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Homomorphisms of planar (m, n)-colored-mixed graphs to planar targets

An (m, n)-colored-mixed graph G = (V, A1, A2, • • • , Am, E1, E2, • • • , En) is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints. A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)colored-mixed graph H is a morphism ϕ : V (G) → V (H) such that each edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). An (m, n)colored-mixed graph T is said to be P (m,n) g -universal if every graph in P (m,n) g (the planar (m, n)-colored-mixed graphs with girth at least g) admits a homomorphism to T .

We show that planar P (m,n) g -universal graphs do not exist for 2m + n 3 (and any value of g) and nd a minimal (in the number vertices) planar P (m,n) g -universal graphs in the other cases.

Introduction

The concept of homomorphisms of (m, n)-colored-mixed graph was introduced by J. Nes¥t°il and A. Raspaud [START_REF] Ne²et°il | Colored homomorphisms of colored mixed graphs[END_REF] in order to generalize homomorphisms of k-edge-colored graphs and oriented graphs.

An (m, n)-colored-mixed graph G = (V, A 1 , A 2 , • • • , A m , E 1 , E 2 , • • • , E n ) is a graph having m
colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints and we do not allow loops. The case m = 0 and n = 1 corresponds to simple graphs, m = 1 and n = 0 to oriented graphs and m = 0 and n = k to k-edge-colored graphs. For the case m = 0 and n = 2 (2-edge-colored graphs) we refer to the two types of edges as blue and red edges.

A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)-colored-mixed graph H is a mapping ϕ : V (G) → V (H) such that every edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). If G admits a homomorphism to H, we say that G is H-colorable since this homomorphism can be seen as a coloring of the vertices of G using the vertices of H as colors. The edges and arcs of H (and their colors) give us the rules that this coloring must follow. Given a class of graphs C, a graph is C-universal if for every graph G ∈ C is H-colorable. The class P (m,n) g contains every planar (m, n)-colored-mixed graph with girth at least g. Graph -→ C 2 6 is the graph with vertex set {0, 1, 2, 3, 4, 5} such that uv is an arc if and only if v -u ≡ 1 (mod 6) or v -u ≡ 2 (mod 6).

In this paper, we consider some planar P (m,n) g -universal graphs with few vertices. They are depicted in Figures 1 and2. The known results about this topic are as follows.

Theorem 1.

1. K 4 is a planar P (0,1) 3 -universal graph. This is the four color theorem.

2. K 3 is a planar P (0,1) 4 -universal graph. This is Grötzsch's Theorem [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF].

3.

-→ C 2 6 is a planar P (1,0) 16 -universal graph [START_REF] Borodin | On universal graphs for planar oriented graphs of a given girth[END_REF].

Our rst result shows that, in addition to the case of (0, 1)-graphs covered by Theorems 1.1 and 1.2, our topic is actually restricted to the cases of oriented graphs (i.e., (m, n) = (1, 0)) and 2-edge-colored graphs (i.e., (m, n) = (0, 2)).

Theorem 2. For every g 3, there exists no planar P (m,n) g -universal graph if 2m + n 3.

As Theorems 1.1 and 1.2 show for (0, 1)-graphs, there might exist a trade-o between minimizing the girth g and the number of vertices of the universal graph, for a xed pair (m, n). For oriented graphs, Theorem 1.3 tries to minimize the girth. For oriented graphs and 2-edge-colored graphs, we choose instead to minimize the number of vertices of the universal graph. 1.

-→ T 5 is a planar P (1,0) 28 -universal graph on 5 vertices.

2.

T 6 is a planar P (0,2)

22

-universal graph on 6 vertices.

The following results shows that Theorem 3 is optimal in terms of the number of vertices of the universal graph. 1. For every g 3, there exists an oriented bipartite cactus graph (i.e., K - 4 minor-free graph) with girth at least g and oriented chromatic number at least 5.

2. For every g 3, there exists a 2-edge-colored bipartite outerplanar graph (i.e., (K -

4 , K 2,3 )
minor-free graph) with girth at least g that does not map to a planar graph with at most 5 vertices.

Most probably, Theorem 3 is not optimal in terms of girth. The following constructions give lower bounds on the girth. 1. There exists an oriented bipartite 2-outerplanar graph with girth 14 that does not map to -→ T 5 .

2. There exists a 2-edge-colored planar graph with girth 11 that does not map to T 6 .

3. There exists a 2-edge-colored bipartite planar graph with girth 10 that does not map to T 6 . -universal graph T 6 .

Next, we obtain the following complexity dichotomies: Theorem 6.

1. For any xed girth g 3, either every graph in P (1,0) g maps to

-→
T 5 or it is NP-complete to decide whether a graph in P (1,0) g maps to -→ T 5 . Either every bipartite graph in P (1,0) g maps to -→ T 5 or it is NP-complete to decide whether a bipartite graph in P (1,0) g maps to -→ T 5 .

2. Either every graph in P (0,2) g maps to T 6 or it is NP-complete to decide whether a graph in P (1,0) g maps to T 6 . Either every bipartite graph in P (0,2) g maps to T 6 or it is NP-complete to decide whether a bipartite graph in P (1,0) g maps to T 6 .

Finally, we can use Theorem 6 with the non-colorable graphs in Theorem 5.

Corollary 7.

1. Deciding whether a bipartite graph in P (1,0) 14 maps to

-→ T 5 is NP-complete.
2. Deciding whether a graph in P (0,2) 11 maps to T 6 is NP-complete.

3. Deciding whether a bipartite graph in P (0,2) 10 maps to T 6 is NP-complete.

A 2-edge-colored path or cycle is said to be alternating if any two adjacent edges have distinct colors.

Proposition 8 (folklore).

• Every planar simple graph on n vertices has at most 3n -6 edges.

• Every planar simple graph satises

(mad(G) -2) • (g(G) -2) < 4.
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Proof of Theorem 3

We use the discharging method for both results in Theorem 3. The following lemma will handle the discharging part. We call a vertex of degree n an n-vertex and a vertex of degree at least n an n + -vertex. If there is a path made only of 2-vertices linking two vertices u and v, we say that v is a weak-neighbor of u. If v is a neighbor of u, we also say that v is a weak-neighbor of u. We call a (weak-)neighbor of degree n an n-(weak-)neighbor.

Lemma 9. Let k be a non-negative integer. Let G be a graph with minimum degree 2 such that every 3-vertex has at most k 2-weak-neighbors and every path contains at most k+1 2 consecutive 2-vertices. Then mad(G) 2 + 2 k+2 . In particular, G cannot be a planar graph with girth at least 2k + 6.

Proof. Let G be as stated. Every vertex has an initial charge equal to its degree. Every 3 + -vertex gives 1 k+2 to each of its 2-weak-neighbors. Let us check that the nal charge ch(v) of every vertex v is at least 2 + 2 k+2 .

• If d(v) = 2, then v receives 1 k+2 from each of its 3-weak-neighbors. Thus ch(v) = 2 + 2 k+2 . • If d(v) = 3, then v gives 1 k+2 to each of its 2-weak-neighbors. Thus ch(v) 3-k k+2 = 2+ 2 k+2 . • If d(v) = d 4, then v has at most k+1 2 2-weak-neighbors in each of the d incident paths. Thus ch(v) d -d k+1 2 1 k+2 = d 2 1 + 1 k+2 2 + 2 k+2 .
This implies that mad(G) 2 + 2 k+2 . Finally, if G is planar, then the girth of G cannot be at least 2k +6, since otherwise

(mad(G)-2)•(g(G)-2) 2 + 2 k+2 -2 (2k + 6 -2) = 2 
k+2 (2k + 4) = 4, which contradicts Proposition 8. We prove that the oriented planar graph -→ T 5 on 5 vertices from Figure 1 is P

(1,0) 28 -universal by contradiction. Assume that G is an oriented planar graphs with girth at least 28 that does not admit a homomorphism to -→ T 5 and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a -→ T 5 -coloring of G -v can be extended to G. Similarly, G does not contain the following congurations.

• A path with 6 consecutive 2-vertices.

• A 3-vertex with at least 12 2-weak-neighbors.

Suppose that G contains a path u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 such that the degree of u i is two for 1 i 6. By minimality of G, G -u 1 , u 2 , u 3 , u 4 , u 5 , u 6 admits a -→ T 5 -coloring ϕ. We checked on a computer that for any ϕ(v 0 ) and ϕ(v 6 ) in V -→ T 5 and every possible orientation of the 7 arcs u i u i+1 , we can always extend ϕ into a -→ T 5 -coloring of G, a contradiction. Suppose that G contains a 3-vertex v with at least 12 2-weak-neighbors. Let u 1 , u 2 , u 3 be the 3 + -weak-neighbors of v and let l i be the number of common 2-weak-neighbors of v and u i , i.e., 2-vertices on the path between v and l i . Without loss of generality and by the previous discussion, we have 5 l 1 l 2 l 3 and l 1 + l 2 + l 3 12. So we have to consider the following cases:

• Case 1: l 1 = 5, l 2 = 5, l 3 = 2. • Case 2: l 1 = 5, l 2 = 4, l 3 = 3. • Case 3: l 1 = 4, l 2 = 4, l 3 = 4.
By minimality, the graph G obtained from G by removing v and its 2-weak-neighbors admits a -→ T 5 -coloring ϕ. Let us show that in all three cases, we can extend ϕ into a -→ T 5 -coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in ϕ(u) by a path made of l 2-vertices (0 l 5) then v can be colored in:

• at least 1 color if l = 0, • at least 2 colors if l = 1,
• at least 2 colors if l = 2 (the sets {c, d, e} and {b, c, d} are the only sets of size 3 that can be forbidden from v),

• at least 3 colors if l = 3,

• at least 4 colors if l = 4 and

• at least 4 colors if l = 5 (only the sets {b}, {c}, and {e} can be forbidden from v).

In Case 1, u 3 forbids at most 3 colors from v since l 3 = 2. If it forbids less than 3 colors, we will be able to nd a color for v since u 1 and u 2 forbid at most 1 color from v. The only sets of 3 colors that u 3 can forbid are {b, c, d} and {c, d, e}. Since u 1 and u 2 can each only forbid b, c or e, we can always nd a color for v.

In Case 2, u 1 and u 2 each forbid at most one color and u 3 forbids at most 2 colors so there remains at least one color for v.

In Case 3, u 1 , u 2 , and u 3 each forbid at most one color, so there remains at least two colors for v.

We can always extend ϕ into a -→ T 5 -coloring of G, a contradiction. So G contains at most 5 consecutive 2-vertices and every 3-vertex has at most 11 2-weakneighbors. Using Lemma 9 with k = 11 contradicts the fact that the girth of G is at least 28. We prove that the 2-edge-colored planar graph T 6 on 6 vertices from Figure 2 is P (0,2) 22 -universal by contradiction. Assume that G is a 2-edge-colored planar graphs with girth at least 22 that does not admit a homomorphism to T 6 and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a T 6 -coloring of G -v can be extended to G. Similarly, G does not contain the following congurations.

• A path with 5 consecutive 2-vertices.

• A 3-vertex with at least 9 2-weak-neighbors.

Suppose that G contains a path u 0 u 1 u 2 u 3 u 4 u 5 u 6 such that the degree of u i is two for 1 i 5. By minimality of G, G -u 1 , u 2 , u 3 , u 4 , u 5 admits a T 6 -coloring ϕ. We checked on a computer that for any ϕ(v 0 ) and ϕ(v 6 ) in V (T ) and every possible colors of the 6 edges u i u i+1 , we can always extend ϕ into a T 6 -coloring of G, a contradiction.

Suppose that G contains a 3-vertex v with at least 9 2-weak-neighbors. Let u 1 , u 2 , u be the 3 + -weak-neighbors of v and let l i be the number of common 2-weak-neighbors of v and u i , i.e., 2-vertices on the path between v and l i . Without loss of generality and by the previous discussion, we have 4 l 1 l 2 l 3 and l 1 + l 2 + l 3 9. So we have to consider the following cases:

• Case 1: l 1 = 3, l 2 = 3, l 3 = 3. • Case 2: l 1 = 4, l 2 = 3, l 3 = 2. • Case 3: l 1 = 4, l 2 = 4, l 3 = 1.
By minimality of G, the graph G obtained from G by removing v and its 2-weak-neighbors admits a T 6 -coloring ϕ. Let us show that in all three cases, we can extend ϕ into a T 6 -coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in ϕ(u) by a path P made of l 2-vertices (0 l 4) then v can be colored in:

• at least 1 color if l = 0 (the sets a, c, d, e, f and b, c, d, e, f of colors are the only sets of size 5 that can be forbidden from v for some ϕ(u) ∈ T and edge-colors on P ),

• at least 2 colors if l = 1 (the sets a, b, c, f and b, c, e, f are the only sets of size 4 that can be forbidden from v),

• at least 3 colors if l = 2 (the sets b, c, f , c, e, f and d, e, f are the only sets of size 3 that can be forbidden from v),

• at least 4 colors if l = 3 (the set c, b is the only set of size 2 that can be forbidden from v), and

• at least 5 colors if l = 4 (the sets c and f are the only sets of size 1 that can be forbidden from v).

Suppose that we are in Case 1. Vertices u 1 , u 2 , and u 3 each forbid at most 2 colors from v since l 1 = l 2 = l 3 = 3. Suppose that u 1 forbids 2 colors. It has to forbid colors c and f (since it is the only pair of colors that can be forbidden by a path made of 3 2-vertices). If u 2 or u 3 also forbids 2 colors, they will forbid the exact same pair of colors. We can therefore assume that they each forbid 1 color from v. There are 6 available colors in T 6 , so we can always nd a color for v and extend ϕ to a T 6 -coloring of G, a contradiction. We proceed similarly for the other two cases.

So G contains at most 4 consecutive 2-vertices and every 3-vertex has at most 8 2-weakneighbors. Then Lemma 9 with k = 8 contradicts the fact that the girth of G is at least 22. We construct an oriented bipartite cactus graph with girth at least g and oriented chromatic number at least 5. Let g be such that g g and g ≡ 4 (mod 6). Consider a circuit v 1 , • • • , v g . Clearly, the oriented chromatic number of this circuit is 4 and the only tournament on 4 vertices it can map to is the tournament -→ T 4 induced by the vertices a, b, c, and d in -→ T 5 . Now we consider the cycle C = w 1 , • • • , w g containing the arcs w 2i-1 w 2i with 1 i g /2, w 2i+1 w 2i with 1 i g /2 -1, and w g w 1 .

Suppose for contradiction that C admits a homomorphism ϕ such that ϕ(w 1 ) = d. This implies that ϕ(w 2 ) = a, ϕ(w 3 ) = d, ϕ(w 4 ) = a, and so on until ϕ(w g ) = a. Since ϕ(w g ) = a and ϕ(w 1 ) = d, w g w 1 should map to ad, which is not an arc of -→ T 4 , a contradiction. Our cactus graph is then obtain from the circuit v 1 , • • • , v g and g copies of C by identifying every vertex v i with the vertex w 1 of a copy of C. This cactus graph does not map to -→ T 4 since one of the v i would have to map to d and then the copy of C attached to v i would not be -→ T 4 -colorable. We construct a 2-edge-colored bipartite outerplanar graph with girth at least g that does not map to a 2-edge-colored planar graph with at most 5 vertices. Let g be such that g g and g ≡ 2 (mod 4). Consider an alternating cycle

C = v 0 , • • • , v g -1 . For every 0 i g -3, we add g -2 2-vertices w i,1 , • • • , w i,g -2 that form the path P i = v i w i,1 • • • w i,g -2 v i+1
such that the edges of P i get the color distinct from the color of the edge v i v i+1 . Let G be the obtained graph. The 2-edge-colored chromatic number of C is 5. So without loss of generality, we assume for contradiction that G admits a homomorphism ϕ to a 2-edge-colored planar graph H on 5 vertices. Let us dene

E = i even ϕ(v i ) and O = i odd ϕ(v i ). Since C is alternating, ϕ(v i ) = ϕ(v i+2 )
(indices are modulo g ). Since g ≡ 2 (mod 4), there is an odd number of v i with an even (resp. odd) index. Thus, |E| 3 and |O| 3. Therefore we must have E ∩ O = ∅.

Notice that every two vertices v i and v j in G are joined by a blue path and a red path such that the lengths of these paths have the same parity as i -j. Thus, the blue (resp. red) edges of H must induce a connected spanning subgraph of H. Since |V (H)| = 5, H contains at least 4 blue (resp. red) edges. Since red and blue edges play symmetric roles in G and since |E(H)| 9 by Proposition 8, we assume without loss of generality that H contains exactly 4 blue edges. Moreover, these 4 blue edges induce a tree. In particular, the blue edges induce a bipartite graph which partitions V (H) into 2 parts. Thus, every v i with even index is mapped into one part of V (H) and every v i with odd index is mapped into the other part of V (H). So E ∩ O = ∅, which is a contradiction. [START_REF] Movarraei | Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms[END_REF] Proof of Theorem 2

Let T be a P (m,n) g

-universal planar graph for some g that is minimal with respect to the subgraph order.

By minimality of T , there exists a graph G ∈ P (m,n) g such that every color in T has to be used at least once to color G. Without loss of generality, G is connected, since otherwise we can replace G by the connected graph obtained from G by choosing a vertex in each component of G and identifying them. We obtain a graph G from G as follows:

For each edge or arc uv in G, we keep uv in G and we add 4m + n paths starting at u and ending at v made of vertices of degree 2:

• For each type of edge, we add a path made of g -1 edges of this type.

• For each type of arc, we add two paths made of g -1 arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the rst arc of one path and the head of the rst arc of the other path.

• Similarly, for each type of arc we add two paths made of g arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the rst arc of one path and the head of the rst arc of the other path.

Notice that G is in P (m,n) g and thus admits a homomorphism ϕ to T . Since G is a connected subgraph of G and every color in T has to be used at least once to color G, we can nd for each pair of vertices (c 1 , c 2 ) in T and each type of edge a path

(v 1 , v 2 , • • • , v l ) in G made only of edges of this type such that ϕ(v 1 ) = c 1 and ϕ(v l ) = c 2 .
This implies that for every pair of vertices (c 1 , c 2 ) in T and each type of edge, there exists a walk from c 1 to c 2 made of edges of this type. Therefore, for 1 j n, the subgraph induced by E j (T ) is connected and contains all the vertices of T . So E j (T ) contains a spanning tree of T . Thus T contains at least |V (T )| -1 edges of each type.

Similarly, we can nd for each pair of vertices (c 1 , c 2 ) in T and each type of arc a path of even length

(v 1 , v 2 , • • • , v 2l-1
) in G made only of arcs of this type, starting with a forward arc and alternating between forward and backward arcs such that ϕ(v 1 ) = c 1 and ϕ(v l ) = c 2 . We can also nd a path of the same kind with odd length. This implies that for every pair of vertices (c 1 , c 2 ) in T and each type of arc there exist a walk of odd length and a walk of even length from c 1 to c 2 made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs. Let p be the maximum of the length of all these paths. Given one of these walks of length l, we can also nd a walk of length l + 2 that satises the same constraints by going through the last arc of the walk twice more. Therefore, for every l p, every pair of vertices (c 1 , c 2 ) in T , and every type of arc, it is possible to nd a homomorphism from the path P of length l made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs to T such that the rst vertex is colored in c 1 and the last vertex is colored in c 2 .

We now show that this implies that |A j (T )| 2|V (T )| -1 for 1 j m. Let P be a path

(v 1 , v 2 , • • • , v p , v p+1
) of length p starting with a forward arc and alternating between forward and backward arcs of the same type. We color v 1 in some vertex c of T . Let C i be the set of colors in which vertex v i could be colored. We know that C 1 = c and C 2 is the set of direct successors of c. Set C 3 is the set of direct predecessors of vertices in C 2 so C 1 ⊆ C 3 and, more generally,

C i ⊆ C i + 2. Let uv be an arc in T . If u ∈ C i with i odd, then v ∈ C i+1 . If v ∈ C i with i even then u ∈ C i+1 .
We can see that uv is capable of adding at most one vertex to a C i (and every C j with j ≡ i mod 2 and i j). We know that C p+1 = V (T ) hence T contains at least 2|V (T )| -1 arcs of each type. We construct an oriented bipartite 2-outerplanar graph with girth 14 that does not map to -→ T 5 . The oriented graph X is a cycle on 14 vertices v 0 , • • • , v 13 such that the tail of every arc is the vertex with even index, except for the arc ---→ v 13 v 0 . Suppose for contradiction that X has a -→ T 5 -coloring h such that no vertex with even index maps to b. The directed path

v 12 v 13 v 0 implies that h(v 12 ) = h(v 0 ). If h(v 0 ) = a, then h(v 1 ) ∈ {b, c} and h(v 2 ) = a since h(v 2 ) = b. By contagion, h(v 0 ) = h(v 2 ) = • • • = h(v 12 ) = a, which is a contradiction. Thus h(v 0 ) = a. If h(v 0 ) = c, then h(v 1 ) = d and h(v 2 ) = c since h(v 2 ) = b. By contagion, h(v 0 ) = h(v 2 ) = • • • = h(v 12 ) = c, which is a contradiction. Thus h(v 0 ) = c. So h(v 0 ) ∈ {a, b, c}, that is, h(v 0 ) ∈ {d, e}. Similarly, h(v 12 ) ∈ {d, e}. Notice that -→ T 5
does not contain a directed path xyz such that x and z belong to {d, e}. So the path v 12 v 13 v 0 cannot be mapped to -→ T 5 . Thus X does not have a -→ T 5 -coloring h such that no vertex with even index maps to b.

Consider now the path P on 7 vertices p 0 , • • • , p 6 with the arcs --→ p 1 p 0 , --→ p 1 p 2 , --→ p 3 p 2 , --→ p 4 p 3 , --→ p 5 p 4 , --→ p 5 p 6 . It is easy to check that there exists no -→ T 5 -coloring h of P such that h(p 0 ) = h(p 6 ) = b. We construct the graph Y as follows: we take 8 copies of X called X main , X 0 , X 2 , X 4 , • • • , X 12 . For every couple (i, j) ∈ {0, 2, 4, 6, 8, 10, 12}

2 , we take a copy P i,j of P , we identify the vertex p 0 of P i,j with the vertex v i of X main and we identify the vertex p 6 of P i,j with the vertex v j of H i .

So Y is our oriented bipartite 2-outerplanar graph with girth 14. Suppose for contradiction that Y has a -→ T 5 -coloring h. By previous discussion, there exists i ∈ {0, 2, 4, 6, 8, 10, 12} such that the vertex v i of X main maps to b. Also, there exists j ∈ {0, 2, 4, 6, 8, 10, 12} such that the vertex v j of X i maps to b. So the corresponding path P i,j is such that h(p 0 ) = h(p 6 ) = b, a contradiction. Thus Y does not map to -→ T 5 .

7 Proof of Theorem 5.2

We construct a 2-edge-colored 2-outerplanar graph with girth 11 that does not map to T 6 . We take 12 copies X 0 , • • • , X 11 of a cycle of length 11 such that every edge is red. Let v i,j denote the j th vertex of X i . For every 0 i 10 and 0 j 10, we add a path consisting of 5 blue edges between v i,11 and v j,i . Notice that in any T 6 -coloring of a red odd cycle, one vertex must map to c. So we suppose without loss of generality that v 0,11 maps to c. We also suppose without loss of generality that v 0,0 maps to c. The blue path between v 0,11 and v 0,0 should map to a blue walk of length 5 from c to c in T 6 . Since T 6 contains no such walk, our graph does not map to T 6 . 8

Proof of Theorem 5.3

We construct a 2-edge-colored bipartite 2-outerplanar graph with girth 10 that does not map to T 6 . By Theorem 4.2, there exists a bipartite outerplanar graph M with girth at least 10 such that for every T 6 -coloring h of M , there exists a vertex v in M such that h(v) = c. Let X be the graph obtained as follows. Take a main copy Y of M . For every vertex v of Y , take a copy Y v of M . Since Y v is bipartite, let A and B the two independent sets of Y v . For every vertex w of A, we add a path consisting of 5 blue edges between v and w. For every vertex w of B, we add a path consisting of 4 edges colored (blue, blue, red, blue) between v and w.

Notice that X is indeed a bipartite 2-outerplanar graph with girth 10. We have seen in the previous proof that T 6 contains no blue walk of length 5 from c to c. We also check that T 6 contains no walk of length 4 colored (blue, blue, red, blue) from c to c. By the property of M , for every T 6 -coloring h of X, there exist a vertex v in Y and a vertex w in Y v such that h(v) = h(w) = c. Then h cannot be extended to the path of length 4 or 5 between v and w. So X does not map to T 6 . 9

Proof of Theorem 6.1

Let g be the largest integer such that there exists a graph in P

(1,0) g that does not map to -→ T 5 . Let G ∈ P (1,0) g be a graph that does not map to -→ T 5 and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G be obtained from G by removing an arbitrary arc v 0 v 3 and adding two vertices v 1 and v 2 and the arcs v 0 v 1 , v 2 v 1 , v 2 v 3 . By minimality, G admits a homomorphism ϕ to -→ T 5 . Suppose for contradiction that ϕ(v 2 ) = c. This implies that ϕ(v 1 ) = ϕ(v 3 ) = d. Thus ϕ provides a -→ T 5 -coloring of G, a contradiction. So ϕ(v 2 ) = c and, similarly, ϕ(v 2 ) = e.

Given a set S of vertices of -→ T 5 , we say that we force S if we specify a graph H and a vertex v ∈ V (H) such that for every vertex x ∈ V -→ T 5 , we have x ∈ S if and only if there exists a -→ T 5 -coloring ϕ of H such that ϕ(v) = x. Thus, with the graph G and the vertex v 2 , we force a non-empty set S ⊂ V -→ T 5 \ {c, e} = {a, b, d}. We use a series of constructions in order to eventually force the set {a, b, c, d} starting from S. Recall that {a, b, c, d} induces the tournament -→ T 4 . We thus reduce -→ T 5 -coloring to -→ T 4 -coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [START_REF] Guegan | Complexity dichotomy for oriented homomorphism of planar graphs with large girth[END_REF].

These constructions are summarized in the tree depicted in Figure 3. The vertices of this forest contain the non-empty subsets of {a, b, d} and a few other sets. In this tree, an arc from S 1 to S 2 means that if we can force S 1 , then we can force S 2 . Every arc has a label indicating the construction that is performed. In every case, we suppose that S 1 is forced on the vertex v of a graph H 1 and we construct a graph H 2 that forces S 2 on the vertex w. • Arcs labelled "out": The set S 2 is the out-neighborhood of S 1 in -→ T 5 . We construct H 2 from H 1 by adding a vertex w and the arc vw. Thus, S 2 is indeed forced on the vertex w of H 2 .

• Arcs labelled "in": The set S 2 is the in-neighborhood of S 1 in -→ T 5 . We construct H 2 from H 1 by adding a vertex w and the arc wv. Thus, S 2 is indeed forced on the vertex w of H 2 .

• Arc labelled "Z": Let g be the smallest integer such that g g and g ≡ 4 (mod 6). We consider a circuit v 1 , • • • , v g . For 2 i g , we take a copy of H 1 and we identify its vertex v with v i . We thus obtain the graph H 2 and we set w = v 2 . Let ϕ be any T

6 -coloring of H 2 . By construction, {ϕ(v 2 ), • • • , ϕ(v g )} ⊂ S 1 = {a, b, d}. A circuit of length ≡ 0 (mod 3) cannot map to the 3-circuit induced by {a, b, d}, so ϕ(v 1 ) ∈ {c, e}. If ϕ(v 1 ) = c then ϕ(v 2 ) = d and if ϕ(v 1 ) = e then ϕ(v 2 ) = a. Thus S 2 = {ad}. 10 
Proof of Theorem 6.2

Let g be the largest integer such that there exists a graph in P (0,2) g that does not map to T 6 . Let G ∈ P (0,2) g be a graph that does not map to T 6 and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G be obtained from G by subdividing an arbitrary edge v 0 v 3 twice to create the path v 0 v 1 v 2 v 3 such that the edges v 0 v 1 and v 1 v 2 are red and the edge v 2 v 3 gets the color of the original edge v 0 v 3 . By minimality, G admits a homomorphism ϕ to T 6 . Suppose for contradiction that ϕ(v 1 ) = f . This implies that ϕ(v 0 ) = ϕ(v 2 ) = b. Thus ϕ provides a T 6 -coloring of G, a contradiction.

Given a set S of vertices of T 6 , we say that we force S if we specify a graph H and a vertex v ∈ V (H) such that for every vertex x ∈ V (T 6 ), we have x ∈ S if and only if there exists T 6 -coloring ϕ of H such that ϕ(v) = x. Thus, with the graph G and the vertex v 1 , we force a non-empty set

S ⊂ V (T 6 ) \ {f } = {a, b, c, d, e}.
Recall that the core of a graph is the smallest subgraph which is also a homomorphic image.

We say that a subset S of V (T 6 ) is good if the core of the subgraph induced by S is isomorphic to the graph T 4 which is a a clique on 4 vertices such that both the red and the blue edges induce a path of length 3. We use a series of constructions in order to eventually force a good set starting from S. We thus reduce T 6 -coloring to T 4 -coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [START_REF] Movarraei | Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms[END_REF]. These constructions are summarized in the forest depicted in Figure 4. The vertices of this forest are the non-empty subsets of {a, b, c, d, e} together with a few auxiliary sets of vertices containing f . In this forest, an arc from S 1 to S 2 means that if we can force S 1 , then we can force S 2 . Every set with no outgoing arc is good. We detail below the construction that is performed for each arc. In every case, we suppose that S 1 is forced on the vertex v of a graph H 1 and we construct a graph H 2 that forces S 2 on the vertex w.

• Blue arcs: The set S 2 is the blue neighborhood of S 1 in T 6 . We construct H 2 from H 1 by adding a vertex w adjacent to v such that vw is blue. Thus, S 2 is indeed forced on the vertex w of H 2 .

• Red arcs: The set S 2 is the red neighborhood of S 1 in T 6 . The construction is as above except that the edge vw is red.

• Dashed blue arcs: The set S 2 is the set of vertices incident to a blue edge contained in the subgraph induced by S 1 in T 6 . We construct H 2 from two copies of H 1 by adding a blue edge between the vertex v of one copy and the vertex v of the other copy. Then w is one of the vertices v.

• Dashed red arcs: The set S 2 is the set of vertices incident to a red edge contained in the subgraph induced by S 1 in T 6 . The construction is as above except that the added edge is red.

• Arc labelled "X": Let g = 2 g/2 . We consider an even cycle v 1 , • • • , v g such that v 1 v g is red and the other edges are blue. For every vertex v i , we take a copy of H 1 and we identify its vertex v with v i . We thus obtain the graph H 2 and we set w = v 1 . Let ϕ be any T 6 -coloring of H 2 . In any T 6 -coloring of H 2 , the cycle v 1 , • • • , v g maps to a 4-cycle with exactly one red edge contained in the subgraph of T 6 induced by S 1 = {a, b, c, d, e}. These 4-cycles are aedb with red edge ae and cdba with red edge cd. Since w is incident to the red edge in the cycle v 1 , • • • , v g , w can be mapped to a, e, c, or d but not to b. Thus S 2 = {a, c, d, e}.

• Arc labelled "Y": We consider an alternating cycle v 0 , • • • , v 8g-1 . For every vertex v i , we take a copy of H 1 and we identify its vertex v with v i . We obtain the graph H 2 by adding the vertex x adjacent to v 0 and v 4g+2 such that xv 0 and xv 4g+2 are blue. We set w = v 0 . In any T 6 -coloring ϕ of H 2 , the cycle v 1 , • • • , v g maps to the alternating 4-cycle acde contained in S 1 = {a, c, d, e} such that ϕ(v i ) = ϕ(v i+4 (mod 8g) ). So, a priori, either {ϕ(v 0 ), ϕ(v 4g+2 )} = {a, d} or {ϕ(v 0 ), ϕ(v 4g+2 )} = {c, e}. In the former case, we can extend ϕ to H 2 by setting ϕ(x) = b. In the latter case, we cannot color x since c and e have no common blue neighbor in T 6 . Thus, {ϕ(v 0 ), ϕ(v 4g+2 )} = {a, d} and S 2 = {a, d}.

  Figure 1: The P (1,0) 28 -universal graph -→ T 5 .

3

  Proof of Theorem 4.1

  Therefore, the underlying graph of T contains at least m (2|V (T )| -1) + n (|V (T )| -1) = (2m + n) |V (T )| -m -n edges, which contradicts Proposition 8 for 2m + n 3. 6 Proof of Theorem 5.1
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 3 Figure 3: Forcing the set {a, b, c, d}.

Figure 4 :

 4 Figure 4: Forcing a good set.
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