
HAL Id: lirmm-03371990
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03371990

Submitted on 9 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Qualitative Reasoning Model for Software Testing,
based on Combinatorial Geometry

Spyros Xanthakis, Emeric Gioan

To cite this version:
Spyros Xanthakis, Emeric Gioan. A Qualitative Reasoning Model for Software Testing, based on
Combinatorial Geometry. M. Kalech; R. Abreu; M. Last. Artificial Intelligence Methods for Soft-
ware Engineering, Chapter 12, World Scientific, pp.331-367, 2021, �10.1142/9789811239922�. �lirmm-
03371990�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03371990
https://hal.archives-ouvertes.fr


May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 331

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0012

Chapter 12

A Qualitative Reasoning Model
for Software Testing,

based on Combinatorial Geometry

Spyros Xanthakis

Athens University of Applied Science, Athens, Greece

Emeric Gioan

LIRMM, University of Montpellier, CNRS, Montpellier, France

12.1 Introduction

Let us first give a short summary of the paper. We introduce an operational

qualitative model for numerical algorithms. This model enables qualitative

algorithmic reasoning during the unit testing process, supported by an au-

tomatic generation of boundary test data. It contains the spatial encoding

of all the functionally equivalent regions (called homodromies). The model,

viewed as a qualitative abstraction of the algorithm, is automatically gen-

erated thanks to multiple targeted executions of its instrumented basic con-

ditions, that permit the interpolation of a set of linear equations and their

corresponding hyperplanes. All feasible paths (when all basic conditions are

linear) are identified in the form a Ternary Decision Tree. Each feasible

execution path corresponds to a geometric region supported and/or delim-

ited by a finite set of hyperplanes of the vector space. Oriented Matroids

allow the encoding of the relative positions of all such regions of various

dimensions, in a purely combinatorial way, using a finite signed set system,

supported by a rich mathematical theory. This model uses a qualitative

space algebra and enables qualitative reasoning : regions are identified ac-

cording to qualitatively valued inputs, which are, in their turn, propagated

through them. The proposed model permits a global/local envisionment

331

https://doi.org/10.1142/9789811239922_0012


May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 332

332 Artificial Intelligence Methods for Software Engineering

of the algorithmic behaviour in an abstract level. The cocircuits of the

underlying oriented matroid play the role of testing building blocks: the

combination of their numerical coordinates enables the automatic genera-

tion of limit boundary data that lies at the boundary of any critical surface

of any dimension.

Let us now present the paper and its context in more details. From the

very beginning, the software engineering community tried to adopt artificial

intelligence (AI) techniques for assisting an especially time-consuming and

complex phase of the software development process: unit testing. Unit test-

ing is destinated to assess the units programmed during the implementation

phase (a C-procedure, a Python method). During this phase, the tester,

who is often the developper, has to design test data (according to unit test-

ing criteria), prepare the right execution environment, execute the (possibly

instrumented) software, filter the outputs, analyse and validate the final re-

sults. Testing criteria could be functional, like, “Test what happens when

alarm is on”, “Check the answer of the system when the temperature is

very high”, or structural like, “Check what happens if a loop statement is

not executed”, or “Be sure that, at the end of unit testing, all statements

have been executed at least once”, etc.

Evolutionary (or search based) techniques, initially devoted to the AI

area, have nowadays proved their efficiency in software testing, and particu-

larly in the automatic test data generation. A first application of evolution-

ary techniques for unit testing was proposed by one of the authors of this

paper [1, 2]. It consisted in expressing a structural test data objective as

an optimization problem handled by a conventional steady state genetic al-

gorithm (GA) coupled with an elementary data flow analysis. Many works

followed that improved the performances and extended the range of tech-

niques and applications; they are now grouped under the name evolutionary

testing [3–8] which is no more limited to the use of GAs but encompasses

a wide spectrum of AI techniques. More broadly, evolutionary (or search

based) software engineering, can now tackle with different testing tasks:

functional testing, integration testing, mutation testing, regression testing

and test case planning [5, 9–13]. Test data generation, and especially limit

(or boundary) test data, constitute a major open issue in the software de-

velopment process. Our testing data generation philosophy does not rely

on a specific structural coverage objective (i.e. cover all the statements),

nor uses an a priori testing model (i.e. a state machine or a control graph),

nor a random/heuristic/evolutionary technique. Under certain assumptions



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 333

A Qualitative Reasoning Model based on Combinatorial Geometry 333

that will be presented in the beginning of the next section (briefly, for a

constant-time algorithm based on linear inequalities), it handles, formally

and exhaustively, all the feasible execution paths of the source code.

In our view, existing automatic testing generation techniques, do not

dispose of a sufficient high level of abstraction to assist testers intelligently.

The testing process cannot be reduced to an input/output comparison task.

It often involves designing activities (design of the testing strategy and its

deployement, redesign a defectuous code, etc.) but also reverse engineer-

ing tasks (assisted by many visualisation and/or debugging tools, etc.).

All those activities necessitate a minimum of understanding and reason-

ing about the actual and/or the required behaviour of an algorithm. We

will try to illustrate our point by a (non exhaustive) list of some questions

that may arise during testing (assuming that inputs are endowed with an

absolute order relation). Questions of this kind are answered in Sec. 12.4.

• How and in what direction a specific output is impacted by a small

change of inputs? Which are the inputs that are influencing a

condition in the source code? In what direction could one change

the inputs in order to switch its truth value from False to True?

• What happens at a close neighborhood of a critical point? If the

temperature is very high and the pressure is normal will the alarm

be triggered? Will it stay triggered even if the temperature raises

“indefinitively”? Is it possible to find contiguous regions with dif-

ferent behaviour, and, if yes, what are the limit test data that

separate them?

• If one decreases the element of an array or if this element is very

small, will it eventually appear at the beginning of an ascending

order sorted array? In the Knap Sack problem if one decreases

the weight of an already selected item, will the total value increase

or decrease? In the Traveler Salesman Problem, if the distance

between two cities is decreased, will their orders be closer in the

solution?

We argue that all those kind of questions are pervasive in software

testing and contain indisputably qualitative reasoning aspects, extensively

studied by the qualitative reasoning community in AI, such as compar-

ative analysis and envisionment, order-of-magnitude and spatial reason-

ing [14–20]. We will illustrate that spatial properties are implicit when

reasoning about numerical algorithms. We do not claim that qualitative

reasoning exhausts all the mental activities of unit testing (and even less,



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 334

334 Artificial Intelligence Methods for Software Engineering

of algorithmic reasoning in general), but that it constitutes an essential

component.

In our approach, an algorithm is viewed as a fragmentation process of

the input space considered as a real vector space. It uses sequences of nested

and iterated logical conditions in order to fragment the input space into

small connected pieces, the fragments. At each point (which corresponds

to a specific input) of a fragment is associated a uniform sequence of com-

putations. One of the main tasks of software testing could be compared

to the task of checking whether those fragments are well “glued” together.

Our central working assumption can thus be formulated as follows: if one

is capable, first, of qualitatively expressing the underlying spatial infor-

mation of the fragments (i.e., contiguity, direction, intersection, inclusion,

etc.) and, secondly, qualitatively expressing input values (i.e., small, big,

close to, etc.), while ensuring their propagation between and inside those

regions, then an algorithmic qualitative reasoning is possible.

We present a qualitative reasoning algorithmic model. Its construc-

tion is illustrated in Fig. 12.1. The spatial relations between fragments

are expressed using a very active area of combinatorial geometry: Oriented

Matroid theory (whose fundamentals are recalled in Sec. 12.3). Qualitative

propagation is ensured by an order-of-magnitude algebra. To any cocircuit

of the oriented matroid (combinatorial encoding of a 1-dimensional region)

is naturally associated the quantitative information (real coordinates) of

its location in the space. This is used to produce, automatically, by means

of algebraic combinatorial properties, limit test data lying at the bound-

ary of any critical surface of any dimension. Our model necessitates only

a simple instrumentation of the basic conditions of the source code. It

can be then used for functional/non-functional as well for objective/non

objective languages ranging from assembly language to Fortran, C, LISP,

C++, Java, Python, etc. It encompasses all applications using mainly nu-

meric inputs, such as avionics, statistics, banking, simulation, robotics, etc.

Further comments are given in the conclusion.

12.2 What the model contains

Our model is based on an instrumented source code. In the whole paper,

our assumption is that the source code implements a constant-time algo-

rithm, and that it is based on real (decimal) linear (in)equalities, so that

all possible conditions executed for all possible inputs amount to evaluate

some real linear functions of the input vector space, yielding a finite set of



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 335

A Qualitative Reasoning Model based on Combinatorial Geometry 335

Input Space Instrumented Source

Linear

Solver

Genetic

Algorithm

Model

Construction

Ternary Decision Tree + Homodromies

Equations + Oriented Matroid Cocircuits

Model

Execution

Order-of-Magnitude
Algebra

Combinatorial
Geometry

EnvisionmentTest Data Generation
Order-of-Magnitude

Reasoning

Fig. 12.1 The two main steps of the algorithmic qualitative modelling process: Model

Construction and Model Execution. The Instrumented Source code, and its Input Space

are given. In case of non-linearity a Genetic Algorithm can be used to detect a critical

point. A rational Linear Solver builds a Ternary Decision Tree and interpolates the
equations (generated by the basic conditions of the source code), their corresponding

oriented matroid cocircuits and all the homodromies (geometric regions associated to

feasible paths). Model Execution will then use Order-of-Magnitude Algebra combined
with a Combinatorial Geometry algebra (playing the role of a qualitative space algebra)
enabling the abstract Execution and Envisionment of the source code behaviour. Finally,
quantitative information associated with the cocircuits permits the automatic generation

of limit test data that lies exactly at the boundaries (of any dimension) of critical surfaces.

useful real linear functions, as detailed below. In this case, the model is

completely well-defined and extensive. In the non-linear case (and in the

non-constant-time case), that will not be addressed in this paper, the same

technique can be used locally, at a close neighbourhood of a critical point

of the input space, by considering appropriate linear inequalities, possibly

with an approximation (this can be based on the Jacobian matrix, and/or

found by Genetic Algorithms techniques).

We first introduce the content of our model (Sec.12.2.1). Next, we illus-

trate it on a simple example that will serve as running example throughout

this paper. Section 12.2.3 details the technical construction of the model.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 336

336 Artificial Intelligence Methods for Software Engineering

12.2.1 Conditions, Equations, Paths, Super-covectors, and

Homodromies

Let us start with a source code using numeric linear (in)equalities as con-

ditions. When the source code is executed for a given input, a sequence of

conditions is executed. We say in that case that these conditions are sensi-

tized. To each condition corresponds a truth value, True or False, observed

during the execution path, with respect to the current variable values. We

will not focus on the sequence of truth values but on a sequence of signs +,

−, or 0, which we call the sign-path, defined as follows. When the condition

is executed in the source code, written in the form [left-hand-side (LHS)

comparison-operator right-hand-side (RHS)], then we record the sign

of the value of [LHS − RHS] (with respect to the current variable values).

Intuitively speaking, when the condition is an inequality, the 0 case can be

thought of as a “limit case between True and False”. Our model takes into

account these limit cases and handles them in a precise geometric combi-

natorial structure.

According to our assumption, each condition in the sequence consists to

checking whether an associated real linear function of the input space has

a positive, negative or null value. In what follows, we abusively call this

linear function an equation (though it is the underlying inequality that is

used). Generally, equations do not appear explicitly in the source code (in

contrast with our toy example), and the same source condition may yield

several equations (in the case of a loop, typically). The set of all resulting

equations for all possible executions forms a set E, which is finite (because

of the constant-time assumption). It is computed by a tree search based on

the sign-path associated to an interpolation technique using a linear solver

(see Sec. 12.2.3). We call equation-path the sequence of sensitized equations

(among E), and with each equation is associated a sign in {+, -, 0} according

to the value of its corresponding linear function. A supplementary equation

“at infinity” is added when the initial inequalities are affine, in order to use

a standard vector space setting; its sign will always be + for executions;

it will also permit to model the algorithm’s behavior “at infinity”. We

stress the fact that two inputs admit the same sign-path if and only if they

admit the same equation-path (though the two sequences of signs can be

different). This property ensures that, for each execution path, a unique

equation (with a unique sign) will be associated with every basic condition,

thus permitting its interpolation.

Finally, each possible execution is encoded by associating each element



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 337

A Qualitative Reasoning Model based on Combinatorial Geometry 337

of E with either its sign from the equation-path or the undetermined sign

× when the equation is not sensitized in the equation-path, yielding what

we call a super-covector over E, or scovector for brevity. Those combina-

torial objects can actually be understood as parts of the oriented matroid

structure underlying the set E of real equations in the real input vector

space, as detailed in Sec. 12.3. Note that two inputs admitting the same

scovector do not generally yield the same output (as in our toy example);

however they sensitize the same execution path. The converse is not true:

two inputs sensitizing the same execution path may admit distinct scovec-

tors (because of the 0 sign of conditions, as noted above). The resulting

scovectors yield equivalence classes aggregating inputs that sensitize the

same execution path.

The geometric interpretation of the previous equivalence relation is cap-

tured by the concept of homodromy. Homodromies — from the greek,

óµoιoς(same), δρóµoς(path) — are connected regions of the (geometrized)

input space, that exhibit the “same” algorithmic behaviour. They group

inputs that are operationally treated in the “same manner”. Clearly, ho-

modromies correspond to feasible execution paths and can be compared to

a sort of “software phases”. Two inputs belong to the same homodromy

(we say in that case that they are homodromic) if one can connect them

with a “continuous” geometric path without changing the sign-path (or,

equivalently, the equation-path). As explained above, homodromies are

combinatorially encoded by scovectors, and we shall say that the homod-

romy is the region of a scovector encoding the homodromy as above. Let

us emphasize this notion as it constitutes the central notion of this work.

(Let us mention that the geometric concept of homodromy as defined below

could be extended to any source code based on a geometric input space.)

Definition 12.1. We call homodromies the path-connected components

(of the input space) induced by the equivalence relation based on the sign-

path (or, equivalently, the equation-path). Homodromies form a partition

of the whole input space called the fragmentation of the input space with

respect to the source code (see Definition 12.6 below for a combinatorial

counterpart).

12.2.2 Running example

Suppose that one wishes to perform structural dynamic testing of the follow-

ing source code, which implements the specifications of an approximative

and simplified model of the water transition phase diagram from classical



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 338

338 Artificial Intelligence Methods for Software Engineering

Solid

Liquid

SF

SF

Gas

P(-10,1)

Q(50,50)

1

2

3

4

mb

◦C

0

0 600

30

γ1(0, 0)

γ2(600, 30)

c1

c2

c3

c4

c5

Fig. 12.2 Phase Transition Diagram of the toy algorithm. Four equations, induced by
the conditions in the source code, delimit four zones corresponding to distinct outputs

(phases). These equations e1, . . . , e4, are depicted as 1, 2, 3, 4, and “oriented” by arrows

towards their positive side (the points where the equation is positive). The boundary
of the Solid zone (formed by regions/homodromies yielding the same Solid output) is

formed by the equations e1 and e2 sensitized by the internal point P (-10,1). Similarly,

the point, Q(50,50) (Liquid zone) sensitizes its border equations e1, e2, e3. The points
γ1 and γ2 are intersections of lines corresponding to the equations, and c1, c2, c3, c4, c5
denote the useful directions of those lines at infinity.

physics, as illustrated in Fig. 12.2. The WaterPhases algorithm takes two

decimal inputs: t (between −100.0 and +1000.0) and p (between −100.0

and +100.0), representing the temperature (in degree Celsius) and the pres-

sure (in bars) of the water, respectively. Then, it outputs its state: Solid,

Liquid, Gas, SuperFluid.

if t >= 20*p:

if p > 30: return ‘SuperFluid’

else: return ‘Gas’

elif 10*t + p <= 0: return ‘Solid’

elif t - 10*p < 300: return ‘Liquid’

else: return ‘SuperFluid’



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 339

A Qualitative Reasoning Model based on Combinatorial Geometry 339

The previous source code uses four basic conditions: (t >= 20*p),

(10*t + p <= 0), (t - 10*p < 300) and (p > 30). Basic conditions

(simply called conditions) are expressions separated by a comparison op-

erator {<=, >=, ==, etc.}. They are uniquely identified by their textual

position inside the source code and may appear in many different forms,

like, inside compound conditions using logic connectors, and/or at the right

hand of boolean assignment statements. Note that, the (basic) conditional

statement “if (t >= 20*p)” is equivalent to “if (t - 20*p >= 0)”.

Let’s now execute the previous code for the input t = -10.0 and p = 1.0,

corresponding to a cold temperature of −10◦C and a normal atmospheric

pressure of 1 bar. First condition, t >= 20*p, is executed (sensitized)

yielding the truth value False with the negative value t− 20 ∗ p = (−10)−
20(1) = −30. The execution path follows the else alternative and sensitizes

the condition p + 10*t <= 0 which is True (since 1+10.(-10)=-99<=0)

and the observed value is negative; the final output will be the Solid (ice)

phase. In conclusion, the two conditions have been sensitized, yielding

the sign-path [--]. These conditions can be interpolated (as it will be

explained in Sec. 12.2.3) yielding respectively the linear equations e1(t, p) =

t − 20p and e2(t, p) = 10t + p. The equation path associated to the point

P (−10, 1) will be thus noted 1−2−. The resulting scovector is [--xx+] (the

last + sign comes from an equation added “at infinity” as mentioned above).

Table 12.1 includes these results for all executions/homodromies of the

toy example.

12.2.3 How the model is built technically

In this section, we present how the successive executions of the source con-

ditions permit the interpolation of their corresponding (unique) equation

inside each homodromy. This is accomplished by a progressive expansion

of a Ternary Decision Tree.

Ternary Decision Trees. Let E = {ei}i=1..n be a set of linear equations

on Rr. A Ternary Decision Tree (TDT) is a tree where any non terminal

node belongs to E and admits 1, 2 or 3 successors (according to their

feasibility) connected with sign labels in {+, -, 0} (each sign appearing only

once). For convenience, one can collapse identical brother subtrees in a

unique subtree decorated by the union of the original signs (see Fig. 12.3).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 340

340 Artificial Intelligence Methods for Software Engineering

Table 12.1 The 11 homodromies of the toy algorithm (grouped according to their

topological dimension), denoted Ω1, . . . ,Ω11, their sign-paths and equation-paths,

their resulting encoding as scovectors, the corresponding output, and an illustrative
boundary test data proposed by the tool (see Sec. 12.4.3). The column “Test data”

gives an input yielding the corresponding sign-path. For instance, in the last row,

the test data [600,30] means that putting the temperature at 600 degrees and the
pressure at 30 bars, the algorithm output (the water phase) will be Gas and the

sensitized homodromy corresponds to the scovector [0xx0+].

Ωi Sign-path Equation-path SCovector Output Test data

1 [--] 1−2− [--xx+] Solid [-100,999]

2 [-+-] 1−2+3− [-+-x+] Liquid [599.99,30]

3 [-++] 1−2+3+ [-++x+] SuperFluid [600.3,30.02]

4 [++] 1+4+ [+xx++] SuperFluid [600.21,30.01]

5 [+-] 1+4− [+xx-+] Gas [-100,-100]

6 [-0] 1−20 [-0xx+] Solid [-100,1000]

7 [-+0] 1−2+30 [-+0x+] SuperFluid [600.1,30.01]

8 [0+] 104+ [0xx++] SuperFluid [600.2,30.01]

9 [+0] 1+40 [+xx0+] Gas [600.01,30]

10 [0-] 104− [0xx-+] Gas [-100,-5]

11 [00] 1040 [0xx0+] Gas [600,30]

1

2 4

3Ω1 = 1−2−

Ω6 = 1−20 Ω10 = 104−

Ω5 = 1+4−
Ω11 = 1040

Ω9 = 1+40
Ω2 = 1−2+3−

Ω7 = 1−2+30
Ω3 = 1−2+3+

Ω8 = 104+

Ω4 = 1+4+

Solid Liquid SuperFluid Gas SuperFluid

− 0+

0− +

−
0+

0−
+

Fig. 12.3 The Ternary Decision Tree (TDT) modelling the algorithmic behaviour of
the WaterPhases algorithm. Each of the 11 leaves corresponds to a unique homodromy

of Table 12.1. The equation-path % = 1−2+3− sensitized by Q(50,50) corresponding
to the Liquid homodromy Ω2. Note that those equations 1, 2, 3 form its geometric
boundary (see Fig. 12.2). As addressed in Sec. 12.2.3, this equation-path % admits 6

tree alternatives: {10, 1+, 1−20, 1−2−, 1−2+30, 1−2+3+}. A rational linear solver will

produce solutions (or not) for those alternatives, and thus new points to be executed
that will eventually sensitize the 4th equation.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 341

A Qualitative Reasoning Model based on Combinatorial Geometry 341

Each leaf (node with no successor) expresses a geometric region, i.e. a

single homodromy, thus a feasible execution path, labeled by its equation-

path. A tree using n equations will admit at most 3n feasible leaves. Their

feasibility depends on the intersection pattern of the equations. (Let us

mention that this feasability is encoded in the underlying oriented matroid.)

Tree Expansion Algorithm. The tree expansion algorithm follows a

conventional tree breadth-first strategy (BFS). At a first stage, a random

sampling provides a bootstrap point. Consider for instance that the point

Q = (50,50), of the Liquid homodromy Ω2, is the bootstrap point. Q has

a sign-path [-+-] and sensitizes equations {e1, e2, e3}. Using the rational

linear solver, in a small enough neighborhood of Q, it is now possible to

generate a sufficient number of homodromic points enabling their interpo-

lation. In fact, since all points belong to the same homodromy, we know

that the condition (t >= 20*p) expresses a unique equation of the form:

e1(t, p) : k1t + k2p + k3 = 0 (since we use two inputs). In our example,

the execution of two additional homodromic points, yields two more values

for the equation e1, and allows the evaluation of the coefficients k1, k2, k3,

and thus the exact mathematical expression of e1(t, p) = t−20p. The same

interpolation is done by observing the values of the conditions (10*t + p

<= 0) and (t - 10*p < 300), yielding the equations e2(t, p) = 10t + p

and e3(t, p) = t − 10p − 300. The equations having been identified, it

is now possible to reconstitute the first equation-path path of the TDT :

% = 1−2+3− (see the path in Fig. 12.3), yielding the scovector [-+-x+].

At a second stage, follows the generation of the 6 tree alternatives of %:

{10, 1+, 1−20, 1−2−, 1−2+30, 1−2+3+} (see Fig. 12.3). Each tree alternative

corresponds to a subpath of % starting from the root, where the last node

has been extended with only one branch different from the original one.

Each alternative corresponds to a system of (strict) linear (in)equalities

submitted to a rational linear solver. Starts now, a classic iterative process

of a ternary tree expansion. New solutions and sign alternatives will be

found, checked, rejected or added as new leaves.

Note that equalities can be handled in the same way as inequalities

(consistently with the arbitrary choice of signs used for the sign-path).

Thus, we shall not make the distinction with inequalities anymore. Once

the TDT has been built, one thus disposes of a set E of linear inequalities,

with which can be associated an oriented matroid.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 342

342 Artificial Intelligence Methods for Software Engineering

12.3 Which mathematical results will be needed

Oriented matroid theory is a rich mathematical theory born in the 1970’s as

a combinatorial abstraction of linear algebra, convex geometry, and graph

theory. In this paper, we focus on a small portion of this theory, that is,

on vectorial oriented matroids and how they encode regions of all dimen-

sions in real hyperplane arrangements. General oriented matroids are both

combinatorial objects, by means of combinatorial axioms, and topological

objects, by means of pseudosphere arrangements; see [21]. Section 12.3.1 is

a short introduction to oriented matroids theory with some classical results

that are necessary for our formal setting. Next, we will build on it for the

sake of our model. We will give no technical details nor formal proofs for

our constructions in this paper; see [22] for further deepening.

12.3.1 Preliminaries on Oriented Matroid theory

General setting. Let us start with a set of n linear inequalities in a vec-

tor space or an affine space (see Sec. 12.2). In the latter case, in a standard

way, we embed the affine space into a vector space with one more dimen-

sion, corresponding to one more variable. The affine space corresponds to

this variable having a value equal to 1. And we add the inequality (consid-

ered as being at infinity) where the additional variable is greater than zero.

From now on, we thus assume that we are given a set of n inequalities in a

real vector space (possibly including one inequality at infinity). Denoting

the variables by xi, 1 ≤ i ≤ r, each inequality
∑

1≤i≤r αi.xi ≥ 0 can be seen

as a vector (α1, . . . , αr) of the ambient space. Up to considering a smaller

ambient space, we can assume that these n vectors span the ambient space

Rr, and we will always make this assumption, which is crucial for further

results and geometric representations.

We also assume that none of these vectors is the null vector. Hence,

each induced linear equation
∑

1≤i≤r αi.xi = 0, yields an hyperplane of the

ambient space (that is, a (r− 1)-dimensional subspace), which is the set of

vectors (x1, . . . , xr) satisfying the equation.

Combinatorial encoding in terms of oriented matroids. Accord-

ingly to the previous setting, one disposes of a finite ground set E =

{e1, ..., en} of a set of (non-null) vectors of the real space Rr (spanning

the ambient space), possibly with repetitions of the same vector with dif-

ferent indices. Each vector e ∈ E provides the equation e.x = 0, for x ∈ Rr,



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 343

A Qualitative Reasoning Model based on Combinatorial Geometry 343

of a hyperplane He of Rr called the hyperplane of e, and provides the in-

equalities of two half-spaces e.x > 0 and e.x < 0, for x ∈ Rr, called the

positive and negative half-space of e, denoted H+
e and H−e , respectively.

The hyperplane He can be equally denoted H0
e . Also, the element at infin-

ity will be denoted p, when it exists. Such a set of hyperplanes is called an

hyperplane arrangement.

Those hyperplanes He and half-spaces H+
e and H−e , for all e ∈ E,

subdivide the ambient space Rr into cells of various dimensions. For the

sake of a geometric representation of these cells, notably used in the figures

of this section, we actually consider a central unit sphere Sr−1 of Rr as the

ambient object, and the spheres Sr−2 in Sr−1 which are the intersections

of the hyperplanes with Sr−1. When there is an element at infinity p, then,

by symmetry, we can consider only the half-sphere Sr−1 on the positive

side of p, and we represent p as a sphere at infinity bounding the figure.

In this way, the cells of Rr defined by the hyperplanes and half-spaces

canonically correspond to cells of Sr−1, except the null vector of Rr which

is not represented. See Fig. 12.4.

A signed-set C on E is defined by giving a sign in {+,−, 0} to each

element of E. The subset of elements with a +, −, or 0 sign is denoted

by C+, C− or C0, respectively. Thus, a signed-set yields a partition E =

C+ ∪ C− ∪ C0. The sign of e ∈ E in the signed-set C is denoted Ce. The

subset C = C+∪C− of E is called the support of C. For A ⊆ E, the signed-

set C \A on E \A is defined to have C+ \A as a positive part and C− \A
as a negative part. For example, writing elements of E = {1, . . . , 5}< in

a list, C = [---0+] is the signed-set with C+ = {5}, C− = {1, 2, 3} and

C0 = {4}.
For x ∈ Rr, we define the covector C associated with x as the signed-set

defined, for each e ∈ E, by giving a 0, + or − sign to e whether x belongs

to the hyperplane, the positive half-space or the negative half-space of e,

respectively. Formally, we have:

Ce = sign(e.x).

The (finite) set of all covectors associated with all x ∈ Rr is denoted by

Cov and forms the family of covectors of an oriented matroid M on E. For-

mally, an oriented matroid is a finite ground set E provided with a family

of signed-sets on E called its covectors and satisfying some combinatorial

axioms. Here, the oriented matroid is called vectorial as it was built from

vectors. Actually, an oriented matroid can be characterized by different

families of signed-sets with different axiom systems, such as its cocircuits



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 344

344 Artificial Intelligence Methods for Software Engineering

or its topes addressed below. As E spans a vector space of dimension r,

we say that the rank of M is r. The cells of the hyperplane arrangement

are in canonical bijection with the covectors. Covectors combinatorially

describe the relative positions of the cells. We call tope a maximal covec-

tor, that is, a covector not containing the zero sign. Topes correspond to

full-dimensional cells of the space delimited by the hyperplanes of E (that

is, to connected components of the complementary set in Rr of the union of

the hyperplanes). We call cocircuit a minimal non-null covector. Geomet-

rically speaking, cocircuits correspond to 1-dimensional cells. In a sphere

representation, they correspond to the points obtained as intersections of

spheres representing the elements of E.

The notions described above are illustrated in Fig. 12.4. For instance,

covectors with no - sign correspond to cells bounding the cell encoded

by [+++++] (see [0++++], [++++0], [+++0+], [0+++0], [+++00], and [0+00+]),

topes with one - sign correspond to full-dimensional cells reached from the

previous cell by crossing one hyperplane (see [-++++] and [+++-+]).

Conformal composition. Two covectors C,D ∈ Cov are called confor-

mal (to each other) if C+∩D− = C−∩D+ = ∅, that is, if no element e ∈ E
has a different non-zero sign in C and D. In other words, the corresponding

cells are in the boundary of the same full-dimensional cell.

Given two conformal covectors C and D, the covector obtained by con-

formal composition of C and D is the covector denoted C ◦ D, or D ◦ C,

whose positive elements are C+ ∪ D+ and whose negative elements are

C− ∪D−. Geometrically, when the corresponding cells are not comparable

for inclusion, C ◦D corresponds to the cell given by the strict convex hull of

the cells corresponding to C and D. The next result will be crucial for us.

Theorem 12.1. Every covector is the result of the conformal composition

of the set of cocircuits that are conformal to it.

The geometric interpretation in terms of full-dimensional cells is simply

that every open bounded convex polytope (tope) is the strict convex hull

(conformal composition) of its extremal points (cocircuits conformal to the

tope). So, the above property can be seen as the combinatorial counterpart

of this classical property in convex geometry. For instance, in Fig. 12.4, we

have that [+++++] = [0+00+]◦ [+++00]◦ [0+++0], and we have that [-+0++] =

[0+00+] ◦ [-+0+0].



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 345

A Qualitative Reasoning Model based on Combinatorial Geometry 345

p

4

1

32

1234p
+++++

-++++-+-++

---++

----+

+---+

+-+-+

+++-+

-+--+

++--+

p

4

1

32

1234p
+++++

0+00+

+++00---00

0+++0

-+0+0

0---0

+-0-0

-0-+0

+0+-0

-0-0+

00--+

+00-+

p

4

1

32

1234p
+++++

---0+ -+-0+ +++0+

0-
--
+

0+
--
+

0+
++
+

+
-
0
-
+

+
+
0
-
+

-
+
0
+
+

-+-+0

+-+-0

---+0

-+++0

++++0

----0

+---0

+++-0

-0-++

-0--+

+0--+

+0+-+

Fig. 12.4 Oriented matroid covectors encoding cells of the hyperplane arrangement, in
a sphere representation with the element p at infinity. The signed-sets are indicated as

lists with respect to the ordering E = {1, 2, 3, 4, p}<. The positive (and negative) sides
of the hyperplanes are indicated by the full-dimensional cell whose signs [+++++] are all

positive. Topes are represented in the upper left figure. Cocircuits are represented in

the upper right figure. Other non-null covectors are represented in the third figure. This
oriented matroid is obtained from the equations of the running example (Sec. 12.2.2).

Minors. Given a subset A of E, we define the oriented matroid M\A
obtained by deletion of A from M as the oriented matroid defined as above

from the vectors in E \A (its covectors can be characterized in a combina-

torial way, but we omit this). Observe that a representation of M directly

yields a representation of M\A. An example of deletion is shown in the

left side of Fig. 12.5.

Given a subset A of E, we define the oriented matroid M/A obtained

by contraction of A from M in the following way (again a combinatorial

characterization exist that we omit). Geometrically, the contraction of A



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 346

346 Artificial Intelligence Methods for Software Engineering

p

4

1

1..4p
+..++

-..++

-..-+

+..-+

0..0+

+..00-..00

0..+0

0..-0

4
3

2

p

p

.234p

.++++

.---+

.+--+ .+00+

.+++0

.---0

.0--+

Fig. 12.5 Oriented matroid minors. Spherical representations of the oriented matroid
M\23 on the left and of the oriented matroid M/1 on the right, where M is the oriented

matroid of Fig. 12.4. Their topes and cocircuits are indicated (dots stand for omitted

elements).

consists in considering only the set of cells contained in every hyperplane

in A. Precisely, we consider the subspace HA =
⋂
a∈AHa as a new ambient

space, and we consider the arrangement of hyperplanes {He ∩ HA | e ∈
E \ A, He 6⊇ HA} indexed by E \ A in this space (the elements e such

that He ⊇ HA become so-called loops, which encode the null vector and

are omitted in the structure). In this way, a representation of M directly

contains a representation of M/A. An example of contraction is shown in

the right side of Fig. 12.5.

The oriented matroids of type M\A/A′ for A ⊆ E and A′ ⊆ E with

A∩A′ = ∅ are called minors of M . The ordering of the deletion/contraction

operations does not matter since M\A/A′ = M/A′\A.

As noted above, a representation of M directly yields a representation

of M\A. However, the dimension of the space spanned by E \ A is not

necessarily the same as the initial ambient space spanned by E, which was

our assumption (that is, the rank of M\A can be smaller than the rank of

M). In this case, removing elements from a spherical representation of M

does not yield a proper spherical representation of M\A under the same

assumption, and points in the resulting representation do not correspond

to cocircuits anymore. This subtlety will be important for us. The next

lemma states that cocircuits of minors of M can be seen as cocircuits of M

as soon as the assumption is preserved.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 347

A Qualitative Reasoning Model based on Combinatorial Geometry 347

Lemma/Definition 12.2. Consider the minor M ′ = M\A/A′ of M . As-

sume that the rank of M\A is equal to the rank of M . Then, for any cocir-

cuit C ′ of M ′, there exists a unique cocircuit C of M such that C ′ \A = C.

We call C the lift of C ′ in M .

For example, consider the cocircuit [0..-0] of M\23 in Fig. 12.5. Its

lift in M is the cocircuit [0---0] of M in Fig. 12.4.

12.3.2 Encoding regions with super-covectors

What follows does not belong to standard oriented matroid theory. We

introduce original concepts for our application.

Let us define Q = { 0, −, +, × } as the set of super-signs, where ×
is called the undetermined sign. The set Q is ordered with 0 ≤ + ≤ ×
and 0 ≤ − ≤ ×, forming a lattice (depicted below), whose join and meet

operators are denoted by ∨ and ∧, respectively:

×

− +

0

Definition 12.3. Let E be a finite set. A super-signed-set over E (sss for

brevity), is an element U ∈ QE . We naturally extend, componentwise, the

lattice structure of Q to a lattice structure of QE . Let U, V ∈ QE . We say

that U is smaller than V , noted U � V , if Ue ≤ Ve, for all e ∈ E. Finally,

U ∨V and U ∧V , are defined by (U ∨V )e = Ue∨Ve and (U ∧V )e = Ue∧Ve,
respectively, for all e ∈ E.

For e ∈ E, the super-sign associated to e in U is denoted by Ue. For a

super-sign σ ∈ Q, we define the set Uσ = {e ∈ E : Ue = σ}. Observe that

if U× = ∅, then U is a signed-set, as addressed in Sec. 12.3.1.

Observe that two signed-sets U and V are conformal (Sec. 12.3.1) if and

only if no element of U ∨ V has the undetermined sign. In that case, we

have U ∨ V = U ◦ V . For example, we have [+0] ∨ [-0] = [x0], [+0] ∨ [0-] =

[+0] ◦ [0-] = [+-], [+x] ∨ [00] = [+x], and [+x] ∨ [x0] = [xx]. Observe also

that, for two signed-sets U and V , if U � V then U and V are conformal.

Let M be an oriented matroid on E as built in Sec. 12.3.1. Recall that

each e ∈ E is associated with one equation that partition the space into

one hyperplane H0
e and two (open) halfspaces H+

e and H−e .



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 348

348 Artificial Intelligence Methods for Software Engineering

Property 12.1. For a sss U over E, the following conditions are equivalent:

• the following region is non-empty:

region(U) =
⋂
e∈E
Ue 6=×

HUe
e

• the signed-set U \
(
U×∪U0

)
on E\

(
U×∪U0

)
is a maximal covector

(or tope) of the minor M\U×/U0 of M .

Definition 12.4. A sss U satisfying the conditions of Property 12.1 is

called a super-covector of M , or scovector for brevity. Also, region(U) is

called the region of U ; and region(U) denotes the topological closure of

region(U). Two super-covectors U and V representing the same region are

considered as equivalent and noted U ∼ V . The family of all scovectors of

M will be denoted by SCov.

We call null-scovector the scovector with only 0 signs. Note that its

region is {0}, consisting of the null-vector only. Note also that the scovector

with only × signs yields the whole ambient space as a region.

12.3.3 Super-covectors versus covectors

Super-covectors essentially consist of groups of covectors/regions induced

by covectors/regions of minors. Obviously, covectors of M are also scovec-

tors. If C is a covector, then region(C) is the cell of C as addressed in the

previous section. The scovectors with no 0 sign and no × sign are the con-

ventional topes (or maximal covectors) of the oriented matroid (Sec. 12.3.1).

The scovectors with no 0 sign are called super-topes of M . We mention that

this notion was addressed under the same name in [23] and is equivalent to

the so-called notion of T -convex sets; see [21, Sec. 4.2].

As an example, Fig. 12.6 shows various scovectors of the oriented ma-

troid of Fig. 12.4. Observe how different scovectors may represent the same

region. For instance, in Fig. 12.6: the scovectors [+++0+], [+xx0+] and

[xx+0+] represent the same region, which is the cell of the covector [+++0+]

of M (and the cell of the covector [+++.+] of the minor M/4); the scovectors

[0x--+], [0x-x+] and [0xx-+] represent the same region, which is also the

cell of the covector [0.--+] of the minor M\2 and the cell of the covector

[..--+] of the minor M/1\2.

Definition 12.5. For two scovectors U and V , let us denote U E V if, for

all e ∈ E, we have Ue = Ve or Ve = ×. Equivalently: U E V if and only if

U � V and U0 ⊆ V 0 ∪ V ×.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 349

A Qualitative Reasoning Model based on Combinatorial Geometry 349

p

4

1

32

 1234p 

 +++++ 
(+xx++)

 -++++ 
(-x+x+) -+-x+ 

(-+-x+)

 ---x+ 
(--xx+)

 +xx-+ 
(+xx-+)

 +++0+ 
(+xx0+)
(xx+0+)

 0
x-
-+
 

(0
x-
x+
)

(0
xx
-+
)

 0
++
++
 

(0
x+
x+
)

(0
xx
++
)

 -+0++ 
(-x0x+)
(xx0++)

 -0-x+ 
(-0xx+)

 0+00+ 
(xx00+)
(0xx0+)
(0x0x+)

+++00

0+++0

-+0+0

0---0

-0-+0

00--+

Fig. 12.6 The figure shows various super-covectors (or scovectors) for the oriented ma-
troid of Fig. 12.4. Each scovector is written in its region (Definition 12.4). The bold

scovector is the representative of the region (Proposition/Definition 12.7), and some
equivalent scovectors are written below. The dotted portions of elements represent those

which are signed × for the regions that they cross. The cocircuits, that will serve as

borders of scovectors, are written in italics (Sec. 12.3.6). This set of scovectors forms
a fragmentation of the oriented matroid, that is, their regions form a partition of the

sphere (Definition 12.6). This fragmentation is obtained from the toy example addressed

in Sec. 12.2.2 and Fig. 12.2.

As seen below in Property 12.3, this E relation corresponds to an inclu-

sion relation for regions of scovectors. Observe that two covectors are not

comparable for E unless they are equal. The E relation will be useful for

handling scovectors representatives as defined in Sec. 12.3.4.

Property 12.2. For a scovector U , we have:

• covectors C E U are obtained from U by possibly replacing every

× sign in U with a sign in {+,−, 0}, and keeping only covectors of

M ;



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 350

350 Artificial Intelligence Methods for Software Engineering

• covectors C � U are obtained from U by possibly replacing every

× sign in U with a sign in {+,−, 0} and/or every {+,−} sign in U

with a 0 sign, and keeping only covectors of M ;

• region(U) =
⊔

C∈Cov
CEU

region(C) and region(U) =
⊔

C∈Cov
C�U

region(C)

(where t denotes a disjoint union).

For instance, in Fig. 12.6, the scovector [+xx-+] is the union of the fol-

lowing covectors from Fig. 12.4: [+---+], [++--+], [+-+-+], [+++-+] (topes),

[+0--+], [+-0-+], [++0-+], [+0+-+] (intermediate covectors) and [+00-+] (co-

circuit).

Definition 12.6. A fragmentation of M is a set F of scovectors of M

whose regions partition the ambient space (that is, regions are disjoint to

each other and their union equals the whole space). Equivalently, in a com-

binatorial way: the sets
{
C | C ∈ Cov, CEU

}
, for U ∈ F , partition the set

of covectors of M . (This is a combinatorial counterpart of Definition 12.1.)

12.3.4 Representative of a super-covector

As noticed above, various super-covectors may represent the same region.

The notion of representative will be essential to compare and relate homod-

romies. Representative scovectors are written in bold in Fig. 12.6.

Proposition/Definition 12.7. Let U be a scovector of M . There exists a

unique scovector of M , which we denote by rep(U), such that U ∼ rep(U)

and rep(U)× has the smallest possible number of × signs. It satisfies

rep(U) =
∧
V∼U

V =
∨

C∈Cov
CEU

C.

If the region of U is {0} (consisting of the null-vector only), then rep(U)

is the null-scovector (with only 0 signs). We call representative of U , or of

region(U), the scovector rep(U). A scovector which is equal to its repre-

sentative is called a representative scovector. Clearly, covectors are repre-

sentative scovectors.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 351

A Qualitative Reasoning Model based on Combinatorial Geometry 351

Property 12.3. For two scovectors U and V , we have the following:

(i) U ∼ V if and only if rep(U) = rep(V ).

(ii) If U � V then rep(U) � rep(V ), and if UEV then rep(U)Erep(V ).

(iii) region(U) ⊆ region(V ) if and only if rep(U) E rep(V ).

(iv) region(U) ⊆ region(V ) if and only if rep(U) � rep(V ).

For instance, in Fig. 12.6, the scovectors [+++0+], [+xx0+] and [xx+0+]

admit the same representative scovector [+++0+], and the scovectors [0x--+],

[0x-x+] and [0xx-+] admit the same representative scovector [0x--+].

Note that “rep” cannot be omitted in the above statements. For in-

stance, in Fig. 12.6, the two scovectors [x+00+] ∼ [0+x0+] yield the same

region (with representative [0+00+]) but are not comparable.

Note also that, for two scovectors U and V , rep(U ∨V ) can be different

from rep(U) ∨ rep(V ). (Thus, in general, U is not equivalent to
∨
V∼U V .)

For instance, [0x-x+]∨ [0xx-+] = [0xxx+] whose region is the whole part of

H1 in the positive side of Hp, larger than the region of [0x--+].

However, with the above properties, one can see that the lattice struc-

ture of QE naturally induces a consistent lattice structure for the set of

representative scovectors. (The join and meet operations between rep(U)

and rep(V ) are given by rep(rep(U)∨rep(V )) and rep(rep(U)∧rep(V )), re-

spectively.) This lattice is isomoprhic to a lattice for closures of scovector’s

regions.

Finally, representative scovectors can be considered as the useful scovec-

tors for a practical encoding and handling of the regions. Practically, they

can be computed using the construction of Sec. 12.3.6 below.

12.3.5 Contiguity between super-covectors

The notion of contiguity between homodromies will be central to use our

model, and it can be directly deduced from the oriented matroid structure.

Property 12.4. Let U and V be two scovectors. Then U∧V is a scovector.

We have region(U)∩ region(V ) 6= {0} (where 0 denotes the null-vector)

if and only if the rep(U ∧ V ) is not the null scovector (with only 0 signs),

that is, if and only if region(U ∧ V ) 6= {0}.
Furthermore, if region(U) ∩ region(V ) = ∅ then the region of U ∧ V is

the greatest common face of the closures of the regions of U and V .

Definition 12.8. Two scovectors U and V with disjoint regions are called

contiguous when the union of their regions is connected, that is, when one

can pass continuously from region(U) to region(V ).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 352

352 Artificial Intelligence Methods for Software Engineering

Proposition 12.1. For two scovectors U and V with disjoint regions, the

following conditions are equivalent:

(i) U and V are contiguous;

(ii) region(U) ∩ region(V ) or region(U) ∩ region(V ) is non-empty;

(iii) rep(U ∧ V ) satisfies rep(U ∧ V ) E rep(U) or rep(U ∧ V ) E rep(V ).

Application. Further properties and underlying combinatorial structures

can be obtained by exploiting, for instance, the approach of the above prop-

erties. Starting with the set of all representatives of scovectors of a fragmen-

tation, and applying all possible ∧ and ∨ operations, a lattice is naturally

built. This lattice is a combinatorial representation of the way the algo-

rithm acts on the input space and contains all the necessary information to

perform qualitative reasoning and test data generation tasks. Such appli-

cations will be given in Sec. 12.4 using the above results as combinatorial

criteria.

12.3.6 Border of a super-covector

Given a scovector U , our goal is here to compute rep(U) by a join operation

applied to a set of cocircuits of M , or of a suitable minor of M , that we call

the border of U . This construction yields a way to compute representative

scovectors, and, furthermore, to compute boundary test data in Sec. 12.4.3.

Let us state a definition and result in the most general case, that we will

explain and illustrate in the simpler most frequent cases. Various equivalent

definitions are possible but will be omitted here.

Definition 12.9. Let U be a scovector of M . Let X be the union of all

supports of cocircuits of M which are contained in U×. Let us denote

M ′ = M\U×/U0 and U ′ = U \
(
U× ∪ U0

)
. Consider the cocircuits of

M ′ which are conformal to U ′. Then, the border of U in M is the set of

scovectors of M which are obtained by taking the lifts in M\X of these

cocircuits of M ′, and then by adding a × sign to all elements in X. The

border is denoted by ∂M (U), or by ∂(U) for brevity.

Scholia. In Definition 12.9, in the case where X = ∅, which we call the

tame case, ∂(U) is a set of cocircuits of M . (In this case, equivalently,

the rank of M\U× equals the rank of M , and it is the most frequent in

applications.) In the general case, ∂(U) is a set of very special scovectors



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 353

A Qualitative Reasoning Model based on Combinatorial Geometry 353

of M : for V ∈ ∂(U), we have that V × = X and V \ X is a cocircuit of

M \X. Furthermore, ∂M\X(U \X) = {V \X | V ∈ ∂M (U)}.

Theorem 12.2. Let U be a scovector of M . Then rep(U) is the join of its

border:

rep(U) =
∨

C∈∂(U)

C.

Furthermore, for two scovectors U and V , we have U ∼ V if and only if

∂(U) = ∂(V ).

First, let us consider the particular case where U× = ∅ (hence X =

∅) and U0 = ∅. In this case, U = U ′ is a maximal covector of M =

M ′, and ∂(U) is simply the set of cocircuits of M which are conformal

to U . Then, the above result can be written rep(U) = U = C∈∂(U) C =∨
C∈∂(U) C, and it is essentially a reformulation of Theorem 12.1, which

is given here by the central equality. (Obviously, U = rep(U) as it has

no × sign, and the conformal composition can be replaced with the join

operation as the two operations coincide for signed-sets which are conformal

to each other, as observed in Sec. 12.3.2.) As mentioned in Sec. 12.3.1, the

geometric interpretation of the above result is the following classical result

in geometry: a bounded convex polytope (encoded by a covector) is the

convex hull (encoded by the composition operation) of its extremal points

(encoded by conformal cocircuits). In the case where U× = ∅ and, possibly,

U0 6= ∅, we have exactly the same result and interpretation but in the minor

M ′ = M/U0, and the border of U is also formed by cocircuits of M .

For instance, in Fig. 12.6, for the maximal covector U = [+++++], the

border ∂(U) is formed by [0+00+], [0+++0] and [+++00], whose join equals

U ; and for the covector V = [-+0++], the border ∂(V ) is formed by [0+00+]

and [-+0+0], whose join equals V .

Second, consider now the case where X = ∅ (but, possibly, U× 6= ∅). In

this case, we call U a tame scovector, and the border of U is also formed

by cocircuits of M . By Property 12.1, the signed-set U ′ = U \
(
U× ∪ U0

)
is a maximal covector of M ′ = M\U×/U0. Since X = ∅, then the rank

of M\U× equals the rank of M (this is a lemma which we omit). Hence,

the lift notion from Lemma/Definition 12.2 is well-defined in M ′. Consider

the border ∂M ′(U
′) of U ′ in M ′ as defined in the case above. Then the

cocircuits in ∂M (U) are the lifts in M of cocircuits of M ′ belonging to

∂M ′(U
′).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 354

354 Artificial Intelligence Methods for Software Engineering

As discussed in Sec. 12.3.1, being tame means that the region of U in

the ambient space of M and the region of U ′ in the ambient space of M ′

coincide. According to our experiments on program testing, most (or all)

scovectors are tame in applications. For instance, all scovectors depicted in

Fig. 12.6 are tame. The border of the scovector U = [+xx-+] is formed by

the cocircuits [0---0], [0+00+] and [+++00] whose join equals U . The border

of the scovector [-0-x+] is formed by the cocircuits [-0-+0] and [00--+].

Third, in the non-tame case, scovectors of the border are no more co-

circuits of M . By properties of the rank function, we have that r(M\X) =

r(M\U×) = r(M)−r(X). Hence the lifting notion is well-defined in M\X.

By Property 12.1, the signed-set U ′ = U \
(
U×∪U0

)
is a maximal covector

of M ′ = M\U×/U0. Consider the border ∂M ′(U
′) of U ′ in M ′ as defined

in the first case. Then, the scovectors in ∂M (U) are obtained from ∂M ′(U
′)

as said in Definition 12.9 by using Lemma/Definition 12.2 in M\X.

5

3

4

21

 12345 

 +++++ 

 xx-++ 

 xx--+ 

 xx0++ 

 xx-0+ 

 xx--0 

++000--000

5

5

3

4

 345 

 +++ 

 -++ 

 --+ 

 0++ 

 -0+ 

 --0 

M M\12
X=12

Fig. 12.7 Example of non-tame scovectors and their borders. The positive half-spaces

are indicated by the region of the [+++++] covector. For any of the five depicted scovectors

with U× = 12, we have that U× contains the support X = 12 of the cocircuit [++000],
hence these scovectors are non-tame. The spherical representation of M\X induced by

the spherical representation of M in the sphere S2 (on the left, with 5 at infinity) is

thus not proper (the cocircuits do not correspond to points anymore, as shows the point
associated with [++000] in M , which would be associated with [000] in M\X but which

is not a cocircuit). The proper spherical representation of M\X is given in the sphere
S1 (on the right, with 5 still at infinity). The five above scovectors yield covectors of

M\X, as shown on its proper representation. The border of [..-++] in M\X is formed

by [..0++] and [..-0+]. Thus, the border of [xx-++] in M is formed by [xx0++] and
[xx-0+]. Observe on the left picture how the two corresponding half-linear-subspaces (of

dimension 2 in R3) delimit the region of [xx-++].



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 355

A Qualitative Reasoning Model based on Combinatorial Geometry 355

An example of non-tame scovectors and their borders is given and ex-

plained in Fig. 12.7. Note that the scovectors belonging to a border are

either cocircuits (tame case) or very special scovectors (cf. Scholia above).

When they correspond to cocircuits of a minor M\X with a loss of rank,

they are supported by half-linear-subspaces of the initial ambient vector

space (which are just half-lines in the tame case).

Application. The above definition and result have their numeric coun-

terpart that will be used for limit test data generation (see in Sec. 12.4.3).

Each cocircuit of ∂(U) can be realized as a real vector (recall that it cor-

responds a precise point in a spherical representation). In general, one can

compute a real vector belonging to the region of each scovector of ∂(U).

Then, performing a join operation on the combinatorial structure amounts

to perform a convex combination of the associated real vectors. In this way,

by Theorem 12.2, one can generate real vectors on the extreme boundary

faces — encoded by ∂(U) — of the region of U , and in their neighbourhood

inside the region of U .

12.4 How the model is used

Once the model (consisting of real inequalities and combinatorial informa-

tion) has been computed (Sec. 12.2), one can determine the underlying ori-

ented matroid which vehiculates additional combinatorial information such

as representative scovectors and borders of homodromies (Sec. 12.3). We

present in this section the three “outputs” of the qualitative model that

one can derive from the previous computations: envision graphs, order-

magnitude reasoning, and boundary test data generation. Our examples

will still be based on our WaterPhases algorithm.

12.4.1 Relations between Homodromies and the Envision

Graph

Intuitively speaking, an envision graph is a qualitative visualisation of the

behaviour of the algorithm.

Homodromies form a partition of the ambient input space (called a

fragmentation in Definitions 12.1 and 12.6). Moreover, homodromies, as

regions of scovectors, are bijectively encoded in terms of their representative

scovectors (Sec. 12.3.4). It is then natural to use the contiguity property of

Proposition 12.1 as a straightforward combinatorial criterion for building

the following adjacency graph.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 356

356 Artificial Intelligence Methods for Software Engineering

Definition 12.10. Let us consider a fragmentation F . The homodromy

graph of F is the undirected graph G whose vertices are elements of F and

whose edges are pairs of contiguous scovectors in F .

In practical applications, homodromy graphs are relatively dense

graphs, since they express the geometric configuration of all the feasible

paths of the algorithm. It is then tempting to aggregate neighbor vertices

with respect to a user-defined equivalence relation '. For instance, distinct

homodromies can correspond to the same output of the initial software. In

our example, ' will be “having the same output” (see Figs. 12.8 and 12.9).

In other cases, the equivalence relation can be established using the subset

of inputs that are numerically influencing outputs (see example below and

Fig. 12.10). More formally:

Definition 12.11. Let G be the homodromy graph of the fragmentation

F , and let ' be an equivalence relation over F . The envision graph of F
with respect to ' is the graph obtained from G by contracting edges with

equivalent endpoints. The resulting vertices of G′ are consistently labelled

with the equivalence classes of '.

In Fig. 12.8 is given the homodromy graph of Fig. 12.6. Its corre-

sponding envision graph (where homodromies having the same output are

aggregated) is illustrated in Fig. 12.8 and refined in Fig. 12.9. As illustrated

in this example, the envision graph can also be refined as a directed graph

in order to take into account the influence of increasing/decreasing variable

changes.

As another example, let us consider the following source code for the

algorithm MAXN which computes the maximum of an array of N elements.

max = a[0]

for i in range(1, N):

if a[i] > max: max = a[i]

return max

In Fig. 12.10, are given the envision graphs of the MAX3 and MAX4, for the

equivalence relation ' defined as follows: two homodromies are equivalent

if their output is influenced by the same input variable. This information

is automatically collected during the TDT construction (Sec. 12.2.3). More

generally, the algorithm MAXN admits 3N−1 homodromies (feasible paths)

and its underlying oriented matroid is a classical one known as the braid

arrangement (of dimension N−1, admitting N ! full-dimensional regions, in



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 357

A Qualitative Reasoning Model based on Combinatorial Geometry 357

Gas

Superfluid

Liquid

Solid

 +++++ 
Ω4

 -++++ 
Ω3

 -+-x+ 
Ω2

 ---x+ 
Ω1

 +xx-+ 
Ω5

 +++0+ 

Ω9

 0x--+ 

Ω10

 0++++ 

Ω8

 -+0++ 

Ω7

 -0-x+ 

Ω6

 0+00+ 

Ω11

Fig. 12.8 Homodromy graph for the fragmentation of Fig. 12.6: vertices are the scovec-

tors of Fig. 12.6, and edges reflect the contiguity relations between regions in Fig. 12.6.

Envision graph for this fragmentation with respect to the output of the WaterPhases

algorithm of Sec. 12.2.2 and Fig. 12.2: vertices are groups of scovectors corresponding

to the same output, edges (represented by dashed segments) are induced by edges of the

homodromy graph between those groups. Note that each homodromy is given with its
representative scovector (Sec. 12.3.4), different from its initial scovector (Table 12.1).

bijection with permutations, or acyclic orientations of the complete graph).

It contains 2N −2 cocircuits. Among them, 2N −1 are sufficient to express

combinatorially all the homodromies by means of their borders (Sec. 12.3.6).

The envision graph of MAXN , according to ', turns out to be the complete

graph KN , which we refine in the following way: to any given input ai
corresponds a node labelled ai (expressing the fact that the ai input is

influencing the output), admitting N − 1 outgoing arrows aj , j 6= i, and

N − 1 ingoing arrows, all equal to ai.

Envision graphs are mainly destinated to the visualisation of local be-

haviours. When equations are linear, it is possible to have a global vision.

However, when equations become very numerous, the envision graph can

be very complex to visualize globally. It is then preferable to use it as a

simulation tool (the simulation aspect is not in the scope of this paper).

Let us end with an application of the intersection criterion of Property

12.4. Suppose that one wishes to know what happens when three differ-

ent phases meet at a common boundary surface. Using the four phases



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 358

358 Artificial Intelligence Methods for Software Engineering

Gas SuperFluid

Solid Liquid

p

p− t p− t p− t

p+ tt

t

p

p
t

t − p

Fig. 12.9 Refined envision graph of the WaterPhases algorithm, automatically generated

by our tool (with some minor cosmetic changes). The underlying graph is the same as
the one given in Fig. 12.8. Labels p and t stand for pressure and temperature. The node

SuperFluid aggregates the 4 contiguous SuperFluid homodromies Ω3, Ω4, Ω7, Ω8. The

arrow from Gas to Liquid labeled p−t expresses that pressure must increase and/or the
temperature must decrease to allow the transition. Arrows are reversible: the previous

arrow could be reversed from Liquid to Gas and labeled t − p (dotted arrow). Arrows

with no predecessors/successors (infinity arrows) mean that any increase/decrease will
not change the phase. For instance, in the Gas phase, any increase of the temperature

and any decrease of pressure will not change the phase; equally, only a pressure increase

will allow the transition to SuperFluid phase. Note also that there is no possible direct
transition from Solid to SuperFluid.

homodromies of maximal dimension, Ω1(Solid), Ω2(Liquid),

Ω3(SuperFluid), Ω5(Gas) and this criterion, one directly gets the possi-

ble triple points:

• rep(Ω1) ∧ rep(Ω2) ∧ rep(Ω3) = [---x+] ∧ [-+-x+] ∧ [-++++] =

[-00++] ∼ [00000] which corresponds to the null vector, which does

not belong to the affine initial input space (outside the specifica-

tions). Hence, there is no possible triple point between the Solid,

Liquid and SuperFluid phases.

• rep(Ω1) ∧ rep(Ω2) ∧ rep(Ω5) = [---x+] ∧ [-+-x+] ∧ [+xx-+] =

[00--+] = rep(γ1)

• rep(Ω2) ∧ rep(Ω3) ∧ rep(Ω5) = [-+-x+] ∧ [-++++] ∧ [+xx-+] =

[0+00+] = rep(γ2)



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 359

A Qualitative Reasoning Model based on Combinatorial Geometry 359

a0

a1

a2

a2

a1

a2

a0

a0a1

a0

a1 a2

a3

a1

a2

a3

a0

a0 a1 a3 a1

a2

a0a1

a2

a0 − a1 − a2

a1 − a0 − a2

a2 − a0 − a1

a0 − aj 6=0

a1 − aj 6=1 a2 − aj 6=2

a3 − aj 6=3

Fig. 12.10 The Envision Graphs of MAX3 (left) and MAX4 (right) algorithms, refined with

arrows. Nodes are automatically labeled, according to the (here unique) input influencing
the result. The arrow from a0 to a2, labeled a2 means that when the maximum is the

first element of the array (a0), and the third element (a2) is incremented then, eventually,

a2 will be selected as the maximum. If a2 “continues” to increase or any other element
decreases, the algorithm will stay at the same state a2 (infinite arrow labeled a2−a0−a1).

Each of the 4 nodes of MAX4 graph represents a 4-dimensional polytope. (One can note

that reversing the arrows, yields the envision graphs of similar MIN3 and MIN4 algorithms.)

where γ1 and γ2 are indicated in Figs. 12.2 and 12.11 (we use representatives

of homodromies, shown in Figs. 12.6 and 12.8, possibly different from their

initial scovectors from Table 12.1).

12.4.2 Order-of-Magnitude Reasoning and Qualitative

Execution

We introduce in this section an original order-of-magnitude algebra which

can be considered as a non-standard version of an interval based order

of magnitude algebra from [16]. We then illustrate how this formalism

can be consistently combined with the combinatorial spatial properties of

scovectors, to obtain useful qualitative conclusions.

Order-of-Magnitude Reasoning. Non-standard analysis handles hy-

perreal numbers, that is, infinitesimally small numbers (called infinitesi-

mals) and infinitesimally big (called infinite) numbers, with an equivalence

relation, noted ≈ meaning “infinitesimally close”; see [24,25]. In our model,

ε stands for any strictly positive infinitesimal, d for any standard strictly

positive finite (but not infinitesimal) real number, and ω stands for any pos-

itive infinite number (and their opposites are represented using a − sign).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 360

360 Artificial Intelligence Methods for Software Engineering

The qualitative value associated to an input of the algorithm, say p, will

be denoted [p] and will be a closed interval. For instance [p] ≈ [ε, ω] stands

for a strictly positive input p with an unknown order-of-magnitude. The

interval [−ω, ω] expresses undeterminacy; [−d, ε] stands for any finite real

(possibly negative) that is inferior that any standard positive real number.

The four interval arithmetic operations (⊕,⊗,	,�) constitute an interval

extension of the hyperreal operations. Some examples: [d, d]⊕ [ε, ε] ≈ [d, d];

[d, d] 	 [ω, ω] ≈ [−ω,−ω], [ε, ε] ⊗ [ω, ω] ≈ [ε, ω]; [−d, ε] ⊕ [0, d] ≈ [−d, d];

[−d,−d]⊗ [−ε, ε] ≈ [−ε, ε].

Qualitative execution. Suppose in the following that, in the toy algo-

rithm, the temperature is a very small number, of unknown sign ([t] ≈
[−ε, ε]) and the pressure has a standard positive value ([p] ≈ [d, d]). Using

linearity of e2 = 10t+p and the neutrality of [d, d], it is then straightforward

to evaluate the qualitative value of e2. In fact, all coefficients, considered as

standard reals, ([d, d]) can be dropped and we obtain: [e2] ≈ [10 · t+1 ·p] ≈
[10]⊗ [t]⊕ [1]⊗ [p] ≈ [d, d]⊗ [t]⊕ [d, d]⊗ [p] ≈ [t]⊕ [p] ≈ [−ε, ε]⊕ [d, d] ≈ [d, d].

We conclude that the equation e2 will be positive. For the other equations

one gets:

• [e1] ≈ [t]− [p] ≈ [−ε, ε]	 [d, d] ≈ [−d,−d] thus its sign is −
• [e3] ≈ [t]− [p]− [d, d] ≈ [−ε, ε]	 [d, d]	 [d, d] ≈ [−d,−d], with sign

−
• [e4] ≈ [p]− [d, d] ≈ [d, d]	 [d, d] ≈ [−d, d] thus its sign is unknown,

×

Grouping all equations’ signs, and adding a + sign at the end (as before

for the equation at infinity) we obtain the scovector U = [-+-x+] which

corresponds to the Liquid homodromy Ω2. We conclude that, when tem-

perature is very close to zero and pressure has a normal (non-negligible)

positive value, the result will be the Liquid phase.

Let’s take another example: what happens when the temperature is

very high and pressure is normal (non-negligible) but unknown? We

have [t] ≈ [ω, ω] and [p] ≈ [−d, d]. Evaluating, as previously, equations

signs, we obtain the scovector V = [+++x+]. Using now the intersection

criterion of Property 12.4, one can observe that two Gas homodromies,

rep(Ω5) = [+xx-+] and rep(Ω9) = [+++0+], and the SuperFluid homod-

romy, rep(Ω4) = [+++++], combinatorially intersect the scovector V . We

conclude that when the temperature is very high and the pressure is un-

known, the only compatible results will be the Gas and SuperFluid phases.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 361

A Qualitative Reasoning Model based on Combinatorial Geometry 361

12.4.3 Boundary Test Data Generation

Boundary test data generation is the quantitative side of the model. Its

principle resides in the transformation of combinatorial operators (∨,∧)

in real valued operations. Cocircuits constitute the combinatorial and nu-

merical buildings blocks of the model. Rephrasing it, in software testing

teminology: by composing a restricted set of test points, it is possible to

generate, automatically, new limit test points on the borders of all the

possible execution paths of the algorithm. Test data generation takes two

steps.

• Step 1: Combinatorial generation of a specific region B.

• Step 2: Numerical generation of a point inside B, using rational

valued operations.

For this sake, we extensively use the border notion of Sec. 12.3.6. Let us

consider a scovector U and its border ∂(U). To each cocircuit or scovector

C in ∂(U), can be arbitrarily associated, a real vector, named sample(C),

realizing C in region(C). Such a real vector can be easily computed from

the initial equations (if C is a cocircuit, then sample(C) can be any real

vector spanning the half-line contained in the line
⋂
e∈E,C(e)=0He, in the

same side as the region
⋂
e∈E,C(e)6=0H

C(e)
e ). For instance, samples of the

cocircuits of our example (Figs. 12.2 and 12.6) are given in Table 12.2.

Then, by Theorem 12.2, a real vector in region(U) realizing U =∨
C∈∂(U) C can be any combination of the real vectors sample(C) for

C ∈ ∂(U) with positive coefficients: sample(U) =
∑
C∈∂(U) αC .sample(C),

with αC ∈ R∗+ for all C ∈ ∂(U). Furthermore, real vectors in the region in

Table 12.2 The 7 basic cocircuits of the toy model and the coordinates
of their associated real samples. Cocircuit γ1 = [00--+] means that, at

the point γ1(0, 0, 1), e1 and e2 are zero, and e3 and e4 are negative.

The fifth sign expresses its position at infinity (the positive sign means
that the point is inside the specifications). The sample coordinates are

given in the 3-dimensional vector space containing the 2-dimensional

affine input space. The third coordinate equals 1 for points inside the
specifications and 0 for the points “at infinity” (see General setting in

Sec. 12.3.1). The 7 samples are represented in Figs. 12.2 and 12.11.

cocircuit coordinates cocircuit coordinates

γ1 [00--+] [0, 0, 1] γ2 [0+00+] [600, 30, 1]

c1 [0---0] [-1000, -50, 0] c2 [-0-+0] [-100, 1000, 0]

c3 [+++00] [0.1, 0, 0] c4 [0+++0] [2, 0.1, 0]

c5 [-+0+0] [1, 0.1, 0]



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 362

362 Artificial Intelligence Methods for Software Engineering

the neighborhood of these boundary vectors can be generated (for instance)

as sample(C) + ε.sample(U) for C ∈ ∂(U) and for a small ε ∈ R∗+. (In the

case of an initial affine space, one has to divide all coordinates by the coor-

dinate corresponding to the element at infinity, in order to get points inside

the specifications.)

In this way, one can compute real vectors at all boundaries between ho-

modromies as well as at the neighborhood of all boundaries in all homod-

romies that they bound. Such a set of real vectors, serving as a relevant

limit test data, is illustrated with grey dots in Fig. 12.11, obtained from

the fragmentation given in Fig. 12.6 for the toy example. Real coordinates

of test data obtained in the above way are given in Table 12.1.

p

4

1

32

 1234p 
 +++++ 

Ω4

 -++++ 
Ω3

 -+-x+ 
Ω2

 ---x+ 
Ω1

 +xx-+ 
Ω5

 +++0+ 
Ω9

 0
x-
-+
 

Ω10

 0
++
++
 

Ω8

 -+0++ 

Ω7

 -0-x+ 

Ω6

 0+00+ 
Ω11

γ
2

γ1

c
1

c
2

c
3

c
4

c
5

Fig. 12.11 Using scovectors and their borders to generate real vectors in homodromies

of a fragmentation, in their boundaries, and in the neighborhood of their bound-
aries (Sec. 12.3.6), for the toy example of Sec. 12.2 and Fig. 12.2. The homodromies

Ω1, . . . ,Ω11 correspond to the fragmentation of Fig. 12.6 and Table 12.1. The border
cocircuits are represented by points denoted γ1, γ2, c1, c2, c3, c4, c5, consistently with
Fig. 12.2 and Table 12.2. Grey dots represent samples (or test points) in homodromies,
their boundaries, and their neighborhood; they are obtained by barycentric combinations

of cocircuit points.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 363

A Qualitative Reasoning Model based on Combinatorial Geometry 363

We now present some applications of the previous general construction

to the computation of limit test points. The qualitative execution, in the

previous section, permitted us to conclude that, when temperature is very

close to zero and pressure has a normal positive value, algorithm yields the

Liquid phase. Suppose now that this result contradicts the specifications

which predict that, in that case, one should obtain the ‘ice’ result (the

Solid phase). In other words, the analyzed algorithm contains a defect

(bug).

The tester thus decides to examine what happens at temperatures close

to zero in the boundary of the Solid homodromy Ω1 and the Liquid ho-

modromy Ω2. In other words, she wishes to obtain boundary inputs that

lye exactly on the Solidification/Liquefaction surface.

• Step 1: Starting from Table 12.1, Ω1 = [--xx+] and Ω2 =

[-+-x+], one can compute their borders (∂(Ω1) = {c1, γ1, c2}
and ∂(Ω2) = {γ1, γ2, c4, c2}) hence, their representatives, getting

rep(Ω1) = [---x+] and rep(Ω2) = [-+-x+]. Using Property 12.4,

one can calculate their common face with the meet ∧ operator:

rep(Ω1) ∧ rep(Ω2) = [---x+] ∧ [-+-x+] = [-0-x+] = rep(Ω6). In

other words, the homodromy Ω6 (the open segment ]γ1, c2[), forms

the solidification/liquefaction separating surface between the two

phases.

• Step 2: Since the tester wishes to examine what happens with a

small temperature and a positive pressure, she may ask for a test

data that is close to γ1(0, 0), still staying inside Ω6. Taking as

coefficients (for the convex hull combination) two strictly positive

rationals λ1 and λ2 with λ1 + λ2 = 1, with, say, λ1 = 9999× 10−4,

“much closer” to 1, than λ2 = 10−4. The join ∨ operation is now

translated into a convex sum of rational coordinates. We obtain

a boundary test data, T1 = λ1 · sample(γ1) + λ2 · sample(c2) =

9999·10−4[0,0,1]+10−4[-100,1000,0] = [-0.01,0.1,0.9999].

Transforming the last coordinates in affine coordinates (dividing

by the non-zero infinite third coordinate) one gets the test data

T1 = [-0.010001, 0.10001]. One can check that T1 nullifies

the equation e2, and still lies inside the Solid homodromy Ω6.

Exchanging λ1 with λ2 would still yield a point of Ω6 but close to

the specification frame.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 364

364 Artificial Intelligence Methods for Software Engineering

What happens if one wishes to have an equivalent point of T1 (close to

γ1) but in the Liquid side? Like previously:

• Step 1: The Liquid homodromy Ω2 = [-+-x+] admits 4 border

cocircuits, {γ1, γ2, c4, c2}, with rep(Ω2) = [-+x+] = γ1∨γ2∨c4∨c2.

• Step 2: For producing a limit test data point, T2 close to

γ1(0, 0), but staying inside the Liquid homodromy we choose

four positive rationals λ1..4 such that their sum equals 1.

Choosing say λ1 = 997 · 10−5 and λ2 = λ3 = λ4 =

10−5, we obtain: T2 = λ1 · sample(γ1) + λ2 · sample(γ2) +

λ3 · sample(c4) + λ4 · sample(c2) = 997 · 10−5[0,0,1] +

10−5[600,30,1] + 10−5[2,0.1,0] + 10−5[-100,1000,0] =

[0.00502, 0.001301, 0.00998]. In affine coordinates one gets

the test data T2 = [0.503006, 0.130361], yielding a Liquid out-

put.

12.5 Conclusion

We presented an algorithmic qualitative model intended to assist the tester

during the unit testing process. This model permits the visualization, in

an abstract level, of the algorithmic behaviour. The spatial properties are

based on oriented matroids. The propagation of orders-of-magnitude en-

ables the validation of abstract properties concerning boundary behaviour.

The combinatorial properties of cocircuits are finally used to generate con-

crete numeric test sets on any critical surface of any dimension.

Our approach is a technique allowing the automatic generation of test

data. As we stressed in the introduction, this constitutes a critical open

issue in the software engineering process, thus many other techniques have

been proposed to tackle this problem. Note however that our testing data

generation approach is not based on a structural coverage objective (i.e.

cover all the statements of the source code), nor model based (i.e. use of an

oriented graph), nor heuristic (like evolutionary techniques). It produces,

formally and exhaustively (under certain assumptions and thanks to the

mathematical theory presented in the previous sections), all the feasible

execution paths of the source code. It is thus stronger (in the sense of [26])

than any other structural (path, branch, du-path, etc.) coverage objective.

This work is still at a prototype stage and is intended for software units

whose conditions depend on decimal or rational inputs. Note however, that

this restriction does not concern outputs which can be of any arbitrary

type, as long as one disposes of an equivalence relation to aggregate them.



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 365

A Qualitative Reasoning Model based on Combinatorial Geometry 365

As a first experiment to evaluate its usefulness in the development pro-

cess, the prototype was used in a first year Python programming course.

The pedagogical objective was twofold: first, sensitize the students to the

testing process by making them compare their (manually produced) test

data with the automatic ones. Second, thanks to the envision graph, it

gives to the students a more abstract and visual view of what was effec-

tively coded, that can be compared with their qualitative understanding of

the initial specifications.

A limitation obviously concerns the number of equations that the tool

can analyze (limited in our prototype to 50), a number which can become

very large in the case of large arrays and/or nested iterations. Note however,

that the tool disposes of several filtering (slicing) options that can reduce

drastically the number of studied paths.

We are currently working on several technical and theoretical future

developments: the construction of a qualitative formal proof engine that

checks properties by examining all possible paths (or in certain directions)

of the homodromy graph; a qualitative simulation engine (that could be

compared to a qualitative debugger) coupled with a decorated source code

browser, which visualizes, step by step, the path followed on the homodromy

graph according to qualitative input directions or magnitudes; and further

useful mathematical properties in terms of oriented matroids.

Acknowledgments

This research was supported by: the OMSMO Project (Oriented Matroids

for Shape Modeling) - Grant “Chercheur d’avenir 2015” (Région Occi-

tanie & Fonds Européen de Développement Régional FEDER); the ANR

Grant DISTANCIA (Metric Graph Theory, ANR-17-CE40-0015); and the

ARCHIMEDES III (Greek minister of Research) project (support for TEI

Larissa, No. 16, 2010: Application of Genetic algorithms and Qualitative

Reasoning for intelligent software testing).

References

[1] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas and K. Kara-
poulios, Application of genetic algorithms to software testing (application
des algorithmes génétiques au test des logiciels), in 5th International Con-
ference on Software Engineering and its Applications, Toulouse, France,
pp. 625–636 (1992).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 366

366 Artificial Intelligence Methods for Software Engineering

[2] M. Schoenauer and S. Xanthakis, Constrained GA optimization, in Proceed-
ings of the 5th International Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, pp. 573–580 (1993).

[3] R. P. Pargas, M. J. Harrold and R. R. Peck, Test data generation using
genetic algorithms, Software Testing, Verification and Reliability 9, pp. 263–
282 (1999).

[4] P. McMinn, Search-based software test data generation: A survey, Software
Testing, Verification and Reliability 14, 2, pp. 105–156 (2004).

[5] O. Bühler and J. Wegener, Evolutionary functional testing, Computers and
Operations Research 35, pp. 3144–3160 (2008).

[6] S. Di Alesio, L. Briand, S. Nejati and A. Gotlieb, Combining genetic algo-
rithms and constraint programming to support stress testing of task dead-
lines, ACM Transactions on Software Engineering and Methodology 25,
pp. 1–37 (2015).

[7] C. Sharma, S. Sabharwal and R. Sibal, A survey on software testing tech-
niques using genetic algorithm, International Journal of Computer Science
Issues 10 (2013).

[8] Z. Zhu and L. Jiao, Improving search-based software testing by constraint-
based genetic operators, in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 19. Association for Computing Machin-
ery, New York, NY, USA, pp. 1435–1442 (2019).

[9] S. Xanthakis, S. Karapoulios, R. Pajot and A. Rozz, Immune system and
fault tolerant computing, in Artificial Evolution, Vol. 1063. Lecture Notes in
Computer Science, Springer-Verlag, pp. 181–197 (1996).

[10] Y. Jia and M. Harman, Constructing subtle faults using higher order muta-
tion testing, in 8th International Working Conference on Source Code Anal-
ysis and Manipulation (SCAM 2008). Beijing, China, IEEE Computer So-
ciety (2008).

[11] L. C. Briand, J. Feng and Y. Labiche, Using genetic algorithms and coupling
measures to devise optimal integration test orders, in 14th IEEE Software
Engineering and Knowledge Engineering (SEKE), Ischia, Italy, pp. 43–50
(2002).

[12] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and R. S. Roos, Time aware
test suite prioritization, in International Symposium on Software Testing and
Analysis (ISSTA 06). Portland, Maine, USA, ACM Press, pp. 1–12 (2006).

[13] S. Yoo and M. Harman, Pareto efficient multi-objective test case selection,
in International Symposium on Software Testing and Analysis (ISSTA 07),
ACM Press, pp. 140–150 (2007).

[14] D. S. Weld and J. de Kleer, Readings in Qualitative Reasoning about Physical
Systems. Morgan-Kaufman (1990).

[15] D. S. Weld and J. de Kleer, in D. S. Weld and J. de Kleer (eds.), Qualitative
Reasoning. Series in Artificial Intelligence (1989).

[16] L. Travé-Massuyès and N. Piera, The orders of magnitude models as qual-
itative algebras, in IJCAI’89: Proceedings of the 11th international joint
conference on Artificial intelligence - Volume 2, pp. 1261–1266 (1989).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 367

A Qualitative Reasoning Model based on Combinatorial Geometry 367

[17] D. S. Weld, Exaggeration, in D. S. Weld and J. de Kleer (eds.), Readings in
Qualitative Reasoning About Physical Systems. Morgan Kaufmann, pp. 417–
421 (1990).

[18] S. Parsons and M. Dohnal, The qualitative and semiqualitative analysis of
environmental problems, Environmental Software 10, pp. 75–85 (1995).

[19] R. Moratz, Qualitative Spatial Reasoning. Encyclopedia of GIS, Editors:
Shashi Shekhar, Hui Xiong, Xun Zhou (2017).

[20] K. D. Forbus, Qualitative Representations How People Reason and Learn
about the Continuous World. MIT Press (2019).

[21] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented
Matroids, Encyclopedia of Mathematics and Its Applications, Vol. 46, 2nd
edn. Cambridge University Press (1999).

[22] S. Xanthakis and E. Gioan, A qualitative reasoning model for software test-
ing, based on oriented matroid theory, Full length journal paper (detailing
and completing the present chapter) (In preparation).

[23] J. Edmonds and A. Mandel, Topology of oriented matroids. Ph.D. Thesis of
A. Mandel, University of Waterloo (1982).

[24] G. Reeb, Analyse non standard (essai de vulgarisation), Bulletin de
l’APMEP 32 (1981).

[25] R. Goldblatt, Lectures on the Hyperreals. An introduction to nonstandard
analysis, Vol. 188. Graduate Texts in Mathematics. Springer-Verlag MR164
(1998).

[26] E. J. Weyuker, Comparing the effectiveness of testing techniques, in For-
mal Methods and Testing, Vol. 4949. Lecture Notes in Computer Science,
Springer, pp. 271–291 (2008).



May 21, 2021 13:37 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 368


	A Qualitative Reasoning Model for Software Testing, based on Combinatorial Geometry
	Spyros Xanthakis
	Emeric Gioan
	Introduction
	What the model contains
	Conditions, Equations, Paths, Super-covectors, and Homodromies
	Running example
	How the model is built technically

	Which mathematical results will be needed
	Preliminaries on Oriented Matroid theory
	Encoding regions with super-covectors
	Super-covectors versus covectors
	Representative of a super-covector
	Contiguity between super-covectors
	Border of a super-covector

	How the model is used
	Relations between Homodromies and the Envision Graph
	Order-of-Magnitude Reasoning and Qualitative Execution
	Boundary Test Data Generation

	Conclusion




