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Abstract

The main result of the paper can be stated in the following way: a complete graph drawing in the
sphere, where two edges have at most one common point, which is either a crossing or a common endpoint,
and no three edges share a crossing, is determined by the circular ordering of edges at each vertex, or
equivalently by the set of pairs of edges that cross, up to homeomorphism and a sequence of triangle
mutations. A triangle mutation (or switch, or flip) consists in passing an edge across the intersection
of two other edges, assuming the three edges cross each other and the region delimited by the three
edges has an empty intersection with the drawing. Equivalently, the result holds for a drawing in the
plane assuming the drawing is given with a pair of edges indicating where the unbounded region is. The
proof is constructive, based on an inductive algorithm that adds vertices and their incident edges one by
one (actually yielding an extra property for the sequence of triangle mutations). This result generalizes
Ringel’s theorem on uniform pseudoline arrangements (or rank 3 uniform oriented matroids) to complete
graph drawings. We also apply this result to plane projections (or visualizations) of a geometric spatial
complete graph, in terms of the rank 4 uniform oriented matroid defined by its vertices. Independently,
we prove that, for a complete graph drawing, the set of pairs of edges that cross determine, by first order
logic formulas, the circular ordering of edges at each vertex, as well as further information.

1 Introduction

In the whole paper, a graph drawing is always understood in the sense of a topological graph drawing, that
is a drawing whose edges are represented by Jordan curves (not necessarily straight). We consider simple
graph drawings, where two edges have at most one common point, which is either a crossing or a common
endpoint, and no three edges share a crossing (such drawings are also called simple topological graphs or good
drawings in the literature).

We consider properties of such drawings of the complete graph in the sphere. We also consider drawings
in the plane induced in the natural way from drawings in the sphere by the choice of an unbounded region.
For our purpose, we assume that the unbounded region is defined by the choice of two given adjacent edges
forming a so-called corner. Though, in general, a drawing in the plane does not necessarily have a corner
(when the boundary of the unbounded region contains no vertex), the corner can be thought of as a starting
point from which a drawing in the plane can be built in a unique way (up to homeomorphism) following the
formal data structure that encodes the drawing in the sphere.

Those two viewpoints - drawings in the sphere and in the plane - are essentially equivalent. In the paper,
the constructions and properties are mainly described in terms of drawings in the plane. This implies a few
more technicalities than drawings in the sphere, but this allows for a detailed algorithmic construction.

∗This research was part of the OMSMO Project (Oriented Matroids for Shape Modeling), supported by the Grant “Chercheur
d’avenir 2015” (Région Occitanie, and Fonds Européen de Développement Régional FEDER).
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As observed in [12], a simple drawing of a connected graph with given corner in the plane is determined,
up to an homeomorphism of the plane, by its sketch, that is: its underlying graph, the circular ordering of the
edges at each vertex, the pairs of edges that cross, and the order of crossings on each edge. If the last data
is removed, we get what we call the subsketch of the graph drawing. Hence the subsketch is intermediate
between the sketch and the usual map of the drawing (which is defined by the circular ordering of the edges
at each vertex, and determines the drawing if it is connected and planar, as well-known).

In the case of a complete graph drawing, it turns out that the subsketch is implied by the map, see [24,
Section 5], and by the set of pairs of edges that cross as well, see Theorem 5.1. Both results are also proved
in [18, Proposition 6].

A triangle mutation (named after the term mutation used in oriented matroid theory, also called triangle-
switch, or triangle-flip in the literature) consists in passing an edge across the intersection of two other edges,
assuming it crosses these two other edges (the three edges form a triangle) and the interior of the bounded
region delimited by the three edges has an empty intersection with the drawing (the triangle is called free).
Note that vertices of the graph are not involved in triangle mutations. Obviously a triangle mutation does
not change the subsketch. This local transformation is shown on Figure 1.

Figure 1: Triangle mutation.

The main result of the paper, namely Theorem 3.10, proves constructively that, for a complete graph
drawing, the subsketch determines the drawing in the sphere up to a sequence of triangle mutations (and
up to homeomorphism). The same result holds for drawings in the plane provided that a corner is given.
In other words, if we consider that two complete graph drawings in the sphere are equivalent if they have
the same subsketch, then the above result characterizes equivalence classes as sets of drawings obtained one
from each other by a sequence of triangle mutations. For drawings in the plane, these equivalence classes
are further subdivided so that they have a specific unbounded region defined by a corner. These equivalence
classes are considered for instance for the sake of enumerating complete graph drawings in [18] where graphs
having the same crossing pairs are called weakly isomorphic, and for the sake of testing whether a set of
pairs of edges can be realized as the set of pairs of crossing edges in a complete graph drawing in [19].

Our proof is based on a few preliminary results and on an algorithm in which vertices and their incident
edges are added one by one, maintaining a sequence of mutations with appropriate properties at each step.
In this way, we actually get a stronger result than the existence of a sequence of triangle mutations, as we
avoid mutations of triangles that are not contained in a triangle that necessarily has to be mutated at some
step (called permuted triangle), see Section 3. We mention that it is not possible in general to use only
mutations of permuted triangles (see below and Remark 3.14). As corollaries of the main result, we get that
the subsketch and corner of a complete graph drawing determine most properties of the drawing.

If one considers a complete graph drawing with an even number of vertices, all of them being drawn
on the same circle, such that edges between opposite vertices are inside the circle, then these edges define
a pseudoline arrangement inside the circle, see Figure 2. Hence, the above result generalizes (and actually
strengthens) Ringel’s theorem on uniform pseudoline arrangements [25] (equivalent to rank 3 uniform oriented
matroids [10]), see Section 4.1 and Theorem 4.1. Let us also point out Example 4.2, which shows that it is
possible that some triangles must be mutated twice in a sequence from a drawing to another one.

An application of the above result is that two projections of complete spatial graphs, defined by finite
sets of points in general position in R3 representing the same rank 4 uniform oriented matroid [10], are
equivalent up to homeomorphism and a sequence of triangle mutations. Hence the combinatorial structure
of the oriented matroid along with the combinatorial structure of the projected drawing form in some sense
the two levels of a modelling for the visualization of a geometric spatial complete graph, see Section 4.2.
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Figure 2: Complete graph drawing and pseudoline arrangement (in the grey circle).

In order to describe a graph drawing, amongst various equivalent possibilities, we choose to follow and
build on the formalism from [12]. Let us mention that [12] addresses a logical viewpoint, where the question
is to characterize graph drawing classes and properties by logic formulas, and where the aim is to use a
constrained logic, namely monadic second-order logic, that is more flexible than first-order logic and more
algorithmically usable than second-order logic. In this paper, we use this formalism because of its precision,
but we do not address such logical questions, except in Section 5, which is independent of the rest of the
paper and provides first-order logic formulas to relate various data in a complete graph drawing.

In a graph which is not complete, the subsketch is no more sufficient to determine the drawing up to
triangle mutations. Figure 3 gives two examples of (pairs of) distinct graph drawings with the same crossings
and the same circular orderings around each edge, but which cannot be transformed into each other with
triangle mutations, since they simply have no triangle. It also gives an example showing that the result of
the paper does not generalize to complete bipartite graphs. A possibly interesting setting for an extension
to more general graphs of the question of determining a drawing up to a sequence of triangle mutations
would be to consider drawings given with a planar frame, that is a planar 2-connected spanning subgraph,
a structure considered in [12].
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Figure 3: On the left and in the middle: examples of distinct 2-connected graph drawings with the same
subsketch but no triangle. On the right: example of distinct drawings of a complete bipartite graph in the
sphere with the same subsketch which are not equivalent up to triangle mutations (there is only one triangle).

The present paper is a reformed version with complete proofs of the preliminary conference paper [15]
which gave the main result by means of an explicit algorithm and a guideline for the proof. This main result
that the subsketch (or the set of pairs of edges that cross, or the map as well) determines a complete graph
drawing up to a sequence of triangle mutations has been cited or used in several papers since then, e.g.
[18, 19, 20, 1, 3]. A proof of this result using an alternative formalism was recently given in [5] (written in
parallel with the present paper), also aiming at completing the 2005 paper [15], consistent with the guideline
from [15], and initially motivated by crossing number questions; see Acknowledgments. Another proof can be
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found in [28], which appeared even more recently (while the present paper was being processed), repeating
a proof proposed by the same author in [27, Section 4.3.2] and enhancing it with an extension of the result
to some non-complete graphs (and with a characterization of pseudolinear drawings of complete graphs).
A difference of approach between the proof in the present paper and the proofs in [5, 27, 28] is that these
papers focus, in a more concise way, using topological formalisms for drawings in the sphere, on showing
the existence of a sequence of mutations, whereas the present paper focuses, in a more detailed way, using
a combinatorial/logical formalism for drawings in the plane, on algorithmically building such a sequence of
mutations. Moreover, in this way, we actually state a stronger result (as we avoid mutations of triangles
that are not contained in a permuted triangle); see how Theorems 3.10 and 4.1 are formulated.

Finally, let us also mention further references on close subjects. The problem of counting some special
triplets of vertices in complete graph drawings is addressed in [16, 2, 7]. The problem of drawing complete
graphs on general surfaces is addressed from a different viewpoint (though also related to oriented matroids)
in [11]. Equivalence classes for general graph drawings with the same sets of pairs of edges that cross are
addressed in [17, 24, 20]. The problem of counting edge crossings in monotone drawings of the complete
graph is addressed [8]. Convex drawings of the complete graph are addressed in [6]. More specific references
are also given along the paper.

2 Preliminaries

In this paper, a graph is always a finite, directed, loop-free, connected graph, with no multiple edges. The

set of vertices of a graph G is denoted by VG, or simply V , and its set of edges is denoted by
−→
EG, or simply−→

E . The underlying undirected set of edges is denoted by EG, or simply E. In fact, the direction of an
edge will be used only to distinguish the two ways of crossing between two edges, and to define an order

of the points on a geometric representation of this edge. So, for a, b ∈ VG and (a, b) ∈
−→
EG, we will denote

[a, b] = [b, a] ∈ EG.

Simple topological drawing. A (simple topological) drawing of a graph G (also called simple topological
graph, or simple drawing, or good drawing in the literature) in the sphere, or in the real oriented affine plane,
is a set of points representing VG together with a set of drawn edges representing EG satisfying the following
properties:

D1: a drawn edge is a simple Jordan curve (i. e. homeomorphic to a closed segment) between the two
endpoints representing the vertices of the edge; a drawn edge contains no other representation of a
vertex of the graph than its endpoints.

D2: two edges having an endpoint in common meet only at this endpoint; when two edges with no common
endpoint meet, they cross at this intersection point; two edges with no common endpoint cross at most
once.

D3: no three edges meet at the same point, except if this point is an endpoint of the three edges.

Drawing in the sphere versus drawing in the plane. As well known, a drawing in the plane is
equivalent to a drawing in the sphere along with the choice of a particular region playing the role of the
unbounded region. The following pieces of information that we use are consistent for a drawing in the sphere
or the plane as well. For our purpose, the choice of a particular unbounded region is made by the choice of
two given adjacent edges forming a so-called corner (formally defined below). We will consider only drawings
in the plane given with such a corner (in general, a drawing in the plane does not necessarily have a corner,
when the boundary of the unbounded region contains no vertex). The corner can be thought of as a starting
point from which a drawing in the plane can be built in a unique way (up to homeomorphism) following the
formal data structure that encodes the drawing in the sphere. In the rest of the paper, we can sometimes
switch between those two types of drawings, and all results can be expressed in both settings, even if it is
not done explicitly.
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In what follows, an edge of a drawing is represented by a drawn edge connecting the points corresponding
to its endpoints. By drawn vertex, we also mean the topological representation of this vertex in the given
drawing. For brevity, we sometimes omit the term drawn for edges and vertices represented in the drawing.
By segment, we mean the portion of a drawn edge between two points of the drawn edge (containing these
two points). The connected components of the complement of the union of all drawn edges in the plane are
called regions of the drawing. Note that if Jordan arcs were replaced by straight line segments in axiom (D1),
then we would have defined geometric graph drawings, for which various properties would become trivial, as
noticed in [15].

We consider various pieces of information associated with a drawing D of the graph G, which encode
the drawing at different levels of abstraction. To denote these pieces of information formally, we follow and
build on the notations from [12]. They are illustrated in Figure 4.
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Figure 4: Relations forming the sketch of a drawing. A drawing is identified to its sketch plus a corner.

Incidence relations. This information is the combinatorial (directed) graph G = (VG, EG) itself. Formally,

it is encoded by the relation incG ⊆
−→
EG × VG × VG defined by: (e, x, y) ∈ incG if and only if the edge e is

directed from the vertex x to the vertex y.

Circular ordering relations (around vertices). This information gives the counterclockwise circular
ordering of edges with a common endpoint around this endpoint. It is well defined by axiom (D2) in
the definition of a drawing. Formally, it is encoded by the relation circD ⊆ VG × EG × EG defined by:
(x, e, f) ∈ circD if and only if x is an endpoint of e and f , and f is the next edge in the circular ordering
around x in the counterclockwise sense of rotation.

Corner of the drawing. A corner of D is given by a vertex P and two edges α and β with endpoint
P such that: β follows α in the counterclockwise ordering of edges around P ; the drawn vertex P is in
the topological boundary of the unbounded region of the plane delimited by D; and the intersection of this
boundary with the union of α and β is a curve containing P . As mentioned above, the corner is not defined
(and useless) for drawings in the sphere, and a drawing in the plane does not necessarily have a corner (when
the boundary of the unbounded region contains no vertex). Formally, the corner is a particular element
(P, α, β) ∈ circD.

Map of the drawing. The incidence relations and the circular ordering relations (incG and circD) define
the map associated with the drawing D of the graph G. It is well known (see for example [22]) that if D is a
drawing in the plane with no edge crossing (except for common endpoints), and thus G is planar, then D is
determined up to an orientation-preserving homeomorphism of the plane by its map and a corner. Obviously,
the map alone, omitting the corner, determines the drawing in the sphere (up to homeomorphism).

Crossing relations. This information gives which pairs ef edges cross in the drawing. Formally, it is
encoded by the relation crossD ⊆ EG × EG defined by: (e, f) ∈ crossD if and only if the drawn edges e
and f have no endpoint in common and the drawn edges e and f have one intersection point. Of course
(e, f) ∈ crossD implies (f, e) ∈ crossD. Then we say that e ∈ EG and f ∈ EG cross in D.

Subsketch of the drawing. The incidence relations, the circular ordering relations and the crossing
relations (incG, circD, and crossD) define the subsketch of the drawing D. In what follows, we mainly use
the subsketch of a drawing, either alone for drawings in the sphere, or with a given corner for drawings in
the plane. Notice that the subsketch may in general contain redundant information. It is noticed in [24,
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Section 5] that, in the case of complete graphs, the crossing relation is implied by the other ones. We prove
in forthcoming Theorem 5.1 that, in the case of complete graphs, the crossing relation also implies the other
ones. Both results are also proved in [18, Proposition 6].

Directed crossing relations. A refinement of the crossing relation takes into account edge directions.

Formally, it is encoded by dcrossD ⊆
−→
EG ×

−→
EG such that: (e, f) ∈ dcrossD if and only if the drawn edges

e and f have no endpoint in common, the drawn edges e and f have one intersection point and f goes
from the right of e to its left when e is directed from bottom to top. Of course (e, f) ∈ dcrossD implies
(f, e) 6∈ dcrossD. In this paper we will use the crossD relation, which makes no difference for complete graph
drawings since the dcrossD relation can be retrieved from the crossD relation and a corner, as shown in
forthcoming Theorem 5.1.

Linear ordering relations (along directed edges). This information gives the ordering of the crossings
along each directed edge. It is well defined by axiom (D2). Formally, we define the relation beforeD ⊆−→
EG × EG × EG by: (e, f, g) ∈ beforeD if and only if f 6= g, e and f cross in D, e and g cross in D, and
the intersection point of e and f is before the intersection point of e and g on the directed drawn edge e.
We can say that f is before g along e. Note that if e crosses f and g then either (e, f, g) ∈ beforeD or
(e, g, f) ∈ beforeD but not both. By definition of a drawing, the relation beforeD induces, for any edge e, a
linear ordering on the edges that cross e.

Sketch of the drawing. The incidence relations, the circular ordering relations, the directed crossing
relations , and the linear ordering relations (incG, circD, dcrossD, and beforeD) define the sketch associated
with the drawing D, as introduced in [12]. A result of [12] is that a drawing D in the plane is determined
up to an orientation-preserving homeomorphism of the plane by its sketch and a corner. This result is
obtained by considering the planar graph drawing where intersections of edges in D are considered as new
vertices, and then using the above result on planar graph drawings. Obviously, the sketch alone, omitting
the corner, determines the drawing in the sphere (up to homeomorphism). In view of this result, in the rest
of the paper, we can identify drawings (topological objects, always meant up to an orientation-preserving
homeomorphism) and sketches (combinatorial objects, with a given corner for drawings in the plane), and
the following definitions about drawings in the plane or sketches with a given corner can be made equivalently
for one of these two objects. When the context is not ambiguous, we may omit the subscript D referring to
the drawing.

Triangles. Let D be a drawing of a graph G. We define a triangle of D as a triple (e, f, g) ∈ EG×EG×EG

such that e and f cross in D, e and g cross in D, and f and g cross in D. Then, e, f and g are called
the edges of the triangle. The order of the elements in the triplet has no importance, and we denote the
triangle by [[e, f, g]]. The sides of a triangle [[e, f, g]] are the segments of the drawn edges e, f , or g which
are delimited by the intersections with the two other edges of the triangle.

Figure 5: A tame triangle at first, and wild triangles next. Let us mention that every triangle in the plane is
equivalent to one of these four triangles (up to homeomorphism). Also, the first and the second are equivalent
as triangles in the sphere, as well as the third and the fourth (yielding two possible drawings in the sphere).

Let us consider a drawing in the plane. The surface of a triangle [[e, f, g]] is the bounded region of the
plane delimited by its sides and containing these sides. A triangle [[e, f, g]] is tame if the intersection of the
(topological) interior of its surface with the drawn edges e, f, g is empty (or, equivalently, if its surface does
not contain a drawn endpoint of e, f , or g, as easily seen). Otherwise, the triangle is called wild. Tame
and wild triangles are shown on Figure 5. A tame triangle is contained in another tame triangle if the two
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triangles are not equal, they have two common edges, and the surface of the first one is contained in the
surface of the second one. We say that h ∈ EG cuts the tame triangle [[e, f, g]] if the drawn edge h has a
non-empty intersection with at least one side of [[e, f, g]]. We say that h ∈ EG cuts the tame triangle [[e, f, g]]
twice if the drawn edge h has a non-empty intersection with at least two side(s) of [[e, f, g]]. The following
easy Lemma 2.1 is illustrated by Figure 6.

e
f g

h

e
f gh

e
f g

h

Figure 6: Tame triangle [[e, f, g]] cut twice by h. The dashed curve illustrates the fact that the drawn edge
h can have an endpoint in the surface of the triangle which it cuts twice.

Lemma 2.1 (Cutting). If [[e, f, g]] is a tame triangle cut twice by h, and h does not have its two endpoints
in the surface of [[e, f, g]], then one and only one triplet in

{
{e, f, h}, {e, g, h}, {f, g, h}

}
defines a tame

triangle contained in [[e, f, g]].

Mutations. Let D and D′ be two drawings of the graph G with the same subsketch. As D and D′ have the
same crossing relation, they have the same triangles. We say that a triangle [[e, f, g]] is permuted between
D and D′ if the ordering of crossings between its edges along each of its three edges is different in the two
drawings, that is, formally: beforeD(e, f, g) = ¬beforeD′(e, f, g), beforeD(f, e, g) = ¬beforeD′(f, e, g), and
beforeD(g, e, f) = ¬beforeD′(g, e, f), where beforeD(x, y, z) means (x, y, z) ∈ beforeD.

For a drawing in the plane, we call a triangle free if the (topological) interior of the surface of the triangle
has an empty intersection with the drawing. Equivalently, a triangle is free if it is tame and it is not cut by
any element (indeed a tame triangle whose surface contains a drawn vertex has to be cut since the graph is
connected).

Given a drawing D of a graph G in the plane and a free triangle [[e, f, g]] of D, the (triangle) mutation of
[[e, f, g]] from D is the drawing D′ of G for which all relations are the same as in D, except that the triangle
[[e, f, g]] is permuted between D and D′. We denote this situation by D → D′, and call [[e, f, g]] the mutated
triangle from D to D′. See Figure 1. Observe that, of course, a tame triangle may be permuted between
two drawings D and D′, without being free in D or in D′.

Obviously, the definition of a mutation can be extended to drawings in the sphere in the natural way
(even if the notion of “(topological) interior” of a region is not defined in the sphere, a triangle mutation
involves a triangle such that one region delimited by the sides of the triangle contains all the endpoints of
the edges of the triangle, and the other region has an empty intersection with the drawing).

Figure 7: A sequence of mutations.

A sequence of mutations from the drawing D is a sequence of drawings, each one being the mutation of
a free triangle from the previous one. On the example of Figure 7, the triangle containing a vertex cannot
be mutated, but the three other triangles can be mutated triangles in a sequence of mutations. Obviously,
a mutation does not change the subsketch. Observe that a sequence of mutations from a drawing D to a
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drawing D′ involves an odd number of times each permuted triangle between the D and D′, and possibly an
even number of times some non-permuted triangles between D and D′ (it is not possible in general to use
only permuted triangles, see Section 4.1).

3 Building a sequence of mutations between two complete graph
drawings with the same subsketch

The aim of this section is to prove that two complete graph drawings in the sphere, or two complete graph
drawings in the plane with the same corner, have the same subsketch if and only if they can be transformed
into each other by a sequence of mutations. We essentially deal with drawings in the plane, as the result
for drawings in the sphere follows directly. The “if” way is obvious since a mutation does not change the
subsketch, the “only if” way is obtained constructively. The algorithm, given in Theorem 3.10, consists in
adding vertices and their incident edges one by one. At each new edge insertion, the previous sequence
of mutations can be updated as it involves triangles whose surfaces do not contain vertices of the graph,
and, then, completed by a sweeping of the new edge. For a partial illustration, the algorithm is applied
on a simple example of a pseudoline arrangement in Section 4.1. As corollaries, we get that the subsketch
(and corner) of a complete graph drawing determine most properties of the drawing, except those involving
orderings of crossings of edges of tame triangles whose surface contain no vertex. First, we need to state a
few preliminary results in order to ensure that the algorithm is well defined.
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Figure 8: Proof of Lemma 3.1.

Lemma 3.1. The subsketch of a complete graph drawing (in the plane or the sphere) determines the ordering
of crossings along an edge for the edges crossing this edge and all sharing the same endpoint. Formally: if
the edges f and g share an endpoint and cross the edge e, then the subsketch determines if (e, f, g) belongs
to beforeD or not.

Proof. The proof is illustrated in Figure 8. Assume e is directed from the vertex e1 to the vertex e2. Recall
that, by axiom (D2), two drawn edges with a common endpoint intersect only at this endpoint.

In case (i), we assume that the circular ordering of edges around the vertex x is the following: [x, e1],
f , g, [x, e2]. It is easy to see that e cannot cross g first, otherwise e could not cross f , or it would have to
cross g or [x, e1] twice. Then e has to cross f first and g next. This case is illustrated by pictures (i)-a and
(i)-b. Observe that these two pictures are equivalent as drawings in the sphere. We will not illustrate such
variants in the other cases. The case where the ordering around x is [x, e1], g, f , [x, e2] is analogous.

Let us now assume, without loss of generality, that the ordering around x is [x, e1], f , [x, e2], g. Let us
call v the endpoint of f distinct from x. Let us prove that, in every possible case, the ordering of crossings
of f and g along e is determined by the crossing relation.

In case (ii), we assume that [e1, v] does not cross [x, e2] nor g. It is easy to see that e cannot cross f
after g, otherwise e would have to cross f or [e1, v] or [x, e1] twice. Then e has to cross f first and g next,
as illustrated by picture (ii).

In case (iii), we assume that [e1, v] crosses [x, e2], as illustrated by picture (iii). It is easy to see that e
cannot cross f at all, otherwise e would have to cross f or [e1, v] or [x, e2] twice. Hence this case is impossible.
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In case (iv), we assume that [e1, v] does not cross [x, e2] and crosses g. It is easy to see that e cannot
cross f first, otherwise e would have to cross g or [e1, v] or [x, e1] twice. Then e has to cross g first and f
next, as illustrated by picture (iv).

a c

b

x

(x,a,b,c) inside

Figure 9: Inside relation.

Inside relations. Let us consider a drawing of the graph G in the plane. For three vertices a, b, c ∈ VG, we
denote by [a, b, c] the bounded region of the plane delimited by the drawn edges [a, b], [b, c] and [a, c], and
containing these drawn edges. Note that, by definition of a topological drawing, such a region is equivalent
to a closed disc up to homeomorphism. We say that x ∈ VG is inside [a, b, c] if x 6∈ {a, b, c} and the drawn
vertex x is inside the region [a, b, c]. Formally, we define the relation insideD ⊆ VG × VG × VG × VG by:
(x, a, b, c) ∈ insideD if and only if x is inside [a, b, c]. See Figure 9.

Figure 10: Illustration for Lemma 3.2, with the three possible types of drawings of K4 in the plane, where,
respectively, one, zero or two vertices have the property of being inside the region formed by the three other
vertices.

Lemma 3.2. The corner and subsketch of a complete graph drawing in the plane determine its inside
relations.

Proof. This result is easy to prove directly by considering the different possible drawings of K4 and noticing
that a region [a, b, c] does not contain the vertex P of the corner when P 6∈ {a, b, c}.

Briefly, Figure 10 shows the three possible types of drawings of K4 in the plane. Observe that the
drawings in the middle and on the right have the same map and crossing relations. The three vertices
involving the corner are not represented, but the position of the corner with respect to the drawing of K4

indicates which vertices of K4 are in the boundary of the region delimited by this drawing. In this way,
if there is no crossing between the edges (drawing on the left), then the vertex inside the region formed
by the other ones is determined; and if there is one crossing between the edges, then the fact that zero
(drawing in the middle) or two vertices (drawing on the right) are inside the region formed by the other ones
is determined, as well as which vertices are concerned.

In details, this result is contained in Theorem 5.1 below. A precise construction and a case by case
analysis is given in the first part of the proof of Theorem 5.1 (cases (i) to (v), proved independently of the
rest of the paper, and using only the corner and crossing relations in first order logic).

Proposition 3.3. Let D and D′ be two complete graph drawings in the plane with the same corner and
subsketch. Let T be a tame triangle permuted between the two drawings. Then, in each of the two drawings,
the surface of T contains no drawn vertex of the graph.

9



Proof. The proof of this key result is rather technical and done in three parts: in part (a), we reduce the
problem to one situation and one assumption for a contradiction; in part (b), we show that there are two
main cases to handle; and in part (c), we analyse these cases. Assume the triangle T = [[e, f, g]] is permuted
between D and D′. Let e1 and e2 be the endpoints of e, and f1 and f2 be the endpoints of f .

e1 e2

f 1

f 2

g
g’

e1 e2

f 2

f 1

g’
g

e1 e2

f 1

f 2

g

g’

x

Figure 11: Proof of Proposition 3.3 part (a). On the left and in the middle: two situations for a drawing in
the plane, which are equivalent for a drawing in the sphere. On the right: assumption for a contradiction.
The curves named g and g′ represent a portion of the drawn edge g in D and D′, respectively.

• Part (a), illustrated in Figure 11.
As shown in Figure 10, since e and f cross, there are two possible types of drawings in the plane for the

graph K4 defined by the endpoints of e and f . In one situation, no endpoint of e or f is inside the region
delimited by K4. In the other situation, one endpoint of e and f is inside the triangle formed by the three
other endpoints. However, the two situations are equivalent for a drawing in the sphere. The two situations
are shown on the first two pictures of Figure 11, where e2 is either not inside [e1, f1, f2] or inside [e1, f1, f2].
By Lemma 3.2, the corner and subsketch determine if a vertex is inside a triple of vertices or not. This
property will be the same in both D and D′ since they have the same corner and subsketch. We claim that
we only have to prove the proposition in the first situation.

Indeed, the result of the proposition in this first situation directly implies, for drawings in the sphere, the
following claim. Assume that a triangle T = [[e, f, g]] is permuted between two complete graph drawings D
and D′ in the sphere. Call R the region of the sphere delimited by the graph K4 formed by the endpoints
of e and f , such that R contains the drawn edges e and f . The sides of T delimit two regions of the sphere,
among which one is contained in R, call it RT . Then, by the above result, we directly have: in D and
D′ as well, there is no drawn vertex in RT . Now, the claim in the plane in the second situation alluded
to above directly follows from this claim in the sphere, as the two situations are equivalent in the sphere
(this reasoning technically consists in changing the unbounded region via the sphere, even if changing the
unbounded region can change the inside relation and the fact that a triangle is tame or not).

Hence, in what follows, we assume, without loss of generality, that e2 is not inside [e1, f1, f2] (in both
drawings), and we also assume that e is directed from e1 to e2. By axiom (D2), and since e crosses f , the
drawn edge e is formed by a segment with endpoint e1 contained in [e1, f1, f2], and a segment with endpoint
e2 contained in the complement of [e1, f1, f2]. So, since e is directed from e1 to e2, we have the following
equivalence: the portion of the drawn edge e between the intersections of e with f and g is contained
in [e1, f1, f2] if and only if g is before f along e. The surface of [[e, f, g]] is delimited by the three sides
contained in the drawn edges e, f, g between the intersections of these edges. Since the triangle T is tame,
axiom (D2) implies that the surface of [[e, f, g]] is either contained in the region [e1, f1, f2], or contained in
the complement of this region. Hence, the surface of [[e, f, g]] is contained in [e1, f1, f2] if and only if g is
before f along e. Since [[e, f, g]] is permuted between D and D′, we then have that the surface of [[e, f, g]] is
contained in [e1, f1, f2] either in D, or in D′, but not both. The property that a vertex x is inside [e1, f1, f2]
or not is determined by the corner and subsketch, by Lemma 3.2, hence this property of x is the same in D
and D′. So, assume a vertex x is inside the surface of T in D, then it is not inside the surface of T in D′.

So, from now on, we assume that a vertex x is inside the surface of T in D but not in D′, and that the
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surface of T is contained in [e1, f1, f2] in D, but not in D′. Up to symmetries, we assume that x is inside
[e1, f1, e2] ∩ [e1, f1, f2], and that the four regions [e1, f1, e2], [e1, f1, f2], [e1, e2, f2], [f1, e2, f2] do not contain
a vertex in {e1, e2, f1, f2}. This assumption is shown on the third picture of Figure 11. We now look for a
contradiction. For brevity, as shown in Figure 12, we will denote Q(e1, f1) for [e1, f1, e2]∩[e1, f1, f2], Q(e2, f1)
for [e2, f1, e1] ∩ [e2, f1, f2], Q(e1, f2) for [e1, f2, e2] ∩ [e1, f2, f1], and Q(e2, f2) for [e2, f2, e1] ∩ [e2, f2, f1].

e1 e2

f 1

f 2

Q(e ,1 f )1 Q(e ,2 f )1

Q(e ,1 f )2 Q(e ,2 f )2

Figure 12: Proof of Proposition 3.3. Notation for the four quarters of the region delimited by e1, f1, e2, f2.

e1 e2

f 1

f 2

x
e1 e2

f 1

f 2

x

Figure 13: Proof of Proposition 3.3 part (b). The curved edge [x, e1] implies the dashed edges [x, e2] and
[x, f1].

• Part (b), illustrated in Figure 13.
What follows is available in D and D′ as well. For two vertices v and w, let us denote by ]v, w[ the drawn

edge [v, w] minus its endpoints v and w.
Let us assume that ]x, e1[ is not contained in Q(e1, f1) and see what is implied by this assumption.

Then, by axiom (D2), this drawn edge has to cross [f1, e2]. Note that [x, e1] cannot pass through [e1, e2, f2],
otherwise it would have to cross [f1, f2] twice. So, there are two cases illustrated in Figure 13. By axiom (D2),
]x, f1[ cannot cross the drawn edges [x, e1], [e1, f1] or [f1, f2]. So, in each case, ]x, f1[ has to be contained in
Q(e1, f1). Moreover, similarly, by axiom (D2), ]x, e2[ cannot cross the drawn edges [x, e1], [e1, e2] or [f1, e2].
So, in each case, it is direct to check that ]x, e2[ has to be contained in [e1, e2, f1]. We have proven: if ]x, e1[
is not contained in Q(e1, f1), then ]x, f1[ is contained in Q(e1, f1) and ]x, e2[ is contained in [e1, e2, f1].

Now, assume that ]x, f1[ is not contained in Q(e1, f1). Then, by the same reasoning as above applied to
]x, f1[ instead of ]x, e1[, we have that ]x, e1[ is contained in Q(e1, f1). So, we have proven that either ]x, f1[
or ]x, e1[ is contained in Q(e1, f1).

So, finally, there are two cases to handle: either both ]x, f1[ and ]x, e1[ are contained in Q(e1, f1) (case
1), or ]x, f1[ is contained in Q(e1, f1) and ]x, e2[ is contained in [e1, e2, f1] (case 2).

• Part (c), illustrated in Figure 14.
In case 1 (first picture of Figure 14), we assume that both ]x, f1[ and ]x, e1[ are contained in Q(e1, f1).

Then, by assumption on the position of x (made at the end of part (a) of the proof), the edge g has to cross
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e1 e2

f 1

f 2

x

g

g’

g’

e1 e2

f 1

f 2

x

g

g

g’

e1 e2

f 1

f 2

x

g

g

g

g’

g’

Figure 14: Proof of Proposition 3.3 part (c). Three cases yielding a contradiction.

[x, e1] and [x, f1] in D. Since D and D′ have the same subsketch, then g has to cross those two edges also
in D′. So, g has to cross first [e1, f1] in D′, because of the portion of g in D′ contained by assumption in
Q(e2, f2) and to cross next [x, e1] and [x, f1] (in any order). So, an endpoint of g in D′, say g1, has to be
in the region [x, e1, f1], as shown on the picture. Moreover, the edge [x, g1] has to be contained in the same
region [x, e1, f1] in D′, otherwise it would meet g twice, which is forbidden by axiom (D2). By Lemma 3.2,
the endpoint g1 of g has to be in the same region [x, e1, f1] in D, and the edge [x, g1] must not cross e or f
in D as it does not in D′. If g1 is in the region delimited by g, [x, e1] and [x, f1] in D, then g has to meet
itself or to meet twice [x, e1] or [x, f1] in D, which is forbidden by axiom (D2). If g1 is not in the region
delimited by g, [x, e1] and [x, f1] in D, then the edge [x, g1] has to meet g twice in D. A contradiction.

In case 2, we assume that ]x, f1[ is contained in Q(e1, f1) and ]x, e2[ is contained in [e1, e2, f1]. See the
second and third pictures of Figure 14. Let us denote by R the region intersection of Q(e2, f1) and the
complement of [x, f1, e2] (grey region delimited by [x, e2], [e1, e2] and [f1, f2] on the pictures).

In a first case (second picture of Figure 14), we assume that the portion of g in D′ contained in Q(e2, f2)
continues with crossing [x, e2]. Since D and D’ have the same subsketch, this implies that g crosses [x, e2]
also in D. Since g cannot meet [x, e2], [e1, e2] and [f1, f2] more than once, we get that an endpoint of g, say
g1 belongs to the region R in D. By Lemma 3.2, g1 belongs to the same region R in D′, which is impossible
since g cannot meet [x, e2], [e1, e2] or [f1, f2] more than once. A contradiction.

In a second case (third picture of Figure 14), we assume that the portion of g in D′ contained in Q(e2, f2)
ends with an endpoint, say g1, in the region R. As above, by Lemma 3.2, this implies that g1 belongs to the
same region in D. This implies that g crosses [x, e2] in D, and hence in D′ too. Independently, g crosses
[x, f1] in D, which implies that g crosses [x, f1] in D′ too. Because of the portion of g in D′ contained in
Q(e2, f2), we must have that g first crosses [e1, f1] in D′, and next crosses [x, f1] and [x, e2] (in any order a
priori). This implies also that g crosses [e1, f1] in D too, and hence that the endpoint g2 of g in D belongs
to the region Q(e1, f1). This implies that [x, g2] crosses [e1, e2] in D (otherwise [x, g2] would meet either g
or [x, e2] twice), and hence in D′ too. If, in D′, g crosses [e1, f1], and next [x, e2], and next [x, f1] (this case
is not represented on the picture), then [x, g2] cannot cross [e1, e2] in D′ (otherwise [x, g2] would have to
meet twice either [e1, f1] or [x, e2]). So, in D′, g crosses [e1, f1], and next [x, f1], and next [x, e2] (this case is
represented on the picture). Finally, assuming that g is directed from g1 to g2, we have that, in D, g crosses
the edge [x, e2] first and the edge [x, f1] next, whereas, in D′, g crosses the edge [x, f1] first and the edge
[x, e2] next. Since the edges [x, f1] and [x, e2] share the vertex x, this is a contradiction with Lemma 3.1.

The first part of Lemma 3.4 below, from which the second part follows easily, is equivalent to the first
part of [8, Lemma 4.7]. We shall not prove it again. Another proof was recently presented in [9].

Lemma 3.4. Every region of a complete graph drawing in the plane, except the unbounded one, is contained
in a region [x, y, z] of the plane for some vertices x, y, z of the graph. Moreover, for every couple of regions
R and R′ of the drawing, there exists a region [x, y, z] of the plane, for some vertices x, y, z, that contains
either R or R′ but not both.

Proof. The first claim is equivalent to the first claim of [8, Lemma 4.7]. Let us prove the second claim.
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The first claim can be directly applied to a drawing in the sphere with the following statement: choose a
particular region R′ of the drawing in the sphere and consider it as the unbounded region for a drawing in
the plane, then for every other region R of the drawing in the sphere, there exist three vertices x, y, z such
that the curve formed by the union of [x, y], [x, y], and [x, y] (homeomorphic to a circle), separates the two
regions R and R′. Hence, back to a drawing in the plane, we get that: for every couple of regions R and R′

of the drawing in the plane (bounded or not), there exist three vertices x, y, z such that the region [x, y, z]
of the plane contains either R or R′ but not both.

Lemma 3.5. Regions of a complete graph drawing in the plane are exactly non-empty intersections, for all
triplets {x, y, z} of vertices, of regions Rx,y,z of the plane where Rx,y,z is either the (topological) interior of
[x, y, z] or the complement of [x, y, z].

Proof. Consider an intersection of regions of the plane of type Rx,y,z for all triplets {x, y, z}. This intersection
is either empty, or it is a union of regions of the drawing (since its intersection with any drawn edge is
empty, since Rx,y,z has an empty intersection with the edges joining x, y and z). A region R of the drawing
is contained in the intersection of the regions Rx,y,z for all triplets {x, y, z}, where Rx,y,z is the region
containing R among the interior of [x, y, z] and the complement of [x, y, z]. It remains to prove that this
intersection does not contain another region R′ of the drawing. This is given by the second claim of Lemma
3.4: for every region R′ distinct from R, there exists Rx,y,z that contains R but not R′.

Lemma 3.6. Let D and D′ be two complete graph drawings of Kn in the plane with the same corner and
subsketch. Let an be a vertex of Kn. Assume that the two drawings of Kn−1 = Kn−{an} induced by D and
D′ are equal. Then the drawn vertex an belongs to the same region of this subdrawing in both D and D′.

Proof. By Lemma 3.5, the region of the drawing D′′ of Kn−1 containing an in D is the intersection of suitable
regions Rx,y,z for x, y, z ∈ V \ {an}. By Lemma 3.2, the inside relation for D is determined by its subsketch,
which is the same for D and D′. Hence an belongs to the same regions of type [x, y, z] for x, y, z ∈ V \ {an}
both for D and D′. Hence an belongs to the same intersection of regions Rx,y,z for x, y, z ∈ V \ {an} in D′

as in D, hence to the same region of D′′ in D′ as in D.

Notation 3.7. For a drawing D of a graph G, and a drawn edge e of D, we denote by D − e the drawing
obtained by removing the drawn edge e except the intersection points with other edges. Note that if an
endpoint a of e has degree one in G, then G− e is not connected and a is isolated in G− e. By definition,
the vertex a is not represented in D − e.

Let G be a complete graph with n vertices {a1, . . . , an}, and let D be a drawing of G. For 1 ≤ i < j ≤ n,
the (undirected) drawn edges of G are denoted by ei,j = [ai, aj ]. We denote Dn = D and, for 1 ≤ i < n,
Di = D−{ei,n, ei+1,n, . . . , en−1,n} (vertices of the graph are not deleted, except an which is deleted in D1).
In particular, D1 is a drawing of the complete graph on n− 1 vertices a1, . . . , an−1. When D is given with
a corner (P, α, β), we choose to numerate vertices so that P = a1, α = e1,2 and β = e1,3, so that it remains
a corner of the considered subdrawings.

Proposition 3.8 (Sweeping). Let D and D′ be two complete graph drawings in the plane, with the same
corner and subsketch. Using Notation 3.7, assume there exists i, 1 ≤ i < n, such that Di = D′i and
Di+1 6= D′i+1 (thus, these drawings differ only in the drawn edge ei,n). Then, following an orientation-
preserving homeomorphism of the plane, there exists a sequence of mutations from Di+1 to D′i+1, using only
permuted triangles between Di+1 and D′i+1 (thus, these triangles all contain the edge ei,n), and using each
of these triangles exactly once.

Remark 3.9. The result of Proposition 3.8 above does not generalize to general graph drawings. For
example, the middle part of Figure 3 shows two distinct 2-connected graph drawings, with the same subskecth
and corner, such that the drawings are the same when the edge [a, f ] is removed, but there is no triangle.

Proof. The integer i is fixed for the whole proof. The proof intuitively consists in a “sweeping” of ei,n from
D to D′, which is described in part (c) of the proof. At first, we need to transform the drawing D by means
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of an homeomorphism of the plane, preserving its sketch and corner, which is done in the preliminary step
below and in parts (a) and (b) of the proof, so that ei,n is suitably drawn and this sweeping notion works
properly. It ensures that, from the algorithmic viewpoint, one can deal with combinatorial sketches only,
and one just needs the construction in part (c). The proof is illustrated by, and can be understood from,
Figures 15, 16, 17, 18, 19.

First of all, let us observe that, up to an orientation-preserving homeomorphism of the plane, an is
represented by the same drawn vertex in Di+1 and D′i+1. Indeed, by hypothesis, if 1 < i < n, then an is
represented by the same drawn vertex in Di+1 and D′i+1 as the topological representation of Di and D′i is
the same and involves the vertex an. Now, assume that i = 1 (recall that an is not represented in D1). By
Lemma 3.6, the drawn vertices representing an in Di+1 = D2 and D′i+1 = D′2 are in the same region of the
plane delimited by Di = D′i = D1 = D′1, which is a drawing of Kn−1. So, up to an orientation-preserving
homeomorphism that affects only this region, an is also represented by the same drawn vertex in Di+1 = D2

and D′i+1 = D′2, and this does not affect D1 = D′1 nor the intersections of e1,n with D1 = D′1. For the rest
of the proof, we make the assumption that an is represented by the same drawn vertex in Di+1 and D′i+1.

The edge ei,n is represented by a curve c in D, and by a curve c′ in D′, with both the same endpoints ai
and an which are drawn vertices of the graph. The intersection of the curves c and c′ consists of a disjoint
union of closed segments (by segments, we always mean curve segments, which possibly contain only one
point). We can assume that this set of segments is finite because all drawings of a given graph can be
realized in piecewise-linear topology using the same finite set of straight segments (up to homeomorphism).
We denote by R∞ the unbounded region of the plane delimited by c ∪ c′, that is, the unbounded connected
component of the plane minus c∪c′. A point (or a set of points) in c∪c′ is called exterior if it is contained in
the boundary of R∞. The bounded connected components of the plane minus c ∪ c′ are called components.
We denote by R the union of all components, that is, R equals the plane minus R∞ ∪ c ∪ c′. We call proper
homeomorphism an orientation-preserving homeomorphism of the plane that, when applied to Di+1, does
not affect Di = D′i, nor an, nor the intersections of the curve representing ei,n with D1 = D′1, nor the sketch
of Di+1, nor the property of being a corner. Finally, recall that D1 = D′1 is the drawing of the complete
graph Kn−1 with vertices {a1, . . . , an−1} contained in Di = D′i.

ai an

c’

c

a

v

ai an

c’

c

a

v

ai an

c’

c

v

a

Figure 15: Proof of Proposition 3.8, part (a), first step. If a drawn vertex is in R, then all drawn vertices
are in the same component, shown as a grey region (because of the same circular ordering around ai).

ai an

c’

c
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ai an

c’

c

a =P1

c’

c

a =P1 anu

v

Figure 16: Proof of Proposition 3.8, part (a), second step. The pictures show impossible situations. If a
drawn vertex is in R, then i = 1 and an is in the unbounded region of the common drawing D1 = D′1 of
Kn−1 (because of the same corner).

• Part (a), illustrated in Figures 15, 16 and 17.
In this part of the proof, we prove the following claim: up to a proper homeomorphism transforming D,

we can assume there is no drawn vertex inside R.
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an
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c’’

a1 an

Kn-1
c’

c

a1 an

Kn-1
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Figure 17: Proof of Proposition 3.8, part (a), third step. If a drawn vertex is in R, then, by a proper
homeomorphism, the curve c representing the edge e1,n can be transformed into a curve c′′, so that all
vertices (except a1 and an) are in the unbounded region R∞ defined with respect to the curves c′ and c′′.
The grey regions show where edges of the drawing D1 = D′1 of Kn−1 are drawn, and the dark grey regions,
denoted by Kn−2, show where the vertices {a2, . . . , an−1} are drawn.

Let us first informally explain this claim. It can happen, for instance, that the two initial curves c
and c′ delimit a disc in which the two drawings are contained (thus this disc is the closure of R). In this
case, one would perform first a proper homeomorphism on D to move c onto c’ (without affecting the rest
of the drawing, nor the sketch of the drawing, nor the corner), and then consider R as defined for the
resulting drawings instead (thus R is now empty). This claim handles when such preliminary topological
transformations are made (not affecting the combinatorial sketchs).

Let us assume that there is a drawn vertex a inside R (hence a ∈ V \ {ai, an}), and let us denote by Ra

the component containing a. Since the graph is complete, then there is an edge [ai, a]. By axiom (D2), this
edge does not meet the drawn edge ei,n except at ai, so the edge [ai, a] is also contained in Ra, except its
endpoint ai (which is in the closure of Ra).

First, let us prove that all the vertices, except ai and an, are drawn inside Ra. Assume there is a drawn
vertex v ∈ V \ {ai, an} not in Ra. As above, since the graph is complete, then there is an edge [ai, v] and
this edge does not intersect Ra. Then, in the circular ordering of curves around ai, one and only one among
c and c′ is between [ai, a] and [ai, v]. See Figure 15 which shows the possible situations. Then the circular
ordering of [ai, a], [ai, v] and ei,n around ai is not the same in D and D′, which is in contradiction with the
hypothesis D and D′ have the same subsketch. So, all the vertices, except ai and an, are drawn inside Ra.

Now, let us prove that i = 1. Assume i > 1. Then a1 is inside Ra, as well as the edges e1,i and e1,n
(except the endpoints ai and an). Then e1,i ∪ e1,n separates Ra in two connected components. See the left
and middle pictures of Figure 16. By hypothesis, the corner at the boundary of the unbounded region of the
drawing is (a1, e1,2, e1,3) in the two drawings Di+1 and D′i+1. This is impossible as it implies that, for one
drawing or the other, the unbounded region is contained in one of these two connected components of Ra.
So we have i = 1.

Now, let us prove that an is in the unbounded region of the common drawing D1 = D′1 of Kn−1. Assume
that an is not in this unbounded region. Since all drawn vertices of Kn−1 except a1 are in Ra (by the results
above), then there is an edge uv of Kn−1 with its two endpoints in Ra such that an is inside [a1, u, v], as
shown on the right part of Figure 16. Then, it is impossible that the two drawings D and D′ have the same
corner (a1, e1,2, e1,3) at the boundary of their unbounded region (as this would imply that this unbounded
region is bounded by c ∪ c′). This is a contradiction with the hypothesis of the proposition. So an is in the
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unbounded region of the common drawing D1 = D′1 of Kn−1.
Finally, we check that there is a proper homeomorphism of the plane transforming the curve c representing

e1,n in D into a curve c′′ such that all the vertices except a1 and an are inside the unbounded component
of the plane minus c′ ∪ c′′. Briefly, one just has to make the vertex an turn around the drawing D1 = D′1
of Kn−1 in a suitable way, as shown in Figure 17. Precisely, all vertices of D1 except a1 are in Ra (denoted
by Kn−2 and depicted by a dark grey circle in the left and middle pictures), and all edges having a portion
outside Ra must turn around a1 to cross both c and c′ (depicted by light grey strips in the left and middle
pictures). So, the transformations shown in the left and middle pictures ensure that all vertices of Kn−2 are
in the same region delimited by c′′ and c′. Then, an can possibly have to be turned several times around
D1, by repeating at various places of the curve the transformation shown in the right picture (e.g., when c
forms a spiral around a1), so that all vertices of Kn−2 are in the unbounded region delimited by c′′ and c′.

We have proven that, up to a proper homeomorphism, we can assume that there is no drawn vertex
inside R. We make this assumption for the rest of the proof.
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Figure 18: Proof of Proposition 3.8, part (b). The dashed edges denoted e cannot exist as they would
intersect either a non-cutable component or a non-cutable point in c ∩ c′. The arrows indicate a proper
homeomorphism transforming c into c′′ such that the number of endpoints of segments in c′′ ∩ c′ is strictly
smaller than this number in c ∩ c′.

• Part (b), illustrated in Figure 18.
The goal of this part is to show the following: up to a proper homeomorphism, R consists in a sequence

of components along c (or, equally, c′), such that the boundary of each component is formed by only one
segment of c and only one segment of c′, which are both exterior (that is, in the boundary of R∞).

Note that, as for Part (a), we mean that R could be redefined after performing a proper homeomorphism,
so that the above property holds.

As the two drawings have the same subsketch, every edge crossing c crosses c′ and conversely.
First, let us prove the following claim: if a drawn edge e crosses c or c′, then the intersection point is

exterior. Indeed, assume (without loss of generality) that e crosses c, and call R1 and R2 the components
whose boundaries contain the crossing point. Assume R1 and R2 are both bounded. Since R1 is bounded,
no endpoint of e is inside R1, by part (a) of the proof. Then e has to cross c′ in the boundary of R1, because
e cannot cross c twice, by axiom (D2). Similarly, since R2 is bounded, then e has to cross c′ in the boundary
of R2. Since e cannot cross c′ twice, by axiom (D2), the two above crossing points of e and c′ are the same.
Hence e joins the crossing point of e and c to the crossing point of e and c′ both in R1 and R2, meaning that
e is not homeomorphic to a segment, which is a contradiction.

Furthermore, we prove the following claim: if a drawn edge meets c and c’ at the same intersection point,
then the intersection point has the property that removing it from the closure of R disconnects the closure of
R (that is, equivalently, the edge minus this intersection point is contained in R∞). Indeed, assume that a
portion of e is contained in a component (whose boundary contains the intersection point), then e has an
endpoint in this component, which is a contradiction with part (a), or e has to cross c or c′ twice, which is
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a contradiction with axiom (D2). An element of c ∩ c′ with the above property is called cutable. Hence, the
set of non-cutable points in c ∩ c′ has an empty intersection with the drawn edges (distinct from ei,n).

The two above claims directly imply the following: if a component contains a portion of a drawn edge,
then its boundary contains an exterior segment of c and an exterior segment of c′. Indeed the intersection
point cannot belong to c ∩ c′ by the second claim, so it belongs to an exterior segment of c (or c′) in the
boundary of the component, by the first claim, and there must exist another intersection point with c′ (or
c), and hence an exterior segment of c′ in the boundary. A component with the above property is called
cutable. Hence a non-cutable component has an empty intersection with the drawing.

Now we prove the goal of this part. Let us call S the set of endpoints of the segments in c ∩ c′ (recall
that c ∩ c′ consists of a disjoint union of closed curved segments). For s and t in S, let us denote by cs,t
and c′s,t the portions of the curves c and c′ between s and t, respectively, and let us call Rs,t the subset of
R delimited by cs,t and c′s,t.

For a first construction, let us assume that ai (or, similarly, an) is not exterior. Such a situation is
illustrated in the left part of Figure 18. In this situation, there exists t ∈ S, t 6= ai, such that Rai,t∪cai,t∪c′ai,t

is formed by components which are all non-cutable, their boundaries, and segments in c ∩ c′ whose points
are all non-cutable. By the above claims, Rai,t ∪ cai,t ∪ c′ai,t has an empty intersection with all the edges
of the drawing (distinct from ei,n). Then, as illustrated in the left part of Figure 18, there is a proper
homeomorphism transforming c into c′′ such that the number of endpoints in c ∩ c′′ is strictly smaller than
the number of endpoints in S (the curve c′′ is made parallel to c′ in a suitable neighbourhood of c′ai,t, and
joins ai in a suitable neighbourhood of ai, so that, at least, the intersection point t vanishes).

For a second construction, let us order the set S of endpoints of the segments in c ∩ c′ with respect to
their positions in the curve c directed from ai to an. Assume that the ordering of S with respect to c′ is
not the same. Such a situation is illustrated in the right part of Figure 18. In this situation, there exist
s ∈ S and t ∈ S, s 6= t, such that Rs,t ∪ cs,t ∪ c′s,t is formed by components which are all non-cutable, their
boundaries, and segments in c∩c′ whose points are all non-cutable. By the above claims, Rs,t∪cs,t∪c′s,t has
an empty intersection with all edges of the drawing (distinct from ei,n). Then, as illustrated in the right part
of Figure 18, there is a proper homeomorphism transforming c into c′′ such that the number of endpoints in
c′′ ∩ c′ is strictly smaller than the number of endpoints in S (the curve c′′ is made parallel to c′ in a suitable
neighbourhood of c′s,t, and joins s in a suitable neighbourhood of s, so that, at least, the intersection point
t vanishes).

The two above constructions can be repeated (independently of each other) while ai and an are not
exterior, and while the ordering of S along the two curves representing ei,n is not the same. The process
will end because the number of elements of S strictly decreases at each operation.

Finally, we have proven that, up to a proper homeomorphism, we can assume that both ai and an are
exterior, and that the ordering of S along c and c′ is the same. This also directly implies that the boundary
of each component is formed by one exterior segment of c and one exterior segment of c′. We make these
assumptions for the rest of the proof.

• Part (c), illustrated in Figure 19.
Under the assumptions made in parts (a) and (b) of the proof following an orientation-preserving home-

omorphism of the plane, we now proceed to a “sweeping” from c to c′, yielding the result of the proposition.
Note that the sweeping technique below is rather usual in pseudoline arrangements and related fields. Yet,
we give a complete proof in the context of this paper.

Consider a drawn edge of Di = D′i intersecting R. By the assumptions made in parts (a) and (b) of the
proof, we have that the edge intersects exactly one component, its two endpoints are in R∞, and the edge
is formed by three segments: one contained in R∞ and containing the first endpoint, one contained in R∞
and containing the second endpoint, and one contained in the component, between the intersections with c
and c′ (recall that the two drawings have the same subksetch, hence the edge crosses c and c′).

Let C be the set of pairs of edges {f, g} whose intersection is inside R. Since R does not contain a drawn
vertex and since f and g cross ei,n, we have that [[ei,n, f, g]] is a tame triangle in D and D′. By definition,
the set of [[ei,n, f, g]], {f, g} ∈ C, is the set of permuted triangles between Di+1 and D′i+1. Consider the
graph H = (VH , EH) whose vertices are all intersection points of drawn edges inside R, and whose edges
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c’

c

Figure 19: Proof of Proposition 3.8, part (c). The sweeping from the curve c to the curve c′ consists in
passing through each of the intersection vertices which are between the two curves, by means of successive
triangle mutations. The ordering follows the arrows between those vertices. At any step, the vertices with
no incoming edges can be used for a mutation. Any of the three white vertices can thus be used first.

are given by all portions of drawn edges of Di = D′i joining these vertices. See Figure 19 for an example.
Observe that H is not necessarily connected, and can even have isolated vertices. We direct every edge in
EH from c′ to c (it is well-defined since each edge in EH is contained in a drawn edge of Di = D′i intersecting
R, as considered above).

We prove that the directed graph H has no directed cycle. Assume there is a directed cycle formed by
successive vertices represented in the plane by the points p1, . . . , pn, pn+1, with pn+1 = p1. We may assume
that two segments [pj , pj+1] and [pk, pk+1] intersect if and only if |k − j| = 1. Otherwise we can restrict the
cycle to a smaller one. Then the union of these segments is homeomorphic to a circle, and these segments
are all directed in the same way (clockwise or counterclockwise) by the directions of edges in the directed
cycle of H. Let qj , 1 ≤ j ≤ n, be the intersection point of c with the drawn edge containing [pj , pj+1]. The
directions of edges (pj , pj+1) of H, 1 ≤ j ≤ n, induce directions along c for the ordered pairs (qj , qj+1),
1 ≤ j < n, as well as for (qn, q1), such that these directions are all the same along c, which is impossible as
c is homeomorphic to a segment.

Hence, in the directed graphH, there exists a vertex with no incoming edge. This vertex is the intersection
of two drawn edges f and g, and, by definition of EH and its directions, [[ei,n, f, g]] is a free triangle in Di+1,
permuted between Di+1 and D′i+1. Let D′′i+1 be the mutation of this triangle from Di+1. There is one less
permuted triangle between D′i+1 and D′′i+1 than between Di+1 and D′i+1, and common permuted triangles
are the same. Iterating this construction for D′′i+1 and D′i+1 readily gives a sequence of triangle mutations
of permuted triangles between Di+1 and D′i+1, where each permuted triangle is used exactly once.

We now combine the previous results to prove the main result of the paper, by means of an inductive
construction. Briefly, in order to build a sequence of mutations from a drawing D to another drawing D′

of the complete graph with the same subsketch and corner, we use a sequence of mutations, with a suitable
property, from D − e to D′ − e, which are the two drawings obtained by removing some edge e. In the
first stage, this sequence is updated, yielding a sequence of mutations starting from D and transforming the
subdrawing D− e of D into the subdrawing D′ − e of D′ (the suitable property, along with Proposition 3.3,
ensures that the involved triangles do not contain a vertex of the graph, allowing to use the Cutting Lemma
2.1 with respect to e). In the second stage, in order to get D′, we complete the sequence with mutations all
involving the edge e (using the sweeping process from Proposition 3.8 with respect to e). We thus obtain a
sequence of mutations from D to D′, also with the suitable property. In order to allow the induction, this
construction actually works for subdrawings obtained by removing several edges having all the same endpoint
from the initial complete graph drawings (precisely, for drawings denoted Di and D′i in Notation 3.7).

Theorem 3.10. Let D and D′ be two complete graph drawings in the plane with the same corner and
subsketch. There exists a sequence of mutations from the sketch of D to the sketch of D′ (or, in topological
terms, a sequence of mutations and orientation-preserving homeomorphisms from the drawing D to the
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Figure 20: First stage of Theorem 3.10 or Algorithm 1: triangle mutations when T is cut by ei,n.

drawing D′).

Moreover, denoting such a sequence of mutations by D = D(0) → D(1) → . . . → D(k−1) → D(k) = D′,
this sequence can be chosen so that, for any intermediate sketch D(j), 0 ≤ j ≤ k − 1, the mutated triangle
from D(j) to D(j+1) is contained in a permuted tame triangle between D(j) and D′.

Such a sequence S(D,D′) is built in an inductive way by Algorithm 1, or, equivalently, in a recursive
way by Algorithm 2 (where we use Notation 3.7, in particular: Dn = D, as well as D′n = D′, is a drawing
of Kn; and D1, as well as D′1, is a drawing of Kn−1).

Proof. We prove the result by induction on n and 1 < i ≤ n, and we use Notation 3.7. The construction is
performed by Algorithm 1, and we can check its validity simultaneously. In order to lighten notations, the
induction on the number of vertices n does not appear as an index in the notations, but it is underlying as
D1 and D′1 are drawings of the complete graph with n− 1 vertices, as precised below.

If n = 3, then D = D′ since the two drawings have the same corner by assumption, and Algorithm 1
correctly returns S(D,D′) = D. We assume for the rest of the proof that n > 3.

Computation of the first mutated triangle T (Di, D
′
i) in the sequence from Di to D′i, for 1 < i ≤ n

(if it exists, otherwise the value ∅ is returned)
if n ≤ 3 or Di = D′i then T (Di, D

′
i) := ∅

if n > 3 then let T = T (Di−1, D
′
i−1)

if T 6= ∅ then
if T is free in Di then T (Di, D

′
i) := T

otherwise T is cut by ei,n in Di then there exists (by Cutting Lemma 2.1) a unique T ′

contained in T , free in Di, with ei,n ∈ T ′, and T (Di, D
′
i) := T ′

if T = ∅ then there exists (by Sweeping Proposition 3.8) a triangle T ′, free in Di, with ei,n ∈ T ′,
permuted between Di and D

′
i, and T (Di, D

′
i) := T ′ (arbitrary choice)

Computation of S(D,D′) = S(Dn, D
′
n)

if T (Dn, D
′
n) = ∅ then S(D,D′) := D

otherwise D′′ being obtained by mutation of T (Dn, D
′
n) from D

S(D,D′) := D → S(D′′, D′)

Algorithm 2: Recursive algorithm for Theorem 3.10, using Notation 3.7.

According to the induction hypothesis, we assume that the sequence

S(Di − ei,n, D′i − ei,n) = S(Di−1, D
′
i−1) = D

(0)
i−1 → . . .→ D

(l)
i−1
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Computation of a sequence of mutations S(D,D′) from D to D′

If n ≤ 3 then S(D,D′) := D.
If n > 3 and 1 < i ≤ n then

denote S(Di−1, D
′
i−1) = D

(0)
i−1 → . . .→ D

(l)
i−1

Comment: it is a sequence of l mutations from Di−1 = D
(0)
i−1 to D′i−1 = D

(l)
i−1;

if i = 2 then D1 and D′1 are drawings of the complete graph with n− 1 vertices, and
the sequence is obtained by the computation for n− 1 instead of n and for i = n− 1;

furthermore, this sequence has the property that, for any 0 ≤ j ≤ l − 1, the mutated

triangle from D
(j)
i−1 to D

(j+1)
i−1 is contained in a permuted tame triangle between D

(j)
i−1

and D′i−1, and hence this triangle does not contain an (by Proposition 3.3).

let D
(0)
i := Di, let S := D

(0)
i

Comment: we build S(Di, D
′
i) as a variable S that is extended step by step from Di.

for j from 0 to l − 1 do

if the triangle T mutated in D
(j)
i−1 is free in D

(j)
i then

let D
(j+1)
i be obtained by mutation of T from D

(j)
i

let S := S → D
(j+1)
i

if the triangle T mutated in D
(j)
i−1 is cut by ei,n in D

(j)
i then

let T ′ be the unique free triangle contained in T in D
(j)
i (Cutting Lemma 2.1)

let D
(j)

i be obtained by mutation of T ′ from D
(j)
i (Figure 20)

let D
(j+1)
i be obtained by mutation of T from D

(j)

i

let S := S → D
(j)

i → D
(j+1)
i

Comment: at this step, we have S = D
(0)
i → . . .→ D

(l)
i (with a length possibly

greater than l + 1) and we have D
(l)
i−1 = D′i−1, that is D

(l)
i and D′i are equal except

for before relations involving ei,n.

let D
(l)
i → . . .→ D

(m)
i be a sequence of mutations from D

(l)
i to D′i = D

(m)
i (Sweeping Proposition 3.8)

let S(Di, D
′
i) := S → D

(l+1)
i → . . .→ D

(m)
i

Algorithm 1: Inductive algorithm for Theorem 3.10, using Notation 3.7.

has been built, and that every mutated triangle used along the sequence is contained in a tame triangle
which is permuted between the sketch to which the mutation is applied and the final sketch D′. Observe
that if i = 2 then D1 and D′1 are drawings of the complete graph on n − 1 vertices a1, . . . , an−1. In this
case, the sequence has been obtained by the construction applied to the parameter n − 1 instead of n and
the parameter i with value n− 1.

• First stage.
Let us assume that the above sequence is not the trivial one S(Di−1, D

′
i−1) = Di−1. Let T be the first

mutated triangle in this sequence. By induction hypothesis, T is contained in a tame permuted triangle
between Di−1 and D′ (which is of course also a triangle of Di). So, by Proposition 3.3, T does not contain
the vertex an. So, the triangle T is either a free tame triangle in Di, or it is a tame triangle cut by ei,n in Di.

In the first case, T is free in Di. Then it can be mutated from Di, in exactly the same way as it is mutated
from Di−1. Obviously, we preserve the property that T is contained in a tame permuted triangle between Di

and D′. And next, we can proceed with the same construction applied to the sequence D
(1)
i−1 → . . .→ D

(l)
i−1.

In the second case, illustrated in Figure 20, the triangle T is cut by ei,n in Di, and it does not contain
a drawn vertex. Then, by Lemma 2.1, there exists a unique free triangle T ′ of Di, contained in T , with

ei,n ∈ T ′. Then T ′ can be mutated from Di = D
(0)
i , yielding a drawing D

(0)

i . Obviously, we have that T ′ is
contained in a tame permuted triangle between Di and D′, since T ′ is contained in T which is contained in
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a tame permuted triangle between Di−1 and D′. Then T is free in the resulting drawing D
(0)

i , and it can be

mutated from the resulting drawing D
(0)

i , in exactly the same way as it is mutated from Di−1. Obviously,

T is contained in a tame permuted triangle between D
(0)

i and D′. And next, we can proceed with the same

construction applied to the sequence D
(1)
i−1 → . . .→ D

(l)
i−1.

Successively applying these two cases yields a sequence S of mutations starting from Di = D
(0)
i and

resulting in a drawing D
(l)
i such that D

(l)
i − ei,n = D

(l)
i−1 = D′i− ei,n. It is also the sequence S resulting from

Algorithm 1. Note that if we have S(Di−1, D
′
i−1) = Di−1 above, then we directly consider the next stage.

• Second stage.
As seen above, all the triangles not containing ei,n and involved in mutations in S are exactly the same

as in the sequence S(Di−1, D
′
i−1). We effectively have D

(l)
i−1 = D′i−1, where D

(l)
i−1 is obtained by removing

ei,n from D
(l)
i . Hence D

(l)
i and D′i are the same drawings except for the before relations involving ei,n.

So now, we can proceed with building the second part of the sequence S(D,D′) by using the sweeping

process of Proposition 3.8. We obtain a sequence from D
(l)
i to D′i using only mutations of triangles containing

ei,n, and permuted between D
(l)
i and D′i. Moreover, each triangle permuted between D

(l)
i and D′i is used

exactly once in the sequence from D
(l)
i to D′i, hence each mutated triangle is tame (by definition of a

mutation) and permuted between the drawing to which the mutation is applied and D′i, or equivalently D′.

So, finally, we have built a sequence of mutations from Di to D′i. Furthermore, we have checked that
every mutated triangle is contained in a tame permuted triangle between the drawing to which the mutation
is applied and D′. Also, we have checked that Algorithm 1 performs the construction.

Finally, the equivalence between Algorithm 1 and the recursive Algorithm 2 is easy to check using the
above discussion. Obviously, at each level i of the construction, the first part of the sequence built in
Algorithm 1 is addressed in Algorithm 2 when T 6= ∅, and the second part of the sequence built in Algorithm
1 is addressed in Algorithm 2 when T = ∅. We leave the details.

Corollary 3.11. Let D and D′ be two complete graph drawings in the plane with the same corner and
subsketch. We have D 6= D′ if and only if there exists a tame permuted triangle between D and D′. More
precisely, for every triple of edges e, f, g, if f is before g along e in D but not in D′, then the triangle [[e, f, g]]
is tame and permuted between D and D′.

Proof. If D 6= D′, then the first triangle in a sequence of mutations from D to D′ is contained in a tame
permuted triangle by Theorem 3.10. If f is before g along e in D but not in D′, then the triangle [[e, f, g]]
has to be mutated at some step in the sequence of mutations from D to D′ (it is the only way to change the
before relation of f and g along e). Hence [[e, f, g]] has to be tame and permuted between D and D′.

Corollary 3.12 (completing Lemmas 3.1 and 3.2). Let D be a complete graph drawing in the plane. The
subsketch and a corner of D determine, for every triplet of edges {e, f, g}:

• the before relation of f and g along e, when f and g do not cross each other;

• if [[e, f, g]] is a wild triangle, and, if so, the three before relations involving e, f and g;

• if the surface of [[e, f, g]] contains a drawn vertex, and, if so, the three before relations involving e, f
and g.

Proof. A sequence of mutations from D to D′ affects only tame triangles containing no vertex of the graph.
Mutations do not affect the fact that f and g have a common endpoint, nor that f and g do not cross each
other, nor that [[e, f, g]] is a wild triangle, nor that the surface of [[e, f, g]] contains a drawn vertex. Hence
the involved before relations must be the same in the two drawings, that is determined by the subsketch.

Corollary 3.13. Two complete graph drawings in the sphere with the same subsketch are the same up to
homeomorphism and a sequence of triangle mutations.

21



Remark 3.14. Let us observe that the trick of the proof is to maintain the particular property of the
sequence stated in the theorem, so that Proposition 3.3 ensures that the sequence of mutations can be used
again when a new vertex is added. Beware that it is not possible to demand that the sequence uses only
permuted triangles (which would imply by the way a minimum number of mutations, since every permuted
triangle has to be mutated at some step). Indeed two drawings may have no free permuted triangle between
each other. See Section 4.1 and Figure 21.

4 Examples and applications

4.1 Triangle mutations in pseudoline arrangements

A pseudoline arrangement may be defined as a finite set of curves in the affine plane, each one being the
image of a line under an homeomorphism of the plane, and such that any two pseudolines cross each other
exactly once. We will always consider uniform pseudoline arrangements, i. e. no three pseudolines can meet
at the same point. We consider that a pseudoline arrangement is labelled and given with the circular ordering
of the pseudolines at infinity, and is defined up to an orientation-preserving homeomorphism. Pseudoline
arrangements (equivalent to rank 3 oriented matroids) are well studied objects, see [10, Chapter 4]. They
satisfy simple axiomatics with the before relation [10], and even first order axiomatics [13].

Here, a pseudoline arrangement can be considered as a structure similar to a sketch in which: the inc
and circ relations are not useful; the crossing relation is trivial (each element crosses each other element
once); and the before relations determine the arrangement (each pseudoline is directed, the arrangement is
determined by the linear ordering of the crossings on each pseudoline). Hence all definitions about triangles
and mutations can be given in exactly the same way in pseudoline arrangements.

So, the previous result and algorithm apply naturally. For an arrangement A on E = {e1, . . . , en}, we
denote by Ak, 1 ≤ k ≤ n, the arrangement on Ek = {e1, . . . , ek} obtained by restriction from A, and we
replace Di with Ai and ei,n with ei. Theorem 3.10 yields a sequence of mutations from any arrangement A
to any other arrangement A′ with the same number of pseudolines and the same circular ordering at infinity.

The well-known Ringel’s theorem on pseudoline arrangements [25] states that if A and A′ are two uniform
pseudoline arrangements with the same number of elements and the same circular ordering at infinity then
there exists a sequence of mutations from A to A′. In Theorem 3.10, we generalize Ringel’s theorem to
complete graph drawings. Furthermore, Theorem 3.10 also gives the following slight strengthening of Ringel’s
theorem (since in the generalization to graph drawings we avoid mutations of the non-permuted triangles
that could contain drawn vertices, see Remark 3.14). This result, as already mentioned in [15], can be seen as
an easy case of the construction of Theorem 3.10: the first stage is trivial, and the second stage consists of a
sweeping, which is folklore in pseudoline arrangements. Let us mention that a similar inductive construction
for a sequence of mutations in a pseudoline arrangement was used in [26], and that the following result
can also be derived from [23] where regions of pseudoline arrangements are labelled and common labels are
preserved in a sequence of mutations from an arrangement to another one.

Theorem 4.1. If A and A′ are two uniform pseudoline arrangements with the same number of elements
and the same circular ordering at infinity then there exists a sequence of mutations from A to A′ avoiding
mutations of triangles not contained in a permuted triangle between A and A′.

An important remark is that it is not possible in general to transform a configuration into another one
using only mutations of permuted free triangles. Indeed, it would mean that there is always a permuted free
triangle between two different configurations, which is false, as shown by an example from [14], from which
Figure 21 is taken and made straight. Let us mention that this example was relevant also in [4], and that
one of these two arrangements was also a significant example for another problem in [10, Figure 1.11.2].

A sequence of mutations between these two arrangements is built in Example 4.2. It shows two pseudoline
arrangements having all their free triangles (123, 145, 356 and 246) in the same position. Then a sequence
of mutations from one to the other must begin with the mutation of a non-permuted triangle. Hence the
minimal number of mutations needed in the sequence may be strictly larger than the number of permuted
triangles. For instance in the below sequence, we use twice the mutation of 356.
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To our knowledge, the problem of building a minimal sequence of mutations between two pseudoline
arrangements (or complete graph drawings) is open.

1 2 3 4 5 6

6 5 4 3 2 1

1 2 3 4 5 6

6 5 4 3 2 1

Figure 21: Two arrangements with no permuted free triangle (using an example from [14]).

Example 4.2. The sequences of triangles built by the algorithm of Theorem 3.10 applied to the arrangements
of Figure 21 are the following. We separate the two built subsequences: the first one (corresponding to

Di = D
(0)
i → . . .→ D

(l)
i in Theorem 3.10) built from the previous level, and the second one when only the

last pseudoline has to be moved (corresponding to D
(l)
i → . . .→ D

(m)
i = D′i in Theorem 3.10).

• At level 3: ∅ (triangles 123 are the same in both arrangements)

• At level 4:
(
∅
)
→

(
234→ 134→ 124

)
(only 4 has to be moved)

• At level 5:
(
235→ 234→ 135→ 134→ 125→ 124

)
→

(
∅
)

(the first sequence is sufficient)

• At level 6:
(
356→ 235→ 346→ 234→ 135→ 134→ 125→ 124

)
→

(
236→ 136→ 126→ 146→ 156→ 456→ 256→ 356

)
4.2 Plane visualization of geometric spatial complete graphs given with oriented

matroid data

Consider a set E of n+ 1 points in the 3-dimensional real (or rational) space in general position, a plane in
general position with this configuration, and a ∈ E the extremal point in E with respect to the plane (i. e.
the distance from a to the plane is maximal). Then the projections, from a to the plane, of the segments
formed by all pairs of vertices is a complete (geometric) graph drawing of Kn in the plane (see Figure 22).

Theorem 4.3. The rank 4 oriented matroid defined by E determines a corner and the subsketch of the com-
plete graph drawing in the plane obtained by projection from the extremal point a ∈ E. Hence it determines
the drawing up to a sequence of triangle mutations.

Proof. With the oriented matroid, we know for each triplet in E, and for each pair of other points, if these
two points are on the same side or the opposite sides w.r.t. the plane spanned by the triplet. In oriented
matroid terms: we know the relative signs of elements in a cocircuit defined by the triplet. Since all edges
are straight, then we easily get:
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Figure 22: Plane projection (on the right) of a geometric spatial complete graph (on the left).

• the cross relations: for vertices e1, e2, f1, f2, the drawn edge [e1, e2] crosses the drawn edge [f1, f2] if
and only if e1 and e2 are in opposite sides w.r.t. the plane defined by a, f1, f2, and f1 and f2 are in
opposite sides w.r.t. the plane defined by a, e1, e2.

• the circ relations: for vertices x, y, z, the edges [x, y] and [x, z] are consecutive in the circular ordering
around x if and only if no vertex is at the same time in the same side as y w.r.t. the plane defined by
a, x, z and in the same side as z w.r.t. the plane defined by a, x, y.

• a corner of the drawing: it is given by a vertex P and two edges [P, x] and [P, y] such that (P, [P, x], [P, y]) ∈
circ, and all vertices not in {a, P, x} are in the same side w.r.t. the plane defined by a, P, x, and all
vertices not in {a, P, y} are in the same side w.r.t. the plane defined by a, P, y.

Hence, the subsketch is determined (but not all the drawing: the linear orderings of crossings along edges
of triangles are not determined in general by the oriented matroid). We finish the proof using Theorem
3.10.

With Theorem 4.3, we know that if two configurations of points define the same oriented matroid up to a
bijection of the ground set, then the projections of the segments joining them, from extremal points being in
bijection, are the same up to a sequence of triangle mutations and orientation-preserving homeomorphisms.

Hence, finally, we obtain a certain modelling of plane visualization of geometric spatial complete graphs,
based on two structural levels. Indeed, the point a plays the role of a point of view for the visualization.
When a moves in a region delimited by the planes formed by other points of the configuration, then the
oriented matroid data, and hence the subsketch, are unchanged, while the plane drawing and its sketch
can change with a sequence of triangle mutations. When a crosses a plane, then the oriented matroid data
changes (a sign changes in some cocircuits).

Let us mention that using a non-extremal point a and a projection onto the sphere at infinity from a
yields a complete graph drawing in the sphere. Theorem 4.3 can be extended to this case, not taking into
account the corner, and consistently adapting Theorem 3.10 for drawings in the sphere. We leave the details.

Let us also point out that the obtained result is not trivial since it is impossible in general to transform
a point configuration into another one with the same oriented matroid structure, by an isotopy of the space,
while preserving the oriented matroid structure along the transformation (which would have been, if true, an
immediate way to build the required sequence of mutations). This fact is known in oriented matroid theory
as the Universality Theorem of Mnëv [21][10], stating that realization spaces of oriented matroids are not
necessarily connected, and in fact are in some sense equivalent to semi-algebraic varieties.

5 Logical reductions for complete graph drawings

This section is independent from previous results. We show that the crossing relations and a corner of
a complete graph drawing are sufficient to determine its map, subsketch, and further information on the
drawing, using explicit first order logic formulas.
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By this way, the subsketch plus the corner of a complete graph drawing can be reduced to the crossing
relation only plus the corner. In [24, Section 5], another reduction of the subsketch was given: it was shown
that the map of a complete graph drawing determines the crossing relations, and hence the subsketch (one
just has to check this property for K4). Both reductions (to the map or to the crossing relations) are also
proved in [18, Proposition 6]. Let us mention that other information could be used to derive the subsketch,
for instance, as noticed also in [24, Section 5], order type on the vertices of Kn (i.e. the orientation of its
triples) determines the set of crossing pairs of edges.

Obviously, thanks to these reductions, the assumptions in Theorem 3.10 can be also reduced.
As regards logic formulas, let us recall that first order logic only allows individual quantifications over

variables, which are here the vertices and edges of the graph (but not over sets of variables, as in monadic
second order logic, nor over relations, as in second order logic, that is, for instance, logic formulas can use
“for any a ∈ V ”, but not “for any A ⊆ V ” nor “for any ordering of V ”). Broadly speaking, in the theoretical
computer science field that studies the logic of graphs, the fact that a certain graph property or construction
can be expressed in one type of logic or another can have impacts in terms of computational complexity,
model checking, satisfiability, data compression...

For the construction of the next theorem, we consider an intermediate piece of information given by
the cyclic ordering of three edges e, f , g with a common endpoint x around this endpoint. For a formal
convenience, we encode it by a relation called betweenD ⊆ VG×EG×EG×EG and defined by: (x, e, f, g) ∈
betweenD if the edges e, f, g all have endpoint x, and f is between e and g in the circular order of the
edges around x (note that the order is essential in the sentence: f is not between g and e; and note that
(x, e, f, g) ∈ betweenD is equivalent to (x, f, g, e) ∈ betweenD and to (x, g, e, f) ∈ betweenD). See Figure 23.

x
e

g

f

(x,e,f,g) between

Figure 23: Between relation.

Theorem 5.1. The map, the subsketch, the circ relations, the between relations, the inside relations, and the
dcross relations of a complete graph drawing in the plane are determined, through first order logic formulas,
by its cross relations and a corner.

25



P

x
b

y

B

A

β

α

(ii)-a   (v)-a

P

xB

y

A

b

β

α

(ii)-b   (v)-b

P

y

x

z

a

(iv)-a

P

y

x

z

a

(iv)-b

inside relations

β

α

e

P

(vi)

β

α
e

f

P

y

x

B

A

(vii)-a

β

α
f

e

P

y

x

B

A

(vii)-b

β

α
e

f

P

y

x

B

A

(vii)-c

around-P relations

P x

y

a
f

e

(ix)-a

P x

y

a

f e

(ix)-b

P a

y

x

f

e

(ix)-c

around-a relations

a

c

d

b a

c

d

b

(xii)

dcross relations

Figure 24: Proof of Theorem 5.1.

Proof. The construction is step by step and extensively uses the topological definition of the corner, along
with axioms (D1), (D2), and (D3) of a topological drawing. The ordering of the steps is important. Illus-
trations are given in Figure 24. Let D be a complete graph drawing, with corner (P, α, β). The vertex P is
an endpoint of α and β, and the other endpoints of α and β are denoted by A and B, respectively.

• Inside relations.

(i) For any x, y, z ∈ VG, we have: P is not inside [x, y, z]. This is direct by definition of the corner
(P, α, β), otherwise P would be contained in a bounded region. Note that A or B may be inside [x, y, z].

(ii) For any x, y ∈ VG, we have: A is inside [P, x, y] if and only if [P,A] crosses [x, y], and B is
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inside [P, x, y] if and only if [P,B] crosses [x, y]. First, if [P,B] does not cross [x, y] then B is not inside
[P, x, y], otherwise B 6∈ {x, y} and the drawn edge α is contained in the bounded region [P, x, y], which is
a contradiction with the definition of the corner (P, α, β), see Figure 24 (ii)-a. Conversely if [P,B] crosses
[x, y], then, by definition of a corner, the part of [P,B] between P and the intersection point between [P,B]
and [x, y] is contained in the boundary of the unbounded region of the plane delimited by the drawing. So
B is inside [P, x, y], see Figure 24 (ii)-b. The same reasoning holds for A.

(iii) For any a ∈ VG, we have: a is inside [P,A,B] if and only if [P, a] does not cross [A,B]. If a is inside
[P,A,B] then [P, a] does not cross [A,B] otherwise [P,A] or [P,B] (respectively), would be contained in a
bounded region of the plane delimited by [P, a], [A,B], and [P,B] or [P,A] (respectively). Conversely, since
[P, a] does not cross [P,A] nor [P,B], if [P, a] does not cross [A,B] and a is not inside [P,A,B] then either
[P, a,B] contains [PA], which is forbidden, or [P,B] is contained in the region delimited by [P, a],[a,B],
[B,A], and [A,P ], which is forbidden too.

(iv) For a, x, y, z ∈ VG − {P}, we have: a is inside [x, y, z] if and only if [P, a] crosses one or three edges
within [x, y], [x, z], [y, z]. With (i) the vertex P is not inside [x, y, z]. And, by axiom (D2) of a drawing, two
vertices are in the same region delimited by three other vertices if and only if the edge between them meet
the sides of the region an even number of times. For example, in Figure 24 (iv)-a, [P, a] crosses [x, y] and
only [x, y], and on Figure 24 (iv)-b, [P, a] crosses [x, y], [x, z] and [y, z].

(v)-a. For b, x, y ∈ VG − {P,B}, we have: if B is not inside [P, x, y] then b is inside [P, x, y] if and only
if [B, b] crosses one or three edges within [P, x], [P, y], [x, y]. This is obvious for the same reason as in (iv),
see Figure 24 (v)-a. The other case to handle is analogous by replacing B with A.

(v)-b. Under the same hypothesis as above, we have: if B is inside [P, x, y] then b is inside [P, x, y] if
and only if [B, b] crosses zero or two edges within [P, x], [P, y], [x, y]. This is obvious for the same reason as
in (iv), see Figure 24 (v)-b. The other case to handle is analogous by replacing B with A.

• Between relations around P .

(vi) For all e ∈ EG with endpoint P , we have: (P, β, e, α) ∈ betweenD. This is direct by definition of the
corner (P, α, β). See Figure 24 (vi).

(vii) For two edges e and f with endpoint P distinct from β, let us consider the expression of the relations
(P, β, e, f) ∈ betweenD or (P, β, f, e) ∈ betweenD. We denote by x and y the other endpoint of e and f ,
respectively. We directly have the following.

(vii)-a. If f crosses [x,B] and y is not inside [P, x,B] then f is between β and e. See Figure 24 (vii)-a.
Similarly if e crosses [y,B] and x is not inside [P, y,B] then e is between β and f .

(vii)-b. If f crosses [x,B] and y is inside [P, x,B] then e is between β and f . See Figure 24 (vii)-b, since
β cannot be between f and e by definition of the corner. Similarly if e crosses [y,B] and x is inside [P, y,B]
then f is between β and e.

(vii)-c. If f does not cross [x,B] and e does not cross [y,B], then we have either x inside [P,B, y] and
then e between β and f , or y inside [P,B, x] and then f between β and e. See Figure 24 (vii)-c.

(viii) At last, the between relations involving {e, f, β} around the vertex P , for any edges e, f ∈ EG,
induce immediately the between relations around P for any edges e, f, g ∈ EG with endpoint P since we have:
between(P, e, f, g) =

(
between(P, β, e, f) ∧ between(P, β, f, g)

)
∨
(
between(P, β, g, e) ∧ between(P, β, e, f)

)
∨(

between(P, β, f, g) ∧ between(P, β, g, e)
)
, where between(x, y, z, t) means (x, y, z, t) ∈ between.

• Between relations around a ∈ VG \ P .

(ix) Let a ∈ VG − {P} and e, f ∈ EG having endpoint a, with x and y the other endpoints of e and f ,
respectively. Since the relations between around P are known from (viii), up to exchange of e and f , we
assume that [P, y] is between [P, x] and [P, a] around P . Let us check that the relations between around a
in the subdrawing of the complete graph formed by {x, y, a, P} are directly determined by the inside and
cross relations restricted to this subdrawing. Precisely, we have the following cases (note that P cannot be
inside [a, x, y] since it is the vertex at the corner).
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(ix)-a. If y is not inside [P, a, x] and [P, y] crosses [a, x] then the drawing is given (up to an orientation-
preserving homeomorphism) by Figure 24 (ix)-a, and e is between [a, P ] and f around a. Similarly, if x is
not inside [P, a, y] and [P, x] and [a, y] cross then e is between [a, P ] and f around a. And if a is not inside
[P, x, y] and [P, a] and [x, y] cross then f is between [a, P ] and e around a.

(ix)-b. If y is inside [P, a, x] and [P, y] does not cross [a, x], then the sub-drawing is given (up to an
orientation-preserving homeomorphism) by Figure 24 (ix)-b, and f is between [a, P ] and e around a. Simi-
larly, if x is inside [P, a, y] and [P, x] does not cross [a, y], then e is between f and [a, P ] around a. Similarly,
if a is inside [P, x, y] and [P, a] does not cross [x, y] then e is between f and [a, P ] around a.

(ix)-c. If y is inside [P, a, x] and [P, y] crosses [a, x] then the sub-drawing is given (up to an orientation-
preserving homeomorphism) by Figure 24 (ix)-c, and e is between [a, P ] and f around a. Similarly if x is
inside [P, a, y] and [P, x] crosses [a, y] then e is between [a, P ] and f around a. And if a is inside [P, a, y]
and [P, x] crosses [a, y] then f is between [a, P ] and e around a.

(x) The between relations, involving {e, f, [a, P ]} around a given vertex a, for any edges e, f ∈ EG, induce
immediately the between relations around a for any edges {e, f, g} just as in (viii).

• Circular ordering relations around vertices (completing the map and subsketch).

(xi) Finally, all required between and inside relations have been expressed from the crossing, graph and
corner. At each step the formula is first order, using formulas built at previous steps. We now check that the
circ relations (and hence the map and subsketch) are expressed from the between relations by a first order
formula. It is true since (x, e, f) ∈ circ if and only if, for every edge g with endpoint x, (x, e, f, g) ∈ between.

• Directed crossing relations

(xii) Since the between relations are determined, we immediately get the dcross relations by using

the restrictions to 4 vertices subdrawings. Indeed: if [a, b] crosses [c, d] with (a, b) ∈
−→
EG, (c, d) ∈

−→
EG,

(a, [a, c], [a, b], [a, d]) ∈ betweenD then we have ((a, b), (c, d)) ∈ dcrossD. See Figure 24 (xii).

Remark 5.2. It was claimed in [15] that relations addressed in Corollary 3.12 could be checked in first
order logic from the subsketch and corner. Corollary 3.12 proves that they are effectively determined by the
subsketch and corner. Then, the use of first order logic is possible by considering all possible drawings of
Kn for n ≤ 7. We leave the details.
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[4] Aichholzer, O., Balko, M., Hoffmann, M., Kynčl, J., Mulzer, W., Parada, I., Pilz, A., Scheucher, M.,
Valtr, P., Vogtenhuber, B., and Welzl, E.: Minimal representations of order types by geometric graphs.
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[8] Balko, M., Fulek, R., and Kynčl, J.: Crossing numbers and combinatorial characterization of monotone
drawings of Kn. Discret. Comput. Geom. 53, Issue 1, 107–143 (2015).
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