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Abstract

We investigate a number of coloring problems restricted to bipartite graphs with
bounded diameter. First, we investigate the k-List Coloring, List k-Coloring,
and k-Precoloring Extension problems on bipartite graphs with diameter at
most d, proving NP-completeness in most cases, and leaving open only the List
3-Coloring and 3-Precoloring Extension problems when d = 3.

Some of these results are obtained through a proof that the Surjective C6-
Homomorphism problem is NP-complete on bipartite graphs with diameter at
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most four. Although the latter result has been already proved [Vikas, 2017], we
present ours as an alternative simpler one. As a byproduct, we also get that 3-
Biclique Partition is NP-complete. An attempt to prove this result was pre-
sented in [Fleischner, Mujuni, Paulusma, and Szeider, 2009], but there was a flaw
in their proof, which we identify and discuss here.

Finally, we prove that the 3-Fall Coloring problem is NP-complete on bi-
partite graphs with diameter at most four, and prove that NP-completeness for
diameter three would also imply NP-completeness of 3-Precoloring Extension
on diameter three, thus closing the previously mentioned open cases. This would
also answer a question posed in [Kratochv́ıl, Tuza, and Voigt, 2002].

Mathematics Subject Classifications: 05C15, 68R10, 68Q17

1 Introduction

Graph coloring problems are among the most fundamental and studied problems in graph
theory, due to their practical and theoretical importance. A proper coloring of a graph
G is a function f : V (G)→ N such that f(u) 6= f(v) for every edge uv ∈ E(G), and the
k-Coloring problem asks whether a given graph G admits a proper coloring using at
most k colors. A well-known result by Karp [23] shows that the k-Coloring problem
is NP-complete for every fixed k > 3. In this paper, we study two of the most general
coloring problems: list coloring and graph homomorphism.

In the k-List Coloring problem, we are given a graph G together with a function
L which assigns to each u ∈ V (G) a subset of allowed colors with |L(u)| 6 k for every
u ∈ V (G). This is called a list assignment of G. The question is whether G admits a
proper coloring f such that f(u) ∈ L(u) for every u ∈ V (G); if the answer is yes, we say
that G is L-colorable. If G is L-colorable for every list assignment L satisfying |L(v)| > k
for every v ∈ V (G), we say that G is k-choosable.

Observe that this generalizes the k-Coloring problem: it suffices to consider L(u) =
{1, . . . , k} for every u ∈ V (G). Thus k-List Coloring is NP-complete for every fixed
k > 3; this was shown by Holyer [17] and Karp [23]. Another natural coloring problem that
can be modeled as a list coloring problem is the k-Precoloring Extension problem,
where some vertices have fixed colors and the goal is to extend this precoloring to a proper
k-coloring of G. Thus we can model this problem as a list coloring problem by assigning
a list of size 1 to each of the precolored vertices, and a list equal to {1, . . . , k} to the
remaining ones. From now on, we denote this problem by k-PreExt.

A long-standing and still open question about coloring problems is whether one can
decide in polynomial time if a graph with diameter two can be properly colored using at
most three colors (see e.g. [22, 32]), and only recently the answer for the 3-Coloring
problem on graphs with diameter at most three has been settled negatively by Mertzios
and Spirakis [30]. Here we propose the investigation of analogous questions concerning
list colorings of bipartite graphs.

The famous Hajós Theorem [14] states that every non-k-colorable graph can be con-
structed from the complete graph Kk+1 by iteratively applying one of three defined opera-
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tions. Gravier [13] has proved an analogous theorem, showing that every non-k-choosable
graph can be constructed from complete bipartite graphs by iteratively applying one of
three operations (the same as Hajós’ operations, with the exception of one, which is an
adaptation of the corresponding Hajós operation to bipartite graphs). This is one of the
reasons why it can be of interest to investigate list colorings of bipartite graphs (see,
for example, [1, 24, 19, 20]); in particular, characterizations of non-k-choosable complete
bipartite graphs for certain values of k have also been given (see e.g. [28, 31, 33]).

For graphs G and H, we say that G is H-free if G has no copy of H as an induced
subgraph. Interestingly enough, even though there are some results concerning list col-
oring problems on Pk-free bipartite graphs (see, for example, [19, 24]), to the best of our
knowledge, no work deals with bipartite graphs of small diameter directly, except for a
result by Jansen and Scheffler [21] that proves that 3-List Coloring is NP-complete
on complete bipartite graphs. Concerning Pk-free graphs, Kratochv́ıl [24] proved that 5-
PreExt is NP-complete on P13-free bipartite graphs, while Huang et al. [19] showed that
4-PreExt is NP-complete on P10-free chordal bipartite graphs and that 4-List Color-
ing is NP-complete on P8-free chordal bipartite graphs. Note that if G has no induced
Pk, then G has diameter at most k−2. Therefore, the aforementioned results of Huang et
al. [19] give us that 4-PreExt is NP-complete on chordal bipartite graphs with diameter
at most 8, and that 4-List Coloring is NP-complete on chordal bipartite graphs with
diameter at most 6. Here, we improve the first result of Huang et al. [19] with respect
to the diameter by showing that 3-PreExt is NP-complete on bipartite graphs with di-
ameter four. Also, we give a linear algorithm that solves k-PreExt, for each fixed k, on
complete bipartite graphs (diameter two). Our algorithm is an improvement for complete
bipartite over previous more general algorithms that work on P5-free graphs (Hoàng et
al. [18]), and on (rP1 +P5)-free graphs (Couturier et al. [5]); in particular, ours is an FPT
algorithm parameterized by k, while the latter algorithms are XP. As we will see, this
leaves as the only open cases the complexity of 3-PreExt and related problems, when
restricted to bipartite graphs with diameter three.

It is well-known that a k-coloring can also be seen as a homomorphism to Kk (the
complete graph on k vertices). Given graphs G and H, a homomorphism from G to H
is a function f : V (G) → V (H) that respects edges, i.e., such that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). When H is fixed, the H-Homomorphism problem consists in
deciding whether G has a homomorphism to H, while the List H-Homomorphism is
defined in a similar way as the k-List Coloring problem, i.e. each vertex u of G can only
be mapped to x ∈ V (H) if x belongs to the list assigned to u. Hell and Nešetřil [15] proved
that H-Homomorphism is polynomial if H is bipartite, and NP-complete otherwise. A
dichotomy is also known for the List H-Homomorphism problem: Feder and Hell [8]
proved that if H is a reflexive graph (a graph is reflexive if every vertex of H has a loop),
then the problem is solvable in polynomial time if H is a bipartite interval graph and
NP-complete otherwise. Furthermore, for loopless graphs, Feder et al. [9] also proved
that if H is bipartite and H, the complement graph of H, is a circular-arc graph, then
List H-Homomorphism can be solved in polynomial time; otherwise, the problem is
NP-complete.
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A homomorphism f from a graph G to a graph H is surjective if every vertex x ∈
V (H) is the image of some vertex u ∈ V (G), and it is edge-surjective if every edge
xy ∈ E(H) is the image of some edge uv ∈ V (G). Observe that if f is edge-surjective
and H has no isolated vertices, then f is also surjective. If H is a subgraph of G and
f is an homomorphism from G to H such that f(v) = v for every v ∈ V (H), we say
that f is a retraction of G to H. We denote the related problems by Surjective H-
Homomorphism, Edge-Surjective H-Homomorphism, and Retract, respectively.
Some authors use the term (edge-)compaction to refer to (edge-)surjective homomorphism,
but we prefer to use a more descriptive term. Also, if Retract is restricted to instances
(G,H) such that H is isomorphic to a fixed graph F , then we write Retract to F to
denote the related problem.

Vikas [35] showed that problem Surjective H-Homomorphism reduces to Edge-
Surjective H-Homomorphism and to Retract to H. Therefore, it follows from the
result by Hell and Nešetřil [15] that all three problems are NP-complete when H is not
bipartite, as it suffices to add a dummy copy of H to G so as to force the obtained graph G′

to have a surjective homomorphism to H if and only if G has a homomorphism to H. As
for the remaining cases, since the late 1980’s there has been interest in the complexity of
these problems when H is a bipartite graph, with related questions being posed by many
authors (see e.g. [29, 36]). Let C�4 denote the reflexive cycle on four vertices. Vikas [34]
proved that Edge-Surjective C�4 -Homomorphism is NP-complete, and only recently
Surjective C�4 -Homomorphism has been also proved to be NP-complete by Martin
and Paulusma [29]. Golovach et al. [12] proved that Surjective H-Homomorphism
is polynomial when H is a path, and NP-complete for many other cases (e.g. linear
forests and trees of pathwidth at most 2). Also, Golovach et al. [11] recently proved
that Surjective H-Homomorphism is NP-complete when H has exactly 2 vertices u
and v such that {uu, vv} ⊆ E(H), provided uv /∈ E(H). We refer the reader to the
nice survey by Bodirsky et al. [3] on surjective homomorphisms and related problems.
Martin and Paulusma [29] also relate Edge-Surjective H-Homomorphism to many
other problems (e.g. vertex cut-sets, H-partitions, and biclique cover), showing that
various open problems and Surjective C�4 -Homomorphism, which they prove to be
NP-complete, are equivalent.

In particular, the NP-completeness of Retract to C6 (Feder et al. [9]), and of Edge-
Surjective C6-Homomorphism (Vikas [34]) are known since 1999, but only recently
the NP-completeness of Surjective C6-Homomorphism has been settled (Vikas [36]),
even though this had been asked by Hell and Nešetřil back in 1988 [36]. Here we give
a stronger NP-completeness result for Retract to C6 that we then use in some of
our proofs. Namely, letting H ∼= C6 and G = (X ∪ Y,E) be bipartite, we show
that Retract to C6 is NP-complete even if V (H) ∩ Y dominates X, and each y ∈
V (H) ∩ Y is at distance at most 2 from y′, for every y′ ∈ Y . We then use this result
to show that 3-PreExt, Edge-Surjective C6-Homomorphism, and Surjective
C6-Homomorphism are NP-complete even when restricted to bipartite graphs with di-
ameter four. Our NP-completeness proof for Surjective C6-Homomorphism produces
a smaller graph than the one presented by Vikas [36], needing only a linear number of
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new vertices in the construction against a quadratic number used by Vikas [36], which
allows us to present a simpler proof. In addition, we make a small observation that, by
letting Mk denote the graph obtained from the complete bipartite graph Kk,k by removing
a perfect matching, we get that Surjective Mk-Homomorphism, Edge-Surjective
Mk-Homomorphism, and Retract to Mk are all NP-complete on graphs of diameter
three.

Vikas [36] also points out, without explicitly proving it, that his reduction can be
generalized to a proof that Surjective C2k-Homomorphism is NP-complete for every
k > 3. Unfortunately, we have not managed to directly adapt our reduction to this case.
Finally, we mention that there is still interest in the Ck-homomorphism problem for odd k
when restricted to P`-free graphs because of its ties with the long-standing open problem
of 3-coloring P`-free graphs (see e.g. a recent paper by Chudnovsky et al. [4]).

Given a graph G, a biclique of G is a pair of vertex subsets (A,B) forming a complete
bipartite subgraph of G. The bipartite complement of a bipartite graph G = (A ∪ B,E)
is the bipartite graph GB = (A ∪ B,E ′) containing the non-edges between A and B. In
the k-Biclique problem, the task is to decide whether V (G) can be partitioned into k
bicliques. Mohammad et al. [16] showed that, letting k be part of the input, k-Biclique
is NP-complete even when restricted to bipartite graphs. An attempt to show that 3-
Biclique is NP-complete on bipartite graphs was presented by Fleischner et al. [10].
Unfortunately, as we show in Section 6, there is a mistake in their proof. Nevertheless,
applying our result for Surjective C6-Homomorphism, we get that the 3-Biclique
problem is indeed NP-complete on bipartite graphs, even when the bipartite complement
of G has diameter four. It is worth mentioning that Martin and Paulusma [29] showed
that 2-Biclique is NP-complete on general graphs (with a very technical reduction that
uses an abstract algebraic meta-theorem), and that Fleischner et al. [10] showed that it is
polynomial on bipartite graphs. Hence, the NP-completeness of 3-Biclique on bipartite
graphs is best possible in terms of k.

We need two more definitions before presenting our last results. Given a proper k-
coloring f of a graph G, a vertex v is called a b-vertex if the neighborhood of v contains
one vertex of each color (distinct from that of v), and f is a k-fall-coloring of G if every
vertex of G is a b-vertex. In the k-Fall Coloring problem, we ask whether an input
graph G admits a k-fall-coloring. We show that if 3-Fall Coloring were NP-complete
on bipartite graphs with diameter three, then we would get a complete dichotomy for the
list coloring problems on bipartite graphs with diameter constraints. Also, this would
answer a question posed by Kratochv́ıl et al. [25]. Although we do not know whether
3-Fall Coloring is NP-complete on bipartite graphs with diameter three, we show that
it is NP-complete on bipartite graphs with diameter four, strengthening a result of Laskar
and Lyle [26].

Organization. In Section 2 we present the formal notation and definitions used in this
article. In Section 3 we give an almost complete classification for the investigated list
coloring problems in terms of the number of colors and the diameter of the input graph
G, taking into account the results presented in the current article. In Section 4 we show our
hardness result for Retract to C6 and use it to prove that 3-PreExt is NP-complete on
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bipartite graphs with diameter four. In Section 5 we show that Edge-Surjective C6-
Homomorphism and Surjective C6-Homomorphism are NP-complete on bipartite
graphs with diameter four. In Section 6, we point out the flaw in the hardness proof
for 3-Biclique on bipartite graphs presented by Fleischner et al. [10], and show how to
obtain the result using the results presented in Section 5. Finally, in Section 7 we provide
a reduction from 3-Fall Coloring to 3-PreExt that preserves the diameter of the
input graph, and prove that 3-Fall Coloring is NP-complete on bipartite graphs with
diameter four.

2 Definitions and notation

All graphs that we consider are simple, that is, they do not have loops nor multiple edges.
We can also assume that the graphs are connected, as otherwise it suffices to solve the
problems on the connected components. For basic definitions on graph theory, we refer
the reader to [38].

For u, v ∈ V (G), we denote by dist(u, v) the length of a shortest path between u v,
and it is called the distance between u and v in G. The diameter of a graph G is the
maximum distance between any pair of vertices of G. We denote by B the class of bipartite
graphs. Also, for a fixed positive integer d, we denote by Bd the class of bipartite graphs
with diameter at most d, and by Dd the class of graphs with diameter at most d. A set
X ⊆ V (G) is a dominating set of G if every vertex of G is either in X or has a neighbor
in X. Similarly, we say that A ⊆ V (G) dominates B ⊆ V (G) if every vertex of B is
either in A or has a neighbor in A. For a graph H ⊆ G, we denote by NH(v) the set of
neighbors of v that are contained in V (H).

For an integer ` > 1, we denote by [`] the set {1, . . . , `}. Given problems P and P ′,
we write P � P ′ to denote that there exists a polynomial reduction from P to P ′ (hence,
P ′ is at least as hard as P ). Also, given a graph class G and a problem P , we denote P
restricted to G by P |G. Given sets A and B, a function f : A→ B, and an element b ∈ B,
the set of elements of A whose image is b is denoted by f−1(b). Also, given X ⊆ A, we
denote the image of X by f(X), i.e., f(X) = {f(x) | x ∈ X}. If f(X) = {b}, we abuse
notation and write f(X) = b.

Given a graph G and a positive integer k, we say that a function f : V (G)→ [k] is a
proper k-coloring of G if f(u) 6= f(v) for every uv ∈ E(G). A vertex v is called a b-vertex
if f(N [v]) = [k], and f is a k-fall-coloring of G if every vertex of G is a b-vertex. A list
assignment of G is a function L : V (G) → 2N that assigns to each vertex u ∈ V (G) a
finite subset L(u) of positive integers. A partial k-coloring of G is a function p : V ′ → [k]
where V ′ ⊆ V (G) and p is a proper coloring of the subgraph of G induced by V ′. If
V ′ is not given, we denote it by dom(p). Given a partial k-coloring p of G, we say that
f is a k-extension of p if f is a proper k-coloring of G such that f(u) = p(u) for every
u ∈ dom(p).

A biclique of a graph G is a pair of vertex non-empty subsets (A,B) such that G′ =
(A ∪ B,E ′) is a complete bipartite graph, where G′ is the subgraph of G with vertex set
A∪B, and edge set E ′ containing the edges of G between A and B. A k-biclique partition of

the electronic journal of combinatorics 28(2) (2021), #P2.14 6



G is a set of k disjoint bicliques {(A1, B1), · · · , (Ak, Bk)} such that
⋃k

i=1(Ai∪Bi) = V (G).
The coloring problems investigated in this article are formally defined below, adopting

the notation from other papers; see e.g. [32]. In each of the problems defined below, we
consider k to be a fixed integer with k > 1.

k-List Coloring
Input: A graph G = (V,E) and a list assignment L s.t. |L(u)| 6 k for every

u ∈ V (G).
Question: Does G admit a proper coloring f s.t. f(u) ∈ L(u) for every u ∈ V (G)?

List k-Coloring
Input: A graph G = (V,E) and a list assignment L s.t. L(u) ⊆ [k] for every

u ∈ V (G).
Question: Does G admit a proper coloring f s.t. f(u) ∈ L(u) for every u ∈ V (G)?

k-PreExt
Input: A graph G = (V,E), a positive integer k, and a partial k-coloring p of

G.
Question: Does p have a k-extension?

k-Biclique Partition
Input: A graph G = (V,E).
Question: Does G have a k-biclique partition?

k-Fall-Coloring
Input: A graph G = (V,E).
Question: Does G admit a k-fall-coloring?

The investigated homomorphism problems are listed below, where H is considered to
be a fixed graph whenever it is part of the name of a problem.

Surjective H-Homomorphism
Input: A graph G = (V,E).
Question: Does G have a surjective homomorphism to H?

Edge-Surjective H-Homomorphism
Input: A graph G = (V,E).
Question: Does G admit an edge-surjective H-homomorphism?

Retract
Input: A graph G = (V,E) and a subgraph F ⊆ G.
Question: Is there a retraction of G to F?
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Retract to H
Input: A graph G = (V,E) and a subgraph F ⊆ G isomorphic to H.
Question: Is there a retraction of G to F?

A 3-uniform hypergraph is a hypergraph such that each hyperedge has size exactly 3.
A 2-coloring of a hypergraph G is a function f : V (G)→ {1, 2} such that f(e) = {1, 2} for
every hyperedge e ∈ E(G) (i.e., no hyperedge is monochromatic). Lovász [27] showed that
the problem of 2-coloring 3-uniform hypergraphs, formally defined below, is NP-complete.
This problem will be used in the reductions of Sections 4 and 7.

3-Uniform Hypergraph 2-Coloring (abbreviated as 3-Uniform 2-Col)
Input: A 3-uniform hypergraph G = (V,E).
Question: Does G admit a 2-coloring?

From here on, we let n denote the number of vertices of the input graph of the problem
under consideration.

3 List coloring vs. diameter

In this section, we investigate the complexity of k-PreExt, List k-Coloring, and
k-List Coloring on bipartite graphs with diameter d, for a fixed integer d > 2. We
provide a complete picture about the hardness of these problems, leaving as open cases
only 3-PreExt and List 3-Coloring for d = 3.

First, notice that there is a straightforward reduction from k-PreExt to List k-
Coloring. Indeed, for each v ∈ V (G), if v is precolored with color p(v), then define
L(v) = {p(v)}; otherwise, define L(v) = [k]. Furthermore, List k-Coloring is a partic-
ular case of k-List Coloring, since each vertex in an instance of the former problem
has a list assignment of size at most k. From these two remarks, we get

k-PreExt � List k-Coloring � k-List Coloring. (1)

Since the reductions discussed above do not change the input graph, we get that
Equation (1) holds when we restrict the problems to graphs in Bd. We remark that there
are polynomial-time algorithms for the 2-List Coloring problem by Lovász [27] and
Vizing[37], and hence for 2-PreExt and List 2-Coloring as well. In what follows
we focus on the complexity of these problems for k > 3. Observe that if k-PreExt is
proved to be NP-complete on bipartite graphs for some k, then the same holds for the
other problems, and the next result shows that it also implies that (k + 1)-PreExt|B3 is
NP-complete.

Proposition 1. Let k > 1 be a fixed integer. Then k-PreExt|B � (k + 1)-PreExt|B3.

Proof. Let G ∈ B with parts X and Y , p be a partial k-coloring of G, and (G′, p′) be an
instance of (k + 1)-PreExt|B3 obtained from (G, p) as follows. To obtain G′, add to G
two new vertices x and y, all edges from x to vertices in Y , and all edges from y to vertices
in X; therefore G′ is a bipartite graph with parts X ′ = X ∪{x} and Y ′ = Y ∪{y}. Let p′
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Diameter 3-PreExt List 3-Coloring 3-List Coloring
2 P P [18, 5] NP-c [19]
3 open open NP-c
4 NP-c (Sec. 4) NP-c NP-c

Table 1: Row labeled i presents the complexity of the corresponding problems restricted
to bipartite graphs with diameter at most i.

Diameter k-PreExt List k-Coloring k-List Coloring
2 P P [18, 5] NP-c
3 NP-c (Prop. 1) NP-c NP-c
4 NP-c NP-c NP-c

Table 2: Row labeled i presents the complexity of the corresponding problems restricted
to bipartite graphs with diameter at most i, for every fixed integer k > 4.

be obtained from p by giving color k+1 to both x and y. Now, any extension of p′ defines
an extension of p and vice-versa, since color k + 1 can only appear in the new vertices.
Let us argue about the diameter of G′. Recall that we can assume that G is connected,
and therefore it has no isolated vertices.

Consider a pair u, v ∈ V (G′). If they are within the same part, say X ′, then either
they are both adjacent to y, or u = x in which case (x,w, v) is a path, where w is any
neighbor of v in Y (recall that G has no isolated vertices). If u ∈ X ′ and v ∈ Y ′, then
either {u, v}∩{x, y} = ∅, in which case (u, y, w, v) is a (u, v)-path for any neighbor w of v
with w ∈ X; or {u, v} = {x, y} and (x,w,w′, y) is a (u, v)-path for any edge ww′ ∈ E(G);
or |{u, v} ∩ {x, y}| = 1, in which case uv ∈ E(G′). Thus, we get that G′ has indeed
diameter at most 3.

Table 1 (resp. Table 2) presents the complexity of the problems discussed in this
section for k = 3 (resp. for every fixed k > 4) restricted to bipartite graphs with diameter
at most 2, 3, and 4. Let us explain how these tables are filled. In Section 4 we prove
that 3-PreExt|B4 is NP-complete. Note that, from Equation (1) and the fact that
Bd ⊆ Bd+1, we get that the forth row downwards in Table 1 is filled with NP-completeness
results. Also, by Proposition 1, we get that for every fixed k > 4, row 3 downwards in
Table 2 is filled with NP-completeness results. When G is a complete bipartite graph,
the polynomiality of List k-Coloring and k-PreExt follows from previous results by
Couturier et al. [5] and Hoàng et al. [18]. In Section 3.1, we briefly discuss those results
and show a simple algorithm for List k-Coloring that is better than both when the
input graph is a complete bipartite graph. Finally, Jansen and Scheffler [21] proved that
3-List Coloring is NP-complete on complete bipartite graphs. The last two sentences
justify the second row of both tables.
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3.1 List k-Coloring is polynomial on complete bipartite graphs

We begin this section by discussing some previously known results for List k-Coloring.
For r > 1, let rH denote the graph formed by r disjoint copies of a graph H, and by
G + H we denote the graph formed by the disjoint union of the graphs G and H.

Hoàng et al. [18] considered the List k-Coloring problem in P5-free graphs. A
key ingredient of their algorithm is a result by Bacsó and Tuza [2] stating that every
P5-free graph contains a dominating structure, that is, an induced subgraph D ⊆ G that
is isomorphic to P3 or to a complete graph, and V (D) is a dominating set of G. Their
algorithm starts by performing a brute-force search for a dominating structure D of size
at most k over all

(
n
k

)
sets of vertices of size k in G. If none is found, then by the

aforementioned result by Bacsó and Tuza [2], G contains a clique of size at least k+1 and
thus it is not k-colorable. Otherwise, they guess a coloring of D and reduce the original
List k-Coloring instance to solving at most (kn)k

5
instances of List (k−1)-Coloring,

which are then solved recursively.
Couturier et al. [5] generalized the result by Hoàng et al. [18] to (rP1+P5)-free graphs.

They showed that any such graph that is L-colorable, where L is a list assignment of G
with L(u) ⊆ [k] for every u ∈ V (G), admits another kind of dominating set of size at
most f(k), for some computable function f , and their algorithm for List k-Coloring
also depends on finding a dominating set of size at most f(k) in G and on solving O(nf(k))
new instances.

We provide a simple algorithm for List k-Coloring in complete bipartite graphs
that has the advantage of being an FPT algorithm, while the algorithms discussed above
are clearly XP. As mentioned before, this algorithm also solves k-PreExt on complete
bipartite graphs, by Equation (1) and the fact that the reduction does not modify the
input graph.

Theorem 2. The List k-Coloring|B2 problem can be solved in time O(2k · k · log k ·n).
In particular, it can be solved in linear time for every fixed integer k > 1.

Proof. Consider a complete bipartite graph G = (A∪B,E) and a list assignment L such
that L(u) ⊆ [k] for every u ∈ V (G). It is easy to see that solving List k-Coloring on
G is equivalent to choosing an element c(u) in L(u) for each u ∈ V (G) in such a way
that the chosen elements for A have no intersection with the chosen elements of B; more
formally, {c(u) | u ∈ A} ∩ {c(u) | u ∈ B} = ∅. Because choosing a color c(u) for u ∈ A
actually makes this color available for every v ∈ A and non-available for every v ∈ B, the
problem actually consists of choosing which subset of colors S can be used in A, knowing
that S = [k] \S will be the colors available for B. So, we can simply test, for each subset
S ⊆ [k], whether S ∩ L(u) 6= ∅ for every u ∈ A, and S ∩ L(u) 6= ∅ for every u ∈ B. This
takes time O(2k · k · log k · n) since we need to check the intersection between either S or
S and L(u) (which takes time O(k · log k) if we consider the lists are ordered) for every
u ∈ V (G).

In fact, Theorem 2 states that List k-Coloring|B2 is fixed-parameter tractable pa-
rameterized by k, using terminology from parameterized complexity (cf. for instance [6]).
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On the other hand, by considering the disjoint union of instances of List k-Coloring|B2
it is easy to obtain a so-called and-cross-composition (see again [6]), hence refuting, un-
der standard complexity assumptions, the existence of polynomial kernels for the problem
List k-Coloring, parameterized by k, restricted to the graph class consisting of the
disjoint union of complete bipartite graphs. Note that List k-Coloring restricted to
this class is also fixed-parameter tractable, since one can solve the problem independently
on each connected component. We leave as an open problem the existence of a polynomial
kernel for List k-Coloring|B2 parameterized by k.

4 Retract to C6

Our goal is to show that Retract to C6 is NP-complete even under various constraints,
which imply that the input graph is in B4. These constraints shall be particularly useful
in the next section, where we prove the NP-completeness of Edge-Surjective C6-
Homomorphism and Surjective C6-Homomorphism on B4. The proof of the fol-
lowing theorem consists of an appropriate modification of a reduction by Kratochv́ıl [24].
Basically, we start from the 3-Uniform 2-Col problem, instead of 1-in-3 SAT, which
allows us to combine a small gadget introduced by Kratochv́ıl (called AB-link) in a unique
edge-gadget (instead, Kratochv́ıl had to combine them in eight distinct ways, depending
on whether each variable was positive or negative). Additionally, since we do not need
planarity, we can start with only six pre-colored vertices, which allows us to bound the
diameter of G.

Theorem 3. Let G = (X ∪ Y ) be a bipartite graph, let C ⊆ G be an induced C6 in G,
and let YC = V (C) ∩ Y . Deciding whether G has a retraction to C is NP-complete, even
if YC dominates X and dist(h, y) 6 2 for every h ∈ YC and y ∈ Y .

Proof. We reduce from the 3-Uniform 2-Col problem (recall the definition from Sec-
tion 2). For this, consider a 3-uniform hypergraph H = (V,E), and let G be the bipartite
graph with bipartition (V,E) such that ue ∈ E(G) if and only if u ∈ e. Add ver-
tices pV1 , p

V
2 , p

V
3 and pE1 , p

E
2 , p

E
3 to parts V and E, respectively, and make the subgraph

induced by these vertices be the cycle C = (pV1 , p
E
2 , p

V
3 , p

E
1 , p

V
2 , p

E
3 , p

V
1 ). Add an edge

between each v ∈ V and pE3 . This ensures that any retraction f from G to C is such
that f(V ) = {pV1 , pV2 } = NC(pE3 ). Now, for each hyperedge e ∈ E, we replace some of
the edges incident to e with an edge gadget defined as follows. For easier reference, let
V = {v1, . . . , vn} and E = {e1, . . . , em}. Let ej ∈ E, and let i1, i2, i3 be the indices of
the vertices within ej. Remove edges vi1ej and vi2ej from G, and replace them with the
gadget of Figure 1. For better visibility, sometimes we make more than one copy of some
of the vertices of C in the figure (for instance, vertex pE3 is represented 3 different times,
but all occurrences correspond to the same vertex). Dashed and solid vertices are used to
represent the bipartition of G. The purpose of this gadget is to ensure that hyperedge ej
cannot be monochromatic, as discussed below.

We need to prove that G is a bipartite graph, that C has the desired properties, and
that f has a retraction to C if and only if H has an appropriate 2-coloring. We first prove
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ejv′′1,jv′1,jvi1

d1,j

c1,j

b1,j

a1,j

pE2

pV2pV1

pV1

pE1

pV3

pE3 v′′2,j v′2,j vi2

d2,j

c2,j

b2,j

a2,j

pE1

pV1 pV2

pV2

pE2

pV3

pE3

vi3

pE3

Figure 1: Gadget for hyperedge ej = {vi1 , vi2 , vi3}.

the latter. So, let f be a retraction to C; we prove that f restricted to V is a 2-coloring,
using colors pV1 , p

V
2 , such that no hyperedge is monochromatic. Suppose otherwise and

let ej = {vi1 , vi2 , vi3} be such that f({vi1 , vi2 , vi3}) is monochromatic. Because every
vertex in V is adjacent to pE3 , we get that f({vi1 , vi2 , vi3}) ∈ {pV1 , pV2 } = NC(pE3 ). First,
suppose that f({vi1 , vi2 , vi3}) = pV1 . We prove that f must be as depicted in Figure 2, a
contradiction since in this case ej has neighbors in f−1(pEi ) for every i ∈ [3], and therefore
cannot be mapped to C. Labels of vertices that do not have their image forced are left
blank. Note that C can also be seen as the complete bipartite graph minus the perfect
matching {pVi pEi | i ∈ [3]}. Because a1,j is adjacent to pV3 and to vi1 ∈ f−1(pV1 ), we get that
f(a1,j) = pE2 . But now we get that v′1,j is adjacent to pE1 and to f−1(pE2 ), and therefore
must be in pV3 . This implies that d1,j is adjacent to pV2 and f−1(pV3 ), and hence is colored
with pE1 . Finally, we get that v′′1,j is adjacent to pE2 and f−1(pE1 ), and must be colored
with pV3 . The analysis for the right-hand side of the gadget is similar. For the case where
f({vi1 , vi2 , vi3}) = pV2 , we have the situation depicted in Figure 3, and it follows similarly.
Therefore, no edge is monochromatic, as we wanted to prove.

Conversely, suppose now that f ′ is a 2-coloring of H with no monochromatic hyper-
edge, and let f be obtained from f ′ by mapping to pVi all the vertices colored with i, for
i ∈ {1, 2}. Let ej = {vi1 , vi2 , vi3}. We show how to map the vertices within the hyperedge
gadget related to ej. The possibilities are the following:

• f(vi1) = f(vi2) = pV1 : in this case f(vi3) = pV2 since ej is not monochromatic. Map
the vertices as in Figure 2, except for vi3 , and note that we can map ej to pE1 , and
that the blank vertices can be mapped to C;

• f(vi1) = f(vi2) = pV2 : in this case f(vi3) = pV1 since ej is not monochromatic. Map
the vertices as in Figure 3, except for vi3 , and note that ej can be mapped to pV2 ,
and that the blank vertices can be mapped to C;

• f(vi1) = pV1 and f(vi2) = pV2 : map the left-hand side as in Figure 2, and the right-
hand side as in Figure 3. Note that ej can be mapped to p ∈ {pE1 , pE2 } \ {f(vi3)},
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ejpV3
v′′1,j

pV3

v′1,j

pV1
vi1 pE1

d1,j

pE2

a1,j pE2

pV2pV1

pV1

pE1

pV3

pE3 pV2

v′′2,j

pV1

v′2,j

pV1

vi2pE3

c2,j

pE3
b2,j

pE1
pV1 pV2

pV2

pE2

pV3

pE3

pV1

vi3

pE3

Figure 2: Coloring of a hyperedge gadget when f({vi1 , vi2 , vi3}) = pV1 . Vertices vi1 , vi2 ,
and vi3 are emphasized. The image of a vertex is put inside of the node, and its label
appears next to it, with the exception of ej. Note that the blank vertices can be colored,
from left to right, with pE2 , pE2 , pE3 , and pE2 .

and that the blank vertices can be mapped to C;

• f(vi1) = pV2 and f(vi2) = pV1 : map the left-hand side as in Figure 3, and the right-
hand side as in Figure 2. Note that ej can be mapped to pE3 , and that the blank
vertices can be mapped to C.

Finally, we need to prove that G is bipartite, and that C has the desired properties.
To see that G is bipartite, just observe that the dashed and solid vertices in Figure 1 form
a bipartition of G; let (X, Y ) be such a bipartition, where V ⊆ X and E ⊆ Y (i.e., X
contains the dashed vertices, and Y the solid ones). More formally, one can see that

X = V ∪ {pV1 , pV2 , pV3 } ∪ {v′i,j, v′′i,j | i ∈ [2], j ∈ [m]};

Y = E ∪ {pE1 , pE2 , pE3 } ∪ {ai,j, bi,j, ci,j, di,j | i ∈ [2], j ∈ [m]}.

As for the properties of C, observe first that every x ∈ X is adjacent to pEi , for
some i ∈ {1, 2, 3}, i.e., YC = {pE1 , pE2 , pE3 } dominates X. It remains to prove that
every p ∈ YC is at distance at most 2 from every y ∈ Y . Given ej ∈ E, denote
by Yj the subset of vertices in Y contained in a gadget related to ej; hence Y =
YC ∪

⋃
j∈[m] Yj and it suffices to prove that, given some j ∈ [m], every p ∈ YC is at

distance at most 2 from every vertex in Yj. For pE1 , it follows from the fact that Yj ⊆
N({v′1,j, v′′2,j, pV2 , pV3 }) and that {v′1,j, v′′2,j, pV2 , pV3 } ⊆ N(pE1 ). For pE2 , if follows from the
fact that Yj ⊆ N({v′2,j, v′′1,j, pV1 , pV3 }) and that {v′2,j, v′′1,j, pV1 , pV3 } ⊆ N(pE2 ). Finally, for pE3
if follows from the fact that Yj ⊆ N({vi1 , vi2 , vi3 , pV1 , pV2 }) and that {vi1 , vi2 , vi3 , pV1 , pV2 } ⊆
N(pE3 ).

Corollary 4. 3-PreExt|B4 is NP-complete, even if every vertex in one of the parts is
adjacent to some precolored vertex.
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pV2

pE2

pV3

pE3

pV2
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Figure 3: Coloring of a hyperedge gadget when f({vi1 , vi2 , vi3}) = pV2 . Vertices vi1 , vi2 ,
and vi3 are emphasized. The image of a vertex is put inside of the node, and its label
appears next to it, with the exception of ej. Note that the blank vertices can be colored,
from left to right, with pE1 , pE3 , pE1 , and pE1 .

Proof. Given a bipartite graph G = (X ∪Y,E) and a C6, say C, in G with the properties
stated in Theorem 3, it suffices to precolor pEi , p

V
i with i for each i ∈ [3]. One can see

that G has a 3-extension for this precoloring if and only if G has a retraction to C. Also,
the fact that {pE1 , pE2 , pE3 } dominates X gives us the property claimed in the statement.
It remains to verify that diam(G) 6 4. For this, first we argue that dist(x, y) 6 3 for
every x ∈ X and y ∈ Y ; indeed, either xy ∈ E(G) or (x, pEi , w, y) is a path between x
and y, where pEi is any vertex in N(x) ∩ C and (pEi , w, y) is the (pEi , y)-path of length 2
ensured in the statement of Theorem 3. Now, for x, x′ ∈ X, let y ∈ N(x) (it exists by
construction); we know from the previous sentence that dist(y, x′) 6 3 and thus it follows
that dist(x, x′) 6 4. The argument for y, y′ ∈ Y is symmetric.

5 Surjective C6-homomorphism

We first prove that Edge-Surjective C6-Homomorphism is NP-complete on B4, and
as a byproduct we get that Surjective C6-homomorphism is NP-complete (cf. Corol-
lary 7). Notice that, unlike in the retraction problem, in the Edge-Surjective C6-
Homomorphism problem, the target C6 is not necessarily a fixed subgraph of G. How-
ever, we show that, under some assumptions, an edge surjective C6-homomorphism for G
coincides with a retraction of G to H for some choice of H ⊆ G such that H ∼= C6. We
remark that another proof that Edge-Surjective C6-Homomorphism is NP-complete
was given by Vikas [36]. However, our proof is simpler and we consider constraints which
are not present in the proof of Vikas [36].

In what follows, we present a reduction from Retract to C6 on bipartite graphs of
diameter four to Edge-Surjective C6-Homomorphism. Let G and H be the input
graph and subgraph, respectively; also, let us write H as (h1, . . . , h6), and X, Y be the
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parts of G, with {h1, h3, h5} ⊆ Y . We first introduce the gadget depicted in Figure 4
related to a vertex u ∈ Y \V (H). The cycle (h′1, . . . , h

′
6) represents a circular permutation

of (h1, . . . , h6) such that h′1 ∈ {h1, h3, h5}; we call this the (h′1, h
′
4)-gadget (this is because

h′1h
′
4 is the diagonal related to this gadget). We obtain the input graph G′ of Surjective

C6-homomorphism from G by adding an (h′1, h
′
4)-gadget related to each u ∈ Y \ V (H),

for each possible pair (h′1, h
′
4) such that h′1 ∈ {h1, h3, h5}, namely for (h1, h4), (h3, h6),

and (h5, h2) (see Figure 6). Note that V (G′) \ V (G) consists of precisely the vertices
{a, b, c, d, e, g} introduced for each choice of u ∈ Y \ V (H) and each choice of h′1, for a
total of 6(|Y | − 3) new vertices. We use the circular permutation in the following lemma
to avoid making analogous arguments for each type of gadget separately.

h′1 h′3

h′5

h′2

h′4h′6

a

b
c

d

eg

u

Figure 4: Gadget related to the diagonal h′1h
′
4.

Lemma 5. Let G ∈ B4 and H ⊆ G be isomorphic to a C6; write H = (h1, . . . , h6).
Also, let G′ be obtained from G by adding the gadget represented in Figure 4 for every
u ∈ X, and every (h′1, h

′
4) ∈ {(h1, h4), (h3, h6), (h5, h2)}. Let f be an edge-surjective

C6-homomorphism of G′ to the C6 (1, . . . , 6). Suppose that (h′1, . . . , h
′
6) is a circular

permutation of H such that h′1 ∈ {h1, h3, h5}, and f(h′i) = i for each i ∈ {3, 4, 5}. If some
u ∈ V (G) \ V (H) is such that f(u) = 1, then f is a retraction of G′ to H.

Proof. We prove that if there exists a vertex u ∈ V (G) \ V (H) such that f(u) = 1,
then f(h′1) = 1; note that the lemma follows since {1, 3} = {f(h′1), f(h′3)} ⊆ N(f(h′2)),
and {1, 5} = {f(h′1), f(h′5)} ⊆ N(f(h′2)) imply that f(h′2) = 2 and f(h′6) = 6. To see
that f(h′1) = 1, note that the images of the gadget related to u must be as depicted in
Figure 5, as explained next (fixed values appear inside the vertex, while implied values
appear between parenthesis next to the vertex). Since g is adjacent to u ∈ f−1(1) and
h′5 ∈ f−1(5), we get that f(g) = 6. Similarly, we get f(c) = 2 since it is adjacent to
u ∈ f−1(1) and h′3 ∈ f−1(3). Note that this implies that f(d) = 3 and f(e) = 5, which in
turn implies that f(a) = 6 and f(b) = 2. Because a, b ∈ N(h′1), we get f(h′1) = 1 as we
wanted to prove.
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h′1(1)

h′2

h′6
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h′3

4
h′4

5

h′5

a(6)

b(2)
c(2)

d(3)

e(5)g(6)

1 u

Figure 5: Mapping of a diagonal gadget related to u ∈ X such that f(u) = 1, when
f(h′i) = i for each i ∈ {3, 4, 5}. We get that f(h′1) = 1.

Recall that Theorem 3 states that the restriction of Retract to C6 used in the
following lemma is NP-complete.

Lemma 6. Let G = (X∪Y,E) be a bipartite graph and H ⊆ G be a subgraph isomorphic to
C6. Let YH be the set V (H)∩Y , and suppose that YH dominates X and that dist(h, y) 6 2
for every h ∈ YH and y ∈ Y . If G′ is obtained as in Lemma 5, then G′ is a bipartite
graph with diam(G′) 6 4, and the answer to the Retract to C6 instance is yes if and
only if the answer to G′ admits an edge-surjective homomorphism to C6.

Proof. Write H as before and suppose YH = {h1, h3, h5}. Denote by A,B,C the sets of
vertices containing the vertices labeled with a, b, c in the gadgets depicted in Figure 6,
respectively. To see that G′ is bipartite, observe the coloring in grey and black in Figure 6,
with Y being gray. Now, denote by (X ′, Y ′) the bipartition of G′ such that X ⊆ X ′, and
observe that X ′ = X∪B∪C and Y ′ = Y ∪A. We prove that the same property holding for
YH in G also holds in G′. The fact that diam(G′) 6 4 then follows by the same argument
given in Corollary 4. We discuss each property separately:

1. YH dominates X ′: we know that YH dominates X by assumption. Also, one can
verify in Figure 6 that every vertex in B∪C is adjacent to some vertex in {h1, h3, h5};

2. dist(h, y) 6 2 for every y ∈ Y ′ and h ∈ YH : we know that this holds when y ∈
Y by assumption. Consider a vertex a ∈ A. It suffices to show that this holds
when a is within an (h1, h4)-gadget, since the other cases are symmetric. So let
u be such that a is within the (h1, h4)-gadget related to u. If a = au1,1,4, then
(a, bu1,1,4, h1), (a, cu1,1,4, h3), and (a, h4, h5)) are paths of length 2 between a and each
h ∈ {h1, h3, h5}, as we wanted to show. An analogous argument holds if a = au2,1,4.

Now, we prove the second part of the theorem. Let f be a retraction of G to H.
Since H is isomorphic to C6, it suffices to extend f to G′. Also, because the gadgets
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Figure 6: Different types of diagonal gadgets.

are symmetric, we just need to show how to extend f to an (h1, h4)-gadget. So consider
any u ∈ Y . Figure 5 tells us how to extend f to the (h1, h4)-gadget related to u when
f(u) = h1 (considering h′1 = h1), while Figure 7 shows how to do it when f(u) ∈ {h3, h5}.
Because u ∈ Y and {h2, h4, h6} ⊆ X, these are the only options.

Conversely, suppose that G′ has an edge-surjective C6-homomorphism f , and write
the target C6 as H ′ = (1, . . . , 6). We want to prove that f(hi) = i, for every i ∈ [6], so
that f also gives a retraction of G to H. Note that if, at some point, we get that f(hi) = i
either for every odd i, or for every even i, then we are done.

First, we prove that |f(YH)| > 1. So suppose without loss of generality that f(YH) = 1,
and note that in this case f(H) ⊆ {1, 2, 6}. Because G′ is bipartite and f is also vertex-
surjective, we know that f−1(4) 6= ∅, and since f−1(4) ⊆ X ′ we get a contradiction to
Property (1) of the set YH , since X ′ would not be dominated by YH . We then may assume
that |f(YH)| = 2, since the proof is finished when it is equal to 3. This means that 2
vertices among {h1, h3, h5} get distinct images. By relabeling H ′ if necessary, we can
assume that the possible cases are the following:

• f(h3) = 3 and f(h5) = 5: this implies that f(h4) = 4. We know by Lemma 5
that f−1(1) ∩ Y = ∅ as otherwise f(h1) = 1 and the lemma follows. Also, note
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Figure 7: Extension of a retraction of G to H to a retraction of G′ to H, which is of
course also an edge-surjective C6-homomorphism of G′.

that {h2, h4, h6} dominates A. Hence, since ∅ 6= f−1(1) ⊆ A, we must get that
either f(h2) = 2 or f(h6) = 6. In fact, if we get that f(h2) = 2, then by relabeling
(1, . . . , 6) to (3, 4, 5, 6, 1, 2) and doing the same with H, we get the situation f(hi) = i
for each i ∈ {3, 4, 5, 6}. So suppose this is the case and note that we can assume that
f(h1) = 5 and f(h2) = 4, since if f(h1) = 1 and f(h2) = 2 the proof is complete. We
want to prove that f−1(1) = ∅, thus getting a contradiction. Recall that f−1(1) ⊆ A,
and let a ∈ A be such that f(a) = 1. Also let u ∈ Y be such that a is within some
diagonal gadget related to u. Observe that a is not within an (h1, h4)-gadget since
{au1,1,4, au2,1,4} ⊆ N(h4), nor within an (h5, h2)-gadget since {au1,5,2, au2,5,2} ⊆ N(h2),
and f(h2) = f(h4) = 4. Therefore, a is within an (h3, h6)-gadget. The following
argument is illustrated in Figure 8.

First suppose that a = au1,3,6. Because cu1,3,6 ∈ N(h1), f(h1) = 5, and f(a) = 1, we
get that f(cu1,3,6) = 6. And because h3 ∈ N(bu1,3,6), f(h3) = 3, and f(a) = 1, we get
that f(bu1,3,6) = 2. We get a contradiction since {2, 6} ⊆ f(N(u)) and f(u) 6= 1.
Clearly the same argument holds for a = au2,3,6 since f(h5) = f(h1) = 5.

• f(h1) = 1 and f(h3) = 3: an argument analogous to the previous case yields a
similar contradiction;

• f(h1) = 1 and f(h5) = 5: again, an analogous argument concludes the proof.

As a direct consequence of Theorem 3 and Lemma 6, we get that Edge-Surjective
C6-Homomorphism is NP-complete even when G has diameter four. We next argue that
this also implies the NP-completeness of Surjective C6-Homomorphism.

Corollary 7. Edge-Surjective C6-Homomorphism|B4 is NP-complete. The same
holds for Surjective C6-Homomorphism|B4.
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Figure 8: Situation where f(hi) = i for every i ∈ {3, 4, 5, 6}.

Proof. Let G be a bipartite graph with diameter at most four. The first statement
follows by Theorem 3 and Lemma 6. We argue that G has an edge-surjective C6-
homomorphism if and only G has a surjective C6-homomorphism. Clearly an edge-
surjective C6-homomorphism is a surjective C6-homomorphism, so it remains to show that
given a surjective C6-homomorphism f of G, it follows that f is an edge-surjective C6-
homomorphism as well. Suppose otherwise, and denote the target C6 by (1, . . . , 6). With-
out loss of generality, suppose that edge 12 has no pre-image, i.e., there is no uv ∈ E(G)
such that f(u) = 1 and f(v) = 2. This means that every path between u ∈ f−1(1) and
v ∈ f−1(2) is mapped to (1, 6, 5, 4, 3, 2), which implies that dist(u, v) > 5, contradicting
the hypothesis that diam(G) 6 4.

Finally, by applying a trick similar to the one used in Proposition 1, we get that:

Corollary 8. For an integer k > 4, let Mk denote the complete bipartite graph Kk,k minus
a perfect matching. Also, let G ∈ B3 and H ⊆ G such that H ∼= Mk. Then Surjective
Mk-Homomorphism, Edge-Surjective Mk-Homomorphism, and Retract to Mk

are all NP-complete.

6 3-Biclique Partition on bipartite graphs with diameter four

In this section we first show how Corollary 7 implies the NP-completeness of the 3-
Biclique Partition problem, and then we present the flaw in the proof in [10]. Recall
that GB denotes the bipartite complement of G.

Corollary 9. Let G be a bipartite graph such that GB has diameter at most four. Then,
deciding whether G has a 3-biclique partition is NP-complete.
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Proof. Denote the parts of G by X and Y . It suffices to notice that V1, V2, V3 is a 3-
biclique partition of G if and only if the function f defined as follows is a surjective C6-
homomorphism of GB: f−1(1) = X∩V1, f

−1(2) = Y ∩V2, f
−1(3) = X∩V3, f

−1(4) = Y ∩V1,
f−1(5) = X ∩ V2, and f−1(6) = Y ∩ V3. The theorem thus follows from Corollary 7.

Fleischner et al. [10] presented a hardness proof for the k-Biclique Partition prob-
lem for a general k > 3, but since their reduction for values of k larger than 3 can be
obtained using the trick presented in Proposition 1, for the sake of simplicity we consider
k = 3. Still for the sake of simplicity, we work on the bipartite complement of their con-
struction, which is from the List 3-Coloring problem. So, consider G bipartite with
parts X, Y , and a list assignment L such that L(u) ⊆ {1, 2, 3} for every u ∈ V (G). Let G′

be obtained from G by adding a cycle C = (x1, y2, x3, y1, x2, y3, x1) (which alternatively
can be seen as the complete bipartite graph minus the perfect matching {xiyi | i ∈ [3]}).
Then, for every u ∈ X, add an edge from u to yi if and only if i /∈ L(u); do the same
for each u ∈ Y and xi. They claim that G has an L-coloring if and only if G′ has a
retraction to C, if and only if G′B has a 3-biclique partition. Indeed one can see that any
retraction f of G′ to C gives a 3-biclique partition V1, V2, V3 of G′B with each Vi defined
as {u ∈ V (G) | f(u) ∈ {xi, yi}}. However, in the reverse implication, it is not necessarily
true that a 3-biclique partition V1, V2, V3 will map edge xiyi inside of Vi for every i ∈ [3], as
the authors claim. For example, when G is simply an edge uv, and L(u) = L(v) = {1, 2},
we get that V1 = {x1, x2, v}, V2 = {y1, y2, u}, and V3 = {x3, y3} is a valid 3-biclique
partition of V (G′).

Nevertheless, their proof does imply that Retract to C6 is NP-complete. We pro-
vided another proof of this fact in Theorem 3 because we needed stronger constraints on
G and H in order to prove Corollaries 7 and 9.

7 k-Fall Coloring

In this section we investigate the complexity of k-Fall Coloring on bipartite graphs
with diameter at most d for every pair of integers k, d. As in the case of list coloring
problems, again the only case that we leave open is when k = 3 and d = 3. We conjecture
that this case is also NP-complete, and we prove in Proposition 13 that, if so, then the
cases left open in Table 1 would also be NP-complete. We start with the following technical
lemma.

Lemma 10. Let G be a bipartite graph with vertex bipartition (X, Y ) and f be a k-fall-
coloring of G. If k > 3, then f(X) = f(Y ) = [k].

Proof. Towards a contradiction, suppose that 1 /∈ f(X), which implies that every v ∈ X
has some neighbor in f−1(1) ⊆ Y ; however, there can be no u ∈ Y with f(u) 6= 1,
otherwise 1 /∈ f(N [u]), so we have f−1(1) = Y . But in this case, since k > 3 and G
is bipartite, |f(N [v])| 6 2 for every v ∈ X, contradicting the hypothesis that f is a
k-fall-coloring.

The following is analogous to Proposition 1.
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Proposition 11. Let k > 3 be a fixed positive integer. Then,

k-Fall-Coloring|B � (k + 1)-Fall-Coloring|B3 .

Proof. Let G ∈ B with parts X and Y , and G′ be obtained from G by adding new vertices
x, y together with all edges from x to vertices in Y and all edges from y to vertices in X.
This is the same graph as the one constructed in Proposition 1, and thus we already know
that G′ has diameter at most three. Now, we prove that G has a k-fall-coloring if and
only if G′ has a (k + 1)-fall-coloring. If f is a k-fall-coloring of G, then let f ′ be obtained
from f by coloring x and y with color k + 1. Every vertex of X and Y is adjacent to the
new color, so they continue to be b-vertices, and x and y are b-vertices by Lemma 10.
Now, let f ′ be a (k + 1)-fall-coloring of G′, and suppose without loss of generality that
f(x) = k + 1. Again, by Lemma 10 we get that each part must contain every color.
Therefore, because x is complete to Y , we get that the only vertex on Y ∪ {y} that can
be colored with k + 1 is y, i.e., f(y) = k + 1. In this case, one can see that f ′ restricted
to G must define a k-fall-coloring of G.

We get the following partial classification of the problem. As we already mentioned,
the only open case is when k = 3 and d = 3.

Corollary 12. Let k, d be positive integers. Then k-Fall-Coloring|Bd is polynomial
when k 6 2 or d = 2, and NP-complete when either k > 4 and d > 3, or k = 3 and d > 4.

Proof. Observe that if G is a complete bipartite graph, i.e., a bipartite graph with diameter
two, then every coloring that uses more than 2 colors will have a non-b-vertex, hence the
answer to k-Fall-Coloring is trivially no when k > 3 and G is a complete bipartite
graph (that is, d = 2). When k 6 2, then either G has an isolated vertex and the answer
is no, or it does not and the answer is yes since any 2-coloring is also a 2-fall-coloring.
For k > 4, it is known that 3-Fall-Coloring is NP-complete on bipartite graphs [26],
which applying Proposition 11 and induction on k gives us that k-Fall-Coloring|Bd is
also NP-complete for every d > 3. For the remaining case, we prove in Theorem 14 that
3-Fall-Coloring|B4 is NP-complete.

Before we move on to the proof of the case k = 3 and d = 4, we prove the following
result.

Proposition 13. 3-Fall-Coloring|B3 � 3-PreExt|B3 .

Proof. We present a Turing reduction from 3-Fall-Coloring|B3 to 3-PreExt|B3 , that
is, we show that if 3-PreExt|B3 can be solved in polynomial time, then we can solve
3-Fall-Coloring|B3 by solving a polynomial number of instances of 3-PreExt|B3 . Let
G be a bipartite graph with diameter at most three. Given a cycle C of length 6 and a
3-coloring f of G, we say that C is fall-colored in f if f restricted to C is a fall-coloring.
We claim that G has a 3-fall-coloring if and only if there exists a C6 in G whose 3-fall-
coloring can be extended to a proper 3-coloring of G. Observe that, if true, we get the
desired reduction since it would suffice to test, for every subset of vertices of size 6 that
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induce a cycle C, whether a 3-fall-coloring of C can be extended to G (observe that this
3-fall-coloring is unique up to relabeling).

Let (X, Y ) be the bipartition of G. First, suppose that f is a 3-fall-coloring of G. By
Lemma 10, we know that f(X) = f(Y ) = {1, 2, 3}. Let v1, v2, v3 ∈ X be colored with
1, 2, and 3, respectively. Because G has diameter at most three, we get that N(vi) ∩
N(vj) 6= ∅, for every {i, j} ⊆ {1, 2, 3}, i 6= j. So, let wi,j ∈ N(vi) ∩ N(vj), for each
choice of i, j. Since f(v1, v2, v3) = {1, 2, 3} and f is a proper 3-coloring, we get that
{w1,2, w2,3, w1,3} are all distinct, and that f(wi,j) = ` where ` ∈ {1, 2, 3}\{i, j}. Then the
cycle (v1, w1,2, v2, w2,3, v3, w1,3) is an induced C6 because G is bipartite and because f is a
proper coloring. Conversely, suppose that a 3-fall-coloring f of a cycle C of length 6 can
be extended to a proper 3-coloring f ′ of G (note that the fall-coloring of C is unique up
to relabeling). A 3-b-coloring is a proper 3-coloring such that each color class has at least
one b-vertex. Note that any extension of f is a 3-b-coloring of G, since in C there are
already b-vertices of all the 3 colors. Faik [7] proved that every 3-b-coloring of a bipartite
graph with diameter three is also a 3-fall-coloring1; hence, f ′ is a 3-fall-coloring of G.

Now, we prove that 3-Fall-Coloring is NP-complete even when restricted to bipar-
tite graphs with diameter at most four. We mention that our proof is an improvement on
the proof presented by Laskar and Lyle [26], where the constructed graphs have diameter
six, although the authors do not mention that in their proof.

Theorem 14. 3-Fall-Coloring|B4 is NP-complete.

Proof. We present a reduction from 3-Uniform 2-Col. Consider a 3-uniform hyper-
graph G on vertices V = {v1, . . . , vn} and hyperedges E = {e1, . . . , em}, and let G′ be
constructed as follows (see Figure 9 for an illustration). Add V and E to the set of
vertices of G′, together with a copy v′i of each vertex vi ∈ V ; denote by V ′ the set
{v′i | vi ∈ V }. Also, add two new vertices v, v′, and make v complete to V and v′ complete
to V ′. Finally, add an edge between ej and each vi ∈ ej for every ej ∈ E, and add the
matching {viv′i | i ∈ [n]}. We prove that G′ is a bipartite graph with diameter four, and
that G is a yes-instance of 3-Uniform 2-Col if and only if G′ is a yes-instance of
3-Fall-Coloring.

First, note that (V ′ ∪ E ∪ {v}, V ∪ {v′}) is a bipartition of G′. To see that G′ has
diameter four, first note that G′ − E consists of a perfect matching between V and V ′,
together with a vertex v complete to V and a vertex v′ complete to V ′. Observe that this
subgraph has diameter three, with the most distant pairs of vertices being v and v′, and
vi and v′j with i 6= j. Now, consider a hyperedge e ∈ E. Below, we show that the distance
between e and any other vertex of G′ is at most four.

• d(e, v) = 2: let vi ∈ e; then (e, vi, v) is a path in G′;

• d(e, v′) = 3: let vi ∈ e; then (e, vi, v
′
i, v
′) is a path in G′;

1Since reference [7] is in French, for completeness we present the proof in Appendix A.
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Figure 9: Graph G′ related to the hypergraph G = (V,E).

• d(e, vi) 6 3 for every vi ∈ V : if vi ∈ e, then (e, vi) is a path in G′. Otherwise, let
vj ∈ e; then (e, vj, v, vi) is a path in G′;

• d(e, v′i) 6 4 for every v′i ∈ V ′: if vi ∈ e, then (e, vi, v
′
i) is a path in G′. Otherwise,

let vj ∈ e; then (e, vj, v, vi, v
′
i) is a path in G′;

• d(e, e′) 6 4, for every e′ ∈ E(G) \ e: if there exists vi ∈ e ∩ e′, then (e, vi, e
′) is a

path in G′. Otherwise, let vi ∈ e and vj ∈ e′, then (e, vi, v, vj, e
′) is a path in G′.

Now, we prove that G is a yes-instance of 3-Uniform 2-Col if and only if G′

is a yes-instance of 3-Fall-Coloring. First, consider a 2-coloring f of G with no
monochromatic hyperedge, and suppose that the used colors are {2, 3}. We extend f to
a 3-fall-coloring f ′ of G′. For this, color every x ∈ E ∪ {v, v′} with 1, and color v′i with
c ∈ {2, 3} \ f(vi). One can verify that, because no hyperedge of G is monochromatic in
f , the obtained coloring is a fall-coloring of G′.

Finally, consider a 3-fall-coloring f ′ of G′, and suppose, without loss of generality, that
f ′(v) = 1. This and the fact that v is a b-vertex imply that f(V ) = {2, 3}. Hence, for
every e ∈ E(G), since NG′(e) ⊆ V and 1 /∈ f(V ), in order for e to be a b-vertex we must
have that f(e) = 1, and that f(NG′(e)) = {2, 3}. Therefore, the coloring f ′ restricted to
V is a 2-coloring of G with no monochromatic hyperedge.
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A 3-b-colorings and 3-fall-colorings

In this section, for the sake of completeness, we present a proof of Faik [7].

Theorem 15 (Faik [7]). Let G be a bipartite graph with diameter at most 3. If f is a
3-b-coloring of G, then f is a 3-fall-coloring of G.

Proof. Let (X, Y ) be the bipartition of V (G). By Lemma 10, it holds that that f(X) =
f(Y ) = [3]. Note that if u, v are within the same part, then N(u)∩N(v) 6= ∅, as otherwise
their distance would be at least four. So, let u ∈ X be of color 1. Because there exists
v ∈ X of color 2 and since N(u)∩N(v) 6= ∅, we get that u must have a neighbor of color
3, namely the common neighbor with v. The analogous holds when picking any v ∈ X of
color 3; therefore u is a b-vertex. Clearly this argument can be applied to every u ∈ X∪Y
just by renaming the colors and the parts.
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