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Abstract A matching cut is a partition of the vertex set of a graph into two sets A
and B such that each vertex has at most one neighbor in the other side of the cut.
The Matching Cut problem asks whether a graph has a matching cut, and has been
intensively studied in the literature. Motivated by a question posed by Komusiewicz
et al. [Discrete Applied Mathematics, 2020], we introduce a natural generalization of
this problem, which we call d-Cut: for a positive integer d, a d-cut is a bipartition
of the vertex set of a graph into two sets A and B such that each vertex has at most
d neighbors across the cut. We generalize (and in some cases, improve) a number
of results for the Matching Cut problem. Namely, we begin with an NP-hardness
reduction for d-Cut on (2d+2)-regular graphs and a polynomial algorithm for graphs
of maximum degree at most d+2. The degree bound in the hardness result is unlikely to
be improved, as it would disprove a long-standing conjecture in the context of internal
partitions. We then give FPT algorithms for several parameters: the maximum number
of edges crossing the cut, treewidth, distance to cluster, and distance to co-cluster.
In particular, the treewidth algorithm improves upon the running time of the best
known algorithm for Matching Cut. Our main technical contribution, building on
the techniques of Komusiewicz et al. [DAM, 2020], is a polynomial kernel for d-Cut
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for every positive integer d, parameterized by the vertex deletion distance of the input
graph to a cluster graph. We also rule out the existence of polynomial kernels when
parameterizing simultaneously by the number of edges crossing the cut, the treewidth,
and the maximum degree. Finally, we provide an exact exponential algorithm slightly
faster than the naive brute force approach running in time O∗(2n).

Keywords matching cut; bounded degree cut; parameterized complexity; FPT
algorithm; polynomial kernel; distance to cluster.

1 Introduction

A cut of a graph G = (V,E) is a bipartition of its vertex set V (G) into two non-empty
sets A and B, denoted by (A,B). The set of all edges with one endpoint in A and
the other in B is the edge cut, or the set of crossing edges, of (A,B). A matching
cut is a (possibly empty) edge cut that is a matching, that is, its edges are pairwise
vertex-disjoint. Equivalently, (A,B) is a matching cut of G if and only if every vertex
is incident with at most one crossing edge of (A,B) [7, 16], that is, it has at most one
neighbor across the cut.

Motivated by an open question posed by Komusiewicz et al. [20] during the pre-
sentation of their article, we investigate a natural generalization that arises from this
alternative definition, which we call d-cut. Namely, for a positive integer d ≥ 1, a d-cut
is a cut (A,B) such that each vertex has at most d neighbors across the partition, that
is, every vertex in A has at most d neighbors in B, and vice-versa. Note that a 1-cut is
a matching cut. As expected, not every graph admits a d-cut, and the d-Cut problem
is the problem of deciding, for a fixed integer d ≥ 1, whether or not an input graph G
has a d-cut.

When d = 1, we refer to the problem as Matching Cut. Graphs with no match-
ing cut first appeared in Graham’s manuscript [16] under the name of indecompos-
able graphs. Graham [16] presents some examples and properties of decomposable and
indecomposable graphs, leaving their recognition as an open problem. In answer to
Graham’s question, Chvátal [7] proved that the problem of recognizing decomposable
graphs is NP-hard for graphs of maximum degree at least four and polynomially solv-
able for graphs of maximum degree at most three; in fact, as shown by Moshi [27],
every graph of maximum degree three and at least eight vertices has a matching cut.

Chvátal’s results spurred a lot of research on the complexity of the problem [1, 5,
20–23, 28]. In particular, Bonsma [5] showed that Matching Cut remains NP-hard
for planar graphs of maximum degree four and for planar graphs of girth five; Le and
Randerath [23] gave an NP-hardness reduction for bipartite graphs of maximum degree
four; Le and Le [22] proved that Matching Cut is NP-hard for graphs of diameter
at least three, and presented a polynomial-time algorithm for graphs of diameter at
most two. Beyond planar graphs, Bonsma’s work [5] also proves that the matching cut
property is expressible in monadic second order logic and, by Courcelle’s Theorem [8], it
follows that Matching Cut is FPT when parameterized by the treewidth of the input
graph; he concludes with a proof that the problem admits an FPT algorithm when
parameterzed by cliquewidth. As pointed out by a reviewer, the monadic second order
logic expression given by Bonsma [5] can be generalized to d-Cut, which implies that d-
Cut is fixed-parameter tractable under cliquewidth, which in turn implies tractability
under treewidth, distance to cluster, and distance to co-cluster, among other structural
parameters.
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Kratsch and Le [21] noted that Chvátal’s original reduction also shows that, un-
less the Exponential Time Hypothesis [17] (ETH) fails1, there is no algorithm solving
Matching Cut in time 2o(n) on n-vertex input graphs. Also in [21], the authors
provide a first branching algorithm, running2 in time O∗

(
2n/2

)
, a single-exponential

FPT algorithm when parameterized by the vertex cover number τ(G), and an algorithm
generalizing the polynomial cases of line graphs [27] and claw-free graphs [5]. Kratsch
and Le [21] also asked for the existence a single-exponential algorithm parameterized
by treewidth. In response, Aravind et al. [1] provided a O∗

(
12tw(G)

)
algorithm for

Matching Cut using nice tree decompositions, along with FPT algorithms for other
structural parameters, namely neighborhood diversity, twin-cover, and distance to split
graph.

The natural parameter – the number of edges crossing the cut – has also been
considered. Indeed, Marx et al. [26] tackled the Stable Cutset problem, to which
Matching Cut can be easily reduced via the line graph, and through a breakthrough
technique showed that this problem is FPT when parameterized by the maximum size of
the stable cutset. Recently, Komusiewicz et al. [20] improved on the results of Kratsch
and Le [21], providing two exact exponential algorithm for Matching Cut that make
heavy use of SAT-solvers: a deterministic one running in time O∗(1.328n), and a
randomized one that runs in time O∗(1.3071n). Komusiewicz et al. [20] also present
FPT algorithms parameterized by the distance to a cluster graph and the distance to
a co-cluster graph, which improve the algorithm parameterized by the vertex cover
number, since both parameters are easily seen to be smaller than the vertex cover
number. For the distance to cluster parameter, they also presented a quadratic kernel;
while for a combination of treewidth, maximum degree, and number of crossing edges,
they showed that no polynomial kernel exists unless NP ⊆ coNP/poly.

A problem closely related to d-Cut is that of Internal Partition, first studied
by Thomassen [32]. In this problem, we seek a bipartition of the vertices of an input
graph such that every vertex has at least as many neighbors in its own part as in
the other part. Such a partition is called an internal partition. Usually, the problem is
posed in a more general form: given functions a, b : V (G)→ Z+, we seek a bipartition
(A,B) of V (G) such that every v ∈ A satisfies degA(v) ≥ a(v) and every u ∈ B

satisfies degB(u) ≥ b(u), where degA(v) denotes the number of neighbors of v in the
set A. Such a partition is called an (a, b)-internal partition. Originally, Thomassen [32]
asked whether for any pair of positive integers s, t, a graph G with δ(G) ≥ s + t + 1
has a vertex bipartition (A,B) with δ(G[A]) ≥ s and δ(G[B]) ≥ t, where δ(H) is
the minimum degree of H. Stiebitz [31] answered that, in fact, for any graph G and
any pair of functions a, b : V (G) → Z+ satisfying deg(v) ≥ a(v) + b(v) + 1 for every
v ∈ V (G), G has an (a, b)-internal partition. Stiebitz [31] also asked if given integers s, t
and a triangle-free graph G with δ(G) ≥ s+ t, it was possible to find an (s, t)-internal
partition of G; this was positively answered by Kaneko [18]. More recently, Ma and
Yang [25] showed that, if G is {C4, diamond, K4}-free, s, t ≥ 2, and δ(G) ≥ s+ t− 1,
then it is always possible to find an (s, t)-internal partition. It is conjectured that,
for every positive integer r, there exists some constant nr for which every r-regular
graph with more than nr vertices has an internal partition [2, 10] (the conjecture for

1 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [17] for
more details.

2 The O∗(·) notation suppresses factors that are bounded by a polynomial in the input size.
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r even appeared first in [30]). The cases r ∈ {3, 4} have been settled by Shafique and
Dutton [30]; the case r = 6 has been verified by Ban and Linial [2]. This latter result
implies that every 6-regular graph of sufficiently large size has a 3-cut.

Our results. We aim at generalizing several of the previously reported results for
Matching Cut. First, we show in Section 2, by using a reduction inspired by Chvá-
tal’s [7], that for every d ≥ 1, d-Cut is NP-hard even when restricted to (2d+2)-regular
graphs and that, if the maximum degree of G is at most d + 2, then finding a d-cut
can be done in polynomial time. We do not expect improvements to the degree bound
in the NP-hardness reduction: if there was an NP-hardness result for d-Cut restricted
to (2d+ 1)-regular graphs, this would disprove the conjecture about the existence of
internal partitions on r-regular graphs [2,10,30] for r odd, unless P = NP. We conclude
the section by giving a simple exact exponential algorithm that, for every d ≥ 1, runs in
time O∗((cd)n) for some constant cd < 2, hence improving over the trivial brute-force
algorithm running in time O∗(2n).

We then proceed to analyze the problem in terms of its parameterized complexity.
Section 3 begins with a proof, using the treewidth reduction technique of Marx et
al. [26], that d-Cut is FPT parameterized by the maximum number of edges crossing
the cut. Even though fixed-parameter tractability is implied by Bonsma’s work [5], we
present multiple algorithms with specific running times that do not rely on Courcelle’s
Theorem, beginning with a dynamic programming algorithm for d-Cut parameterized
by treewidth that runs in O∗

(
2tw(G)(d+ 1)2tw(G)

)
time; in particular, for d = 1 this

running time is of the form O∗
(
8tw(G)

)
and improves the Matching Cut algorithm

given by Aravind et al. [1], which runs in O∗
(
12tw(G)

)
time. By employing the cross-

composition framework of Bodlaender et al. [4] and using a reduction similar to the
one in [20], we show that, unless NP ⊆ coNP/poly, there is no polynomial kernel for
d-Cut parameterized simultaneously by the number of crossing edges, the maximum
degree, and the treewidth of the input graph. We then present a polynomial kernel and
an FPT algorithm when parameterizing by the distance to cluster, denoted by dc(G).
This polynomial kernel is our main technical contribution, and it is strongly inspired
by the technique presented by Komusiewicz et al. [20] for Matching Cut. Finally, we
give an FPT algorithm parameterized by the distance to co-cluster, denoted by dc(G).
These results imply the existence of a polynomial kernel for d-Cut parameterized by
the vertex cover number τ(G). We present in Section 4 our concluding remarks and
some open questions.

1.1 Preliminaries

We use standard graph-theoretic notation, and we consider simple undirected graphs
without loops or multiple edges; see [11] for any undefined terminology. When the
graph is clear from the context, the degree (that is, the number of neighbors) of a
vertex v is denoted by deg(v), and the number of neighbors of a vertex v in a set
A ⊆ V (G) is denoted by degA(v). The minimum degree, the maximum degree, and
the vertex cover number of a graph G are denoted by δ(G), ∆(G), and τ(G), respec-
tively. The line graph of a graph G, denoted by L(G), is the intersection graph of
the edges of G; that is V (L(G)) = {euv | uv ∈ E(G)} and E(L(G)) = {euveuw |
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u ∈ V (G), {v, w} ⊆ NG(u)}. For a positive integer k ≥ 1, we denote by [k] the set
containing every integer i such that 1 ≤ i ≤ k.

We refer the reader to [9, 12] for basic background on parameterized complexity,
and we recall here only some basic definitions. A parameterized problem is a language
L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A
parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k),
A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded by
f(k) · |I|c.

A fundamental concept in parameterized complexity is that of kernelization; see [14]
for a recent book on the topic. A kernelization algorithm, or just kernel, for a param-
eterized problem Π takes an instance (x, k) of the problem and, in time polynomial
in |x| + k, outputs an instance (x′, k′) such that |x′|, k′ 6 g(k) for some function g,
and (x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function g is called the size of the
kernel and may be viewed as a measure of the “compressibility” of a problem using
polynomial-time preprocessing rules. A kernel is called polynomial (resp. quadratic,
linear) if the function g(k) is a polynomial (resp. quadratic, linear) function in k. A
breakthrough result of Bodlaender et al. [3] gave the first framework for proving that
certain parameterized problems do not admit polynomial kernels, by establishing so-
called composition algorithms. Together with a result of Fortnow and Santhanam [15]
this allows to exclude polynomial kernels under the assumption that NP * coNP/poly,
otherwise implying a collapse of the polynomial hierarchy to its third level [33].

2 NP-hardness, polynomial cases, and exact exponential algorithm

In this section we focus on the classical complexity of the d-Cut problem, and on
exact exponential algorithms. Before stating our NP-hardness result, we need some
definitions and observations.

Definition 1 A set of vertices X ⊆ V (G) is said to be monochromatic if, for any
d-cut (A,B) of G, X ⊆ A or X ⊆ B. A subgraph H of G is monochromatic if V (H) is
monochromatic.

Observation 1 For fixed d ≥ 1, the graph Kd+1,2d+1 is monochromatic. Moreover,
if vertex v has at least d + 1 neighbors in a monochromatic set S, then S ∪ {v} is
monochromatic.

Definition 2 (Spool) For n, d ≥ 1, a (d, n)-spool is the graph obtained from n copies
of Kd+1,2d+2 such that, for every 1 ≤ i ≤ n, one vertex of degree d+1 of the i-th copy
is identified with one vertex of degree d+1 of the (i+1 mod n)-th copy, so that the
two chosen vertices in each copy are distinct. The exterior vertices of a copy are those
of degree d+ 1 that are not used to interface with another copy. The interior vertices
of a copy are those of degree 2d+ 2 that do not interface with another copy.

An illustration of a (2, 3)-spool is shown in Figure 1.

Observation 2 For fixed d ≥ 1, a (d, n)-spool is monochromatic.
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Fig. 1 A (2, 3)-spool. Circled vertices are exterior vertices.

Proof Let S be a (d, n)-spool. If n = 1, the observation follows by combining the
two statements of Observation 1. Now let X,Y ( S be two copies of Kd+1,2d+2 that
share exactly one vertex v. By Observation 1, X ′ = X \ {v} and Y ′ = Y \ {v} are
monochromatic. Since v has d+1 neighbors in X ′ and d+1 neighbors in Y ′, it follows
that X ∪ Y is monochromatic. By repeating the same argument for every two copies
of Kd+1,2d+2 that share exactly one vertex, the observation follows. ut

Chvátal [7] proved that Matching Cut is NP-hard for graphs of maximum de-
gree at least four. In the next theorem, whose proof is inspired by the reduction of
Chvátal [7] from 3-Uniform Hypergraph Bicoloring, we prove the NP-hardness of
d-cut for (2d+2)-regular graphs. In particular, for d = 1 it implies the NP-hardness of
Matching Cut for 4-regular graphs, which is a strengthening of Chvátal’s [7] hardness
proof.

Theorem 1 For every integer d ≥ 1, d-cut is NP-hard even when restricted to (2d+
2)-regular graphs.

Proof Our reduction is from the 3-Uniform Hypergraph Bicoloring problem,
which is NP-hard; see [24]. To avoid confusion with monochromatic sets, we say that
a hyperedge is unicolored if all vertices in it are assigned the same color.

3-Uniform Hypergraph Bicoloring
Instance: A hypergraph H with exactly three vertices in each hyperedge.
Question: Can we 2-color V (H) such that no hyperedge is unicolored?

Throughout this proof, i is an index representing a color, j and k are redundancy
indices used to increase the degree of some sets of vertices, and ` and r are indices used
to refer to separations of sets of exterior vertices.

Given an instance H of 3-Uniform Hypergraph Bicoloring, we proceed to
construct a (2d+2)-regular instance G of d-Cut as follows. For each vertex v ∈ V (H),
add a (d, 4deg(v) + 1)-spool to G. Each of the 4deg(v) + 1 sets of exterior vertices
receives an (arbitrarily chosen) unique label. We begin by labeling one of them with
S(v∗) and separating it into two parts of equal size, which we denote by S(v∗, i), i ∈ [2];
afterwards, for each i ∈ [2], we choose an arbitrary vertex of S(v∗, i) and label it with
s(v∗, i), then add edges between S(v∗, 1)\{s(v∗, 1)} and S(v∗, 2)\{s(v∗, 2)} to form a
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perfect matching (see the right side of Figure 2). Now, for each i, j ∈ [2] and e ∈ E(H)
with v ∈ e, we pick one of the 4deg(v) remaining sets, label it with S(v, e, i, j), and
again divide it into two equal sized parts, denoted by S`(v, e, i, j), ` ∈ [2]. To conclude
the construction of vertex gadgets, add every edge between S1(v, e, i, j) and S2(v, e, i, j)
(see the left side of Figure 2). Note that all interior vertices of these spools have degree
2d+2, every vertex labeled s(v∗, i) has d+1 neighbors, every other vertex in S(v∗, i)
has d+ 2 neighbors, and every vertex in S(v, e, i, j) has degree equal to 2d+ 1.

S1(v, e, i, j) S2(v, e, i, j)

s(v∗, 1)
s(v∗, 2)

S(v∗, 1) S(v∗, 2)

Fig. 2 Relationships between exterior vertices of a vertex gadget (d = 3).

For each color i ∈ [2], add a (d, n+2m)-spool to G, which we denote by Ci, where
n = |V (H)| and m = |E(H)|. We proceed as for vertex gadgets and assign a unique
label to each set of exterior vertices. First, for each v ∈ V (H), pick one exterior set and
label it with C(v, i), divide it into two equal sized subsets C1(v, i) and C2(v, i), and, for
each ` ∈ [2], pick one vertex of C`(v, i) and label it c`(v, i); finally, add all edges between
c`(v, i) and C`(v, i) \ {c`(v, i)} and add the edge c`(v, i)c3−`(v, i). For each e ∈ E(H)
and j ∈ [2], pick one of the remaining 2m exterior sets and label it with C(e, i, j). Once
again, we subdivide them into two parts of the same size, C1(e, i, j) and C2(e, i, j) and,
for each ` ∈ [2], assign to one vertex of each C`(e, i, j) the label c`(e, i, j). To conclude,
make each C`(e, i, j) \ {c`(e, i, j)} a clique, and, between C`(e, i, j) \ {c`(e, i, j)} and
Cr(e, i, k) \ {cr(e, i, k)}, add edges to form a perfect matching, for `, j, r, k ∈ [2] and
(`, j) 6= (r, k). That is, each C`(e, i, j)\{c`(e, i, j)} forms a perfect matching with three
other sets of exterior vertices different from itself (see the left side of Figure 3). So far,
each c`(v, i) has degree (d+1)+(d−1)+1 = 2d+1, other vertices of C`(v, i) have degree
d+2, each vertex in C`(e, i, j) \ {c`(e, i, j)} has degree (d+1)+ (d− 2)+ 3 = 2d+2,
and each vertex labeled c`(e, i, j) has degree d+ 1.

We now add edges between vertices of different color gadgets. In particular, we add
every edge between C1(v, 2) \ {c1(v, 2)} and C2(v, 1) \ {c2(v, 1)}. This increases the
degree of these vertices to 2d+ 1. An example when d = 3 is illustrated in Figure 3.

As a first step to connect color gadgets and vertex gadgets, we add every edge
between s(v∗, i) and Ci(v, i), every edge between S(v∗, i) \ {s(v∗, i)} and Ci(v, i) \
{ci(v, i)}, a perfect matching between S(v∗, i)\{s(v∗, i)} and C3−i(v, i)\{c3−i(v, i)},
and the edge s(v∗, i)ci(v, 3 − i). Note that this last edge is fundamental, not only
because it increases the degrees to the desired value, but also because, if the gadgets
C1 and C2 corresponding to the colors belong to the same side of the cut, every s(v∗, i)
will have the same color and, since spools are monochromatic, so would the entire graph,
as discussed in more detail below. Also note that, aside from s(v∗, i), no other vertex
has more than d neighbors outside of its spool. The edges described in this paragraph
increase the degree of every s(v∗, i) by d+1, yielding a total degree of 2d+2, of every
vertex in S(v∗, i) \ {s(v∗, i)} to (d + 2) + (d − 1) + 1 = 2d + 2, of every vertex in
Ci(v, i)\{ci(v, i)} to (d+2)+d = 2d+2, of every vertex in Ci(v, 3− i)\{ci(v, 3− i)}
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c1(e, i, 1)
c2(e, i, 1)

C1(e, i, 1) C2(e, i, 1)

c1(v, 1)
c2(v, 1)

C1(v, 1) C2(v, 1)

c1(e, i, 2)
c2(e, i, 2)

C1(e, i, 2) C2(e, i, 2)

c1(v, 2)
c2(v, 2)

C1(v, 2) C2(v, 2)

Fig. 3 Relationships between exterior vertices of color gadgets (d = 3).

to (2d+1)+ 1 = 2d+2, and of every c`(v, i) to (2d+1)+ 1 = 2d+2. Figure 4 gives
an example of these connections.

c1(v, 1)
c2(v, 1)

C1(v, 1) C2(v, 1)

s(v∗, 1)
c1(v, 2)

S(v∗, 1) C1(v, 2)

Fig. 4 Relationships between exterior vertices of color and vertex gadgets (d = 3).

For the final group of gadgets, namely hyperedge gadgets, for each e = {x, y, z} ∈
E(H), each color i, and each pair j, ` ∈ [2], we add one additional vertex c′`(e, i, j)
adjacent to c`(e, i, j), S`(x, e, i, j), S`(y, e, i, j), and c′3−`(e, i, j); finally, we add every
edge between c`(e, i, j) and S`(z, e, i, j). See Figure 5 for an illustration. Note that
c′`(e, i, j) has degree 2d+2; the degree of c`(e, i, j) increased from d+1 to 2d+2, and
the degree of each vertex of S`(x, e, i, j) increased from 2d+1 to 2d+2. This concludes
our construction of the (2d+ 2)-regular graph G.

Now, suppose we are given a valid bicoloring ϕ of H, and our goal is to construct
a d-cut (A,B) of G. Put the gadget C1 in A and C2 in B. For each vertex v ∈ V (H),
if ϕ(v) = 1, put the gadget corresponding to v in A, otherwise put it in B. Note that
no vertex from a color gadget Ci has more than d neighbors in the vertex gadgets,
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c1(e, i, j)

c′1(e, i, j)

S1(x, e, i, j) S1(y, e, i, j)

S1(z, e, i, j)

c2(e, i, j)

c′2(e, i, j)

S2(x, e, i, j) S2(y, e, i, j)

S2(z, e, i, j)

Fig. 5 Hyperedge gadget (d = 3).

therefore none violates the d-cut property. As to the vertices coming from the vertex
gadgets, only s`(v∗, i) has more than d neighbors outside of its gadget; however, it has
d neighbors in Ci and only one in C3−i. Since each color gadget is in a different side
of the partition, s`(v∗, i) does not violate the degree constraint. For each hyperedge
e = {x, y, z}, put c′`(e, i, j), we divide our analysis in two cases. In the first of case
we have ϕ(x) = ϕ(y) = 1, so the gadget for vertices x, y are in A and, consequently,
c′`(e, i, j) has 2d neighbors in A, so it must also be placed in A; since e is not unicolored,
ϕ(z) = 2, the gadget for z is in B and: (i) if i = 1, c`(e, i, j) is in A and has d neighbors
in B and c′`(e, i, j) has no neighbor outside of A, or (ii) if i = 2, the unique neighbor
of c`(e, i, j) across the cut is c′`(e, i, j); note that c′1(e, i, j) and c′2(e, i, j) were both
assigned to A, so neither of them has more than one neighbor outside of A. For the
second case, we have ϕ(x) = ϕ(z) = 1 6= ϕ(y). We add c′`(e, i, j) to A if i = 1,
otherwise we add it to B. By doing so, c1(e, i, j), c′1(e, i, j), c2(e, i, j), and c′2(e, i, j)
are in the same side of the cut and each of them has at most d neighbors across the
cut. Thus, we conclude that (A,B) is indeed a d-cut of G.

Conversely, take a d-cut (A,B) of G and construct a bicoloring of H such that
ϕ(v) = 1 if and only if the spool corresponding to v is in A. Suppose that this process
results in some hyperedge e = {x, y, z} ∈ E(H) being unicolored. That is, there is
some hyperedge gadget where S`(x, e, i, j), S`(y, e, i, j), and S`(z, e, i, j) are in A, which
implies that c′`(e, i, j) ∈ A and, consequently, that c`(e, i, j) ∈ A for every `, i, j ∈ [2].
However, since c`(e, 1, j) and c`(e, 2, j) are in A and a color gadget is monochromatic,
both color gadgets belong to A, which in turn implies that every s(v∗, i) has d + 1
neighbors in A and, therefore, must also be in A by Observation 1. Moreover, since
spools are monochromatic, every vertex gadget is in A, implying that the entire graph
belongs to A, contradicting the hypothesis that (A,B) is a d-cut of G. ut

The graphs constructed by Theorem 1 are neither planar nor bipartite, but they are
regular, a result that we were unable to find in the literature for Matching Cut. Note
that every planar graph has a d-cut for every d ≥ 5, so only the cases d ∈ {2, 3, 4}
remain open, as the case d = 1 is known to be NP-hard [5]. Concerning graphs of
bounded diameter, Le and Le [22] prove the NP-hardness of Matching Cut for graphs
of diameter at least three by reducing Matching Cut to itself. It can be easily seen
that the same construction given by Le and Le [22], but reducing d-Cut to itself, also
proves the NP-hardness of d-Cut for every d ≥ 1.
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Corollary 1 For every integer d ≥ 1, d-Cut is NP-hard for graphs of diameter at
least three.

We leave as an open problem to determine whether there exists a polynomial-time
algorithm for d-Cut for graphs of diameter at most two for every d ≥ 2, as it is the
case for d = 1 [22].

We now turn to cases that can be solved in polynomial time. Our next result is
a natural generalization of Chvátal’s algorithm [7] for Matching Cut on graphs of
maximum degree three.

Theorem 2 For any graph G and integer d ≥ 1 such that ∆(G) ≤ d + 2, it can be
decided in polynomial time if G has a d-cut. Moreover, for d = 1 any graph G with
∆(G) ≤ 3 and |V (G)| ≥ 8 has a matching cut, for d = 2 any graph G with ∆(G) ≤ 4
and |V (G)| ≥ 6 has a 2-cut, and for d ≥ 3 any graph G with ∆(G) ≤ d+2 has a d-cut.

Proof We may assume that G is connected, as otherwise it always admits a d-cut. If G
is a tree, any edge is a cut edge and, consequently, a d-cut is easily found. So let C be
a shortest cycle of G. If d = 1 we use Chvátal’s result [7] together with the size bound
of eight observed by Moshi [27]; hence, we may assume that d ≥ 2. In the case that
V (G) = C, we may pick any vertex v and note that ({v}, C \ {v}) is a d-cut.

Suppose first that |C| = 3 and d = 2. If (C, V (G) \ C) is a 2-cut, we are done.
Otherwise, there is some vertex v /∈ C with three neighbors in C (since by the hy-
pothesis on ∆(G), every vertex in C has at most two neighbors in V (G) \ C) and,
consequently, Q := C ∪ {v} induces a K4. If V (G) = Q, we can arbitrarily partition
Q into two sets with two vertices each and get a 2-cut of G. Also, if no other u /∈ Q
has three neighbors in Q, (Q,V (G) \ Q) is a 2-cut of G. If there is such a vertex u,
let R := Q ∪ {u}. If V (G) = R, then clearly G has no 2-cut. Note that |Q| = 5, and
this will be the only case in the proof where G does not have a d-cut. Otherwise, if
V (G) 6= R, (R, V (G) \ R) is a 2-cut, because no vertex outside of R can be adjacent
to more than two vertices in R, and we are done.

If |C| = 3 and d ≥ 3, then clearly (C, V (G) \ C) is a d-cut, and we are also done.
Otherwise, that is, if |C| ≥ 4, we claim that (C, V (G) \ C) is always a d-cut. For

v ∈ C, note that deg(v) ≤ d + 2, hence v has at most d neighbors in G − C. For
v ∈ V (G) \ C, if |C| ≥ 5, necessarily degC(v) ≤ 1, as otherwise we would find a cycle
in G shorter than C, and therefore (C, V (G) \C) is a d-cut. By a similar argument, if
|C| = 4, then degC(v) ≤ 2, and the theorem follows as we assume that d ≥ 2. ut

Theorems 1 and 2 present a “quasi-dichotomy” for d-cut on graphs of bounded
maximum degree. Specifically, for ∆(G) ∈ {d + 3, . . . , 2d + 1}, the complexity of the
problem remains unknown. However, we believe that most, if not all, of these open
cases can be solved in polynomial time; see the discussion in Section 4.

To conclude this section, we present a simple exact exponential algorithm which,
for every d ≥ 1, runs in time O∗(cnd ) for some constant cd < 2. For the case d = 1, the
currently known algorithms [20,21] exploit structures that appear to get out of control
when d increases, and so they have a better running time than the one described below.

Theorem 3 For every fixed integer d ≥ 1 and n-vertex graph G, there is an algorithm
that solves d-Cut in time O∗((cd)n), for some constant 1 < cd < 2.
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Proof When an instance of size n branches into t subproblems of sizes at most n −
s1, . . . , n− st, respectively, the vector (s1, . . . , st) is called the branching vector of this
branching rule, and the unique positive real root of the equation xn−

∑
i∈[t] x

n−si = 0
is called the branching factor of the rule. The total complexity of a branching algorithm
is given by O∗(αn), where α is the largest branching factor among all rules of the
algorithm. For more on branching algorithms, we refer to [13].

Our algorithm takes as input G and outputs a d-cut (A,B) of G, if it exists. To
do so, we build a branching algorithm that maintains, at every step, a tripartition of
V (G) = (A,B,D) such that (A,B) is a d-cut of G \D. The central idea of our rules
is to branch on small sets of vertices (namely, of size at most d+ 1) at each step such
that either at least one bipartition of the set forces some other vertex to choose a side
of the cut, or we can conclude that there is at least one bipartition that violates the
d-cut property. First, we present our reduction rules, which are applied following this
order at the beginning of each recursive step.

R1 If (A,B) violates the d-cut property, output NO.
R2 If D = ∅, we have a d-cut of G. Output (A,B).
R3 If there is some v ∈ D with degA(v) ≥ d+ 1 and degB(v) ≥ d+ 1, output NO.
R4 While there is some v ∈ D with degA(v) ≥ d+1 (resp. degB(v) ≥ d+1), add v to

A (resp. B).

Our branching rules, and their respective branching vectors, are listed below.

B1 If there is some v ∈ A ∪ B with degD(v) ≥ d+ 1, choose a set X ⊆ ND(v) of size
d and branch on all possible possible bipartitions of X. Note that, if all vertices of
X are in the other side of v, at least one vertex of ND(v) \X must be in the same
side as v. As such, this branching vector is of the form {d+ 1} × {d}2

d−1.
B2 If there is some v ∈ A (resp. B) such that degB(v) + degD(v) ≥ d + 1 (resp.

degA(v) + degD(v) ≥ d+ 1), choose a set X ⊆ ND(v) of size s = d+ 1− degB(v)
(resp. s = d+1−degA(v)) and branch on every possible bipartition of X. Since rule
B1 was not applied, we have that degD(v) ≤ d, degB(v) ≥ 1 (resp. degA(v) ≥ 1),
and s ≤ d. If all vertices of X were placed in B (resp. A), we would violate the
d-cut property and, thus, do not need to investigate this branch of the search. In
the worst case, namely when s = d, this yields the branching vector {d}2

d−1.

We now claim that, if none of the above rules is applicable, we have that (A∪D,B)
is a d-cut of G. To see that this is the case, suppose that there is some vertex v ∈ V (G)
that violates the d-cut property; that is, it has a set Y of d + 1 neighbors across the
cut.

Suppose that v ∈ B. Then Y ⊆ A ∪ D, so we have degA(v) + degD(v) ≥ d + 1,
in which case rule B2 could be applied, a contradiction. Thus, we have that v /∈ B, so
Y ⊆ B and either v ∈ A or v ∈ D; in the former case, by rule R1, (A,B) would not
be a d-cut. In the latter case, we would have that degB(v) ≥ d+ 1, but then rule R4
would still be applicable. Consequently, v /∈ A ∪B ∪D = V (G), so such a vertex does
not exist, and thus we have that (A ∪ D,B) is a d-cut of G. Note that a symmetric
argument holds for the bipartition (A,B ∪D). Before executing the above branching
algorithm, we need to ensure that A 6= ∅ and B 6= ∅. To do that, for each possible pair
of vertices u, v ∈ V (G), we execute the entire algorithm starting with A := {u} and
B := {v}.
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As to the running time of the algorithm, for rule B2 we have that the unique
positive real root of xn− (2d−1)xn−d = 0 is of the closed form x = d

√
2d − 1 < 2. For

rule B1, we have that the polynomial associated with the recurrence relation, pd(x) =
xn−(2d−1)xn−d−xn−d−1, verifies pd(1) = 1−2d < 0 and pd(2) = 2n−d−1 > 0. Since
it is a continuous function and pd(x) has a unique positive real root cd, it holds that
1 < cd < 2. The final complexity of our algorithm is O∗(cnd ), with

d
√

2d − 1 < cd < 2,
since

pd

(
d
√
2d − 1

)
= (2d−1)n/d−(2d−1)(2d−1)

n−d
d −(2d−1)

n−d−1
d = −(2d − 1)

n−d−1
d < 0

ut

Table 1 presents the branching factors for some values of d for the two branching
rules of Theorem 3.

d 1 2 3 4 5 6 7
B1 1.6180 1.8793 1.9583 1.9843 1.9937 1.9973 1.9988
B2 1.0000 1.7320 1.9129 1.9679 1.9873 1.9947 1.9977

Table 1 Branching factors for some values of d.

3 Parameterized algorithms and kernelization

In this section we focus on the parameterized complexity of d-Cut. More precisely, in
Section 3.1 we consider as the parameter the number of edges crossing the cut and in
Section 3.3 the distance to cluster (in particular, we provide a quadratic kernel).

3.1 Crossing edges

In this section we consider as the parameter the maximum number of edges crossing
the cut. In a nutshell, our approach is to use as a black box one of the algorithms
presented by Marx et al. [26] for a class of separation problems. Their fundamental
problem is G-MinCut, for a fixed class of graphs G, which we state formally, along
with their main result, below.

G-MinCut
Input: A graph G, vertices s, t, and an integer k.
Parameter: The integer k.
Question: Is there an induced subgraph H of G with at most k vertices such that
H ∈ G and V (H) is an s− t separator?

Theorem 4 (Theorem 3.1 in [26]) If G is a decidable and hereditary graph class,
G-MinCut is FPT.
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Note that G-MinCut asks for a vertex separator so, in order to apply Theorem 4,
we need to translate the d-cut property of the edges of our input graph G, to a property
about the vertices of an auxiliary graph which, in our case, shall be the line graph of
G. To perform this translation, we first need to specify a graph class to which, on the
line graph, our separators correspond. We must also be careful to guarantee that the
removal of a separator in the line graph leaves non-empty components in the input
graph. To accomplish the latter, for each v ∈ V (G), we add a private clique of size 2d
adjacent only to it, and choose one arbitrary vertex v′ in each of them. The algorithm
asks, for each pair v′, u′, whether or not a “special” separator of the appropriate size
between v′ and u′ exists. We assume henceforth that these private cliques have been
added to the input graph G. For each integer d ≥ 1, we define the graph class Gd as
follows.

Definition 3 A graph H belongs to Gd if and only if its maximum clique size is at
most d.

Note that Gd is decidable and hereditary for every integer d ≥ 1.

Lemma 1 G has a d-cut if and only if the line graph of G has a vertex separator
belonging to Gd that separates ev and eu, where ev corresponds to the edge vv′ ∈ E(G)
and eu to the edge uu′ ∈ E(G), for some pair u, v ∈ V (G).

Proof Let H = L(G), (A,B) be a d-cut of G, and recall that uv ∈ E(G) if and only
if there is a corresponding euvV (H). Moreover, let F ⊆ V (H) be the set of vertices
such that euv ∈ F if and only if u ∈ A and v ∈ B. The fact that F is a separator of
H follows directly from the hypothesis that (A,B) is a cut of G. Now, to show that
H[F ] ∈ Gd, suppose, towards a contradiction, that H[F ] contains a clique Q with more
than d vertices, and that R is the set of edges corresponding to vertices of Q in G.
That is, there are at least d+1 edges of G that are pairwise intersecting and with one
endpoint in A and the other in B. Note, however, that for at least one of the parts,
say A, there is also at most one vertex w ∈ A with edges in R ⊆ E(G), otherwise
there would be two non-adjacent vertices in clique Q ⊆ V (H). As such, we conclude
that every edge in Q has an endpoint in w, but this, on the other hand, implies that
w has d+ 1 neighbors in B, contradicting the hypothesis that (A,B) is a d-cut of G.
Since A and B are non-empty and every vertex of G is part of a monochromatic clique
with 2d + 1 vertices, there exists u, u′ ∈ A and v, v′ ∈ B and, consequently, we have
that (A,B) separates edges vv′ and uu′, so, in H − F , ev = evv′ is disconnected from
eu = euu′ .

For the converse, take an ev − eu separator S ⊆ V (H) such that H[S] ∈ Gd and let
ES be the edges of G corresponding to S. To see that G∗ = G − ES is disconnected,
note that, otherwise, there would be a shortest path between v′ and u′ that uses vv′

and uu′, so, in H−S, there would be a path between ev and eu, a contradiction to the
fact that S is an ev− eu separator. Let G′ be the graph where each vertex corresponds
to a connected component of G∗ and two vertices are adjacent if and only if there is
an edge in ES between vertices of the respective components. Let Qr be an arbitrarily
chosen connected component of G−ES . Now, for each component at an odd distance
from Qr in G′, add that component to B; all other components are placed in A. Since
G∗ is disconnected, G′ has more than one vertex and, consequently, A and B are non-
empty. We claim that (A,B) is a d-cut of G. Let F ⊆ ES be the set of edges with
one endpoint in A and the other in B. Note that G − F is disconnected due to the
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construction of A and B. If there is some v ∈ A with more than d neighbors in B,
we obtain that there is some clique of equal size in H[S], contradicting the hypothesis
that this subgraph belongs to Gd. ut

Theorem 5 For every d ≥ 1, there is an FPT algorithm for d-Cut parameterized by
k, the maximum number of edges crossing the cut.

Proof For each pair of vertices s, t ∈ V (G) that do not belong to the private cliques,
our goal is to find a subset of vertices S ⊆ V (L(G)) of size at most k that separates s
and t such that L(G)[S] ∈ Gd. This is precisely what is provided by Theorem 4, and the
correctness of this approach is guaranteed by Lemma 1. Since we perform a quadratic
number of calls to the algorithm given by Theorem 4, our algorithm still runs in FPT

time. ut

As to the running time of the FPT algorithm given by Theorem 5, the treewidth
reduction technique of [26] relies on the construction of a monadic second order logic
(MSOL) expression and Courcelle’s Theorem [8] to guarantee fixed-parameter tractabil-
ity, and therefore it is hard to provide an explicit running time in terms of k.

3.2 Treewidth

We now present an algorithm for d-Cut parameterized by the treewidth of the input
graph that; in particular, it improves the running time of the best known algorithm
for Matching Cut [1].

Definition 4 (Tree decomposition) A tree decomposition of a graphG is a pair (T,B = {Bj | j ∈ V (T )}),
where T is a tree and B ⊆ 2V (G) is a family where:

1. For every v ∈ V (G) there is some node x ∈ V (T ) such that v ∈ Bx;
2. For every edge uv ∈ E(G) there is some x ∈ V (T ) such that {u, v} ⊆ Bx; and
3. For every x, y, z ∈ V (T ), if z is in the path between x and y in T , then Bx∩By ⊆ Bz .

In a tree decomposition, (T,B = {Bj | j ∈ V (T )}), each Bx ∈ B is called a bag of
the tree decomposition; G has treewidth at most t if it admits a tree decomposition
such that no bag has more than t vertices. After rooting T , Gx denotes the subgraph of
G induced by the vertices contained in any bag that belongs to the subtree of T rooted
at bag x. One of the most useful properties of the tree decomposition is the existence
of what is known as a nice tree decomposition, for which we define as follows.

Definition 5 (Nice tree decomposition) A tree decomposition (T,B) of a graph G is
said to be nice if it T is a tree rooted at an empty bag r(T ) and each of its bags is
from one of the following four types:

1. Leaf node: a leaf x of T with |Bx| = 1.
2. Introduce node: an inner node x of T with one child y such that By ⊆ Bx and

Bx \By = {u}, for some u ∈ V (G).
3. Forget node: an inner node x of T with one child y such that Bx ⊆ By and

By \Bx = {u}, for some u ∈ V (G).
4. Join node: an inner node x of T with two children y, z such that Bx = By = Bz .
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In the next theorem, note that the assumption that the given tree decomposition
is nice is not restrictive, as any tree decomposition can be transformed into a nice one
of the same width in polynomial time [19]. For further properties of treewidth, we refer
to [9, 29].

Theorem 6 For every integer d ≥ 1, given a nice tree decomposition of G of width
tw(G), d-Cut can be solved in time O∗

(
2tw(G)(d+ 1)2tw(G)

)
.

Proof As expected, we will perform dynamic programming on a nice tree decomposi-
tion. For this proof, we denote a d-cut of G by (L,R) and suppose that we are given
a total ordering of the vertices of G. Let (T,B) be a nice tree decomposition of G
rooted at a node r ∈ V (T ). For a given node x ∈ T , an entry of our table is indexed
by a triple (A,α, t), where A ⊆ Bx, α ∈ ({0} ∪ [d])tw(G)+1, and t is a binary value.
Each coordinate ai of α indicates how many vertices outside of Bx the i-th vertex of
Bx has in the other side of the partition. More precisely, we denote by fx(A,α, t) the
binary value indicating whether or not V (Gx) has a bipartition (Lx, Rx) such that
Lx ∩ Bx = A, every vertex vi ∈ Bx has exactly ai neighbors in the other side of the
partition (Lx, Rx) outside of Bx, and both Lx and Rx are non-empty if and only if
t = 1. Note that G admits a d-cut if and only if fr(∅,0, 1) = 1. Figure 6 gives an ex-
ample of an entry in the dynamic programming table and the corresponding solution
on the subtree.

Bx 0

2

1

Fig. 6 Example for d = 3 of dynamic programming state and corresponding solution on the
subtree. Squared (circled) vertices belong to Lx (Rx). Numbers indicate the value of αi.

We say that an entry (A,α, t) for a node x is valid if for every vi ∈ A, |N(vi) ∩
(Bx \ A)|+ ai ≤ d, for every vj ∈ Bx \ A, |N(vi) ∩ A|+ aj ≤ d, if Bx 6= Bx \ A 6= ∅
implies t = 1, and if Bx = ∅ then t = 1; note that the latter is only applicable to the
root since G is connected. If neither of the above cases hold, the entry is said to be
invalid. Moreover, note that if fx(A,α, t) = 1, the corresponding bipartition (Lx, Rx)
of V (Gx) is a d-cut if and only if (A,α, t) is valid and t = 1.

We now explain how the entries for a node x can be computed, assuming recursively
that the entries for their children have been already computed. We distinguish the four
possible types of nodes. Whenever (A,α, t) is invalid or absurd (with, for example,
ai < 0) we define fx(A,α, t) to be 0, and for simplicity we will not specify this in the
equations stated below.

– Leaf node: Since Bx = {v}, set fx({v},0, 0) = fx(∅,0, 0) = 1. These are all the
possible partitions of Bx, taking O(1) time to be computed.

– Introduce node: Let y be the child of x and Bx \ By = {vi}. The transition is
given by the following equation, where α∗ has entries equal to α but without the
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coordinate corresponding to vi. If ai > 0, fx(A,α, t) is invalid since vi has no
neighbors in Gx −Bx.

fx(A,α, t) =

{
fy(A \ {vi},α∗, t), if A = Bx or A = ∅.
maxt′∈{0,1} fy(A \ {vi},α∗, t′), otherwise.

For the first case, Gx has a bipartition (which will also be a d-cut if t = 1) repre-
sented by (A,α, t) only if Gy has a bipartition (d-cut), precisely because, in both
Gx and Gy, the entire bag is in one side of the cut. For the latter case, if Gy has
a bipartition, regardless if it is a d-cut or not, Gx has a d-cut because Bx is not
contained in a single part of the cut, unless the entry is invalid. The computation
for each of these nodes takes O(1) time per entry.

– Forget node: Let y be the child of x and By \Bx = {vi}. In the next equation, α′

has the same entries as α with the addition of entry ai corresponding to vi and, for
each vj ∈ A∩N(vi), a′j = aj −1. Similarly, for α′′, for each vj ∈ (Bx \A)∩N(vi),
a′′j = aj − 1.

fx(A,α, t) = max
ai∈{0}∪[d]

max{fy(A,α′, t), fy(A ∪ {vi},α′′, t)}.

Note that α′ and α′′ take into account the forgetting of vi; its neighbors get
an additional neighbor outside of Bx that is in the other side of the bipartition.
Moreover, since we inspect the entries of y for every possible value of ai, if at
least one of them represented a feasible bipartition of Gy, the corresponding entry
on fy(·) would be non-zero and, consequently, fx(A,α, t) would also be non-zero.
Computing an entry for a forget node takes O(d) time.

– Join node: Finally, for a join node x with children y and z, a splitting of α is a
pair αy,αz such that for every coordinate aj of α, it holds that the sum of j-th
coordinates of αy and αz is equal to aj . The set of all splittings is denoted by

S(α) and has size O
(
(d+ 1)tw(G)+1

)
. As such, we define our transition function

as follows.

fx(A,α, t) = max
t≤ty+tz≤2t

max
S(α)

fy(A,αy, ty) · fz(A,αz , tz).

The condition t ≤ ty + tz ≤ 2t enforces that, if t = 1, at least one of the graphs
Gy, Gz must have a d-cut; otherwise, if t = 0, neither of them can. When iterating
over all splittings of α, we are essentially testing all possible counts of neighbors
outside of By such that there exists some entry for node z such that αy +αz = α.
Finally, fx(A,α, t) is feasible if there is at least one splitting and ty, tz such that
both Gy and Gz admit a bipartition. This node type, which is the bottleneck of
our dynamic programming approach, takes O

(
(d+ 1)tw(G)+1

)
time per entry.

Consequently, since we have O(tw(G)) ·n nodes in a nice tree decomposition, spend

O
(
tw(G)2

)
to detect an invalid entry, have O

(
2tw(G)+1(d+ 1)tw(G)+1

)
entries per

node, each taking O
(
(d+ 1)tw(G)+1

)
time to be computed, our algorithm runs in

time O
(
tw(G)32tw(G)+1(d+ 1)2tw(G)+2 · n

)
, as claimed. ut

From Theorem 6 we immediately get the following corollary, which improves over
the algorithm given by Aravind et al. [1].
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Corollary 2 Given a nice tree decomposition of G of width tw(G), Matching Cut

can be solved in time O∗
(
8tw(G)

)
.

3.3 Kernelization and distance to cluster

The proof of the following theorem consists of a simple generalization to every d ≥ 1
of the construction given by Komusiewicz et al. [20] for d = 1.

Theorem 7 For any fixed d ≥ 1, d-Cut does not admit a polynomial kernel when
simultaneously parameterized by k, ∆, and tw(G), unless NP ⊆ coNP/poly.

Proof We show that the problem cross-composes into itself. Start with t instances
G1, . . . , Gt of d-Cut. First, pick an arbitrary vertex vi ∈ V (Gi), for each i ∈ [t].
Second, for i ∈ [t−1], add a copy of K2d, call it K(i), every edge between vi and K(i),
and every edge between K(i) and vi+1. This concludes the construction of G, which
for d = 1 coincides with that presented by Komusiewicz et al. [20].

Suppose that (A,B) is a d-cut of some Gi and that vi ∈ A. Note that (V (G)\B,B)
is a d-cut of G since the only edges in the cut are those between A and B. For the
converse, take some d-cut (A,B) of G and note that every vertex in the set {vt} ∪⋃

i∈[t−1]{vi}∪K(i) is contained in the same side of the partition, say A. Since B 6= ∅,
there is some i such that B ∩ V (Gi) 6= ∅, which implies that there is some i (possibly
more than one) such that (A ∩ V (Gi), B ∩ V (Gi)) must be a d-cut of Gi.

Finally, note that the treewidth, maximum degree, and number of edges crossing
the partition are bounded by 2dn ≤ 2n2, where n is the maximum number of vertices
of the graphs Gi, since adding the cliques between the Gi’s does not increase these
parameters by more than 2d ≤ 2n. ut

We now proceed to show that d-Cut admits a polynomial kernel when parameter-
izing by the distance to cluster parameter, denoted by dc. A cluster graph is a graph
such that every connected component is a clique. A graph has distance to cluster k if
there is a set U ⊆ V (G) of size k and G−U is a cluster graph. Following the convention
established in the literature, we refer to the maximal cliques of G − U as the clusters
of G. Our results are heavily inspired by the work of Komusiewicz et al. [20]. Indeed,
most of our reduction rules are natural generalizations of theirs. However, we need
some extra observations and rules that only apply for d ≥ 2, such as Rule 8.

Throughout this section, we keep a partition of U into sets (U1, . . . , Ut) and main-
tain the property that each Ui is monochromatic set; each Ui may also be referred to
as as monochromatic part of U . Initially, we set each Ui as a singleton. In order to sim-
plify the analysis of our instance, for each Ui of size at least two, we will have a private
clique of size 2d adjacent to every vertex of Ui, which we call Xi. The merge operation
between Ui and Uj is the following modification: delete Xi ∪Xj , set Ui as Ui ∪Uj , Uj

as empty, and add a new clique of size 2d, which we shall call Xi for simplicity, and
make it adjacent to every element of the new Ui. We say that an operation is safe if
the resulting instance is a YES instance if and only if the original instance was.

Observation 3 If Ui ∪ Uj is monochromatic, merging Ui and Uj is safe.

It is worth mentioning that the second case of the following rule is not needed in
the corresponding rule in [20]; we need it here to prove the safeness of Rules 7 and 8.
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Reduction Rule 1 Suppose that G− U has some cluster C such that

1. (C, V (G) \ C) is a d-cut, or
2. |C| ≤ 2d and there is C′ ⊆ C such that (C′, V (G) \ C′) is a d-cut.

Then output YES.

After applying Rule 1, for every cluster C, C has some vertex with at least d+ 1
neighbors in U , or there is some vertex of U with at least d+1 neighbors in C. Moreover,
note that no cluster C with at least 2d+ 1 vertices can be partitioned in such a way
that one side of the cut is composed only by a proper subset of vertices of C, i.e., C is
monochromatic

The following definition is a natural generalization of the definition of the set N2

given by Komusiewicz et al. [20]. However, there is a crucial difference that keeps us
from achieving equivalent bounds both in terms of running time and size of the kernel.
Namely, for a vertex to be forced into a particular side of the cut, it must have at least
d+ 1 neighbors on that side; moreover, a vertex of U being adjacent to 2d vertices of
a cluster C implies that C is monochromatic. Only if d = 1, i.e., when we are dealing
with matching cuts, the equality d + 1 = 2d holds. This gap between d + 1 and 2d
is the main difference between our kernelization algorithm for general d and the one
shown in [20] for Matching Cut, and the main source of the differing complexities
we obtain. For d = 1, the fourth case of the following definition is a particular case of
the third one, but this is not true anymore for d ≥ 2. Figure 7 illustrates the set of
vertices introduced in Definition 6.

Definition 6 For a monochromatic part Ui ⊆ U , let N2d(Ui) be the set of vertices
v ∈ V (G) \ U for which at least one of the following holds:

1. v has at least d+ 1 neighbors in Ui.
2. v is in a cluster C of size at least 2d+ 1 in G − U such that there is some vertex

of C with at least d+ 1 neighbors in Ui.
3. v is in a cluster C of G− U and some vertex in Ui has 2d neighbors in C.
4. v is in a cluster C of G−U of size at least 2d+1 and some vertex in Ui has d+1

neighbors in C.

Ui

Fig. 7 The four cases that define membership in N2d(Ui) for d = 2, from left to right.
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Observation 4 For every monochromatic part Ui, Ui ∪N2d(Ui) is monochromatic.

The next rules aim to increase the size of monochromatic sets. In particular, Rule 2
translates the transitivity of the monochromatic property, while Rule 3 identifies a case
where merging the monochromatic sets is inevitable.

Reduction Rule 2 If N2d(Ui) ∩N2d(Uj) 6= ∅, merge Ui and Uj .

Reduction Rule 3 If there is a set of 2d + 1 vertices L ⊆ V (G) with two common
neighbors u, u′ such that u ∈ Ui and u′ ∈ Uj , merge Ui and Uj .

Proof (of safeness of Rule 3) Suppose that in some d-cut (A,B), u ∈ A and u′ ∈ B,
this implies that at most d elements of L are in A and at most d are in B, which is
impossible since |L| = 2d+ 1. ut

We say that a cluster is small if it has at most 2d vertices, and big otherwise.
Moreover, a vertex in a cluster is ambiguous if it has neighbors in more than one Ui.
A cluster is ambiguous if it has an ambiguous vertex, and fixed if it is contained in
some N2d(Ui).

Observation 5 If G is reduced by Rule 1, every big cluster is ambiguous or fixed.

Proof Since Rule 1 cannot be applied, every cluster C has either one vertex v with at
least d + 1 neighbors in U or there is some vertex of a set Ui with d + 1 neighbors
in C. In the latter case, by applying the fourth case in the definition of N2d(Ui), we
conclude that C is fixed. In the former case, either v has d+1 neighbors in the same Ui,
in which case C is fixed, or its neighborhood is spread across multiple monochromatic
sets, and so v and, consequently, C are ambiguous. ut

Our next goal is to bound the number of vertices outside of U .

Reduction Rule 4 If there are two clusters C1, C2 contained in some N2d(Ui), then
add every edge between C1 and C2.

Proof (of safeness of Rule 4) It follows directly from the fact that adding edges between
vertices of a monochromatic set preserves the existence of a d-cut. ut

The next lemma follows from the pigeonhole principle and exhaustive application
of Rule 4.

Lemma 2 If G has been reduced by Rules 1 through 4, then G has O(|U |) fixed clusters.

Reduction Rule 5 If there is some cluster C with at least 2d+ 2 vertices such that
there is some v ∈ C with no neighbors in U , remove v from G.

Proof (of safeness of Rule 5) That G has a d-cut if and only if G − v has a d-cut
follows directly from the hypothesis that C is monochromatic in G and the fact that
|C \ {v}| ≥ 2d+ 1 implies that C \ {v} is monochromatic in G− v. ut

By Rule 5, we now have the additional property that, if C has more than 2d+ 1
vertices, all of them have at least one neighbor in U . The next rule provides a uniform
structure between a big cluster C and the set Ui that has C ⊆ N2d(Ui).
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Reduction Rule 6 If a cluster C has at least 2d + 1 elements and there is some
Ui such that C ⊆ N2d(Ui), remove all edges between C and Ui, choose u ∈ Ui,
{v1, . . . , vd+1} ⊆ C and add the edges {uvi}i∈[d+1] to G.

Proof (of safeness of Rule 6) Let G′ be the graph obtained after the operation is
applied. If G has some d-cut (A,B), since Ui ∪ N2d(Ui) is monochromatic, no edge
between Ui and C crosses the cut, so (A,B) is also a d-cut of G′. For the converse, take
a d-cut (A′, B′) of G′. Since C has at least 2d + 1 vertices and there is some u ∈ Ui

such that |N(u) ∩ C| = d+ 1, C ∈ N2d(Ui) in G′. Therefore, no edge between C and
Ui crosses the cut and (A′, B′) is also a d-cut of G. ut

We have now effectively bounded the number of vertices in big clusters by a poly-
nomial in |U |, as shown below.

Lemma 3 If G has been reduced by Rules 1 through 6, then G has O
(
d|U |2

)
ambiguous

vertices and O
(
d|U |2

)
big clusters, each with O(d|U |) vertices.

Proof To show the bound on the number of ambiguous vertices, take any two vertices
u ∈ Ui, u′ ∈ Uj . Since we have (|U |2 ) such pairs, if we had at least (2d + 1)(|U |2 )
ambiguous vertices, by the pigeonhole principle, there would certainly be 2d+1 vertices
in V \ U that are adjacent to one pair, say u and u′. This, however, contradicts the
hypothesis that Rule 3 has been applied, and so we have O

(
d|U |2

)
ambiguous vertices.

The above discussion, along with Lemma 2 and Observation 5, imply that the
number of big clusters is O

(
d|U |2

)
. For the bound on their sizes, take some cluster C

with at least 2d+ 2 vertices. Due to the application of Rule 5, every vertex of C has
at least one neighbor in U . Moreover, there is at most one Ui such that C ⊆ N2d(Ui),
otherwise we would be able to apply Rule 2.

If there is some Ui that satisfies C ⊆ N2d(u), by Rule 6, there is only one u ∈ Ui

that has neighbors in C; in particular, it has d+1 neighbors. Now, for every j 6= i, each
v ∈ Uj has at most d neighbors in C, otherwise C ⊆ N2d(Uj) and Rule 2 would have
been applied. Therefore, we conclude that C has at most (d+1)+

∑
v∈U\Ui

|N(u)∩C| ≤
(d+ 1) + d|U | ∈ O(d|U |) vertices. ut

We are now left only with an unbounded number of small clusters. A cluster C is
simple if it is not ambiguous, that is, if for each v ∈ C, v has neighbors in at most one
Ui. Otherwise, C is ambiguous and, because of Lemma 3, there are at most O

(
d|U |2

)
such clusters. For a simple cluster C and a vertex v ∈ C, we denote by U(v) the
monochromatic part of U to which v is adjacent.

Reduction Rule 7 If C is a simple cluster with at most d + 1 vertices, remove C
from G.

Proof (of safeness of Rule 7) Let G′ = G−C. Suppose G has a d-cut (A,B) and note
that A * C and B * C since Rule 1 does not apply. This implies that (A \C,B \C) is
a valid d-cut of G′. For the converse, take a d-cut (A′, B′) of G′, define CA = {v ∈ C |
U(v) ⊆ A}, and CB = C \ CA; we claim that (A′ ∪ CA, B

′ ∪ CB) is a d-cut of G. To
see that this is the case, note that each vertex of CA (resp. CB) has at most d edges to
CB (resp. CA) and, since C is simple, CA (resp. CB) has no other edges to B′ (resp.
A′). ut
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After applying the previous rule, every cluster C not yet analyzed has size d+2 ≤
|C| ≤ 2d which, in the case of the Matching Cut problem, where d = 1, is empty. To
deal with these clusters, given a d-cut (A,B), we say that a vertex v is in its natural
assignment if v has no neighbors in U or if v ∪ U(v) is on the same side of the cut;
otherwise the vertex is in its unnatural assignment. Similarly, a cluster is unnaturally
assigned if it has an unnaturally assigned vertex, otherwise it is naturally assigned.

Observation 6 Let C be the set of all simple clusters with at least d+ 2 and at most
2d vertices, and (A,B) a partition of V (G). If there are d|U |+ 1 edges uv, v ∈ C ∈ C
and u ∈ U , such that uv is crossing the partition, then (A,B) is not a d-cut.

Proof Since there are d|U | + 1 edges crossing the partition between C and U , there
must be at least one u ∈ U with d+ 1 neighbors in the other set of the partition. ut

Corollary 3 In any d-cut of G, there are at most d|U | unnaturally assigned vertices.

Our next lemma limits how many clusters in C relate in a similar way to U ; we
say that two simple clusters C1, C2 have the same pattern if they have the same size
and there is a bijection f : C1 7→ C2, such that, for every v ∈ C1, we have that
U(v) = U(f(v)). Essentially, clusters that have the same pattern have neighbors in
exactly the same monochromatic sets of U and the same multiplicity in terms of how
many of their vertices are adjacent to a same monochromatic set Ui. Note that the
actual neighborhood in the sets Ui’s do not matter in order for two clusters to have
the same pattern, it suffices that each v ∈ C1 has a unique correspondent in C2 that
has neighbors in the same monochromatic set of U . We say that a set of clusters R is a
maximal set of unnaturally assigned clusters if they all have the pattern, each cluster is
unnaturally assigned, and, if we add to the graph a new cluster with the same pattern
as those in R, then it must be naturally assigned; note also that Corollary 3 bounds the
size of R, i.e. there cannot be more than d|U | unnaturally assigned clusters in a d-cut
of G. See Figure 8 for an example of a maximal set of unnaturally assigned clusters.
As shown by the following Lemma, we may discard clusters that must be naturally
assigned, as we can easily extend the kernel’s d-cut, if it exists, to include them.

Lemma 4 Let C∗ ⊆ C be a subfamily of simple clusters, all with the same pattern,
with |C∗| > d|U | + 1. Let C be some cluster of C∗, and G′ = G − C. Then G has a
d-cut if and only if G′ has a d-cut.

Proof Since by Rule 1 no subset of a small cluster is alone in a side of a partition
and, consequently, so if G has a d-cut (A,B), then V (G) \C intersects both A and B;
consequently, (A \ C,B \ C) is a d-cut of G′.

For the converse, let (A′, B′) be a d-cut of G′. First, by Corollary 3, we know
that at least one of the clusters of C∗ \ {C}, say Cn, is naturally assigned. Now, let
f : C 7→ Cn be a bijection the certifies that C and Cn have the same pattern, and
let (A,B) be the bipartition of V (G) obtained from (A′, B′) such that v ∈ C is in A
(resp. B) if and only if f(v) ∈ A′ (resp. f(v) ∈ B′); that is, C is naturally assigned.
Define CA = C ∩ A and CB = C ∩ B. Because |C| = |Cn| and both belong to C∗,
we know that for every u ∈ CA, it holds that |N(u) ∩ CB | ≤ d; moreover, note that
N(u) ∩ (B \ C) = ∅. A symmetric analysis applies to every u ∈ CB . This implies that
no vertex of C has additional neighbors in the other side of the partition outside of its
own cluster. Since C is naturally assigned, no vertex of U has more neighbors across
the cut in G than in G′. Therefore, (A,B) is a d-cut of G. ut
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U2

U1

Fig. 8 Example for d = 4 of a maximal set of unnaturally assigned clusters. Squared (resp.
circled) vertices would be assigned to A (resp. B).

The safeness of our last rule follows directly from Lemma 4.

Reduction Rule 8 If there is some pattern such that the number of simple clusters
with that pattern is at least d|U |+ 2, delete all but d|U |+ 1 of them.

Lemma 5 After exhaustive application of Rules 1 through 8, G has O
(
d|U |2d+1

)
small clusters and O

(
d2|U |2d+2

)
vertices in these clusters.

Proof By Rule 7, no small cluster with less than d+2 vertices remains in G. Now, for
the remaining sizes, for each d+ 2 ≤ s ≤ 2d, and each pattern of size s, by Rule 8 we
know that the number of clusters with s vertices that have the same pattern is at most
d|U |+ 1. Since we have at most |U | possibilities for each of the s vertices of a cluster,
we end up with O(|U |s) possible patterns for clusters of size s. Summing all of them

up, we get that we have O
(
|U |2d+1

)
patterns in total, and since each one has at most

d|U |+ 1 clusters of size at most 2d, we have at most O
(
d2|U |2d+2

)
vertices in those

clusters. ut

The exhaustive application of all the above rules and their accompanying lemmas
are enough to show that indeed, there is a polynomial kernel for d-Cut when param-
eterized by distance to cluster.

Theorem 8 When parameterized by distance to cluster dc(G), d-Cut admits a polyno-

mial kernel with O
(
d2 · (3dc(G))2d+2

)
vertices that can be computed in O

(
d4 · (3dc(G))2d+2(n+m)

)
time.

Proof The algorithm begins by finding a set U such that G−U is a cluster graph. A set
U with |U | ≤ 3dc(G) can be found in O(dc(G)(n+m)) time: while there is some P3

in G, we know that at least one its vertices must be removed, but since we don’t know
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which one, we remove all three; this produces a cluster graph since G is a cluster graph
if and only if it is P3-free. After the exhaustive application of Rules 1 through 8, by
Lemma 3, V (G) \ U has at most O

(
d2 · (3dc(G))3

)
vertices in clusters of size at least

2d+1. By Rule 7, G has no simple cluster of size at most d+1. Ambiguous clusters of
size at most 2d, again by Lemma 3, also comprise only O

(
d2 · dc(G)2

)
vertices of G.

Finally, for simple clusters of size between d + 2 and 2d, Lemmas 4 and 5 guarantee
that there are O

(
d2 · (3dc(G))2d+2

)
vertices in small clusters and, consequently, this

many vertices in G.
As to the running time, first, computing and maintainingN2d(Ui) takesO(d · dc(G)n)

time. Rule 1 is applied only at the beginning of the kernelization, and runs inO
(
22dd(n+m)

)
time. Rules 2 and 3 can both be verified in O

(
d · dc(G)2(n+m)

)
time, since we are

just updating N2d(Ui) and performing merge operations. Both are performed only
O
(
dc(G)2

)
times, because we only have this many pairs of monochromatic parts. The

straightforward application of Rule 4 would yield a running time of O
(
n2
)
. However,

we can ignore edges that are interior to clusters and only maintain which vertices be-
long together; this effectively allows us to perform this rule in O(n) time, which, along
with its O(n) possible applications, yields a total running time of O

(
n2
)
for this rule.

Note that, when outputting the instance itself, we must write the edges explicitly; this
does not change the final complexity of the algorithm, as each of the O

(
(3dc(G))2d+1

)
clusters has O(d · dc(G)) vertices. Rule 5 is directly applied in O(n) time; indeed, all
of its applications can be performed in a single pass. Rule 6 is also easily applied in
O(n+m) time. Moreover, it is only applied O(dc(G)) times, since, by Lemma 3, the
number of fixed clusters is linear in dc(G); furthermore, we may be able to reapply
Rule 6 directly to the resulting cluster, at no additional complexity cost. The analysis
for Rule 7 follows the same argument as for Rule 5. Finally, Rule 8 is the bottleneck
of our kernel, since it must check each of the possible O

(
(3dc(G))2d+1

)
patterns,

spending O(n) time for each of them. Each pattern is only inspected once because the
number of clusters in a pattern can no longer achieve the necessary bound for the rule
to be applied once the excessive clusters are removed. ut

In the next theorems, we provide FPT algorithms for d-Cut parameterized by dis-
tance to cluster and distance to co-cluster, respectively. Both are based on dynamic
programming, with the first being considerably simpler than the one given by Ko-
musiewicz et al. [20] for d = 1, which applies four reduction rules and encodes the
problem in a 2-SAT formula. However, for d = 1 our algorithm is slower, namely
O∗
(
4dc(G)

)
compared to O∗

(
2dc(G)

)
. Observe that the minimum distance to cluster

and co-cluster sets can be computed in time 1.92dc(G) · O
(
n2
)
and 1.92dc(G) · O

(
n2
)
,

respectively [6]. Thus, in the proofs of Theorems 9 and 10, we can safely assume that
we have these sets at hand.

Theorem 9 For every integer d ≥ 1, there is an algorithm that solves d-Cut in time
O
(
4d(d+ 1)dc(G)2dc(G)dc(G)n2

)
.

Proof Let U be a set such that G − U is a cluster graph, Q = {Q1, . . . , Qp} be the
family of clusters of G − U and Qi =

⋃
j≤iQj . Essentially, the following dynamic

programming algorithm attempts to extend a given partition of U in all possible ways
by partitioning clusters, one at a time, while only keeping track of the degrees of vertices
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that belong to U . Recall that we do not need to keep track of the degrees of the cluster
vertices precisely because G− U has no edge between clusters.

Formally, given a partition (A,B) of U that is a d-cut of G[U ], our table is a
mapping f : ([p] ∪ 0) × Z|A| × Z|B| → {0, 1}. Each entry is indexed by (i,dA,dB),
where i ∈ [p], dA is a |A|-dimensional vector with the j-th coordinate being denoted
by dA[j], and dB is defined analogously. Our goal is to have f(i,dA,dB) = 1 if and
only if there is a partition (X,Y ) of U ∪ Qi where A ⊆ X, B ⊆ Y , va ∈ A (vb ∈ B)
has at most dA[a] (dB [b]) neighbors in Qi, and each v` ∈ X ∩Qi (vj ∈ Y ∩Qi) has at
most d neighbors in Y (X).

We denote by Pd(i,dA,dB) the set of all partitions (L,R) of Qi such that every
vertex v` ∈ L has dB∪R(v`) ≤ d, every vr ∈ R has dA∪L(vr) ≤ d, every va ∈ A has
dR(va) ≤ dA[a] and every vb ∈ B, dL(vb) ≤ dB [b]; note that, due to this definition,
it could be the case that (L,R) ∈ Pd(i,dA,dB) but (R,L) /∈ Pd(i,dA,dB). In the
following equations, which give the computations required to build our table, dA(R)
and dB(L) are the updated values of the vertices of A and B after R is added to
Y and L to X, respectively. That is, dA(R)[a] = dA[a] − dR(va) for every va ∈ A,
and dB(L)[b] = dB [b] − dL(vb) for every va ∈ A. We say that dC ≥ 0 if, for every
vc ∈ C, dC [c] ≥ 0. As a sanity check, if there is some va ∈ A or vb ∈ B such that
dA[a] > d− dB(va), dB [b] > d− dA(vb), dA[a] < 0, or dB [b] < 0, i.e. we allow va (vb)
to have more neighbors across the partition than it could possibly have in a d-cut, we
set f(i,dA,dB) = 0.

f(0,dA,dB) = 1, if and only if dA ≥ 0 and dB ≥ 0. (1)

f(i,dA,dB) = 0 ∨
∨

(L,R)∈Pd(i,dA,dB)

f(i− 1,dA(R),dB(L)) (2)

We prove the correctness of the above by induction on i. For the base case, which
is given by Equation 1, suppose first that (X,Y ) is a partition of U ∪ Q0 = U that
respects dA and dB . In this case, we have that X = A, Y = B, which is a d-cut of
G[U ], and for every va ∈ A and vb ∈ B, we have 0 ≤ dY (va) ≤ dB(va) + dA[a] ≤ d

and 0 ≤ dX(vb) ≤ dA(vb) + dB [b] ≤ d. For the converse, it suffices to see that if
f(0,dA,dB) = 1, then (A,B) is a partition of U ∪ Q0 = U that respects dA and
dB since, for each va ∈ A and vb ∈ B, we have that 0 ≤ dA[a] ≤ d − dB(va) and
0 ≤ dB [b] ≤ d− dA(vb).

For the general case of i > 0, given by Equation 2, let (X,Y ) be a partition of
U ∪ Qi that respects dA and dB , and let L = X ∩ Qi and R = Y ∩ Qi. Note that
(L,R) ∈ Pd(i,dA,dB) because (X,Y ) is a partition where: (i) each v` ∈ L has at
most d neighbors in Y ∩ N(v`) ⊆ Qi ∪ B, (ii) each vr ∈ R has at most d neighbors
in X ∩N(vr) ⊆ Qi ∪ A, (iii) each va ∈ A has at most dA[a] neighbors in R, and (iv)
each vb ∈ B has at most dB [b] neighbors in L. Since (X \ L, Y \ R) respects dA(R)
and dB(L), and X ∪ Y \ Qi = U ∪ Qi−1, by the inductive hypothesis we have that
f(i−1,dA(R),dB(L)) = 1, so f(i,dA,dB) = 1. Conversely, if f(i,dA,dB) = 1, there
must be some (L,R) ∈ Pd(i,dA,dB) where f(i − 1,dA(R),dB(L)) = 1, so, by the
inductive hypothesis, there is a partition (X ′, Y ′) of U ∪ Qi−1 that respects dA(R)
and dB(L). To see that (X,Y ) = (X ′ ∪ L, Y ′ ∪ R) respects the desired properties,
note that (X ′, Y ′) is a d-cut of G[U ∪ Qi−1] where dA(R)[a] ≤ d − dB(va) − dR(va)
and dB(L)[b] ≤ d − dA(vb) − dL(vb) for every va ∈ A and vb ∈ B. By definition,
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(L,R) ∈ Pd(i,dA,dB) implies that, in the cut (X,Y ), no vertex of Qi has more than
d neighbors across the cut and, for each va ∈ A, we have that:

dY (va) = dY ′(va) + dR(va) ≤ dB(va) + dA(R)[a] + dR(va) ≤ dB(va) + dA[a] ≤ d

A similar analysis holds for vb ∈ B, so we conclude that (X,Y ) is a cut of G[U∪Qi]
that satisfies our properties.

The complexity analysis is straightforward. Recalling that |Pd(i,dA,dB)| ≤ 22d,

we have that each f(i,dA,dB) can be computed in time O
(
4d|U |n

)
and, since we have

O
(
(d+ 1)|A|+|B|p

)
∈ O

(
(d+ 1)|U |p

)
, given a partition (A,B) of U , we can decide

if there is d-cut separating A and B in O
(
4d(d+ 1)|U ||U |n2

)
-time. To solve d-Cut

itself, we guess all 2|U | partitions of U and, since |U | ∈ O(dc(G)), we obtain a total

running time of O
(
4d(d+ 1)dc(G)2dc(G)dc(G)n2

)
. ut

Theorem 10 For every integer d ≥ 1, there is an algorithm solving d-Cut in time
O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2 + 2d

2

n2
)
.

Proof Let U ⊆ V (G) be a set of O(dc(G)) vertices such that G − U is a co-cluster
graph with color classes ϕ = {F1, . . . , Ft}. Define F =

⋃
i∈[t] Fi and suppose we are

given a d-cut (A,B) of G[U ]. First, note that if t ≥ 2d+ 1, we have that some of the
vertices of F form a clique Q of size 2d+1, which is a monochromatic set; furthermore,
every vertex v ∈ F but not in Q has at least d+ 1 neighbors in Q. This implies that
Q ∪ {v} is monochromatic and, thus, F is a monochromatic set. Checking if either
(A ∪ F , B) or (A,B ∪ F) is a d-cut can be done in O

(
n2
)
time.

If the above does not apply, we have that t ≤ 2d.

– Case 1: If |F| ≤ 4d we can just try to extend (A,B) with each of the 2|F| biparti-

tions of F in O
(
16dn2

)
time.

So now, let (ϕ1, ϕ2) be a bipartition of the color classes, Fi = {v ∈ Fj | Fj ∈ ϕi},
and, for simplicity, suppose that |F1| ≤ |F2|.

– Case 2: If |F1| ≥ d + 1 and |F2| ≥ 2d + 1, we know that there is a set Q ⊆ F
forming a (not necessarily induced) complete bipartite subgraph Kd+1,2d+1, which
is a monochromatic set. Again, any v /∈ Q has at least dQ(v) ≥ d+1, from which we
conclude that Q ∪ {v} is also monochromatic, implying that F is monochromatic.

If Case 2 is not applicable, either |F1| ≤ d and |F2| ≥ 2d+1, or |F2| ≤ 2d. For the
latter, note that this implies |F| ≤ 4d, which would have been solved by Case 1. For
the former, two cases remain:

– Case 3: Every Fi ∈ ϕ2 has |Fi| ≤ 2d. This implies that every F ∈ ϕ has size
bounded by 2d and that |F| ≤ 4d2; we can simply try to extend (A,B) with each

of the O
(
2d

2
)
partitions of F , which can be done in O

(
2d

2

n2
)
time.

– Case 4: There is some Fi ∈ ϕ2 with |Fi| ≥ 2d + 1. Its existence implies that
|F| − |Fi| ≤ d, otherwise we would have concluded that F is a monochromatic
set: Fi and L ⊆ F \ Fi, L = d + 1, induce a subgraph that can be obtained
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from Kd+1,2d+1, which is monochromatic, by adding edges between vertices of the
smallest part, which maintains the monochromatic property; moreover, all vertices
in F\(L∪Fi) have at least d+1 neighbors in L∪Fi, so F is indeed monochromatic.
Since F\Fi has at most d vertices, the set of its bipartitions has size bounded by 2d.
So, given a bipartition FA ∪̇ FB = F\F , we define A′ := A∪FA and B′ := B∪FB .
Finally, note that G \ (A′ ∪ B′) is a cluster graph where every cluster is a single
vertex; that is, dc(G) ≤ dc(G) + d. In this case, we can apply Theorem 9, and

obtain the running time of O
(
4d(d+ 1)dc(G)+d(dc(G) + d)n2

)
; we omit the term

2dc(G)+d since we already have an initial partial d-cut (A′, B′).

For the total complexity of the algorithm, we begin by guessing the initial partition
of U into (A,B), spending O

(
n2
)
time for each of the O

(
2dc(G)

)
possible bipartitions.

If t ≥ 2d+ 1 we give the answer in O
(
n2
)
time. Otherwise, t ≤ 2d. If |F| ≤ 4d, then

we spend O
(
16dn2

)
time to test all partitions of F and return the answer. Else, for

each of the O
(
4d
)
partitions of ϕ, if one of them has a part with d+1 vertices and the

other part has 2d+1 vertices, we respond in O
(
n2
)
time. Finally, for the last two cases,

we either need O
(
2d

2

n2
)
time, or O

(
8d(d+ 1)dc(G)+d(dc(G) + d)n2

)
. This yields a

final complexity of O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2 + 2d

2

n2
)
. ut

4 Concluding remarks

We presented a series of algorithms and complexity results; many questions, however,
remain open. For instance, all of our algorithms have an exponential dependency on d on
their running times. While we believe that such a dependency is an intrinsic property of
d-cut, we have no proof for this claim. Similarly, the existence of a uniform polynomial
kernel parameterized by the distance to cluster, i.e., a kernel whose degree does not
depend on d, remains an interesting open question.

Also in terms of running time, we expect the constants in the base of the exact
exponential algorithm to be improvable. However, exploring small structures that yield
non-marginal gains as branching rules, as done by Komusiewicz et al. [20] for d = 1
does not seem a viable approach, as the number of such structures appears to rapidly
grow along with d.

The distance to cluster kernel is hindered by the existence of clusters of size be-
tween d + 2 and 2d, an obstacle that is not present in the Matching Cut problem.
Aside from the extremal argument presented, we know of no way of dealing with
them. We conjecture that it should be possible to reduce the total kernel size from
O
(
d2dc(G)2d+1

)
to O

(
d2dc(G)2d

)
, matching the size of the smallest known kernel

for Matching Cut [20].
We also leave open to close the gap between the polynomial and NP-hard cases

in terms of maximum degree. We showed that, if ∆(G) ≤ d+ 2 the problem is easily
solvable in polynomial time, while for graphs with ∆(G) ≥ 2d+ 2, it is NP-hard. But
what about the gap d + 3 ≤ ∆(G) ≤ 2d + 1? After some effort, we were unable to
settle any of these cases. In particular, we are interested in 2-Cut, which has a single
open case: ∆(G) = 5. After some weeks of computation, we found no graph with more
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than 18 vertices and maximum degree five that had no 2-cut, in agreement with the
computational findings of Ban and Linial [2]. Interestingly, all graphs on 18 vertices
without a 2-cut are either 5-regular or have a single pair of vertices of degree 4, which
are actually adjacent. In both cases, the graph is maximal in the sense that we cannot
add edges to it while maintaining the degree constraints. We recall the initial discussion
about Internal Partition; closing the gap between the known cases for d-Cut would
yield significant advancements on the former problem.

Acknowledgement. We would like to thank the anonymous reviewers for their very
pertinent and thorough remarks that improved the presentation of the manuscript.
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