neither says anything about approved processes nor justifies the requirement about
2𝑛 bits of entropy.

• As mentioned above for a similar situation, the properties of the functions used for condi-
tioning, in particular the standard requirements for the security of a hash function, do not
guarantee, even informally, that the output distribution for the hash function applied to an
input source of high min-entropy, is close to the uniform distribution. However, this is im-
plicitly assumed in the recommendations when an approved process of obtaining a string of
full entropy is described.

• The recommendations encourage the designer to use different combinations of “approved”
constructions (see, e.g., Fig. 4.5); even if some good properties of one-stage construction are
plausible, the claim that the composition of several stages will still have good properties, is
much less founded.

All these critical remarks do not mean that NIST recommendations are unnecessary: they reflect
the current state of technology, the existing practice and prevent the appearance of completely bogus

⁵The final stage may also use pseudorandom bit generators to provide additional “backup” layer if the physical
source stops working. For example, one may follow Marsaglia and produce xor of the bit sequences from physical and
deterministic sources. Note that this operation, hiding the problems with physical source, makes the testing of the
output sequence almost useless; testing should be done before this last step.

⁶Things are much better for independent identically distributed (i.i.d.) variables [39, p. 11]; there are also some
physical sources where i.i.d. assumptions are reasonable, and some tests that can detect some violations of i.i.d. property.

⁷“When the entropy [string?] produced by the entropy source(s) is very long (e.g., because the entropy rate of the
entropy source(s) is very low), and the entropy bits may need to be condensed into a shorter bitstring, the Get_Entropy
function in Section 10.3.1.1 or Section 10.3.1.2 shall be used to condense the entropy bits without losing the available
entropy in the bit string.” [39, Section 10.3.1, p. 44]
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Figure 4.5: The construction of a random bits generator with several layers [40, p. 19].

generators, therefore playing a very important role. However, one should keep in mind that they
are not based on any “hard science”; they sometimes use mathematical notions and results but only
as hints and sources of inspiration.

Could we have better recommendations? This is a difficult question. One can hope for the
security through obscurity: if a long sequence of different mathematical operations is performed,
this could make an attack much more difficult. However, the idea that random actions give random
results does not look as a good plan for designing random bits generators. It could be that the
careful choice of a noise source plus one-layer conditioning procedure that is based on something
more suitable than just hash functions, would give a better result than a complicated multi-layer
approach using cryptographic primitives.
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Chapter 5

Randomness extractors: theory and practice

5.1 Definitions
Randomness extractor is a function 𝐹∶ 𝔹𝑛 × 𝔹𝑑 → 𝔹𝑚. The first input (𝑛-bit string) is understood
as a “long and somehow random” bit string. For example, one may assume that its min-entropy
is at least some 𝑘 (that is smaller than 𝑛 but reasonably large, say, 𝑛/2 in some application). The
second input (𝑑-bit string) is a “short and perfectly random” string (say, 𝑑 may be 𝑂(log𝑛) in some
applications). We want the output to be indistinguishable from 𝑚-bit random string. As a measure
of indistinguishability we consider the statistical distance between two distributions, defined as

𝑑(𝑃, 𝑄) = sup
𝐴⊂𝔹𝑚

|𝑃(𝐴) − 𝑄(𝐴)|.

Here 𝑃 and 𝑄 are probability distributions on 𝔹𝑚, and this distance can be rewritten in terms of
individual probabilities and becomes 𝑙1-distance with factor 1/2.

The extractor requirement: for every random variable 𝑋 with 𝔹𝑛-values that has min-entropy
at least 𝑘, and for independent uniform random variable 𝑌 ∈ 𝔹𝑑, the statistical distance between
the image distribution 𝐹(𝑋, 𝑌) and the uniform distribution on 𝔹𝑚 is at most 𝜀. (The definition has
parameters 𝑛, 𝑑,𝑚, 𝑘, 𝜀.)

Informally, there are at least 𝑘 “bits of entropy” in 𝑋 and 𝑑 bits in 𝑌, so we may hope to extract
𝑘+𝑑 bits, so our dream is to have𝑚 ≈ 𝑘+𝑑. This length could be almost achieved (existence proven
by a probabilistic argument) and there are explicit constructions with slightly worse parameters.

From the practical viewpoint, the obvious idea is the “bootstrapping”, increasing the number
of random bits by using weak random source of large size. However, if we just have some weak
random source, it is not clear how exctractors could help. Note that nothing can be said about the
distribution of 𝐹(𝑋, 𝑦) where 𝑋 is a weak random source and 𝑦 is some fixed string. The definition
of extractor guarantees that (for given 𝑋) the average of all the distributions obtained for different
values of 𝑦, is close to the uniform one, but does not say anything about individual distribution. For
example, it is quite possible that the first bit of 𝐹(𝑥, 𝑦) coincides with the first bit of 𝑦, and for fixed
𝑦 this first bit will be fixed — not suitable for a lottery use, for example.

5.2 Strong extractors
There is a stronger notion of extractor: we can require that not only 𝐹(𝑋, 𝑌) has almost uniform
distribution, but also the pair ⟨𝑌, 𝐹(𝑋, 𝑌)⟩ has almost uniform distribution (in 𝔹𝑚+𝑑).¹

The existence of strong extractors (now for 𝑚 ≈ 𝑘, since 𝑑 bits of 𝑌 are added to the output) also
can be proven by a probabilistic argument. Here is the sketch of this argument.

¹Equivalently, we could include 𝑌 in 𝐹(𝑋,𝑌) and require that first 𝑑 bits of the extractor output coincide with its
second input.
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A mapping 𝐹∶ 𝔹𝑛 ×𝔹𝑑 → 𝔹𝑚 can be considered as a family of 2𝑑 mappings 𝐹𝑦 of type 𝔹𝑛 → 𝔹𝑚

indexed by 𝑑-bit strings: 𝐹𝑦(𝑥) = 𝐹(𝑥, 𝑦). The definition of statistical distance for the distribution of
pairs ⟨𝑦, 𝐹(𝑥, 𝑦)⟩ uses a subset 𝐴 ⊂ 𝔹𝑑 ×𝔹𝑚. This subset can be also considered as a family of subsets

𝐴𝑦 = {𝑧∶ ⟨𝑦, 𝑧⟩ ∈ 𝐴}.

The probability of ⟨𝑌, 𝐹(𝑋, 𝑌)⟩ ∈ 𝐴 is the average (over 𝑦) the probability of 𝐹𝑦(𝑋) ∈ 𝐴𝑦. We should
find 𝐹 such that for all 𝐴 this probability is close to the probability of 𝐴, i.e., the average probability
of 𝐴𝑦 (taken over 𝑦).

As usual, any probability distribution of min-entropy at least 𝑘 can be represented as a convex
combination of the extreme points, namely, the uniform distributions over a 2𝑘-element subset of
𝔹𝑛. Preparing to use the union bound, we note that there are at most

(2𝑛)2𝑘 = 2𝑛2𝑘

subsets of this size, and there are at most 22𝑚+𝑑 sets 𝐴 for which the condition (small difference
between probabilities) should hold. Therefore we need to estimate the probability, for a random
function 𝐹, that the difference is large, and show that it is less than

2−𝑛2𝑘−2𝑚+𝑑 ,

for suitable parameters.
To compute the probability of large deviation, we use Azuma–Hoeffding inequality. Indeed, the

random choice of 𝐹 is equivalent to 2𝑛+𝑑 random selections of elements in 𝔹𝑚. These selections are
divided into 2𝑑 groups indexed by 𝑦 ∈ 𝔹𝑑. For a given 𝑦, we look howmany of the selected elements
are in 𝐴𝑦. The difference (inside the group) is the difference between probability and frequency for
2𝑛 Bernouilli trials with probability Pr[𝐴𝑦]. In total, we have a sequence of independent trials with
different probabilities (i.e., with probabilities Pr[𝐴𝑦] for different 𝑦). The total number of trials in
2𝑘+𝑑, so the Azuma–Hoeffding bound says that the probability of the deviation at least 𝜀 is

2 ⋅ 2−Ω(2𝑘+𝑑𝜀2)

So the condition of success is
2𝑘+𝑑𝜀2 > 𝑐(𝑛2𝑘 + 2𝑚+𝑑)

for some constant 𝑐, and this gives two conditions:

𝑘 + 𝑑 ⩾ 𝑘 + log𝑛 + 2 log 1𝜀 + 𝑐

𝑘 + 𝑑 ⩾ 𝑚 + 𝑑 + 2 log 1𝜀 + 𝑐,

(for some other 𝑐), so 𝑑 should exceed log𝑛 + 2 log(1/𝜀) and 𝑘 should exceed 𝑚 + 2 log(1/𝜀) by some
constant.

5.3 Why strong extractors?
The philosophical reasons for practical use of strong extractors can be explained as follows. We
construct some device that produces (say, using random noise) an 𝑛-bit string for rather large 𝑛. We
do not know the exact distribution for the random output 𝑋 of this device, but (based on the physics
laws) believe that this distribution has significant min-entropy, at least 𝑘 for some reasonable large
𝑘 (say, 𝑛/2 or something like this). Now, having a strong extractor 𝐹, we know that the not only
the statistical distance between the uniform distribution 𝑈𝑚 on 𝔹𝑚 and the average of 2𝑑 distributions
𝐹𝑑(𝑋) for different 𝑑 ∈ 𝔹𝑘 is at most 𝜀, but also that the average statistical distance between 𝐹𝑑(𝑋) and
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𝑈𝑚 is at most 𝜀 (we can combine the sets 𝐴𝑑 that achieve the statistical distance between 𝐹𝑑(𝑋) and
𝑈𝑚, into one set 𝐴). Therefore, for all 𝑑, except for √𝜀-fraction, the distance between 𝐹𝑑(𝑥) and 𝑈𝑚
is at most √𝜀.

If 𝜀 is very small (say, 2−200), then √𝜀 is also small enough (2−100) to be practically sure that if
we get 𝑑 random bits from some high-quality source of randomness, we do not get “bad” d. And
under this assumption 𝐹(𝑋𝑑) will be statistically close (distance 2−100 to 𝑈𝑚. Moreover, if we make
many (say, 220) hardware random bit generators using the same 𝑑, using different physical source
of randomness (say, different Zener diodes), we also can be practically sure (error probability 2−80)
that all these generators will have output distribition close to 𝑈𝑚.

Of course, the practical value of this construction depends on the complexity of 𝐹, and the proba-
bilistic argument here is not very useful (we can apply the same reasoning to the choice of random 𝐹,
but the number of bits used in 𝐹 is astronomical, so there is no chance to store them in any device).

5.4 Strong extractors from hash functions
For the reader’s convenience, in this section we reproduce the construction of a strong extractor
from the breakthrough paper that derived pseudo-random generators from one-way functions [16].
This construction will appear in the analysis of one of the hardware random generators below (ID
Quantique).

Assume that ℎ𝑟(𝑥) is an universal family of hash functions. Here 𝑥 ∈ 𝔹𝑛 and 𝑟 (an index of a hash
function ℎ𝑟) is taken from 𝔹𝑠 for some 𝑠; the value ℎ𝑟(𝑥) is in 𝔹𝑚 for some𝑚. The universality means
that for every fixed 𝑥 ∈ 𝔹𝑛 and (uniformly) random 𝑟 ∈ 𝔹𝑠 the value of ℎ𝑟(𝑥) is uniformly distributed
in𝔹𝑚, and, moreover, for every two different 𝑥1 and 𝑥2 the random variables ℎ𝑟(𝑥1) and ℎ𝑟(𝑥2) (where
randomness comes from 𝑟) are independent (in other words, ⟨ℎ𝑟(𝑥1), ℎ𝑟(𝑥2)⟩ is uniformly distributed
in 𝔹𝑚 × 𝔹𝑚).

Another notion that is used in this construction is Rényi entropy of a random variable 𝑋 with
finitely many values. It is defined as 𝐻2(𝑋) = log2(1/𝑝), where 𝑝 is the probability for the two
independent copies of 𝑋 to coincide. If 𝑋 has 𝑘 values with probabilities 𝑝1, … , 𝑝𝑘, then 𝑝 = ∑𝑘

𝑖=1 𝑝2𝑖 .
The Rényi entropy cannot be smaller than min-entropy: if all 𝑝𝑖 are at most 2−𝑢, then ∑𝑝2𝑖 ⩽
∑2−𝑢𝑝𝑖 ⩽ 2−𝑢.
Lemma. Let 𝑋 be a random variable with values in 𝔹𝑛, and ℎ𝑟(𝑥) be a universal family of hash func-
tions where 𝑥 ∈ 𝔹𝑛, the index 𝑟 ranges over some𝔹𝑠, and values are in some𝔹𝑚. If the Rényi entropy
of 𝑋 exceeds𝑚 by 2𝑑 for some 𝑑, then the statistical distance between the random variable ⟨𝑟, ℎ𝑟(𝑋)⟩
(where 𝑟 is uniformly distributed in 𝔹𝑠 and independent from 𝑋) and the uniform distribution on
𝔹𝑠 × 𝔹𝑚 is at most 2−𝑑−1.

(The factor 1/2 appears because the statistical distance is one half of 𝐿1-distance that appears in
the derivation.)

Proof. If we ignore the factor 2, the statistical distance between two distribution 𝑃,𝑄 on some prod-
uct 𝑈 × 𝑉 is by definition ∑|𝑝𝑢,𝑣 − 𝑞𝑢,𝑣| over all pairs ⟨𝑢, 𝑣⟩ is a sum over 𝑢 of the corresponding
sums over 𝑣 (or vice versa). Therefore, the distance is small if for every 𝑢 the 𝐿1-distance between
the corresponding rows 𝑝𝑢,∗ and 𝑞𝑢,∗ is small.

Trying to use this argument, we may fix 𝑟 ∈ 𝔹𝑠 or 𝑦 ∈ 𝔹𝑚. The first approach does not help,
since the distribution ℎ𝑟(𝑋) can be very far from the uniform (if 𝑋 is selected by an adversary for
some fixed 𝑟). So we go the other way and show that

2−𝑠 ∑
𝑟∈𝔹𝑠

|||𝜇𝑋(ℎ
−1
𝑟 (𝑦)) − 1

2𝑚
||| ⩽ 2−𝑑 ⋅ 2−𝑚 for every 𝑦 ∈ 𝔹𝑚

where 𝜇𝑋 stands for the distribution of the random variable 𝑋 (and the factor 2−𝑠 is moved out since
it appears in both distributions we are comparing), and then take the sum over all 𝑦 ∈ 𝔹𝑚. The left
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hand side is an average over 𝑟 and it is enough to prove similar inequality for the root mean square
that is an upper bound for the average. (In other terms, we apply Cauchy inequality.) So it is enough
to prove that

2−𝑠 ∑
𝑟∈𝔹𝑠

(𝜇𝑋(ℎ−1𝑟 (𝑦)) − 1
2𝑚 )

2
⩽ 2−2𝑑−2𝑚 for every 𝑦 ∈ 𝔹𝑚

for every 𝑦. Denoting the average over 𝑟 ∈ ℝ𝑠 as E𝑟, we need to prove the upper bound 2−2𝑑−2𝑚 for

E𝑟[(𝜇𝑋(ℎ−1𝑟 (𝑦)))2] − 2 ⋅ 2−𝑚 E𝑟[𝜇𝑋(ℎ−1𝑟 (𝑦))] + 2−2𝑚.

Recall that 𝜇𝑋(ℎ−1𝑟 (𝑦)) is the probability of the event ℎ𝑟(𝑋) = 𝑦 (for fixed 𝑟, 𝑦 and random 𝑋). There-
fore, E𝑠[𝜇𝑋(ℎ−1𝑟 (𝑦))] is the probability of the event ℎ𝑟(𝑋) = 𝑦 for fixed 𝑦 and independent random 𝑋
and 𝑟. Changing the order or averages and recalling the properties of the hashing functions (ℎ𝑟(𝑥)
is uniformly distributed in 𝔹𝑚 for every fixed 𝑑), we see that E𝑠[𝜇𝑋(ℎ−1𝑟 (𝑦))] = 2−𝑚, so the second
term is 2 ⋅ 2−2𝑚, and it remains to prove that

E𝑟[(𝜇𝑋(ℎ−1𝑟 (𝑦)))2] − 2−2𝑚 ⩽ 2−2𝑑−2𝑚.

The probabilistic meaning of (𝜇𝑋(ℎ−1𝑟 (𝑦)))2 (for given 𝑟 and 𝑦) is the probability of the event ℎ𝑟(𝑋1) =
ℎ𝑟(𝑋2) = 𝑦where𝑋1 and𝑋2 are two independent copies of𝑋. The average over 𝑟 gives the probability
for independent random 𝑟, 𝑋1, 𝑋2. This average can be then rewritten as

𝑆 = ∑
𝑥1,𝑥2∈𝔹𝑛

𝜇𝑋(𝑥1)𝜇𝑋(𝑥2)Pr𝑟 [ℎ𝑟(𝑥1) = ℎ𝑟(𝑥2) = 𝑦].

Now we count separately the pairs where 𝑥1 = 𝑥2 and 𝑥1 ≠ 𝑥2. If 𝑥1 ≠ 𝑥2, then Pr𝑟[ℎ𝑟(𝑥1) = ℎ𝑟(𝑥2) =
𝑦] = 2−2𝑚 due to universal hashing. The sum of 𝜇𝑋(𝑥1)𝜇𝑋(𝑥2) over all 𝑥1 and 𝑥2 is 1, so we can
rewrite 𝑆 as

𝑆 = ∑
𝑥1=𝑥2∈𝔹𝑛

𝜇𝑋(𝑥1)𝜇𝑋(𝑥2) (Pr𝑟 [ℎ𝑟(𝑥1) = ℎ𝑟(𝑥2) = 𝑦] − 2−2𝑚) + 2−2𝑚,

or
𝑆 = ∑

𝑥∈𝔹𝑛
𝜇2𝑋(𝑥) (Pr𝑟 [ℎ𝑟(𝑥) = 𝑦] − 2−2𝑚) + 2−2𝑚.

The probability here is 2−𝑚; recalling that we have to prove that 𝑆 = 2−2𝑚 ⩽ 2−2𝑑−2𝑚, we need to
prove

∑
𝑥∈𝔹𝑛

𝜇2𝑋(𝑥) (2−𝑚 − 2−2𝑚) ⩽ 2−2𝑑−2𝑚

The term 2−2𝑚 is small compared to 2−𝑚; we ignore it and prove the (slightly) stronger inequality

2−𝑚 ∑
𝑥∈𝔹𝑛

𝜇2𝑋(𝑥) ⩽ 2−2𝑑−2𝑚

The sum is 2−𝐻2(𝑋) by definition, and it remains to note that 𝐻2(𝑋) ⩾ 𝑚 + 2𝑑.

To use this construction, one needs universal hash functions. There is a simple example: a
random affine mapping 𝔹𝑛 → 𝔹𝑚 is a universal family. More precisely, let 𝑠 = 𝑚𝑛 +𝑚 and let 𝑟 be a
pair: a matrix 𝐴 of size 𝑛×𝑚 that defines a linear mapping 𝔹𝑛 → 𝔹𝑚, and a vector 𝑏 ∈ 𝔹𝑚. We have
to check that for any two 𝑥, 𝑦 ∈ 𝔹𝑚 the random variables 𝐴𝑥 + 𝑏 and 𝐴𝑦 + 𝑏 are independent and
uniformly distributed on 𝔹𝑚 × 𝔹𝑚. The pair (𝑢, 𝑣) is uniformly distributed if and only if the same is
true for (𝑢, 𝑢−𝑣), so we may consider the variables 𝐴(𝑥−𝑦) and 𝐴𝑦+𝑏 instead. The first is uniformly
distributed, since 𝑥 − 𝑦 is a fixed non-zero vector and 𝐴 is a random linear mapping. It remains to
show that the second is uniformly distributed with fixed 𝐴(𝑥 − 𝑦) as a condition — but is uniformly
distributed even if 𝐴 is fixed (a more fine-grained condition).
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We get a uniform hashing with smaller 𝑠 (namely, for 𝑠 = 𝑚+𝑛−1) if we consider ℎ𝐴,𝑏(𝑥) = 𝐴𝑥+𝑏
only for Toeplitz matrices, i.e., matrices of the form

‖
‖‖‖‖‖‖‖

𝑑 𝑒 ⋱
𝑐 𝑑 𝑒 ⋱
⋱ 𝑐 𝑑 ⋱ ⋱

⋱ ⋱ ⋱ 𝑒
⋱ 𝑐 𝑑

‖
‖‖‖‖‖‖‖

where the numbers on diagonals are chosen randomly. To apply the same argument, we need to
show that for a non-zero vector 𝑢 the random variable 𝐴𝑢 (where 𝐴 is a random Toeplitz matrix) is
uniformly distributed. One can reformulate the question as follows: we have a non-zero vector 𝑢 of
length 𝑛 and move it along the random vector of length 𝑚 + 𝑛 − 1 computing the inner products in
different positions; why these inner products are all independent? To see why, consider the right-
most non-zero element in 𝑢. Due to this element, each shift of 𝑢 to the right adds one fresh Toeplitz
coefficient, and therefore the probability to get 0 and 1 (conditional to previous inner products) is
1/2.

5.5 Two-sources extractors
Another approach is to use two-source extractors. It looks promising since we often assume inde-
pendence (in the probabilistic sense) for the outputs of different physical processes just because that
happen in different place or in different times (without any plausible mechanism of influence).

The simplest case is xoring the bits from two generators that are assumed to be independent. Is
is often done in practice. A simple computation shows that if we have several slightly biased but
independent coins, the xor of their bits will be much less biased. This approach is often used in
practice (e.g., the bitbabbler generator, Section 6.8, uses four generators).² From the cryptography
point of view this approach is also desirable: if only one of two xored generators is compromised
by an attacker but the other is still perfect and they are still independent, the output will be perfect.

However, the xor appoach needs that different bits from the same generator are independent. (If
two generators independently generate 𝑛-bit sequences that always contain even number of ones,
their xor will have the same property.) One can use a more complicated construction that uses
weaker assumptions. Still the construction should be not too complicated to be practical (and should
not involve large constants). Some candidates are described in [12, 8]. The theoretical notion here is
a two-source extractor. Consider a function 𝑓(𝑥, 𝑦) that takes two 𝑛-bit strings and produces a 𝑚-bit
string (with 𝑚 ⩽ 𝑛). Let 𝑙 ⩽ 𝑛 be some bound. The function 𝑓 is called (𝑙, 𝜀) two-source expander
if for every two independent random variables 𝑋,𝑌 with values in 𝔹𝑛 and min-entropy at least 𝑙,
the statistical distance between the distribution of 𝑓(𝑋, 𝑌) and the uniform distribution on 𝔹𝑚 is at
most 𝜀.

The following result is proven in [12, Section 3.1].

If 𝐴1, … , 𝐴𝑘 are 𝑛 × 𝑛 matrices over two-element field such that every (nonempty) sum
of these matrices has full rank, then the function

⟨𝑥, 𝑦⟩ ↦ 𝐴1(𝑥, 𝑦)𝐴2(𝑥, 𝑦)…𝐴𝑚(𝑥, 𝑦)

is a (𝑙, 2−𝑠) two-source expander for every 𝑙 and for

𝑠 = (𝑙 − 𝑛
2 ) −

𝑚
2 + 1.

²One should be careful here, since some common factor (like power supply noise) could affect all the generators at
the same time. So one could prefer to use several USB devices plugged into different computers, or combine that data
that are obtained not at the same time (bitbabbler uses this approach too, calling it folding).
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Here 𝑥 and 𝑦 are 𝑛-bit vectors, and matrices 𝐴𝑖 are interpreted as bilinear forms, i.e.,

𝐴(𝑥, 𝑦) = ∑
𝑖,𝑗
𝑎𝑖𝑗𝑥𝑖𝑦𝑗

(all operations are performed in a two-element field, i.e., modulo 2).
What does it mean from a practical viewpoint? We need 𝑙 > 𝑛/2: the more is the difference, the

better trade-off we get for 𝑚 and error probability 𝜀 = 2−𝑠. It is not unrealistic to consider sources
with, say, 𝑙 = 0.9𝑛. For example, Santha–Vazirani sources where each next bit has conditional
probability 50 ± 3% satisfy this condition. Then we can have 𝑚 = 0.5𝑛 and still have 𝜀 about 2−0.15𝑛.
Which gives quite practical values, say, for 𝑛 = 1000: from two independent 1000-bit sequences
with min-entropy 900 we get a 500-bit sequence whose distribution is 2−150-close to the uniform
distribution in the statistical sence (probably enough for most practical purposes).

For this construction we need some binary matrices 𝐴1, … , 𝐴𝑚 of size 𝑛 × 𝑚 that have full rank,
and, moreover, any sum of a (nonempty) subset of these matrices has a full rank. There is a simple
algebraic construction that provides such a matrices for 𝑚 = 𝑛: consider 𝔹𝑛 as a finite field and
consider some basis 𝑎1, … , 𝑎𝑛 in this field as a linear space over two-element field. Then field mul-
tiplication by 𝑎𝑖 is a linear mapping in this field; let 𝐴𝑖 be the corresponding matrix (in any basis).
The sum of matrices corresponds to the multiplication by the corresponding sum of vectors 𝑎𝑖, and
this sum is non-zero (since 𝑎𝑖 are linearly independent over two-element field). The multiplication
by a non-zero field element is a bijection, so the corresponding matrix has a full rank. This gives a
simple construction that is optimal: for 𝑚 > 𝑛 there is a subset whose sum is not a full rank. Indeed,
consider images of some fixed vector: we have more than 𝑚 images, so some combination of them
is zero, and the corresponding combination of matrices has non-zero kernel and cannot have full
rank.

There is an important practical concern related to this construction. We rarely need some fixed
number of random bits (except, may be, for the case of lotteries). We would prefer a long stream of
bits fromwhichwe can take asmany bits aswewant. Still the size of thematrices in this construction
cannot be very large. So we come to the following question. Assume that we have two generators
that produce random bits. These bits are grouped into 𝑛-bit samples 𝑥1, 𝑥2, … (for the first generator)
and 𝑦1, 𝑦2, … (for the second generator). Then we apply 𝑓 and combine the resulting 𝑚-bit strings
𝑓(𝑥1, 𝑦1), 𝑓(𝑥2, 𝑦2), … into a long string of bits. Can we prove some randomness properties for this
combined string?

The following simple observation helps. Let 𝑋,𝑌 and 𝑋′, 𝑌′ be two pairs of random variables
with values in some product 𝒳 × 𝒴. Assume that 𝑋 and 𝑋′ are statistically close (statistical distance
at most 𝜀). Assume also that for every 𝑥 ∈ 𝒳 the conditional distributions (𝑌|𝑋 = 𝑥) and (𝑌′|𝑋′ = 𝑥)
are statistically close (the statistical distance is at most 𝛿). Then the statistical distance between pairs
𝑋,𝑌 and 𝑋′, 𝑌′ is at most 𝜀 + 𝛿.

To see why it is true, consider an intermediate pair 𝑋, �̂� where the first variable has the same
distribution as 𝑋 while the second variable �̂� has the same conditional distribution for every fixed
value of 𝑋. The statistical distance (up to a constant 2) can be defined as the supremum of the differ-
ence of expectations for every test function 𝑡 ∶ 𝑋 × 𝑌 → [−1, 1]. When we switch from 𝑋,𝑌 to 𝑋, �̂�,
we use the same distribution on the first coordinate for averaging, and use two 𝛿-close distribution
for averaging along the second coordinate, so the diffference is the average of the function bounded
by 𝛿, so it does not exceed 𝛿. When we compare 𝑋, �̂� and 𝑋′, 𝑌′, we use the same averaging along
the second coordinate (conditional distributions are the same), so we take the averages of the same
function (with values in [−1, 1]) according to 𝑋 and 𝑋′, and they differ by at most 𝜀.

The same argument can be applied for longer tuples instead of pairs (and the bounds for statis-
tical distances add up). It would be acceptable in practice if an exponentially small distance (like
2−150) is multiplied by the number of groups used (like 1020), still the product is very small. But we
have to show that the small distance between conditional probabilities follows from some physically
plausible assumptions.

36



Assume that we have two generators; the first one produces bit blocks 𝑥1 and then 𝑥2; the second
one produces blocks 𝑦1 and 𝑦2. All four blocks have length 𝑛. We apply the extraction procedure
twice and get 𝑚-bit blocks 𝑧1 = 𝑓(𝑥1, 𝑦1) and 𝑧2 = 𝑓(𝑥2, 𝑦2). What should we assume to guarantee
small statistical distance between pair 𝑧1, 𝑧2 and uniform distibution on 𝔹2𝑚? To apply the observa-
tion made above, we need two things.

• First, we need that the distribution of 𝑧1 is close to the uniform distribution. This can be
guaranteed by the result from [12] cited above.

• Second, we need that the conditional distribution of 𝑧2 under the condition that 𝑧1 has some fixed
value, is close to the uniform. This is not a direct consequence of the result mentioned, since the
condition 𝑧1 = 𝑍1 (for fixed 𝑍1 ∈ 𝔹𝑚) makes 𝑥2 and 𝑦2 dependent. Indeed, 𝑧1 = 𝑓(𝑥1, 𝑦1), and
𝑥2 may depend on 𝑥1, and 𝑦2 may depend on 𝑦1. However, the event 𝑓(𝑥1, 𝑦1) = 𝑍1 is a disjoint
union of several events 𝑥1 = 𝑋1, 𝑦1 = 𝑌1 (the union is taken over all pairs of strings 𝑋1 and
𝑌1 such that 𝑓(𝑋1, 𝑌1) = 𝑍1). It is enough to show that for each of this events the conditional
probability is close to the uniform distirbution (then the combined conditional probability,
being a weighted sum, is also close to the uniform distribution). These conditional probability
corresponds to the distribution of 𝑓(𝑥2, 𝑦2) if (𝑥2, 𝑦2) has conditional distributionwith condition
𝑥1 = 𝑋1, 𝑦1 = 𝑌1. Let us assume (as before) that (𝑥1, 𝑥2) is independent with (𝑦1, 𝑦2). Then 𝑥2
and 𝑦2 are conditionally independent with conditions 𝑥1 = 𝑋1, 𝑦1 = 𝑌1. So we can apply the
result from [12] again. The only thing we need is the high conditional min-entropy of 𝑥2 under
condition 𝑥1 = 𝑋1, and of 𝑦2 under condition 𝑦1 = 𝑌1.

How realistic could be the latter assumption? It says that for each given value 𝑋1 of 𝑥1, the
conditional probability of each specific value 𝑋2 of 𝑥2 is very small. In other words, we never are
able, after seeing the value of 𝑥1, guess the value 𝑋2 of 𝑥2 with more than 2−𝑙 chances of success. For
practical generators this is probably not true: even a good generator has some small probability of
“general failure” that makes it producing (say) zeros. This probability can be small, say, 2−800 for a
1000-bit generator, so themin-entropy is still high (just a bit smaller than 800, since the zero sequence
can also appear with a non-zero probability in a normal operation, say, with probability 2−1000). But
this general failure will make our assumption false: most of the cases when 𝑥1 are all zeros are due
to a general failure, so the conditional probability of 𝑥2 = 0…0with condition 𝑥1 = 0…0 is close to 1.
But we may still believe that “in the absense of some general failure” the condition is true. In other
term, we may assume that (𝑥1, 𝑥2) is statistically very close to a distribution with required properties
(and this is enough for our argument, just one more small statistical distance is added).

The practical implementation of this approach is discussed in Section 7.6.
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Chapter 6

Practical random number generators

As a part of the RaCAF project, we tried to get samples of random bit generators that exists on the
market. There are some expensive ones (sometimeswithout price quotes, being sold as a part of some
bigger contracts) which we skipped intentionally, but we have tried to get what was easily available
in the price range 30–1000 euros. In this section we collected some remarks and observations.¹

6.1 Altus Metrum

Figure 6.1: Altus metrum “Chaos Key” (both sides). There is a red LED inside blinking from time to
time.

The Altus Metrum company produces some devices for flying rocket models, and also the ran-
dom bit generator device (Figure 6.1²) called Chaos Key, see https://altusmetrum.org/ChaosKey/.
According to the company description, this generator uses STN32F042 System-on-Chipmicroproces-
sor, 20V noise source (transistor junction) and a operational amplifier OPS356 (Texas Instruments,
200MHz gain-bandwidth product); the hardware designs are available. The price is 49 euros.³

One may get both “raw” bits or “cooked” bits from the device. The raw data resembles normal
distribution (with rather small variance). The raw bits are produces rather fast (about 5 mbit/sec).
Thewhitening (producing “cooked” bits) happens in the firmware, see file ao_tnrg_send.c, function
ao_trng_get_cooked, and the definition of inline function ao_crc_in_32_out_16 in ao_crc.h. Two
16-bit samples from analog-digital converter are concatenated to get a 32-bit integer. This integer
is used to compute a running CRC32 checksum (for a sequence of 32-bit integers obtained so far).
This checksum is a 32-bit integer; two halves of it are xor-ed to get a 16-bit integer that is sent to
the output.

¹Warning: we trusted the technical claims of the device makers and did not try to check the internal structure of the
devices.

²All photos are of the devices we actually tested.
³The prices given do not always include shipping/handling/taxes/currency conversion fees etc. and should be con-

sidered only as rough estimates for the price range.
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10.0

10.1

10.2

Figure 6.2: A long data file from one chaoskey run in a raw mode was split into 10Mbyte chunks.
Each of 28 chunks was cut into 16-bit blocks and the entropy of corresponding distribution on 𝔹16

was computed. As we see, it initially decreases with time and then oscillates above 10 bits (out of
16). Not a surprise, since the parameters of Zener diode noise are not very stable and may differ for
different units from the same roll.

Therefore, there is a 2 ∶ 1 ratio between used raw noise bits and output bits. It looks acceptable,
since the entropy for raw stream shows about 10 bits for distribution of 16-bit integers (Figure 6.2),
but the safety margin is not that large. The author of the firmware, Keith Packard, wrote (personal
communication) that “The CRC computation is actually done in hardware, which is why I selected
it. CRC32 isn’t a proven whitening algorithm, but it passes all of the tests I have, given the output of
the noise source”, and our (limited) testing was consistent with this observation: nothing suspicious
was found by tests of Section 7.3 for a 10 Gb sample.

The device is supported in the linux kernel (a driver is provided that uses the random bits from
the device for system purposes).

6.2 Araneus

Figure 6.3: Araneus Alea II True Random Number Generator (both sides). The LED is visible near
letter “e” in “Araneus”.

Araneus Alea II device (Figure 6.3), produced by Araneus Information Systems Oy (https://www.
araneus.fi/en/), according to the description in https://www.araneus.fi/products/alea2/en/,
“uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This
noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the
A/D converter are then further processed by an embedded microprocessor to combine the entropy
from multiple samples into each final output bit, resulting in a random bit stream that is practically
free from bias and correlation.” No specific information about this transformation and no way to get
the raw bits is mentioned in the documentation. On request, the company was ready to provide the
description of the whitening procedure under a non-disclosure agreement (we did not ask for it).

Device has a green LED that (according to the documentation) indicates that the device is func-
tioning correctly. The CD with documentation, drivers and information needed to use the device
with Linux, Windows and NetBSD is provided.

Speed: about 100 kbits per second. Price: 109 euros.
Health check: nothing suspicious found in our (limited) testing using tests of Section 7.3 with

several 1 Gb samples.
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6.3 Gniibe

Figure 6.4: Gniibe random number generator, a firmware for FST-01SZ (both sides)

This generator (Figure 6.4), https://www.gniibe.org/memo/development/gnuk/rng/neug.html,
is a firmware for the microcontroller usb stick, known as FST-01SZ, https://www.gniibe.org/
memo/development/fst-01/fst-01-revision-sz.html. Both the firmware and the hardware
are developed by Niibe Yutaka (see https://www.gniibe.org/pdf/fosdem-2012/gnuk-fosdem-

20120204.pdf) as a tool for GNU project (Gnuk token and NeuG generator). The hardware does
not include any special devices for generating random noise. Instead, it relies on the fluctuations in
the voltages sent to the ADC convertors of the microcontroller. Then 128-bit string obtained from
several measurement is converted to 32 bits by CRC32 function (intermediate source of entropy),
and groups of 35 strings of length 32 obtained in this way (1120 bits in total) are sent to the final
conditioning. At that stage, SHA-256 is used to produce 256 output bits out of the 1120 bits received.
Half of these output bits are then concatenated with the input of the SHA-256 for the next step (so
the total length of the input is 1120 + 128 = 1348 bits).

The design of the entropy source makes it vulnerable to the environment, so we only could make
some rough estimates. The device allows to get the primary data from ADC conversion, the result
of CRC32, and the final result of the SHA-256 whitening. The Shannon entropy of the eight 16-bit
primary sources in our experiment was about 6.8 bits for four of them and about 2.5 bits for four
others, that gives the estimate 37.2 entropy bits (per 128 raw output bits), which is slightly more that
required minimum of 32 bits for CRC32-output (but these sources may be dependent, and in other
environment, say, with better power source, the entropy could be much less, so it is dangerously
close to the minimum).

Tested with Linux ubuntu 18.04, commands are sent by stty, bits are obtained by dd from the
device, no special software needed.

Speed: about 3 megabits per second (in all the regimes).
Price: around $50 at Free Software foundation shop, https://shop.fsf.org/storage-devices/

neug-usb-true-random-number-generator.
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Health check: no visible irregularities both in the cryptographically whitened and intermediate
(only CRC32 used) streams in our limited testing (100 Mb samples, tests described in Section 7.3).

6.4 Tectrolabs SwiftRNG

Figure 6.5: Tectrolabs Swift RNG, LE version

This generator is developed by Tectrolabs company (https://tectrolabs.com) and exists in
several versions; the cheapest one (LE, see Figure 6.5) is rather fast (20 mbits/sec) and costs $149.
The documentation (https://tectrolabs.com/swiftrng-le/) says:

Each of the two random noise sources of the SwiftRNG LE are analog electronic cir-
cuits that generate random electronic signals from reverse-biased Zener diodes using
avalanche effect. The electrical noise generated by each random source is independently
amplified and converted into digital values as bytes. The bytes produced are combined
to produce a low bias random byte stream. To further reduce bias, the resulting byte
stream is processed by a conditioning component with conditioning functions such as
SHA256 or SHA512 (Marsaglia’s XorShift64 is available when used with SwiftRNG LE
device versions 1.2 and up).”

Here XorShift64 refers to a function that transforms 64-bit string in a reversible way: three linear
transformations (over ℤ2) are made sequentially, and then the result is multiplied by some invertible
constant modulo 264. This transformation was suggested by Marsaglia who used its iterations to
generate a pseudorandom bit sequence, see https://en.wikipedia.org/wiki/Xorshift and https:
//www.jstatsoft.org/article/view/v008i14 for details. The conditioning algorithm applies this
transformation to 64-bit blocks of random bits (independently for each block).

The company documentation (https://tectrolabs.com/2018/02/18/in-depth-how-swiftrng-
generates-true-random-numbers/) provides the following diagram explaining the details of ran-
dom bits production (Figure 6.6). The CSD block in this figure is a “continuous self-diagnostics
component ⟨…⟩ which validates the random values. The component performes frequency analysis,
and checks for deteriorations or malfunctions in the noise source. The result of this analysis is
reported in the overall generator status code.”

Andrian Belinski (the founder of Tectrolabs) kindly provided more details about the internals
of the device we bought. As he explained (personal communication), the SwiftRNG LE generator
uses two Zener diodes that work in the avalanche mode (the voltage exceeds 5.1 V) in the following
way. Each of the diodes produces a random noise that is (after DC correction) sent to the 12 bit
ADC converter. Then the eight least significant bits of the ADC output are used and the four most
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Figure 6.6: The structure of Tectrolabs Swift RNG devices. Upper block shows the device; the lower
block represents processing in the host computer

significant bits are ignored⁴. Then the two bytes obtained in this way are xored to get an output
byte of the device (“the low bias random byte stream” from the description above).

The provided software includes a kernel module (swrandom) that makes the output of the gener-
ator accesible to the Linux kernel, and a standalone utility (swrng) to get random bits. Both tools
include the postprocessing algorithm (so the postprocessing is performed in the host computer, not
in the device itself). There is also a utility (swrawrandom) that allows to collect raw noise bytes sep-
arately from both noise sources. The testing shows that the raw bits are not really random, but the
non-randomness here is probably more subtle than in gaussian-like noise of other raw generators —
the removal of the four most significant bits helps (see Figure 6.7). The xored bits do not show any
problems in our testing (several 10 Gb samples).

The most advanced SwiftRNG Pro version of the device (https://tectrolabs.com/swiftrng-
pro/, $449, Figure 6.8) is much faster, being the fastest device among the ones we tested. The docu-
mentation says that “SwiftRNG Pro is a general purpose USB device that generates true (hardware)
random numbers at a rate of 200 Mbits per second without applying conditioning algorithms”. Still
“SHA-256, SHA-512, Marsaglia’s XorShift64” arementioned as “post processing algorithms available”
(optional); the documentation contains test results for several tests but does not specify whether raw
or processed bits were tested.

Andrian Belinski kindly provided additional information:

SwiftRNG Pro processes data at faster speed and uses two noise sources (avalanche
effect) and twoHigh SpeedADC channels that sample noise sources at 40Msps [millions
of samples per second] rate. Similar to SwiftRNG and SwiftRNG LE, the Pro device also

⁴In other words, the ADC output is considered modulo 256. In this way the distribution of the noise, which should be
close to a normal one, is split into 16 intervals that are then combined (the distribution functions added); this combination
should have much more uniform distribution.
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sts_serial:

rtest -x -f raw0 -e ../bitbabbler/raw_4_sources-1 -p 100 -q 100 -n 1200 -t 3 -d 36 -r 1

0.0782211579784 0.2111700862513 0.7020569828665 0.7020569828665 0.1111952605383

0.2111700862513 0.1548386665118 0.8154147124661 0.9084105017745 0.3681877860629

0.5830090612540 0.5830090612540 0.0782211579784 0.3681877860629 0.9684099261397

0.9996892272703 0.3681877860629 0.2819416298082 0.7020569828665 0.9684099261397

0.7020569828665 0.9684099261397 0.2819416298082 0.2111700862513 0.3681877860629

0.7020569828665 0.4695064485038 0.9084105017745 0.3681877860629 0.9942356257695

0.7020569828665 0.9084105017745 0.4695064485038 0.7020569828665 0.0240558028411

0.9942356257695

sts_serial:

rtest -x -f raw0 -e ../bitbabbler/raw_4_sources-1 -p 200 -q 200 -n 6000 -t 3 -d 45 -r 1

0.7125821300149 0.3281154440942 0.3281154440942 0.7125821300149 0.1779335278829

0.0878382826713 0.1122836028677 0.0085394839498 0.0060944182588 0.0006486080424

0.0002829222009 0.0085394839498 0.0395620258490 0.3281154440942 0.9646522162314

0.0000000000595 0.6284308022715 0.7125821300149 0.9877895282791 0.0521390871888

0.0680192046112 0.0395620258490 0.0060944182588 0.0060944182588 0.0000040248065

0.0297148244708 0.0162584592768 0.7933622419383 0.2704743832804 0.3935274335772

0.2704743832804 0.6284308022715 0.1420746514552 0.9973277498238 0.0395620258490

0.1779335278829 0.6284308022715 0.3935274335772 0.1122836028677 0.0118434497601

0.9238374197331 0.4662863907356 0.3281154440942 0.3281154440942 0.2205412175804

sts_serial:

rtest -x -f raw0 -e ../bitbabbler/raw_4_sources-1 -p 500 -q 500 -n 10000 -t 3 -d 48 -r 1

0.0000252154457 0.0007045191904 0.0007045191904 0.0000136717195 0.0000000565349

0.0000000179615 0.0000019751295 0.0000019751295 0.0000186051465 0.0001434246304

0.0018769751767 0.0018769751767 0.0163791281863 0.0023738215454 0.0198941100724

0.0240661470524 0.0000000000000 0.0240661470524 0.0134308881556 0.0000052932652

0.0000003518372 0.0000340349325 0.0058320825331 0.0240661470524 0.0007045191904

0.1725563396262 0.2263472905139 0.0954645323116 0.5600220048872 0.1980421265871

0.0586892094174 0.1293961699671 0.2263472905139 0.0693007656927 0.0586892094174

0.0000186051465 0.0058320825331 0.1980421265871 0.9351121874343 0.6659218712647

0.0586892094174 0.5089169658043 0.5089169658043 0.3293581065813 0.9603008958861

0.2919248807418 0.7704365372945 0.0815016732111

Figure 6.7: Testing Swift LE device. Bits from one of the generators look more or less OK for small
samples but show more problems as the sample size grows. Here the results of sts_serial test
(1 Mb, 10 Mb, 100 Mb samples) are shown.
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Figure 6.8: Tectrolabs Swift RNG, PRO version

ent_8_16:

rtest -x -f raw0 -e ../../bitbabbler/raw_4_sources-1 -p 1000 -q 1000 -n 10000 -t 9 -d 4 -r 1

0.0023934096489 0.0028179208243 0.4006338815833 0.2877976434847

Used 80016000 bytes from the test generator

ent_8_16:

rtest -x -f raw0 -e ../../bitbabbler/raw_4_sources-1 -p 500 -q 500 -n 200000 -t 9 -d 4 -r 1

0.0000000000000 0.0000000000000 0.0163791281863 0.0289959610611

Used 800008000 bytes from the test generator

Figure 6.9: Entropy tests for SwiftRNG pro bit generators (bits taken from one generator) with
different parameters.

reduces the ADC output bits to less significant 8 bits. Two bytes from one channel
are combined with 2 bytes from the other channel using several XOR, OR and Shift
logical operations, resulting in a final output stream of bytes. I was able to run multiple
statistical tests on several terabytes retrieved from SwiftRNG Pro and obtained good
results. That’s all I can tell about SwiftRNG Pro. ⟨…⟩
When in ‘swrawrandom’ mode, both noise sources are getting sampled with 40 Mbps
each (simultaneously), however only one noise source is used and all the bytes collected
from the other noise source are discarded/skipped. In that mode, each 16,000 byte block
downloaded is guaranteed to contain a continuous sequence of random bytes collected
from a single noise source.

The raw bits from one generator start to look suspicious for 100 Mb samples, and obviously fail
the tests for 1 Gb sample (Figure 6.9). The bits obtained in the normal regime (as described in the
quote) do not show anything suspicious in our limited testing (few samples of 10 Gb size were used).
The same is true for bits obtained after post-processing (SHA256).

There is also a version of the device (SwiftRNG Z) that uses the breakdown mode Zener diodes
(4.6 V voltage) and another postprocessing algorithm called “linear corrector” that is implemented
in the device itself. This algorithm applies a non-invertible linear transformation that decreases the
number of bits by factor 2 as suggested by P. Lacharne [27].⁵ We did not test this model.

⁵In this paper the following observation is made. Consider a 𝑛×𝑁-matrix that transforms𝑁-bit column vector to a
𝑛-bit one. Assume that we apply this matrix to𝑁 independent copies of a biased coin with bias 𝜀 (probabilities 1/2 ± 𝜀).
We get 𝑛 bits; we want all linear combinations of those bits to have a small bias. Any linear combination of the output
bits is a linear function of the input bits. To find out which input bits appear in this combination, we need to sum up
some rows of the matrix. If the matrix corresponds to an error-correction code with distance 𝑑, the sum of its rows has
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Thedocumentation for SwiftRNG devices mentions “patented technology”: Andrian Belinski has
a patent [2] that describes a method of random bit generation. The general scheme described in the
patent, in additional to Zener noise source and analog to digital conversion, includes high-pass filter
(that is called “low-pass filter” in the patent, probably an error)⁶. The idea is that this high-pass filter
decreases what the author calls “bias” in the random bytes (probably bias is understood here as the
dependence between neighbor bytes). This is true to some extent, but there is no reason to expect
to get the exactly uniform distribution after filtering. Moreover, if the original signal was perfectly
random, the filtered one would be different.

6.5 Moonbase OneRNG
This random generator was developed in 2014–2017 by Paul Campbell and is available commercially
from https://moonbase-otago.myshopify.com/products/onerng-external for $40. It is an open
hardware/software device, see the description and links at http://www.moonbaseotago.com/onerng.
The hardware contains two primary sources of randomness: the Zener diode and the radio frequency
receiver (strictly speaking, it is not a source of randomness but the way to get randomness from the
environment). The device is visible through standard USB interface /dev/ttyACM. It can be asked
to produce raw bits from both sources, or whitened bits (“we have a CRC16 generator to use for
whitening, when it’s enabled we push each byte into the generator and extract the upper byte of
the running CRC sum – this means that the bits of adjacent bytes are merged and xored together
evening out the number of ones and zeros”, http://www.moonbaseotago.com/onerng/theory.html).
The processing is performed by Texas Instruments CC2531 system-on-chip.

Figure 6.10: Moonbase OneRNG, version 3.0

The initial testing shows that the raw bits from the Zener noise source are visibly non-random
(Figure 6.11, left), and the whitened bits are also definitely non-random (though in a bit different way,

at least 𝑑 bits 1, so at least 𝑑 input bits are xored to produce the resulting bit, and it is easy to see that the bias is 𝑂(𝜀𝑑),
and it is good to have large 𝑑. Still this argument is applicable only to independent input bits, and it is not clear whether
it make sense for the output of an analog-to-digital conversion.

⁶The scheme in the patent contains four noise sources, but it is noted that one can use any other number of noise
sources.
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Figure 6.11, right). This is also obvious with tests⁷ (first of all opso and oqso). The documentation
says that the whitening procedure produces 8 output bits for each 8 input bits, so it cannot increase
the entropy of the source, and this could be one of the possible reasons for the visible deficiencies in
the whitened bits. (A similar picture for 8-bit bytes instead of 16-bit integers does not show clearly
visible anomalies.)

Figure 6.11: Moonbase OneRNG, raw bits from Zener source (left), processed version (right). Each
32 bits are converted to two 16-bit signed integers, and the corresponding point on a coordinate
plane is displayed

The random bits extracted from the environmental RF noise (both raw and whitened) looked
much better in our experiments; our limited testing did now show obvious problems. However, we
did not try to isolate the circuit from the environmental noise and did not repeat the experiment in
different environments, so one should not rely on these observations.

There are two more regimes where Zener diode noise and RF noise are interleaved; the result
also is visibly non-random and does not pass the tests (neither in raw nor in whitened version).

For some results obtained by spectral tests see Figure 7.4 in the next chapter.

6.6 ID Quantique
The company IDQuantique (www.idquantique.com) produces several quite expensive random num-
ber generators. The least expensive one is a USB device that produces random bits with speed about
3.2 megabits per second (Figure 6.12).

The document Redefining randomness. Random number generation. White paper. What is the Q
in QRNG? (ID QUANTIQUE SA, January 2019), available from the company, say that this device
uses the “Quantum Random Number Generator, Quantis” that is “is available as a component, in
the form of a compact metal package that can be mounted on plastic circuit boards”. There are
USB and PCI versions of the device using one Quantis, and more advanced PCI version that uses
four of them (and is four times faster). The Quantis “contains the optical elements that are used to
implement the random process and produce the random outcomes. It comprises a light emitting

⁷Let us mention that the graphs show obvious non-randomess for much smaller samples than 𝑝-value tests:
100 Kbytes are enough to see obvious non-randomness, while our tests for 1Mb sample do not exhibit obvious problem
and one should consider samples of 10–100 Mbytes.
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Figure 6.12: Random number generator from IDQuantique, USB version

diode producing the photons, a transmission element, where the random process takes place, and
two single-photon detectors — detectors with single-photon resolution — to record the outcomes.”
The transmission element is a mirror where (according to quantum physics) a photon either gets
through or is reflected, with equal probabilities. This makes the device radically different from most
of the devices that use some kind of random noise, since it is based on an individual and well defined
quantum event.

Still, as the document explains, some whitening is needed: “As mentioned above, physical pro-
cesses are difficult to precisely balance. It is thus difficult to guarantee that the probability of record-
ing a 0, respectively a 1, is exactly equal to 50%. With Quantis, the difference between these two
probabilities is smaller than 10% — or equivalently the probabilities are comprised between 45%
and 55%. As this bias may not be acceptable in certain applications, the processing unit of Quantis
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Figure 6.13: The structure of Quantis according to the company’s description

performs unbiasing of the sequence.” This “unbiasing” block can be seen in the device description
(Figure 6.13, taken from the documentation provided by ID Quantique).

Unfortunately, the exact nature of this “unbiasing” is not specified. The section 3.6 of the white
paper describes the von Neumann approach (splitting the sequence into 2-bit blocks, replacing 01 by
0 and 10 by 1while ignoring 00 and 11 blocks) as one of the possible “unbiasing” procedures, and then
says “Other unbiasing procedures exist. The one proposed by Peres⁸, for example, is significantly
more efficient than the Von Neumann procedure.” The scheme also indicated that this unbiasing
may be turned off, but the documentation does not explain how to do this. We have asked the
IDQuantique support (for that you need to purchase a separate support contract for 99 euro) and
they confirmed that this is not possible, via the following mail exchange:

Our questions, e-mail, January 27, 2020:
1. The documentation mentions two kind of postprocessing. First is called unbiasing in
“Redefining randomness. Random number generation. White paper. What is the Q in
QRNG?”, section 3.6. The second in called randomness extraction and is described in
“Technical Paper on Randomness Extraction, version 1.0, September 2012”. Do I under-
stand correctly that these two are different procedures, and one is performed internally
in Quantis all the time, while the second is optional and is implemented in the software
library (using multiplication by a constant matrix provided)?
2. There are a lot of certificates for Quantis in Quantis Certification Collection. Do I
understand correctly that these certificates are for the normal output of Quantis, not

⁸Probably this refers to [44]. As it is done in the von Neumann approach, Peres assumes the Bernoulli distribution
with constant probability, a rather strong assumption that is hardly realistic for a physical device.
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for the results of randomness extraction procedures? (There is one certificate for AIS.31
version of the device, that we do not have, so I am asking about other certificates.)
3. Is there any documentation describing the exact unbiasing procedure as implemented
in Quantis? The section 3.6 mentions von Neumann algorithm and Peres’ method, but
does not say which method is used.
4. The diagram on p. 11 of the “Redefining randomness” white paper indicates that
the unbiasing may be turned on and off (Figure 2, middle green arrow going down
[Figure 6.13]). Is there some way for the user to switch it temporarily off (for testing
purposes)?
The reply of Jean-Benoit Page (ID Quantique), e-mail, March 18, 2020:
Please find the answers to your questions:
1. Yes[,] your understanding is correct.
2. Yes[,] the certificates rely [refer] to the standardQuantis (non AIS-31) without extrac-
tion post processing.
3. Sorry, we don’t share more information on this topic. All public information is avail-
able on our website.
4. No[,] there [is] no way to disable the unbiasing. This is an error on the diagram.

The nature of “unbiasing” is discussed in questions 3 and 4. The questions 1 and 2 refer to another
whitening procedure, called “randomness extraction”. It is explained in ID Quantique White Paper,
Randomness Extraction for theQuantis True RandomNumber Generator, (version 1.0, September 2012)
as follows:

Quantis is a True Random Number Generator which exploits quantum physics to pro-
duce random bits. It is a perfect entropy source based on the reflection or transmission
of a light particle — a photon — on a semi-transparent mirror. However, like any other
physical randomness source, Quantis produces strings of bits which are slightly longer
than their entropy. This excess length is minute and is in most cases not noticeable, as
extremely long sequences must be considered. In addition, these extra bit symbols can
be removed using a so called Randomness Extractor. This white paper describes the
principle of randomness extraction and explains how it is implemented in the Quantis
software package.

The text then explains again the bias problem, mentioning also correlations:

No matter how elegant its principle is and how carefully designed a TRNG is, a particu-
lar physical realization will by definition have imperfections, which can in turn impact
the quality of its output. The random sequence can for example exhibit a bias — unequal
probability of generating a 0 and a 1 — or correlations — probability dependant on pre-
vious bit values. In spite of its qualities, the Quantis TRNG exhibits some — very low
— residual bias and correlations. The bias is caused by differences in photon detection
efficiency between the detectors and correlations arise from memory effects in these
components. (Footnote: The Quantis TRNG uses avalanche photodiodes for photon de-
tection. These components are optolectronic devices which can transform photons into
macroscopic electronic pulses.)

Then the von Neumann unbiasing algorithm is explained again; the authors of the document claim
that “the von Neumann unbiasing algorithm is an example of a so-called deterministic randomness
extractor” (rather strange claim). However, as they explain, the software package provided by the
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company uses “non-deterministic extractors”, because “the prime advantage of using a randomness
extractor is that it allows [us] to mathematically prove the quality of the output random sequence
and base this proof on the well established information theory”.

Actually this “non-deterministic extractor” is just multiplication by a 1024 × 768 bit matrix: in
this way 1024 bits from Quantis (already “debiased” in some unknown way) are transformed into
768 output bits. The matrix is in fact fixed (provided by the software library); however, the paper is
not very clear about it:

The generation of the matrix𝑀 is crucial to guarantee that the properties of the output
of the extractor meet the requirements in terms of randomness quality. Each position
in the M matrix should consist of an unbiased random bit, completely independent of
other bits. Note that the matrix can be the same for multiple Quantis TRNG and can
be reused. It must thus be generated only once. ⟨…⟩ [The] compression factor has been
selected to guarantee that the probability for the extracted sequence to deviate from a
perfectly random sequence is less than 2−100. This implies that even if he had millions
of Quantis devices, a user will not see any deviation from perfect randomness in a time
longer than the age of the universe.

This claim sounds rather confusing: the expression “the probability for the extracted sequence to
deviate from a perfectly random sequence is less than 2−100” has no meaning. In a more technical
document, ID Quantique. Technical Paper on Randomness Extraction, version 1.0, September 2012
(by M. Troyer and R. Renner), the authors explain that this bound is for the statistical distance
between the uniform distribution and output distribution. However, the authors do not make a
clear distinction between the (a) output distribution for two random inputs (the sequnce of “raw
bits” and the uniformly distributed random matrix) and (b) the distribution for the outputs when
the matrix is fixed. The bound they speak about is for (a). On the other hand, for the suggested use
of the device (with fixed matrix) the distribution (b) matters, and the results about random extractors
do not provide any guarantee for this distribution, as we have discussed above while speaking about
Santha–Vazirani sources. We have also seen (while discussing strong extractors) that indeed there
exists some justification for the use of fixed “randomly chosen” matrix. But this justification replaces
the statistical distance 𝜀 > 0 provided by the strong extractor, by much bigger distance √𝜀 for the
fixed second input (denoted by 𝑑 in the discussion above), for most (up to error probability√𝜀) values
of this second input, and there are nothing about that in the documentation.⁹ This problem is not
mentioned either in the extended version of this Technical Paper [13].

Another problem with this approach is that the strong extractors argument can be applied only
to the distribution of 768 bits obtained by the linear transformation. However, in most applications
we need more than 768 random bits, so we have to apply the same transformation to different 1024-
bit strings from the generator. Even if each of them has distribution close to the uniform distribution
on 𝔹768, the question about the possible dependence between them remains, and strong extractors
argument does not help at all.

It is interesting to try different tests on IDQuantique product. The company provides a bunch of
test reports, including tests from NIST [37], DIEHARD [29], CTL certification (that does not specify

⁹Unfortunately, the Redefining randomness paper contains some obviously wrong statements in its introduction part
(though they are not directly related to the device). On p. 3, in a section “What is a random numbers”, the authors wrote:
“It is quite straightforward to define whether a sequence of infinite length is random or not. This sequence is random if
the quantity of information it contains — in the sense of Shannon’s information theory — is also infinite. In other words,
it must not be possible for a computer program, whose length is finite, to produce this sequence. Interestingly, an infinite
random sequence contains all possible finite sequences.” There are several misunderstanding in these sentences. First,
the Shannon information theory does not define “quantity of information” for individual binary sequences. The second
sentence identifies randomness with non-computability, thus making the sequence where every second bit is zero and
other bits form a non-computable sequence, random. Then the third statement becomes false, since this sequence does
not contain the block 11.
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which tests were used, and the link in the documentation does not work), iTech Labs (also DIEHARD
tests), and AIS 20/AIS 31 certification according to [22]. The latter certification is for a special version
of the device (that we had not bought), and classifies it as a PTG.3 class.¹⁰

Unfortunately, the documentation does not specifies whether these tests were performed for a
bare Quantis device (after the internal unbiasing procedure) or on a sequence obtained by multipli-
cation by a constant matrix (“randomness extraction”), and it is also not mentioned on the certificate
sent with the device (Figure 6.14). The explanations given by the company (see the mail exchange
above) clarify that the tests were performed for bare Quantis device. But in this case the test results
say more about the quality of testing. Indeed, one can run standard tests (e.g., from dieharder suite)
and immediately see the problems: several tests fail for the bare output of Quantis device (without
randomness extraction stage).¹¹

This observation was discussed by Darren Hurley-Smith and Julio Hernandez-Castro in [19, 20].
In the first paper the authors give the results of dieharder test for several samples obtained from dif-
ferentQuantis devices (PCI/USB, 4M/16M). However, as it is clear from this paper (and can be easily
confirmed experimentally), different runs of dieharder tests (for different samples) may provide re-
sults that have not much in common (different number of WEAK/FAIL results, different tests that
fail, etc.).¹² One can also recall that there are some problems with the tests and their implementation
(as discussed above). They also provide the results of testing with ent tool (from ubuntu distribu-
tion) that show that 𝜒2-test gives bad results for Quantis. We have discussed these results and their
rigorous version in Section 3.3. Figure 6.15 shows the output of the robust version of sts_serial
test described in [37].

The second paper [20] discusses more extensive experiments (with more generators, and more
tests, see Figure 6.16). It contains a lot of interesting observations, but also illustrate the methodolog-
ical problems of randomness testing. Consider, for example, the last column. For all the generators
more than 10% of sample fail the test. What does it mean? Is the test “oversensitive” in such a way
that the truly random generator fails it with probability more than 10%? Or does it mean that all the
generators are bad, just one needs a really good test like Crush to discover the problem?

The authors comment on this problem, but the comments seem to create more confusion: “…the
common sense statement that good generators only fail overly complicated tests and bad ones only
[sic!] fail tests that are simple enough to implement. This makes sense, as a generator will eventually
fail any test if the test in question is sufficiently rigorous. As a result, this work focuses on generators
that consistently fail so-called reasonable tests of randomness, rather than seeking specific failures
that occur only in the most rigorous of tests” [20, section 3.2.4].

Another comment: “An important concept to bear in mind when considering these generators
is the non-deterministic nature of the output. Solitary tests of individual sequences are not suffi-
cient to identify issues; any non-deterministic bit generator (TRNG) will fail a given statistical test
at some point due to the inability to guarantee that a given sequence will contain a uniform distribu-

¹⁰One of the requirements form PTG3 devices (3.6) says: “The algorithmic post-processing algorithm belongs to
Class DRG.3 with cryptographic state transition function and cryptographic output function, and the output data rate
of the post-processing algorithm shall not exceed its input data rate.” It requires the use of one-way function, and
none of the described operation for the standard version of Quantis and the accompanying software mention one-way
functions. The special certified version is described in https://www.idquantique.com/random-number-generation/

products/quantis-ais-31/ where the company says: “The Quantis AIS31 RNG complies with all the requirements of
the PTG.3 class. It provides cryptographic post-processing based on the Advanced Encryption Standard (AES) that offers
an additional security anchor. The cryptographic post-processing required to achieve PTG.3 level compliance reduces
the raw bit rate of 4Mbps to approximately 75Kbps”. It is not clear why such a huge decrease in the rate is needed.

¹¹This is acknowledged in the quote above from the company’s documentation where the need for the randomness
extraction stage is explaned.

¹²The same can be said about bias graphs on p. 14–16 of this paper. One should not assume that for perfect generator
the graph should be flat with almost-zero bias; on the contrary, such a zero bias would be a clear indication of a bad
generator. One should not make far-going conclusions from individual graphs, either: for different samples of the same
device the graph could be significantly different, both for good and bad devices.
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Figure 6.14: Certificate for ID Quantiue Quantis-USB-4M device
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sts_serial:

rtest -x -f random11.dat -e ../bitbabbler/raw_4_sources-1 -p 1000 -q 1000

-n 100000 -t 3 -d 57 -r 1 -k

0.0691762539902 0.0000000001258 0.0000000000923 0.0000002461977 0.0000013787446

0.0028179208243 0.0071953614430 0.0129123522308 0.1641144775643 0.9690010280431

0.8282194040312 0.5362766985932 0.4326088695815 0.3136800387321 0.3701201760617

0.2634717271986 0.3411247511266 0.2406820248660 0.4326088695815 0.1641144775643

0.0000000000007 0.0000000018564 0.0000598456772 0.0971034965705 0.5005673707894

0.2406820248660 0.5005673707894 0.3136800387321 0.1483645207896 0.6854967337921

0.7593695685683 0.7946637387577 0.7593695685683 0.7228251828701 0.2406820248660

0.9136894237272 0.3701201760617 0.6854967337921 0.6101664688189 0.0000000000000

0.6478148720772 0.5005673707894 0.7593695685683 0.4659595288557 0.3136800387321

0.4659595288557 0.3136800387321 0.4326088695815 0.5005673707894 0.6478148720772

0.9542189106779 0.9883339509983 0.7593695685683 0.2406820248660 0.9690010280431

0.4659595288557 0.5362766985932

Used 800016000 bytes from the test generator [0]

Used 400008000 bytes from the etalon generator [1]

Figure 6.15: One of the robust tests (sts_serial) applied to the output of Quantis device without
multiplication by 1024 × 768 matrix (file random11.dat mentioned in the command line). Other
generator (bitbabbler, Section 6.8) is used as reference. (Recall thatwe do not need any assumptions
about this reference generator to make these 𝑝-values valid.) The results of the postprocessing
(matrix multiplication) did not exhibit any anomalies in our (limited) testing.

tion of values (be they bytes, integers or sub-sequences of arbitrary length). This is a key difference
between uniform deterministic (PRNG) and non-deterministic bit generators (TRNG): the former en-
sure a uniform distribution, while the latter rely on their inherent entropy to provide truly random
values. A uniform distribution is likely over a given set of sequences, but an individual sequencemay
exhibit deviations which will cause some statistical tests to fail. Rigorous testing of statistically sig-
nificant data sets is required to reliably identify recurrent issues from probabilistic phenomena.” [20,
section 2.3]. It is hard to understand what the authors have in mind when speaking about uniform
deterministic PRNG that ensure a uniform distribution.

Also recall that the dieharder test used in [20] performs an incorrect computation of Kolmogorov–
Smirnov deviation and has other problems (as discussed in Section 2.3.2).¹³

Returning to the general general discussion of quantum bit generators, one may note (as the
producer of Quantis do) that from the viewpoint of physics there is a difference between a “random
noise” that comes from statistical mechanics (say, the thermal noise in a resistor, or the Brownian
motion, or some chaotic dynamical systems with external noise, like Lorentz attractors) and more
“refined” randomness that comes out of quantum mechanical systems where the events related to
individual microscopic objects can be observed, for example, experiments with individual photons.
However, one can argue that

• there is no clear distinction between two categories: how do we classify Geiger counter events
for a macroscopic piece of slightly radioactive material? how do we classify the noise in a PN
junction (definitely related to some quantum effects but in multi-particle systems)?

• from the practical viewpoint, it is doubtful that one can construct an experimental device
that is “clean” enough to avoid the conditioning step. And if we use conditioning, do we

¹³There is no need to say that all these problems are mentioned not to blame the authors of [20] who did a lot of
important work and highlighted some intrinsic problems with quantum randomness generation, but to illustrate the
common need for robust testing methodology.
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Figure 6.16: Table from [20]. As the authors say, “Table 3 outlines the results generated using three
well-known statistical test batteries, intended for use in ascertaining whether data is sufficiently
random. Each set of results represents the number of passing samples for each test battery, out of a
total number of samples (2nd column)”.

really have an advantage using a delicate quantum-mechanical experiment instead of cheaper
alternatives? One can argue that it is better to have “true randomness” instead of “mere chaos”,
or something like this. It definitely sounds good for philosophers or for a sales brochure, but
are there more essential advantages?

6.7 Infinite Noise

Figure 6.17: Infinite Noise generator

This generator (Figure 6.17) is available from 13-37.org (https://13-37.org/en/infinite-
noise-trng/) for 30 euro plus shipping. As the site says, “13-37.org electronics shop was founded
in 2017 by Manuel J. Domke. We are primarily dedicated to manufacturing and direct sales of open-
source hardware.”

As Manuel writes in the blog notes, “The Infinite Noise TRNG is an open source random number
generator. Check the GitHub repository from Bill Cox (waywardgeek) for detailed documentation
of the hardware design. My contributions to the software side of this project are of course included
in these builds. This means, systemd- and udev rules are included for automatic start of the driver
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when connecting the device. Also its now possible to connect multiple devices to one computer
(mainly for testing purposes).”

So both the hardware and software of this device are open-source (available from github), a big
plus, especially for (rightfully) paranoid people.

Omitting technical details, its functioning can be described as follows. Consider the bit shift map
[0, 1] → [0, 1] defined as follows:

𝑡 ↦ 2𝑡 mod 1, i.e., 𝑡 ↦ if 2𝑡 > 1 then 2𝑡 − 1 else 2𝑡.

In terms of bit representation it shifts a binary number to the left, deleting the first bit (therefore the
name). It can be easily implement if reals are interpreted as voltages, using operational amplifier
and comparator. Using the clock signal and a sample and hold devices, we get a circuit where at
every clock pulse the voltage (kept in a capacitor) is subjected to the bit shift transformation.

Applying a bit shift map to some real 𝑥 ∈ [0, 1] iteratively, we get its bits from left to right
(assuming that the computation is performed exactly). These bits can be read at the output of the
comparator. However, there is always some noise in the circuit, so actually the output will be de-
termined by this noise starting from some point, and not by the initial voltage. And for random bits
generator it is a feature, not a bug. This method of capturing noise has some advantages over the
digitizing the amplified noise (say, Zener diode noise). First, we do not need the analog-digital con-
verter, the scheme uses only simpler devices. Second, the internal noise is combined with external
interference in a better way. If, say, some traces of 50 Hz AC are added to the Zener diode signal
(that is rather weak by itself), then the resulting output could lose almost all randomness, since the
noise could be masked by the parasite signal. On the other hand, in this scheme the interfering
signal will affect all the stages, and none of them involve amplification by a large factor.

An additional (and very important) bonus is the possibility of the verification of the signal, if we
change the design a bit and use a smaller factor than 2 in the map. Then we cannot say anymore that
the device reads the sequential bits, it does something more complicated. The resulting bits (more
precisely, their groups, like bytes or integers of given length) have a kind of Cantor-set structure. It
is shown in Figure 6.18 (left) that was obtained as follows: the raw bit stream from the device is split
into 16-bit integers and the pairs of these integers are treated as point coordinates. For comparison
we provide the simulation picture (right) obtained as described above (with coefficient about 1.9). In
fact, the debug option of the provided software estimates this coefficient, so there is no need to tune
it by hand trying to match the device behavior. (The closer is the factor to 2, the smaller are gaps in
the simulation picture.)

Figure 6.18: Pairs of consequtive 16-bit raw integers from Infinite Noise generator (left) and their
simulation (right).

This approach (decreasing the amplification) makes easy to verify the design. However, the
resulting bits are obviously non-random (and the entropy of the output distribution is slightly less

55



than 1, about log 𝑘 where 𝑘 is the amplification factor). Trying dieharder with some reasonable
parameters, we see that most of the tests fail. So some whitening is definitely needed.

The software driver provided by the company performs whitening based on the SHA3 hash
function. Though it is a standard approach (recommended by NIST), and could be considered as
reasonably safe if health monitoring is used (it is provided by the drivers), still the paranoid people
could say that there are no mathematical reasons behind this approach (and, may be, replace this
approach by some other type of whitening, e.g., taking xor of several devices of this type, or doing
something else).

The raw speed (for the device that we bought) is ≈350 kbits per second; after whitening it de-
creases (as it should) to ≈300 kbits per second; the documentation says 32 kbytes per second for the
whitened stream.

Health check: for the whitened stream basic tests (on 1 Gb sample) do not show anything suspi-
cious.

6.8 BitBabbler

Figure 6.19: Bitbabbler generator (inside and outside)

This device (http://www.bitbabbler.org/index.html, Figure 6.19) is produced by a small Aus-
tralian company Voicetronix. The Linux drivers, provided by the same company, are included in the
standard distributions (we used ubuntu 18.04), so the software is open source (but hardware is not).

It uses the same basic principle as the InfiniteNoise device (see the previous section); however,
one of the main goals of the designers was to avoid any cryptographical (and therefore based on
unproven assumptions) whitening. Still some whitening is needed, and it uses xor-operation. There-
fore:

• The multiplication factor closer to 2 is used (some variations in the electronic components are
inavoidable; also the clock rate may be important, see below).

• The device included four separate bit generators, so their outputs can be xor-ed.

• The software driver performs “folding”, i.e., two (or more) blocks of consecutive bits are xor-ed
(in addition to the previous step); some self-testing is also included.

The software allows the user to change the defaults (use only some of the four generators or a xor
of some set of them, switch off or increase the “foldering”). One can also change the clock rate (it
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is 2.5MHz by default, so the device in rather fast, in the default configuration we got ≈1.1Mbits per
second). There is also an option to switch off the quality control, so in this way we can test the raw
output of different devices with different clock rates.

The same Cantor-set-like structure is visible on the graphs for individual devices but it depends
on the rate (Figure 6.20, page 58). Probably the visible uniformity is the best for the default rate
2.5MHz. For the slower rates (100 kHz and 1MHz) we get two rather similar pictures; it seems that
there are some overlaps instead of gaps on all levels except the first one). For 5 MHz rate the gap
becomes much larger (this corresponds to the decrease in the amplification factor in the model), and
for 10MHz the structure is almost destroyed: the values are much more concentrated, so we get less
white points and much less entropy — so there are no advantages in using the rate that high).

We may also compare graphs for the same rate and for different devices (recall that there are 4
in one white device), see Figure 6.21 (p. 59). Both devices have significant distortion but the graphs
are visibly different.

The graph for xor of two devices (Figure 6.22) looks much more uniform, and it is hard to see the
non-randomness (may be some hints of vertical and horizontal lines are visible). Still the tests (first
of all sts_serial and ent_8_16) easily detect problems with the xor of two devices (Figure 6.24).
For a single device the failures are even more obvious (though the folded version surprisingly did
not exhibit any problems in our testing).

The graph for xor of three devices (Figure 6.23) looks even more uniform (though difference is
hardly visible). Our testing did not show any suspicious behavior for samples of size up to 10 Gb
both for the xor of three devices and the xor of all four devices.

Recall that (as we have said) the default output of the device is obtained by “folding” this 4-xor-
stream; this decreases the speed of bit production by factor 2, but provides an additional security
reserve.

There exists a simpler (and cheaper) version of the device, called the “black” device (we did not
test it). It includes only one bit generator, so whitening is based on foldering only.
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100 kHz 1 MHz

default rate 2.5 MHz

5 MHz 10 MHz

Figure 6.20: One of the four devices with different bit rates (no folding, no quality check).
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Device 1 (10 MHz) Device 2 (10 MHz)

Figure 6.21: Two different devices, the same rate 10 MHz.
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Figure 6.22: The xor for two different devices at default rate 2.5 MHz.
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Figure 6.23: The xor for three different devices at default rate 2.5 MHz.

$ rtest -x -f raw_2_sources -e raw_4_sources-1 -p 100 -q 100 -n 10000 -t 9 -d 4 -r 1 -k

0.0240558028411 0.0240558028411 0.5830090612540 0.9084105017745

Used 8001600 bytes from the test generator [0]

$ rtest -x -f raw_2_sources -e raw_4_sources-1 -p 1000 -q 1000 -n 10000 -t 9 -d 4 -r 1 -k

0.0000000000000 0.0000000000000 0.1811645424830 0.3136800387321

Used 80016000 bytes from the test generator

Figure 6.24: Entropy tests for the xor of two generators in a Bitbabbler device.
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6.9 Ubld.it

Figure 6.25: TrueRNG3 generator from Ubld.it

Figure 6.26: TrueRNGpro generator from Ubld.it; one can see two shielded generators and a pro-
cessor chip.

The company http://ubld.it/ produces devices of two types. The cheaper one, TrueRNGv3, is
an USB stick (Figure 6.25). The more advanced one, TrueRNGpro, is a small box with USB connector
and four LEDs (Figure 6.26).

According to the description, “The TrueRNG Hardware Random Number Generator uses the
avalanche effect in a semiconductor junction to generate true random numbers. ⟨…⟩ The semicon-
ductor junction is biased to 12 volts using a boost voltage regulator (since USB only supplies 5V),
amplified, then digitized at high-speed. The digitized data is selected and whitened internal to the
TrueRNG and sent over the USB port with more than 400 kilobits/second of throughput.” As to
whitening, they say that “entropy mixing algorithm takes in 20 bits of entropy and outputs 8 bit
to ensure that maximum entropy is maintained. The algorithm uses multiplication in a Galois field
similar to a cyclic redundancy check to mix the ADC inputs thoroughly while spreading the entropy
evenly across all bits.”

The advanced version has two shielded independent generators, metallic enclosure and LEDs (in-
cluding two LEDs that show the results of the health checks for both generators). The software gives
access to raw data from the generators, and to the whitened data stream from one or two generators
(as requested by the user). Drivers for Linux (including udev rules) and Windows are provided (we
tested only with Linux). Sample python program to get access to the random bits is provided. As
to whitening algorithm, the FAQ on the company site says “We split the data into multiple streams
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and use the XOR method to reduce bias (whiten) the output data. ⟨…⟩ A significant amount of time
was spent getting the whitening correct without reducing the throughput too much. Currently, the
random data is XORed/downselected at about a 20 ∶ 1 rate to whiten while keeping maximum en-
tropy.” No detailed information about the whitening algorithm is provided. The raw data show a
reasonable distribution (Figure 6.27) that is consistent with the description in the documentation.

Figure 6.27: Raw data for TrueRNGpro generator. Each white point corresponds to raw readings
from two generators (for two coordinates). Each generator produces a 10-bit value; however, most
of the values are close to the middle of the [0, 1023] interval (the graph shows about 600 middle
values for both coordinates).

Speed: 400 kbits/sec for TrueRNGv3, 3200 kbits per second for TrueRNGpro. Price: around $50
for TrueRNGv3, around $100 for TrueRNGpro.

Both devices does not show any suspicious behavior in our limited testing (samples of size up
to 1 Gb).

6.10 Homemade random bits generator
It may make sense to make a hardware random generator in a do-it-yourself way. First, in this way
one can be sure that there are no Troyan horses (after minimal precautions); second, this helps to
understand better the problems and possible solutions. So we performed a (completely amateur)
experiment of this type, just to see what can be done without serious tools or preparations (Fig-
ure 6.28).

We decide to use Zener diodes as noise sources, use the standard entry-level audio mixing tables
to digitize the signal, and get the signal from the basic circuit for Zener diodes: the resistor and the
diode are connected to the power source, and the voltage from the diode is sent to the microphone
XLR input of the mixer. Since standard recording programs normally work with two channels (for
stereo sound), we made two circuits like this.

Some things that we have discovered while trying different settings.

• The noise from the power supply is comparable with what the Zener diode produces; not a
surprise since the linear power supplies often use p-n-junctions for reference voltage. One
may consider the power supply as just an additional source of noise, but we tried to filter it a
bit (using electrolytic capacitor after a resistor).
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Figure 6.28: Recording noise from two Zener 12V diodes using Behringer XENYX 1204USB mixing
table. The voltage (now 23.5 V) from the power source is filtered by two linear LM317 filters, giving
two 20V outputs; they are additionally filtered by RC circuit and then applied to the resistor — Zener
diode circuit; the signal is sent to microphone XLR inputs through a capacitor.

• Since we wanted to have independent noise for both channels, two standard LM317 linear
power supply circuits (producing 20V out of 24 volts from power adapter) for both channels
were used.

• We ordered several batches of cheap Zener diodes from aliexpress.com, and made some pre-
liminary tests with dozens of them. Different diodes (even from the same batch) can behave
quite differently. In particular, there are two effects that we tried to avoid. First, for some
diodes the spectrum of the recorded noise (tested with standard audacity software) is ob-
viously non-uniform, going down almost linearly (in the logarithmic scales). Probably this
means that the underlying physics mechanism generating noise is different, and the decline
in the high frequency range is obviously bad for random bits generation (making the neigh-
bor readings dependent). Second, for some diodes the graph has visible and audible spikes
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(“static”), and this also is bad for us: the digitized values for some periods have different be-
havior. Another observation was that maximal positive and negative (compared to the aver-
age: we connected the input through a capacitor to get DC isolation, so the average value was
zero) peaks often have different amplitudes; we try to select diodes for which this difference
was not very high.

• The noise also depends on the current, and it should not be too low to avoid unstable effects.

• Trying to record mono signals, we discovered that the combination of the mixing tables we
used (Behringer 1204USB) and the recording software (audacity for Mac OS X and Linux) is
non-symmetric in the sense that one channel is one reading behind: 𝑖th reading in the left
channel corresponds to 𝑖 + 1-th reading in the right one; this is clearly visible in audacity

(Figure 6.29). (Strange, but easy to correct. The same effect was observed with Yamaha MW10
mixing table, but not with Yamaha AG06, so it is probably caused by the hardware, not by
software.)

Figure 6.29: A mono signal recorded by Yamaha MW10 mixer and audacity; left channel (top row)
is one sample ahead of the right channel (bottom row).

To diminish the external interference (that was audible as humming and visible as peaks, includ-
ing 50 Hz harmonics on the frequency spectrum) we made a noise source with balanced output (as
required by the XLR microphone inputs of the mixing tables). The spectrum of the output signal of
this noise source (Figure 6.31) still has some peaks (as the picture shows, the biggest one is at 30Hz
and we do not know its origin) and is not flat (has more low frequencies). Also one can see that the
spectrum is well below the Nyquist frequency (half of the sampling rate), 91 kHz for our case, and
one can see (Figure 6.32) that the consequent samples are dependent (e.g., often have the same sign).
Another way to visualize this dependence is to draw the pairs of consecutive samples as points on
the plane. If the signal changes slowly, then these points are close to the diagonal. On the other
hand, if samples are independent, the distribution is the product of two one-dimensional distribu-
tions. Figure 6.33 shows a significant dependence between neighbor samples. The shape of the data
curve and the spectrum depend on the Zener diodes used in the noise source (as we have mentioned
earlier, the diodes from the same batch may have different properties) and the current used for noise
generation. For comparison we made a simple noise generator (Figure 6.34) that uses the phantom

65



Figure 6.30: A noise source with balanced output (two identical channels).

Figure 6.31: The spectrum of the noise source with balanced output, digitized by Yamaha AG06,
24 bits, 192 kHz, shown by audacity program.

power provides by some microphone inputs (all in Behringer XENYX 1204 usb and Yamaha MW10
and one of two inputs in Yamaha AG06). The signal is now the difference between noise signals
from two Zener diodes. Looking at the data, we see that the curves are now significantly different
and less symmetric (Figure 6.35), though the spectrum looks more flat. The advantage (except for
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Figure 6.32: A sequence of noise samples (digitized by Yamaha AG06, 24 bits, 192 kHz) as shown by
the same program.

Figure 6.33: Sample pairs (digitized by Yamaha AG06, 24 bits, 192 kHz).

simplicity) is that no power adapter is needed.¹⁴ The difference is also clearly visible on 2D plot
(Figure 6.36).

One can probably get some random bit generators that pass the tests by using xor of several
noise streams (obtained by different generators), as it is done in many previous devices. Still we get
much smaller bit rates (assuming 1 byte for sample and 44100 Hz sampling, we get about 300 kbits
per second, not much compared to the devices considered) and much bigger and more expensive
device (as usual, paranoia has its costs).

We used the audiofiles obtained from 44.1 kHz 16-bit stereo .wav file from device shown in
Figure 6.30 to try the two-source extractors described in Section 5.5 (see Section 7.6 for the imple-
mentation details). Our tests did not exhibit a suspicious behavior (for several 1 Gb samples).

Let us mention also that other “homemade solutions” are possible (see Figure 6.37) for more or
less serious examples.

¹⁴A suitable power adapter could be a problem. Many cheap switching power adapters create a lot of parasite sig-
nals, probably due to bad isolation between the primary and secondary circuits or bad filtering of the high frequency
oscillations.
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Figure 6.34: Two Zener diodes on an XLR connector can be used as a noise source if connected to
a microphone preamplifier with balanced inputs and phantom power. The resulting signal is the
difference between two noise signals from both diodes.

Figure 6.35: The signal from device with 2 Zener diodes (upper row), digitized by Yamaha AG06 (24
bits, 192 kHz), and the frequency spectrum of 2 Zener diodes device.
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Figure 6.36: Pairs of consecutive samples from 2-diodes noise source (AG06, 24 bits, 192kHz).
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Figure 6.37: Randomness made visible: roulette wheel, lottery machine and lava lamps
at cloudflare.com (pictures from wikipedia and https://blog.cloudflare.com/lavarand-in-

production-the-nitty-gritty-technical-details/).
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6.11 Testing synthetic pseudo-random generators
In many applications (e.g., randomized algorithms, communication protocols) people use pseudo-
random generators instead of physical sources of “true randomness.” Such a generator is typically
initialized by a short seed (usually a few bytes), and then produces a very long sequence of bits
that are computed from the seed deterministically. Such a sequence of bits has obviously very low
entropy (bounded by the size of the seed). However, a pseudo-random sequences can have good
statistical properties expected from a truly random sequence. In particular, such pseudo-random
sequences can pass standard batteries of tests like Dieharder. The observed statistical “regularity”
of pseudo-random sequences can be justify their usage in some applications.

We tested with Dieharder several (pretty standard) pseudo-random generators listed below.
Generator 1: A version of a pseudo-random generator by Blum, Blum, and Shub [5]. We choose
a number 𝑀 that is a product of two prime numbers (in our experiments 𝑀 = 100000004483 ×
100000004987), a seed 𝑥0 that is co-prime with 𝑀, and compute a sequence of values 𝑥𝑖+1 = 𝑥2𝑖
mod 𝑀 for 𝑖 = 0, 1, 2, …The the least significant bit of each 𝑥𝑖 is taken as the outcome of the generator.
Generator 2: A very simple version of a linear congruential generator. We let

𝑀 = 100000004483 × 100000004987

(this choice of the parameter makes it easier to compare this generator with the BBS Generator 1),
and two numbers modulo 𝑀; in our experiments these are 𝐴 = 444444 and 𝐵 = 55555555555. Then
we choose a seed 𝑥0 co-prime with 𝑀, and define 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵 for 𝑖 = 0, 1, 2, … The the 32 least
significant bits of each 𝑥𝑖 a taken as the outcome of the generator (this is about a half of the size of
the internal state of the generator, which is an integer number modulo 𝑀).
Generator 3: Another (more conventional) version of a linear congruential generator used in the the
standard POSIX. It is similar to Generator 2, the only difference is the choice of parameters: we let

𝑀 = 248, 𝐴 = 25214903917, 𝐵 = 11.

The output of the generator are the 4 less significant bytes of the current 𝑥𝑖. This scheme is used, for
example, in the function mrand48() of the GNU C Library and in Java’s class java.util.Random.
Generator 4: A simple and very fast generator based on linear feedback shift register proposed by
G. Marsaglia, [32]. Here is the implementation in C borrowed as given at [33]:

struct xorshift64s_state {

uint64_t a ;

};

uint64_t xorshift64s(struct xorshift64s_state *state)

{

uint64_t x = state->a;

if (! x) {

x = (uint64_t) SEED; // initialize

}

x ^= x >> 12; // a

x ^= x << 25; // b

x ^= x >> 27; // c

state->a = x;

return x * UINT64_C(0x2545F4914F6CDD1D);

}

In our experiments we take the 32 least significant bits returned by xorshift64s().
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Generator 5: We use the same generator as in Generator 5, but we take only one bit from each value
retuned by xorshift64s() (in our experiments we took the 15th least significant bit of the outcome).
Generator 6: In this example we use random bits produced by the well known generator called
Mersenne Twister [35]. We used the standard version implemented in 2002 by Takuji Nishimura
and Makoto Matsumoto, [46] (we used all 32 bits from each value returned by the generator).
Generator 7: In this example we use a permuted congruential generator (PCG), which is described
as having good statistical performance despite small and fast code [45]. We used the following code
borrowed from the PCG library on https://www.pcg-random.org.

typedef struct { uint64_t state; uint64_t inc; } pcg32_random_t;

uint32_t pcg32_random_r(pcg32_random_t* rng)

{

uint64_t oldstate = rng->state;

// Advance internal state

rng->state = oldstate * 6364136223846793005ULL + (rng->inc|1);

// Calculate output function (XSH RR), uses old state for max ILP

uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;

uint32_t rot = oldstate >> 59u;

return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));

}

Observed results : In our experiments, generators 1, 2, 5, 6, 7 pass the standard tests of Dieharder;
also the spectral tests do not reveal for them any abnormality. Generator 3 and 4 fail the battery of
tests of Dieharder. It is interesting that Generator 3 produces random graphs with a spectral radius
pretty similar to the properties of “truly random” graphs (we perfrmed experiments, in particular,
for graphs with 256 vertices and average degree 16). On the other hand, the random graphs (with the
same number of vertices and average degrees) obtained with Generator 4 have dramatically different
spectral properties.

In our experiments, each graph was represented by a rather short sequence of bits (typically by a
block of 4096 bytes). We believe that spectral properties of much larger graphs deserve more careful
research in future.

6.12 Concluding remarks
Our analysis of the devices is quite superficial: for a more serious one we would need to analyze
the PCB, the firmware, make extensive testing in different environmental conditions, etc. However,
some observations could be made.

• There are significant improvements since the time when Marsaglia developed dieharder for
randomness testing (1990s): only one of of the devices tested by us failed immediately our
health tests (while all three hardware devices tested by Marsaglia did fail miserably, even
after correction for the dos-unix conversion problem).

• There are several kinds of threats. First, one may be afraid of hardware instability in different
conditions. For that, one should avoid devices that use the environment as a source of ran-
domness (as it is done by gniibe/neug device) since they require extensive testing in different
environmental conditions to be sure that enough randomness is available. The devices that
uses electromagnetic noise are also unreliable in this respect.
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• One can be afraid of a trojan horse installed by the device maker or on the way. Then one
should avoid device with microprocessors and prefer to use device with easy to check or open
architecture (like bitbabbler, or, better, the infinite noise device). The ultimate solution would
be to make the device in-house using one of the standard approaches or the open-source
hardware data; the bit shift devices or the noise sources with some off-the-shelf ADC or even
a commercial audio card could be a reasonable solution.

• One can use inadvertent deficiencies in the device due to bad or instable components. Then
the ability to get the raw data for systematic check on the go is important (so you can see
if, say, a Zener diode changes its parameters suddenly). For example, from this viewpoint
TrueRNGpro defice is much better than TrueRNGv3 one.

• The most paranoid people may be afraid of security holes in widely used cryptographical
primitives like hash functions and other tools prescribed by the standard (recall that even
accepting unproven assumptions from complexity theory we have nomathematical reasons to
trust these standard tools). Then simple and well-understood tools like xor of several sources
are preferable even if they require more raw random bits.

• On the other hand, if we care about small statistical regularities and do not worry much about
malicious adversaries, the cryptographic primitive are usually more or less enough, and they
still provide minimal defense against most intruders even if the statistical properties of the
primary source degrade. They also allow a trade-off between speed and security since we
may get much more than 𝑁 pseudo-random bits from 𝑁 random bits and still be practically
indistinguishable from true random source. The resulting generator can be viewed as pseudo-
random generator with random seed and continuous reseeding from hardware random source.

• Note that it is easy to combine protective measures against different kind of threats just by
xor-ing the outputs of several generators that are resistant to different attacks: it is enough
to have one correctly working generator to guarantee the correct distribution at the output.
This assumes that we do not doubt the independence of the sources — but for the most prac-
tical cases having several usb devices bought independently from different manufacturers is
probably enough (assuming that our application is able to xor the output sequences correctly).

• There are more exotic approaches; for example, some people use lava lamps as sources
of randomness: https://qz.com/1642628/cloudflare-uses-lava-lamps-to-generate-a-

crucial-resource/ (Figure 6.37) — this is definitely good for advertisements and provides
some level of “security through obscurity”. One can also note that a cheap noisy video camera
(preferably with minimal post-processing) has a lot of internal noise that is available via a
high bandwith channel.

• Of course, one can also use existing high-end solutions to get a high-speed stream of random
bits, or some certification, or some additional feeling of security, or a chance to use it for
advertisements. Still it is questionable whether this is really much more than a “security
theater”.

Warning: In this analysis we did not consider an important aspect: how much additional pro-
gramming / system administration / hardware installation work is needed for this or that generator.
This depends on the specific nature of the application (e.g., the operating system in use, where the
generators should be installed, etc.), and can make some approaches practically unusable.
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Chapter 7

Comments on the software used

We start (Section 7.1) with observations made when analyzing the existing code (mainly from
dieharder suite since it is widely used). Then we describe some software tools that we developed
for our experiments. Section 7.2 describes the tools related to the Kolmogorov–Smirnov two-sample
test. Section 7.3 describes the utility that includes robust version of more than 15 tests; Section 7.5
describes some graphic tools (very primitive, but useful for quick assessment). Finally, Section 7.6
describes the implementation of a simple two-source extractor with provably good properties based
on finite fields (discussed in Section 5.5).

7.1 Dieharder: some notes and comments
Since Dieharder [9] utility is often used for practical testing of hardware random generators, it makes
sense to look at it more closely and note some pecularities. Our remarks refer to the version 3.31.1
(which seems to be the current one in March 2021).

• Flag -T is mentioned in the code (dieharder/parsecl.c, lines 97–100)

if(i == TCNT) {

fprintf(stderr,”Invalid -T %s option.\n”,optarg);

exit(1);

}

It seems that -T options is not mentioned in the man page. This message appears when the
name given for the -D option does not exist in the table of names (so -T should be probably
replaced by -D). The same -T is mentioned in the comments in dieharder/dieharder.h, lines
18–19:

* is set in set_globals to a default to be used if -T 0 is selected.

* tflag is otherwise accumulated from a series of -T FLAG calls, where

• Too many random bits read in the bitstream test for overlapping (main) mode,
libdieharder/diehard_bitstream.c, lines 73–78:

* for non-overlapping samples we need (2^21)*5/8 = 1310720 uints, but

* for luck we add one as we’d hate to run out. For overlapping samples,

* we need 2^21 BITS or 2^18 = 262144 uints, again plus one to be sure

* we don’t run out.

*/

#define BS_OVERLAP 262146
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In fact, for overlapping samples we need 221 +19 bits, i.e., about 221/32 32-bits integers (uint).
This is 221−5 = 216 = 65536 (+1 for the +19 additional bits). So the last line should be

#define BS_OVERLAP 65537

(Of course, a good generator should pass the test even if some bits are ignored, but in this
way the test uses four times more bits than needed, and this requires more time for hardware
generator testing.)

• In the same test, there is an error in counting the strings that do not appear as 20-bit substrings
of the generator. Namely, line 172 is

w[w20]++;

it increments the counter of the number of appearances of bit string w20. There is a small
problem: w is defined as *char in line 113:

w = (char *)malloc(M*sizeof(char));

so the counting happens modulo 256. In the rare case where some string appears 256, 512,
etc. times (it should be very rare, since the expected number of occurrences is only 2, still
theoretically possible), it will be counted as missing. The obvious correction is to make the
counter bool (we do not need the count value, only the yes/no information), replacing the line
172 by w[w20]= 1; this solves the problem.

• The dieharder bitstream test ignores 8 first bits of the stream both in overlap and non-overlap
modes (for different reasons). For the non-overlap mode the bitstream is different, since the
memory is considered as a sequence of bytes, not 32-integers, as it is done in the overlap mode,
and byte ordering is different. The lines 120–12 in diehard_bitstream.c are actually needed
only for the overlap case, but increase i by 1 anyway, so in the non-overlap mode the first
byte is ignored.

• The dieharder bitstream test does not react properly to the -L option (always uses overlapped
sampling), because line 52 of diehard_bitstream.c says so (and local variable is used instead
of the global one).

• With small number of samples, 𝑝-value is sometimes reported as 1.00000 and test fails (this
should not happen).

$ dieharder -g 1 -p 2 -d 1

#=============================================================================#

# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #

#=============================================================================#

rng_name |rands/second| Seed |

cmrg| 4.63e+07 |3941174114|

#=============================================================================#

test_name |ntup| tsamples |psamples| p-value |Assessment

#=============================================================================#

diehard_operm5| 0| 1000000| 2|1.00000000| FAILED

The source of the error is that (unfortunately!) the computation of Kolmogorov–Smirnov
statistics in kstest.c is incorrect (e.g., one should never divide by count+1), so for small
sample length 𝑛 it produces impossible values (like 𝑝 = 0.05 for 𝑛 = 2) and therefore the
ks_test function returns 1, interpreted as a failure.
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• The call dieharder -g 1 -S 1 -d 1 produces different results when run several times, though
-S 1 should fix the seed. The reason is that in choose_rng.c the seed is given to the generator
beforemeasuring the speed (line 246), and reseeding happenswhenmeasuring the speed (lines
251-253) if -D 8192 (speed measuring) is on, so the result depends on the the display options
(a rather confusing behavior);

\texttt{dieharder -d 1 -g 1 -p 10 -S 1 -s 0 -D pvalues -D 8192

produces different values too (though it seems that strategy prevents reseeding and the seed
is fixed). This can be corrected if we reseed again after timing tests in choose_rng.cHowever,
rgb_timing() changes the global variable seed. To avoid this, one could make variable seed
local (as unsigned long int) in the rgb_timing.c, function rgb_timing().

• The implementation of Marsaglia opso test [31] the code (diehard_opso.c) does not corre-
spond the description both in the paper and in the code itself. The description suggests to
consider a sequence of 𝑛 = 221 + 1 integers, consider them as 32-bit words, and keep only 10
bits in some fixed position. In this way we get a word in 1024-letter alphabet having length
221 + 1. Then we count how many of the 1024 × 1024 two-letter words in this alphabet do not
appear among 221 factors of length 2 of this 𝑛-bit strings. (This is a random variable whose
distribution is assumed to be very close to a normal one, and this is checked.)
At the same time, code says (here 𝑡 is an integer varible that is incread by 1 in the for-loop):

if(t%2 == 0) {

j0 = gsl_rng_get(rng);

k0 = gsl_rng_get(rng);

j = j0 & 0x03ff;

k = k0 & 0x03ff;

} else {

j = (j0 >> 10) & 0x03ff;

k = (k0 >> 10) & 0x03ff;

}

w[j][k] = 1;

We see that instead of overlapping pairs (as the name of the test says) here two pairs of 10-bit
strings are taken from different (disjoint) positions in a pair of two 32-bit integers obtained
from a random number generator (j0,k0). These two pairs are registered in the bit array w, and
then a new pair of integers is obtained. So the code makes something completely different.
(In fact, the dieharder man page characterizes this test as “suspicious”.)

• A similar problem exists with another test fromMarsaglia, namely, the oqso test [31]. Accord-
ing to the description (reproduced in the dieharder source), this test uses 5-bit groups (instead
of 10-bit groups), gets a word of length 221 + 3 in 32-letter alphabet, and then considers 221
factors of this word of length 4, and counts the 4-letter words that do not appear as factors.
This is done for every of 28 = 32 − 5 + 1 positions, so we get 28 counters.
The code in diehard_oqso.c does something completely different:

for(t=0;t<test[0]->tsamples;t++){

if(t%6 == 0) {

i0 = gsl_rng_get(rng);

j0 = gsl_rng_get(rng);
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k0 = gsl_rng_get(rng);

l0 = gsl_rng_get(rng);

boffset = 0;

}

/*

* Get four ”letters” (indices into w)

*/

i = (i0 >> boffset) & 0x01f;

j = (j0 >> boffset) & 0x01f;

k = (k0 >> boffset) & 0x01f;

l = (l0 >> boffset) & 0x01f;

w[i][j][k][l]=1;

boffset+=5;

}

Instead of taking (overlapping) factors, it makes 6 quadruples from disjoint bits in four 32-bit
integers. (There is no reason to think that the resulting test is worse than the original oqso
test, but it does not match the description in the same file.)

• In the runs test (that goes back to Knuth), the code in dieharder (file diehard_runs.c, lines
132–142) the first and the last elements of the tested block of integers are compared (with no
apparent reason, Knuth’s description and runtest.c did not do anything like that).

• The overlapping sum test is described in [29] as follows. We take the sum of 𝑚 independent
random variables uniformly distributed in [0, 1] (obtained from 𝑚 unsigned integers). Com-
pute their sum; its distribution is approximately normal. Then replace one of the number
by a fresh random real in [0, 1]; we get another (heavily correlated) random variable whose
distribution is close to normal. Doing this 𝑚 − 1 times, we use 2𝑚 − 1 random reals and pro-
duce𝑚 overlapping sums. Each of the sums is approximately normal, and they are correlated.
Marsaglia suggests to apply a linear transformation that will convert these (approximately)
normally distributed variables to (approximately) independent ones, convert them to (approx-
imately) uniformly distributed independent variables and to use Kolmogorov–Smirnov one-
sample test to check this hypothesis (of uniformly null distribution). The original test used
𝑚 = 100, so from every 199 unsigned integer we got one 𝑝-value. Then the distribution of 100
these 𝑝-values was assumed to be uniform and again Kolmogorov–Smirnov test was applied
to them to get a secondary 𝑝-value. Finally, ten secondary 𝑝-values were submitted to one
more (“tertiary”) Kolmogorov–Smirnov test.
Obviously this procedure is based on several layers of approximations, and no attempts to
provide an error boundweremade. (Also the derivation of the suggested linear transformation
was not given, just some formulas in file die.c/cdosum.c from [29].)
The dieharder code (file diehard_sum.c) complains about these problems saying that “unfor-
tunately, Marsaglia’s description is pretty opaque”. Still the code from cdosum.c for the linear
transformation is reproduced, but with a change. Here is a fragment from diehard_sum.c:

x[0] = y[0]/sqrt(1.0*m);

x[1] = -x[0]*(m-1)/sqrt(2.0*m - 1.0) + y[1]*sqrt(m/(2.0*m - 1.0));

[...]

for(t=2;t<m;t++){
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[...]

a = 2.0*m + 1.0 - t;

b = 2.0*a - 2.0;

/* x[t] = y[0]/sqrt(a*b) - y[t-1]*sqrt((a-1.0)/(b+2.0)) + y[t]*sqrt(a/b);*/

x[t] = y[t-2]/sqrt(a*b) - y[t-1]*sqrt((a-1.0)/(b+2.0)) + y[t]*sqrt(a/b);

The commented line is taken from Marsaglia’s code; however, the first term is changed (for
no apparent reason and with no explanation).
It is noted in the beginning of diehard_sum.c that “At this point I think there is rock solid
evidence that this test is completely useless in every sense of the word. It is broken, and it is
so broken that there is no point in trying to fix it. If I crank up tsamples to where one can
actually see the asymptotic distribution (which should be uniform) it is visibly non-uniform
and indeed the final kstest converges to a non-zero pvalue of 0.09702690 for all rngs [random
number generators] tested, which hardly seems useful. If one runs the test on only 100 samples
(as Marsaglia’s code did in both the original fortran or the newer C version) but then increases
the number of runs of the test from the default 100, it is easy to make it fail for gold standard
generators. The test just doesn’t work. It cannot be used to identify a generator that fails the
null hypothesis. Don’t use it.”
We tried Marsaglia’s recipe to get (presumably) independent uniformly distributed variables
and its version from dieharder by computing 20000 overlapping sums from three generators.
(Figure 7.1). As we see, these six curves are quite close to each other and differ significantly
from the diagonal (which would appear if the distribution is truly uniform). So it seems that
indeed this test uses approximation assumptions that are too rough (both in the original form
and in the changed one). Its two-sample version, of course, is still valid (as it happens for
every test function), only the sensitivity could be a problem.

• File dieharder_rank_32x32.c starts with comments

* This is the Diehard BINARY RANK 31x31 test, rewritten from the

* description in tests.txt on George Marsaglia’s diehard site.

*

* This is the BINARY RANK TEST for 31x31 matrices. The leftmost ::

* 31 bits of 31 random integers from the test sequence are used ::

* to form a 31x31 binary matrix over the field {0,1}. The rank ::

* is determined. That rank can be from 0 to 31, but ranks< 28 ::

* are rare, and their counts are pooled with those for rank 28. ::

* Ranks are found for 40,000 such random matrices and a chisqua-::

* re test is performed on counts for ranks 31,30,29 and <=28. ::

Still it tests ranks of 32 × 32 matrices (according to the file name and dieharder messages).

• For the 6 × 8 rank test the dieharder comments look even more confusing. The description
says

* This is the Diehard BINARY RANK 6x8 test, rewritten from the

* description in tests.txt on George Marsaglia’s diehard site.

*

* This is the BINARY RANK TEST for 6x8 matrices. From each of ::

* six random 32-bit integers from the generator under test, a ::

* specified byte is chosen, and the resulting six bytes form a ::
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Figure 7.1: Six empirical distributions of presumably uniform samples obtaind using three different
generators. Three use the originalMarsaglia’s transformation recipe, and the other three incorporate
dieharder’s changes).
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* 6x8 binary matrix whose rank is determined. That rank can be ::

* from 0 to 6, but ranks 0,1,2,3 are rare; their counts are ::

* pooled with those for rank 4. Ranks are found for 100,000 ::

* random matrices, and a chi-square test is performed on ::

* counts for ranks 6,5 and <=4. ::

It is not clear how the words “specified byte” should be understood¹The comments in the code
say

/*

* We generate 6 random rmax_bits-bit integers and put a

* randomly chosen byte into the LEFTMOST byte position

* of the row/slot of mtx.

*/

But there are traces of the “random choice” of a byte, it seems that just the 8 first bits are
selected from each 32-bit integer. (There are also strange things in the code. For example, six
rows and eight columns with integer values are reserved for the matrix:

mtx = (uint **)malloc(6*sizeof(uint *));

for(i=0;i<6;i++){

mtx[i] = (uint *)malloc(8*sizeof(uint));

}

which is strange since the rank computations in rank.c use individual bits in unsigned inte-
gers (and only mtx[i][0] are used later in the code).

• In the birthday tests (cdbday.c in diehard and diehard_birthdays.c) there are several pecu-
larities in the code. The description (given by Marsaglia are reproduced by Brown) says that
𝑚 days are randomly chosen in a year of 𝑛 days, then the intervals between these “birthdays”
are considered and the “number of values that occur more than once in that list” is computed.²
This distribution is claimed to be asymptotically close to Poisson distribution with parameter
𝑚3/4𝑛, and a 𝜒2-tests is used to measure this closeness. According to Marsaglia’s description,
“A sample of 200 𝑗’s is taken and a chi-square goodness of fit test provides a 𝑝-values”. (In
fact, Marsaglia’s code uses 500 values of 𝑗, not 200. Also, Marsaglia uses values 𝑚 = 210 and
𝑛 = 224, both in the comments and the code in cdbday.c, but Brown, reproducing Marsaglia’s
comments, cites another value 𝑚 = 29, along with 𝑛 = 224. So the Poisson parameter becomes
2 instead of 16.
Marsaglia gets random 24-bit words (birthdays) from 32-bit random integers (that are tested)
using bits 1–24, then using bits 2–25 (from the same integers), etc., thus getting 9 different
𝑝-values from the 𝑐ℎ𝑖2-test. Then “the nine 𝑝-values provide a sample for a KSTEST”. This
process is based on several unfounded assumptions. First, the approximation by Poisson dis-
tribution is only an approximation (no derivation is given, not to speak about error bounds).
Then 𝜒2-test needs to be applied, and the standard practice is to combine the values with
small probabilities (rule of thumb says the we should combine tail bin in such a way that the

¹It seems that in the original diehard code the 𝜒2-test was applied for each of 25 position separately (which is
reasonable), but then Kolmogorov–Smirnov test was applied to the 25 results given by 𝜒2-tests, and this is a bad idea,
since they are not independent.

²Strangely, both Marsaglia and Brown consider the interval that crosses the year boundary in a special way: only
the part in the new year is counted.
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expected value for a bin is at least 5). Marsaglia does this according to the rule of thumb,
while Brown considers only the right tail and just ignores that bins with expectation less than
5 instead of combining them). As Brown writes in diehard_birthdays.c, if the number of
repetitions (𝑗) is bigger that the allowed maximal value (called kmax), “we simply ignore — it
is a bad idea to bundle all the points from the tail into the last bin, as a Poisson distribution
can have a lot of points out in that tail!”. (This argument looks very strange, and we cannot
explain the reasoning.)
There are two other points to be mentioned. One of them is the interpreration of the words
“Let 𝑗 be the number of values that occur more than once in that list” (of intervals between
birthdays). Should we literally count just the values or, if there are three intervals of the same
length, we could count them as two repetitions, so 𝑗 is the difference between the cardinalities
of a multiset of intervals and set of intervals? Marsaglia uses the second interpretation, and
Brown uses the first one (“We count the number of interval values that occur more than once
in the list. Presumably that means that even if an interval occurs 3 or 4 times, it counts only
once!”).
The second point is the overlapping sampling done by Marsaglia (bits 1–24, then 2–25, etc.).
Brown writes in the comments that “I’m running it on all 32 24-bit strings implicit in the
variables. We’ll do this by rotating each variable by one bit position in between a simple run
of the test. A full run will therefore be 32 simple (rotated) runs on bits 1–24”. But this is not
what happens in the code, it seems ³ that the 24-bit portions are taken from the input bit stream
without any overlap (which is perfectly OK and makes the different 𝑝-values independent, but
is not what is said in the description).
To illustrate how these different assumption are reflected in the data, we show two empiri-
cal distributions graphs. They are done for 𝑛 = 224, 𝑚 = 210 (as in Marsaglia’s code). We
considered all the intervals (including the one that crosses the year boundary) in the same
way, used the Poisson distribution with recommended parameter 𝑚3/(4𝑛) and 𝑐ℎ𝑖2-test with
combined bins in the both tails (until the expectation is at least 5). The size of sample that
was compared with Poisson distribution was 500 (as in Marsaglia’s code); for this value bins
8… 26 are counted (all numbers smaller than 8 are combined with 8, and all numbers greater
than 26 are combined with 26). As one can see from the graphs (Figure 7.2), the assumption of
uniform distribution of the 𝜒2-test 𝑝-value seems very improbable (for both ways of counting
the repetitions), so the validity of the test in the original form is questionable.

7.2 Kolmogorov-Smirnov 2-sample tools
Aswe have mentioned in Section 3.1, one can use Kolmogorov–Smirnov criterion for two samples to
get a robust randomness test. Assume (null hypothesis) that 𝑎1, … , 𝑎𝑚 and 𝑏1, … , 𝑏𝑛 are real numbers
independently sampled from some distribution (in our example: real functions of blocks of random
bits). Let us sort the array 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛 and list all the values in the increasing order. Then
we forget the values, and remember only where they come from (writing letter a or b). We get a
sequence of 𝑛+𝑚 letters that consists of𝑚 letters a and 𝑛 letters b. The assumption (null hypothesis)
implies that all strings of this type could appear with equal probabilities.

Therefore, if we have some subset of the set 𝑆(𝑚, 𝑛) of all strings of this type that has small
cardinality (compared with the total number of all strings of this type, i.e., (𝑛+𝑚

𝑛
) = (𝑛 + 𝑚)!/𝑛!𝑚!),

this set can be used as a test set.
³It is hard to say it for sure: the code for cutting the random stream in the blocks of requested size, bit.c, has 1441

lines. Still this is what is claimed in the comments.
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Figure 7.2: Empirical distributions for birthday test: 210 birthdays, year length 224, distribution of
the number of repeated intervals is compared with Poisson distribution (𝜆 = 16) using samples of
size 500. The 𝑝-values obtained by 𝜒2 test are accumulated from several thousands of trials and their
empirical distribution function is shown. Two ways of counting repetitions are used: according to
dieharder approach (interval length that repeated 𝑘 > 2 times is counted as one repetition, left) and
to the diehard approach (length that repeated 𝑘 > 2 times is counted as 𝑘 − 1 repetitions, right).

Kolmogorov–Smirnov test considers a function on 𝑆(𝑚, 𝑛) calledmaximal deviation. It is defined
as follows: for each prefix of a string that consists of𝑚 letters a and 𝑛 letters bwe count the numbers
𝑚′ and 𝑛′ of letters a and b in this prefix, and then compute the deviation as

|||
𝑚′

𝑚 − 𝑛′
𝑛
||| .

One can represent our string as a path from (0, 0) to (1, 1) where each letter 𝑎 means going right by
adding (1/𝑚, 0), and each letter 𝑏 corresponds to going up by adding (0, 1). Then the deviation is
proportional to the maximal distance between the path and the diagonal (Figure 7.3).

For a given deviation value 𝑑, one can compute Kolmogorov–Smirnov 𝑝-value, i.e., the fraction
of strings from 𝑆(𝑚, 𝑛) that have the same or bigger deviation. The file ks2.mp does this using GNU
multi-precision library using standard dynamic programming. The computation is exact (and later
the answer is converted to double floats). The function

double ks2bar(int n0, int n1, long deviation_times_n0_n1)

gets two integers (number of both letters), and the maximal deviation multiplied by the product of
these two integers (to make it integer) and returns the 𝑝-value as described above.

The code for computing the same value used in R statistical package (http://ftp.stjude.org/
pub/software/JUMPm/labeled/R-3.1.0/src/library/stats/src/ks.c; the adapted version is in
ksmirnov.c) uses the same technique but works with floating point numbers instead of multi-
precision library, and includes also an asymptotic formula. One can compare the answer using the
utility ks2compare:

$ ks2compare 1000 700 50000

Two samples two-side exact Kolmogorov-Smirnov p-value:

p-value for two samples (1000+700) and deviation 0.071429 [=50000/1000*700] is

0.028360425691996

For reference:
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Figure 7.3: A path obtained while comparing two samples (produced by ks2graph utility). The
deviation from the diagonal is quite visible, and this is confirmed by the numbers: characters appear
500 and 199 times, the deviation is 0.156, and the Kolmogorov–Smirnov 𝑝-value is 0.00173.

asymptotic formula: 0.029940690

floating point iterations: 0.028360426

The words “two-side” indicate that we consider the deviation in both directions (with absolute val-
ues).

The experiments show that for reasonable lengths (several thousands) all the approaches give
the answer fast (so it is not a bottleneck) and the floating point iterative computation gives small
error. So the asymptotic formula is not really needed (this is good news since there is no easy error
estimate) and one may use the computation with floating point numbers and check the answer with
an exact computation if needed.

The utility ks2val takes a string (made of two different characters) from the standard input and
computes the deviation and Kolmogorov–Smirnov p-value (using the exact computation):

$ echo 0100010111011 | ks2val

Profile:

length: 13

character [0] appears [6] times

character [1] appears [7] times

Maximal deviation: 0.547619

KSvalue: 0.212121212121212

The utility ks2vala does the same thing as ks2val using floating point (long double) computations.
The utility ks2draw does the same thing as ks2val and also draws the path corresponding to the

input string (see Figure 7.3 for example).
Note that for Kolmogorov–Smirnov comparison of two samples only the relative ordering be-

tween their elements is important. However, to understand better the nature of the difference be-
tween distributions it could be useful to draw the actual distribution functions for several samples.
The utility distribs takes several files (with the names indicated in the command line); each file
contains lines with real numbers considered as a sample. The utility draws (on the same graph) all
the distribution functions for given samples (see Figure 7.4).

To obtain data for Kolmogorov–Smirnov analysis, one can use python script ks2files.py. It
gets two file names from the command line. Each line in both files should start with a floating point
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Figure 7.4: Utility distribs shows distribution functions for several samples obtained by computing
spectral radii for random graphs obtained from Moonbase OneRNG generator in different regimes.
The difference is clearly visible (and can be confirmed by computing p-values).

real (that is used as an element of the sample); the rest of the line is used for tie breaking (no two lines
should be exactly the same). The program sends to the standard output the sequence of characters
1 and 2 that indicate the origin of the data point after merging and sorting (whether it comes from
the first or the second file).

Finally, Kolmogorov–Smirnov test can be used to test independence (as described in Section 3.5).
This is done by utility ks2indep. This utility is applied to two files (the names are given in the
command line). Each file is considered as a sequence of bytes, divided into groups of fixed length
(in bytes, determined by option -b)., Then each group of bytes is converted into a signed integer,
interpreting them in the LSB (least significant byte first, option -l) orMSB (most significant byte first,
option -m) way. These two sequence of integers (𝑛0, 𝑛1, … and 𝑚0, 𝑚1, …) are used in the following
way: if 𝑛𝑖 satisfies [resp. violates] some condition (compiled-in list of condition is used; one of
them is chosen by -c option; now two conditions are implemented: being positive [0] or being even
[1]), the corresponding 𝑚𝑖 is sent into the first or the second subsequence). This is done until a
given number of pairs (option -n, default 1000) are classified; then two subsequences are subjected
to Kolmogorov–Smirnov test, the p-value is printed and the procedure is again applied to the rest
of the files.

This procedure is a valid statistical test for the null hypothesis: both sequences are obtained
by independent sampling from two independent sources. The distributions of the sources may be
different, but both independence between different integers from the same source and independence
between sources are important. Also we assume that there are no ties (if they happen, a warning is
printed using stderr).

To reduce the independence between integers in one source one could skip several reading after
each pair of integers used as described above. The skipped integers in the second source are also
used for resolving ties. The number of skipped integers is given as -s option parameter (default 0).

A special regime is allowed with only one file (option -i). Then both integers are taken from
the same file (first 𝑛0, then 𝑚0, then 𝑛1, then 𝑚1, etc.) and integers are skipped only after 𝑚0, 𝑚1, …
(skipped integers again are used for tie resolving).
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Finally, the numbers of 𝑝-values in ten buckets [0, 0.1), … , [0.9, 1) (ten integers) are printed (if -v
verbose option is used).

7.3 Robust tests utility
We implemented several tests using the general scheme described in Chapter 3. There is a general
driver (rtest.c, utility rtest) that calls different test functions depending on the options. It uses
the following options:

• -t test_num the number of test function used (see the list of all test functions below);

• -f test_file specifies the name of the file that is tested. The file is understood as a sequence
of 32-bit unsigned integers (four consecutive bytes form an integer) or a sequence of bytes
(the interpretation is determined by a test function used);

• -e etalon_file specifies the name of the file that is used for comparison. If no -x option is
used, then the test function is applied to data from test_file and etalon_file; in the robust
mode (with -x) the test function is applied to data from test_file and to the xor of (new)
data from test_file and data from etalon_file;

• -x requests the robust mode (see above for -e option);

• -p num_samples specifies the number of times the test function is applied to (fresh) data from
tested file;

• -q num_samples specifies the number of times the test function is applied to etalon data;

• -d dimension indicates the number of values returned by each call to the test function (differ-
ent test function have different dimensions); this number is the number of 𝑝-values returned
by each Kolmogorov–Smirnov two-sample test;

• -n number determines how many bytes are consumed by each call of the test function; the
exact interpretation of this number depends on the test function; some tests ignore this value
and decide themselves how many bytes they need; for some other tests only some values of
this number are allowed;

• -o directory_name asks to create files with the list of values that were submitted to the
Kolmogorov–Smirnov two-sample test, and tells the name of the directory where these files
should be created; the directory should not exist before the call. Every Kolmogorov–Smirnov
value obtained by the test is accompanied by two files in this directory (that show both sam-
ples); one can understand the behavior of the test better when looking at these files.

• -r requires the test to be repeated; if a positive number is provided as an argument, it is
interpreted as the number of repetitions; zero argumentmeans that the test should be repeated
as long as there are enough data in the input files.

• -k requires the exact computation with multi-precision integers for Kolmogorov–Smirnov
two-sample 𝑝-value (instead of long double computation performed by default); can be useful
for very large -p or -q options (exceeding 5000).

The program runs as long as there are data in the input files. After one test is performed and
several Kolmogorov–Smirnov values are produced (the number of these values is the dimension of
the test), the testing continues with the rest of the bits in both files.
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Implementation remarks: the main driver file is rtest.c; the definitions for the test functions
are given in test_func.c and additional files (see the macro TESTS_C in the Makefile). To add a
new test function, one should put its code in a .c file, put its forward definition in test_func.h and
add it to the list of all test functions in test_func.c.

We used hashes in a different way to simplify the code structure: the function returns not only
some values (the number of returned values is the dimension), but also returns 64 bits (two 32 − 𝑏𝑖𝑡
integers) that are used to resolve the ties: if the test function returns two identical values, these hash
values are compared for sorting. Normally 64 bits should be enough to resolve the ties (if this does
not happen, this means that the file we are testing is not random enough, so it creates a failure by
itself).

The tools to compute the Kolmogorov–Smirnov 𝑝-values (for two samples; some tests also use
calls to Kolmogorov–Smirnov distribution function for one sample) are taken from another directory
(see KS_C macro definition in Makefile).

The following tests are currently implemented (listed according to their test numbers used in -t

option; the C name of the corresponding function is shown after the number).

0 all_bytes

Dimension 1, ignores -n, counts the number of bytes that one needs to read to see all 256 pos-
sible bytes (coupon collector problem) if this is not too large (does not exceed some maximal
number that is returned otherwise). Uses about 1.5 Kbyte per test value (this number should
be multiplied by -p plus -q option parameters for the full test).

1 all_16

A similar test to the previous one but for 16-bit integers (pairs of bytes), so it requires much
more data (1.5–2 Mbytes per test value)

3 sts_serial

The test depends on two parameters: the number of bits (𝑛) analyzed and the maximal length
of substrings analyzed (𝑚). It produces an array of 3𝑚 values, i.e., 3 values for each integer
from 1 to 𝑚. For each integer in this range there are two values called 𝑝1 and 𝑝2 in the NIST
document; we report also one auxiliary “raw” value. The value of 𝑛 is 32 times -n option; the
value of 𝑚 is taken as -d option divided by 3 (integer part). Requires 𝑛 bits (𝑛/8 bytes, 4 times
-n option), the reasonable application is possible when 𝑛 ≫ 2𝑚 (otherwise the frequencies of
factors do not make much sense).
Let 𝑋 be the sequence of 𝑛 bits to be analyzed. For each word 𝑤 of length at most 𝑚 we
count the number count [𝑤] of occurrences of 𝑤 in 𝑋 (considered as a cyclic word); the
sum of all count [𝑤] for all words 𝑤 of given length equals 𝑛. The we compute 𝜓2[𝑘] =
(2𝑘/𝑛)∑𝑤(count [𝑤]2) − 𝑛 where the sum is taken over all strings 𝑤 of length 𝑘.
For our purposes the values 𝜓2[𝑘] (raw values mentioned above) can be used directly, but NIST
recommends to consider the first and second differences

Δ𝜓[𝑘] = 𝜓2[𝑘] − 𝜓2[𝑘 − 1],
Δ2𝜓[𝑘] = 𝜓2[𝑘] − 2𝜓2[𝑘 − 1] + 𝜓2[𝑘 − 2].

The dieharder code suggests to let 𝜓2[0] = 0, so 𝛿𝜓[𝑘] is defined for 𝑘 ⩾ 1 and 𝛿𝜓2[𝑘] is
defined for 𝑘 ⩾ 2. (Non-existing values are filled by zeros in the test output).
These numbers are converted to 𝑝-values according to approximate distributions,

𝑝1 = igamc (2𝑘−2, Δ𝜓[𝑘]/2),
𝑝2 = igamc (2𝑘−3, Δ2𝜓[𝑘]/2).
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4 opso

Original description: [31]. (The dieharder implemenation deviates from the original descrip-
tion in a rather strange ways, see Section 7.1; we followed the original description). Test
consumes 223 + 1 unsigned 32-bit integers and generates 32 − 10 + 1 = 23 values according to
23 possible positions of 10-bit substrings in a 32-bit string. For each of 23 positions we get a
word of length 𝑛 = 221 + 1 in 210-letter alphabet. We count 2-letter words that are not factors
of this word, and convert this count to a (presumably uniform) 𝑝-value assuming normal dis-
tribution with some parameters (mean about 141909.33 and 𝜎 about 290.46). The -n parameter
should be 2097153, the -d parameter should be 23. Uses about 8 Mbytes per test value.

5 oqso

The test is similar to opso and is described in the same paper. (Again the dieharder imple-
mentation does something rather different.) The difference is that the alphabet contains 25
letters (factors of length 5 at different positions in the input integers), and we count factors of
length 4 that are missing. Consumes 223 + 3 integers and produces 28 values. Approximation
mean and variance are slightly different (141909.60 and 294.656). The -n parameter should be
2097155, the -d parameter should be 28. Uses about 8 Mbytes per test value.

6 bytedistribs

A reimplementation of a test from dieharder, file dab_bytedistribs.c. From every three
32-bit numbers from the generator (dieharder allows also generators of different word size,
but we assume the size is 32) one extracts 9 bytes (three from each integer: 8 least significant
bits, 8 most significant bits and 8 bits in the middle). This is repeated 𝑛 times (specified by -n

parameter), sowe get 9 distributions on {0, 1}8 corresponding to 9 different byte positions. Then
we apply 𝜒2-square test to the combined distribution on 9⋅256 objects with ndf = 9⋅255 degrees
of freedom (since we have 255 degrees of freedom for each of 9 positions). One resulting value
is returned (test dimension is 1). More precisely, each of 256 ⋅ 9 counters has expected value
𝑛/256 and actual value 𝑥; we compute the sum 𝑆 of (𝑥−𝑒)2/𝑒 for all counters and then compute
the approximate 𝑝-value as gsl_sf_gamma_inc_Q (ndf/2, 𝑆/2). Uses 12 times [-n] bytes; the
-n parameter should be much bigger than 256 (otherwise the distributions do not make much
sense).

7 knuth_runs

Test described in [25, p. 65] (the dieharder deviates from it since it considers the first element
in a special way, but probably the results do not differ much). For a sequence of (arbitrary)
length 𝑛 we count the number of parts in its minimal splitting into non-decreasing subse-
quences (runs). Then we consider 6-vector consisting of numbers 𝑥1, … , 𝑥6 of runs of lengths
1, 2, 3, 4, 5, 6-∞. Then (as explained by Knuth [25]) one computes

𝑉 = 1
𝑛 ∑

1⩽𝑖,𝑗⩽6
𝑎𝑖𝑗(𝑥𝑖 − 𝑛𝑏𝑖)(𝑥𝑗 − 𝑛𝑏𝑗),

where coefficients 𝑎𝑖𝑗 and 𝑏𝑖 are given by tables provided by Knuth. Test dimension: 2 (for
non-increasing and non-decreasing runs). Uses [-n option] integers (4 × [-n] bytes).

8 osums

This is the “overlapping sum” test described inMarsaglia [29] and then included in dieharder [9]
with come changes. Still after some investigation Robert Brown, the author of dieharder,
came to the conclusion that this test should not be used (see Section 7.1). Still (like any other
test function) it provides a correct test if used in two-sample scheme, so we included it. The
test takes any number 𝑚 > 1 as size (-n parameter) and uses 2𝑚 − 1 input 32-bit unsigned
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integers (converted to [0, 1] double reals) to produce 𝑚 overlapping sums (using 𝑚 integers in
each sum). Then some linear transformation (suggested by Marsaglia) is applied to get 𝑚 pre-
sumably independent standard normal variables, they are converted to presumably uniform
random variables in [0, 1] and Kolmogorov–Smirnov one-sample test is used. The resulting
𝑝-value is the only test output (dimension is 1). As we have discussed, it seems that for large
𝑚 there is a significant deviation from the assumed distributions, and Kolmogorov–Smirnov
one-sample tests gives small values. So it may be wise to stick to the value 𝑚 = 100 as used
in original Marsaglia diehard test. Uses about 8 × [-n] bytes

9 ent_8_16

This simple test of dimension 4 takes arbitrary number 𝑛 of 32-bit integer (specified in -n

option), and returns four numbers (has dimension 4). It considers distributions on bytes and
16-bit integers. For each of these distributions the entropy is computed in a standard way, and
also 𝜒2-test is applied (with 255 and 65535 degrees of freedom for 8 and 16 bit versions). The
four numbers returned are (entropy for 8 bits, 𝜒2-test 𝑝-value for 8 bits, entropy for 16 bits,
𝜒2-test 𝑝-value for 16 bits). Note that the values of entropy are less useful for the subsequent
analysis since they are usually very close to 8 and 16, and measure the deviation from the
uniform distribution in a similar way. Uses about 8 × [-n] bytes; so -n parameter should be
much bigger that 64 (for bytes) and 32768 (for 16-bit integers).

10 fftest

This is a Fourier transform (spectral) test from NIST, as described in [37]. This description
includes corrections from citekim-umeno-hasegawa. In this test 𝑛 integers from the generator
are converted into 32𝑛 bit sequence; this sequence is interpreted as array of ±1, and discrete
Fourier transform is applied. We assume that 𝑛 is a power of 2, so the simple algorithm for
Fourier transform can be used (taken from gsl, GNU scientific library). In this way we get 𝑛
complex numbers (since we start with real numbers, only 𝑛/2 first number are used). We see
how many of then have absolute value that exceeds some threshold (namely, √ln(1/0.05)𝑛),
the description in NIST document claims that expected value of this number is 0.05𝑛/2, and
the distribution is close to binomial distribution for 𝑛/2 independent experiments with 0.05
probability. No derivation for this approximation is given (not to speak about error bounds). It
seems that this approximation is quite rough. Figure 7.5 shows the experimental distributions
for comparison of some random number generator and its xor with reference generator. One
can see that both curves are quite close to each other and quite far from the diagonal (that
should appear for uniform distributions). The jumps happen since there are only a few values
of the test statistics (the number of values exceeding the thresholds). Let us stress again that
the approximation errors do not destroy the validity of test results when using two-sample
robust tests.
Test dimension is 1, uses 4 × [-n] bytes; the -n parameter should be a power of 2.

11 rank32x32

This and the following tests (both are implemented in test_rank.c) check ranks of some
matrices . This test has dimension 1. It forms [-n option] matrices 32 × 32 (each uses 32
integers). Ranks of these matrices are computed and we count the frequencies of ranks 32, 31,
30, [29 and smaller]. (This grouping is reasonable since matrices with ranks less than 29 are
rare.) Then the 𝜒2-statistic is computed and converted to a (presumably) uniform distribution.
The same computations are done in dieharder (while diehard used 31 × 31 matrices). Uses
128 × [-n] bytes.

12 rank6x8
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Figure 7.5: Left: the distributions of presumably uniform random variables obtained by Fourier
transform test, command rtest -x -f a10bis.raw -e ../bitbabbler/raw_4_sources -p 1000

-q 1000 -n 256 -t 10 -d 1 -o outfft. Right: a visible difference between test and etalon samples
for some bad generator.

This test has dimension 25 (since there are 32 − 8 + 1 = 25 possible position of a 8-bit factor
in a 32-bit word). It takes 6 × [-n] integers; for each group of 6 integers it form 25 matrices
6 × 8 corresponding to 25 positions. Ranks are computed, and for each position a distribution
of matrices according to ranks (6, 5, [4 or less]) is analyzed via 𝜒2 statistics and transformed
into a presumably uniform variable (separately for each position). This follows diehard and
dieharder with some corrections, see the discussion in Section 7.1. Uses 24 × [-n] bytes.

13 bitstream_o

This and the next tests (overlapped and non-overlapped version of a bitstream test from
diehard and dieharder) are implemened in file test_bitstream.c. This test considers the
input stream of bits (32 integers are concatenated as written from left to right; the bits are also
written from left to right). The test uses 221+19 bits (and discard unused bits in the last integer).
It consideres all 20-bit factors in this long string and counts the missing ones, i.e., 20-bit strings
that do not appear as a factor. This number is transformed into a presumably uniformly dis-
tributed variable (following dieharder) using empirically observed normal distribution with
mean 141909 and 𝜎 = 428. The dimension of the test in 1, the -n option parameter should be
2097171 (number of bits used), or about 256 Kbytes per test value.

14 bitstream_n

Similar to the preceding test, but non-overlapping 20-factors are used (the input bit stream is
cut into 20-bit pieces). Uses 221∗20 = 41943040 bits, and this number should be the value of -n
parameter; dimension is 1. Since the words are now independent, the distribution is different,
and the dieharder uses the same mean 141909 with smaller 𝜎 = 290. About 5Mbytes per test
value

15 lz_split

Lempel-Ziv test as it was described in the original version of [37]. The sequence of bits is
split into words according to the following Lemper–Ziv rule: the next word is chosen as the
minimal prefix of the non-processed yet part that is not a prefix of already chosen word. The
algorithm counts the number of full words produced when analyzing 32 × [-n parameter]
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Figure 7.6: Empirical distributions. Each experiment involved 3000 Lempel–Ziv decompositions of
a bit sequence of length 106; several experiments are shown with different colors. According to the
original version of the test, the empirical distribution functions should be close to a diagonal line.
One can see both effects mentioned in [23]: first, the number of different values is small, and this
creates the “ladder” structure; second, one can also suspect systematic deviations from the straight
line (added for comparison).

input bits. The NIST standard suggest some approximation for the resulting distribution in
case of 106 bits (-n 31250), so in this case we convert the values to presumably uniform
distribution using this approximation. As we have mentioned in Section 2.3.3, the problems
with this approximation were found in [23]. They can be illustrated by a distribution obtained
when applying this test (with NIST parameters) may times to several hardware generators
(Figure 7.6). Still it can be safely used in the two-sample robust version.

16 birthdays

A “year” consists of 224 days; we choose 1024 random days (“birthdays”) and compute 1024
intervals between birthdays. Some intervals may coincide, and we count the number of coinci-
dences (i.e., the difference between 1024 and the number of different intervals). We repeat this
experiment several times (-n option) and compare the resulting distribution with presumed
approximation (Poisson distribution with 𝜆 = 16), getting one 𝑝-value that is considered as the
output of the test. More precisely, we use first 24 bits from the 32-bit integers from the input
sequence; this gives us one 𝑝-value, than next 24 bits from the same 32-bit integers, and so
on (32 cyclic shifts, as described — but not implemented — in dieharder). The test dimension
is 32, and it uses 1024 times [-n option] integers (4096 × [-n] bytes) for each set of 32 values.
Note that the test is robust (as any other two-sample test) but its usefulness is not clear (due to
the systematic deviation of the observed distribution from the presumed one, see Section 7.1,
Figure 7.2).

There are also some shell scripts that run these tests for suitable parameters (adjusted for 1 Mb,
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10 Mb, 100 Mb, 1 Gb, 10 Gb files). Some tests take a long time, so it may have sense to delete some
tests from these files if they take too much time. Two arguments are required: the name of the tested
file and the name of the reference file.

A short reminder to be taken into account when interpreting the test values:

• The 𝑝-values produced by these files are reliable (not based on any unproven assumptions
about the tests and/or approximations⁴). For any given test this means that for every 𝑝 > 0
and for every reference file the probability of the event “the test with random bits in the tested
file will produce value at most 𝑝” is at most 𝑝. Note also that the tests never “rewind” the file
(using the same bits several times): if there is not enough bits in the file, no value is produced.

• There is no claim of uniform distributions for the test output (for a random bits input), so
output values close to 1 do not indicate any problems.

• The tests (some individual tests and the shell scripts) produce many numbers at once. These
number are not independent. So one should not multiply them to get a more impressive
number. Moreover, one should apply the Bonferroni correction (that makes the conclusion
less impressive): If for a chosen family of tests one of 𝑚 number (where 𝑚 is the total number
of outputs, depending on the chosen family) is 𝑝, the resulting 𝑝-value is 𝑚𝑝. For example,
if one of the 40 test values is less than 0.01, one should not become suspicious about the
generator, since 40 ⋅ 0.01 is 0.4, definitely not enough to start worrying.

• On the other hand, if you repeat some test several times (say, using -r option, or just applying
it to different runs of the same random bit generator), the output values are independent. This
can be used to amplify the non-randomness conclusions. For example, if a test (or a group
of tests) fixed before the experiment produces 37 values, we made 15 runs with the same
generator (and the same or different reference files, fixed in advance), and it turned out that
one of 37 values is less than 0.001 for all the experiments, the correctly computed 𝑝-values
is 37 ⋅ (0.001)15. One should distinguish this from the other case: for each of 15 experiments
there is some output value less than 0.001, but this value can be produced by different tests in
different experiments. In this case the correct computation of 𝑝-value gives (37 ⋅ 0.001)15.

• The recommended approach when discrediting some generator: make some preliminary ex-
periments to determine which tests look more suspicious. Then try the selected test on the
fresh input from the generator and report the 𝑝-value obtained for this test. But be careful if
a small 𝑝-value appears after several attempts to discredit the generator: a honest researcher
should multiply the resulting 𝑝-value by the number of attempts.

7.4 Spectral tests
The spectral tests currently involve a lot of parameters, so they are not yet included in the robust
testing suite. Currently we do not have examples where they beat all the other tests in the sense
that they find some deficiency in a generator that cannot be found by other tests. Still it would be
desirable to have more robust tests especially if they use different approaches.

The call

example -g gap -e err -s size -d deg -o iter -n number -l -u -h] filename

⁴The only compromise here happens when we use floating point numbers for computing the Kolmogorov–Smirnov
value; looking at the output of ks2compare utility, we may hope that this does not create any problems for samples of
size up to 5000, but one should be careful before pronouncing the final verdict and use option -k that asks for an exact
computation.
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The utility example analyses one file with name filename (so this utility should be combined
with the xoring made separately to get a robust test). It uses bytes from this file to construct a
sequence of graphs. The size of the graph is determined by option parameter -s size; it should be
a power of 2 not exceeding 65536. Each (undirected) graph is constructed by emitting deg random
edges from each vertex. (Note that the resulting undirected graph may not have constant degree,
but the average degree is close to 2 ⋅ deg.) Then the algorithm from [43] is used to compute the
second eigenvalue for the resulting graph. This is an iterative algorithm that has some parameters.
It constructs some lower and upper bounds for the second eigenvalue and stops when the difference
between them becomes smaller than gap (-g parameter). Also it uses some internal randomness
(now crudely replaced by some fixed pseudo-random generator⁵. Also the algorithm uses some
upper bound for the number of iterations that can be specified by option -o. The option -n parameter
specifies the maximal number of graphs that should be constructed (if there is enough bits in the
input file filename).

The output of the utility is a sequence of lines. Each of them corresponds to one graph, and the
contents of the lines is determined by the options -l,-u,-h (at least one of them should be present).
The output line contains

• the lower bound for the second eigenvalue, if -l is present;

• the upper bound for the second eigenvalue, if -l is present;

• some hash value (useful for tie breaking), if -h is present.

Also an option -v (verbose) can be used to provide more information.

7.5 Other tools
There are few simple tools that visualize data from .wav and raw data files and perform conversion
between formats.

• readwav [-m|-s|-y] filename.wav shows data (signal readings interpreted as signed inte-
gers) from a .wav file. For a stereo file [-s] it takes values from both channels and draws a
pair. The option [-y] does the same but corrects the 1-sample lag in the right channel (that
happens in YamahaMW10 and Behringer 1204USBmixers we used); mono signal has identical
readings in both channels after the correction. The [-m] option splits the movo .wav file into
pairs of sample values (signed integers) and draws the corresponding points. The number of
bits per value should be 8, 16 or 24.

• getdatawav [-m|-s|-y] source.wav dest1 [dest2] converts standard .wav file into raw
format, deleting the header and splitting stereo data into two separate files. Options -s and -y

require two destination files (dest1 is for the left channel, dest2 is for the right channel). Op-
tion -m is used for mono files, and just deletes the header. The input file should have resolution
8, 16, or 24. The order of bytes remains unchanged.

• drawpair -b num_bytes -l|-m -c draws pairs obtained from two files (in parallel) or from
one file (-c; two consecutive data form a pair). The num_bytes parameter gives the number of
bytes interpreted as a signed integer; -l/-m option (one of two should be present) says whether
the integers are assumed to appear in least or most significant byte first.

⁵Since our xor-trick guaranteed correctness of 𝑝-values independently of the function used for testing, we decided
to use some simple pseudo-random sequence with fixed seed.
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7.6 Two-source extractor tools
We implemented the two-source extractor described in Section 5.5. We used the finite field of size
21024 whose elements are represented as polynomials in 𝔽2[𝑥] considered modulo

𝑝(𝑥) = 𝑥1024 + 𝑥19 + 𝑥6 + 𝑥 + 1.

This polynomial is suggested as low-weight irreducible polynomial in [51]. “Lowweight” means that
only a few coefficients are non-zero; this allows us to simplify the division modulo this polynomial.
We used the natural basis

1, 𝑥, 𝑥2, … , 𝑥1023

in the field (the quotient of 𝔽2[𝑥] modulo 𝑝(𝑥)); the multiplication by the basis elements can be
obtained by repeated multiplications by 𝑥. And a multiplication by 𝑥 is just a shift in the array of
coefficients, followed by a reductionmodulo 𝑝(𝑥). This reduction is applied to a polynomial of degree
1024; we have to change coefficients in the degrees involved (20, 7, 2, 1). This simple operations are
implemented in file extract.c; we produce a bit string of length 128 from two strings of length 1024
(the field elements).

The file extractor.c calls this extraction function. Since in our experiments we used .wav files
where most significant bits (of a 16-bit words from analog-digital converter are often zeros), we
decided to use xor of two halves of an 16-bit word to get 8 bits that have (hopefully) reasonably high
min-entropy. The command

extractor file1 file 2

applies this operation (xoring of two bytes in a 16-bit integer) to each of files file1, file2, applies
the extractor function as described, and send the resulting bits to standard output.

In this way from 2048 + 2048 bits from both files we generate 1024 + 1024 bits (by xoring), and
then generate 128 output bits, so the production rate is 1 ∶ 32 (one output bit for 32 input bits).
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Chapter 8

Conclusions

Let us summarize some observations made in this report.

• The main goal of this project was to review the current situation in hardware random number
generation (devices, tests, standards) taking into account the corresponding theory (algorith-
mic information theory, pseudorandom generators, extractors). It turns out to be quite un-
satisfactory: the basic principles are not always understood by the authors of the standards
and developers of tests, as well as the device makers. As a result, tests are unreliable in many
ways and testing results and claims made by the manufacturers are often meaningless.

• The reliable test methodology can be developed based on two-sample Kolmogorov – Smirnov
tests. The general scheme is easy to implement. We adapted a dozen of often used tests into
this framework and showed that this methodology works. Still one should add more tests to
it, so that existing tests (and new ones that are developed by different authors) could be used
in a reliable way to produce real 𝑝-values, not just some numbers with no guarantees.

• There are several physical processes that can be used for random number generators. The
devices we tested used Zener diodes (most of them), analog multipliers (Infinite Noise, Bit-
babblers) and photon reflection (Quantis). None of them give a bit sequence that can pass
the basic tests without some “conditioning”, but all three approaches seem to be suitable for
high quality generators after some post-processing, and there are no obvious reasons to prefer
expensive “quantum randomness” (whatever it is).

• One can use postprocessing based on functions used in cryptography. There are no theoretical
reasons or assumptions that guarantee anything about this type of post-processing, but the
currently known tests do not show obvious weaknesses in this approach. Still the possibility
of some hidden trapdoor remains.

• Instead, one can use much simpler methods based on xoring several random streams (gen-
erated by different sources or in different time) or using other linear tranformations of bits.
Known theoretical results about that are not really applicable to practical situations, but this
does not prevent these methods to work quite well in practice. Simple postprocessing of this
type often gives sequences that do not exhibit suspicious behavior with known tests.

• There are also more complicated (and not yet used in practical generators) tools for random-
ness extraction based on two-source extractors. They are significantly slower than xoring, but
still are quite practical and can be easily implements in software.

• All these approaches can easily provide streams of random bits with rates 100–1000 kilobits per
second using easily available devices (few hundred euros) and some additional postprocessing.
The choice of the device and postprocessing methods depends on the speed requirements and
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the paranoia level. Most paranoid people can achieve rates about 10–100 kilobits per second
without using any commercial random bits generator, just by combining zener diodes and
audio digitizing equipment.

• One can obtain rates 10–100 megabits per second or higher using several devices in parallel
or more expensive (and sometimes less transparent) devices. Faster random bit production
would require serious parallelism or much more expensive devices.
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