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3LIRMM, Université de Montpellier, CNRS, Montpellier, France
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Abstract

Given a graph G and a digraph D whose vertices are the edges of G, we investigate
the problem of finding a spanning tree of G that satisfies the constraints imposed by
D. The restrictions to add an edge in the tree depend on its neighborhood in D. Here,
we generalize previously investigated problems by also considering as input functions
ℓ and u on E(G) that give a lower and an upper bound, respectively, on the number
of constraints that must be satisfied by each edge. The produced feasibility problem is
denoted by G-DCST, while the optimization problem is denoted by G-DCMST. We show
that G-DCST is NP-complete even under strong assumptions on the structures of G and
D, as well as on functions ℓ and u. On the positive side, we prove two polynomial
results, one for G-DCST and another for G-DCMST, and also give a simple exponential-
time algorithm along with a proof that it is asymptotically optimal under the ETH.
Finally, we prove that other previously studied constrained spanning tree (CST) prob-
lems can be modeled within our framework, namely, the Conflict CST, the Forcing
CST, the At Least One/All Dependency CST, the Maximum Degree CST,
the Minimum Degree CST, and the Fixed-Leaves Minimum Degree CST.

1 Introduction

Let G be a graph and D be a (directed or undirected) graph whose vertices are the edges
of G. In other terms, D defines a relation on the edge set of G. The dependencies of an
edge e ∈ E(G) are given by its (in-)neighborhood in D, i.e., by the set depD(e) = {e′ ∈
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E(G) | (e′, e) ∈ E(D)}. We omit the subscript D in depD(e) whenever the dependency
graph is clear from the context.

Many problems have been investigated under the light of dependencies between pairs of
objects, such as the knapsack problem [26], bin-packing [24], maximum flow [40], schedul-
ing problems [9], maximum matchings [19], shortest paths [19], or maximum acyclic sub-
graphs [36]. Generally, the dependency problems defined on graphs can be described as
the problem of finding a subgraph H of G satisfying the dependency constraints imposed
by D.

However, the notion of dependency itself may vary. For example, every (e, e′) in D
could mean that, whenever e′ is chosen (not chosen), we get that e cannot (must) be chosen,
thus expressing a conflict constraint (forcing constraint), with D being the conflict graph
(forcing graph). In this paper, we introduce a generalization of dependency constrained
problems, and investigate this generalization for spanning trees. In particular, our model
generalizes many of the constrained spanning tree problems that have been investigated in
the literature.

Our contribution. For the generalized version of dependency constrained problems,
together with graph G and (di)graph D, we also consider functions ℓ and u that assign,
to each e ∈ E(G), a lower and an upper bound on the number of dependencies that must
be ensured for e. This means that a subgraph H ⊆ G satisfies the imposed constraints
if and only if the number of edges in E(H) ∩ dep(e) is at least ℓ(e) and at most u(e),
for every e ∈ E(G)1; we then say that H (ℓ, u)-satisfies D. When H is asked to be
a spanning tree, we call the problem the Generalized Dependency Constrained
Spanning Tree problem, and denote it by G-DCST. Also, sometimes we deal with the
related optimization problem by considering weights on the edges of G; this is called the
Generalized Dependency Constrained Minimum Spanning Tree problem, and
is denoted by G-DCMST. Let us observe that when ℓ(e) = 0 and u(e) ≥ |dep(e)|, for all
e ∈ E(G), then G-DCST is equivalent to deciding whether G is connected, and G-DCMST

corresponds to the classical Minimum Spanning Tree problem.
Clearly, the feasibility problem G-DCST is a particular case of the optimization problem

G-DCMST, where the weight of each edge is equal to one. This is why, whenever possible, we
give preference to prove NP-completeness results for the feasibility problem, and get poly-
nomial results for the optimization problem. We use reductions from (3, 2, 2)-SAT to prove
our main NP-completeness results, whereas our polynomial results arise as consequences
of the Matroid Intersection Theorem [23] (cf. Section 2).

Considering the generalized version of the spanning tree problem, given a graph G,
a digraph D = (E(G), A), and functions ℓ, u, we prove that deciding whether G has a
spanning tree that (ℓ, u)-satisfies D is NP-complete in the following cases:

1We can always assume that 0 ≤ ℓ(e) ≤ u(e) ≤ |dep(e)|, and so ℓ(e) = u(e) = 0 if dep(e) = ∅.
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(i) ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G), D is a forest of oriented paths of length
at most two where all components are directed paths, out-stars, or in-stars, and
G is an outerplanar chordal graph with diameter at most two. Furthermore, this
problem cannot be solved in time 2o(n+m) unless the ETH fails, where n = |V (G)|
and m = |E(G)|;

(ii) When ℓ, u are constant functions, for every pair of constant values such that ℓ ≤ u;

(iii) When ℓ(e) = 0, and u(e) = |dep(e)| − 1, for every e ∈ E(G).

On the positive side, we prove the following:

(a) G-DCST can be solved in polynomial time when D is an oriented matching, and
ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G);

(b) G-DCMST can be solved in polynomial time when ℓ = 0, D is a collection of symmetric
complete digraphs D1, . . . ,Dk, and u(e) = u(e′) whenever e, e′ are within the same
component of D;

(c) G-DCST can be solved in time O(2m · (n + m)), where n = |V (G)| and m = |E(G)|.

It is worth observing that (a) and (i) define a dichotomy between polynomial and hard
cases for G-DCST when regarding D as a family of oriented paths. It can be solved in
polynomial time if length of the longest path in the underlying graph of D is at most one,
and it is NP-Complete otherwise.

We also prove that many of the constrained spanning tree (CST) problems that have
been investigated in the literature can be modeled with our general problem, namely the
Conflict CST [18], the Forcing CST [19], the At Least One/All Dependency
CST [45], the Maximum Degree CST [20], the Minimum Degree CST [2], and the
Fixed-Leaves Minimum Degree CST [22]. All our reductions preserve the value of
the solutions, which means that also the optimization version of these problems can be
modeled within our framework.

Notice that the previously mentioned CST problems impose (vertex-wise or edge-wise)
local constraints to describe their set of feasible spanning trees. This contrasts with Max-
imum Diameter CST [10,11], Minimum Diameter CST [27,28] (with variations [7,32])
and Maximum Leaves CST [25, 35], examples of NP-hard problems that impose con-
straints on global tree parameters. In [21], the authors propose an approach that includes
also these global constraints, but from a practical point of view.

Related work. In what follows, we talk sometimes about the feasibility version of the
problems, and sometimes about the optimization version, where also a weight function on
the edges of the input graph is given. Also, when ℓ and/or u are constant functions, we
write directly the constant value inside the parenthesis when saying whether a spanning
tree (ℓ, u)-satisfies D.
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Conflict constraints: Recall that, in the Conflict Constrained (Minimum) Spanning
Tree problem, we are given a pair of graphs G and D such that V (D) = E(G), and we
want to know whether there exists a spanning tree (find a minimum spanning tree) T of
G such that E(T ) ∩ dep(e) = ∅ for every e ∈ E(T ). We denote the feasibility problem by
CCST and the optimization problem by CCMST. Note that, if we consider D′ as an arbitrary
orientation of D (i.e., each edge e1e2 in D gives rise to either (e1, e2) or (e2, e1) in D′),
then we get that such a tree exists if and only if there exists a spanning tree T that (0, 0)-
satisfies D′. This means that our problem generalizes this one and therefore inherits the
NP-complete results, as well as might help with some polynomial cases. Also, observe that
the problems related to results (ii) when ℓ = 0, (iii) and (b) can be seen as generalizations
of the conflict constrained problems in the sense that ℓ = 0 (i.e., no lower bound constraint
is imposed), but u 6= 0.

Problems CCST and CCMST have been introduced in [19], where CCMST is proved to be
polynomial-time solvable if the conflict graph is a matching, and CCST is proved to be NP-
complete if the conflict graph is a forest of paths of length at most two. From what is said
previously, we then get that G-DCMST(G,D, 0, 0, w) is polynomial when D is an oriented
matching, and G-DCST(G,D, 0, 0) is NP-complete when D is an orientation of a forest of
paths of length at most two. When D is one of these digraphs, observe that ∆−(D) ≤ 2.
If ∆−(D) < 2, the other possibilities for constant values2 of ℓ, u are ℓ = 0 and u = 1,
which is trivially polynomial, and ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G). For the latter
case, we have results (i) and (a), which leaves open only the complexity of the optimization
problem when D is an oriented matching. On the other hand, for ∆−(D) = 2, i.e., D
contains a forest of in-stars with at most two leaves, result (i) shows NP-completeness
when ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G), the other values of ℓ and u remaining
open.

The CCST and CCMST problems have also been investigated in [47], where the authors
prove that, if the input graph G is a cactus, then CCST is polynomial, while CCMST is still
NP-hard. They further show that the optimization problem is polynomial if the conflict
graph D can be turned into a collection of cliques by the removal of a constant number
of vertices, i.e., there exists a subset E′ ⊆ E(G) = V (D) such that D − E′ is a collection
of cliques, and |E′| is bounded by a constant. We prove something similar here for the
generalized problem (result (b)).

In [31], the authors investigate a conflict constrained problem where the conflict graph
is only allowed to contain an edge ee′ if e and e′ share an endpoint in G (they called these
forbidden transitions). Among other results, they prove that the feasibility problem is
NP-complete even if the input graph G is a complete graph. Practical approaches to the
conflict constrained problem have been presented in [13,42,47].

Another interesting, recently defined, problem that can be modeled as a conflict con-

2This means that ℓ(e) = k and u(e) = k
′ ≥ k, for all e ∈ E(G) such that dep(e) 6= ∅, and ℓ(e) = u(e) = 0

if dep(e) = ∅.

4



strained spanning tree problem (and therefore, as a special case of G-DCST) is the so-called
Angular Constrained Spanning Tree problem [6]. In this problem, we are given a
set V of points on the plane, a graph G = (V,E), and an angle α. A spanning tree T is
called an α-spanning tree if, for every point v ∈ V , there is an angle on v of size smaller
than α containing all the edges (line segments) of T incident to v. Observe that, if we let
D contain an arc (vu, vw) whenever the smaller angle formed by vu and vw is bigger than
α, then an α-spanning tree T also (0, 0)-satisfies D, and vice-versa. Besides, the conflicts
in this case are forbidden transitions. In [6], one can find references on the decision version
of the problem, while the optimization version is investigated in [17].

Forcing constraints: Recall that, in the Forcing Constrained (Minimum) Spanning
Tree problem, we are given a pair of graphs G and D such that V (D) = E(G), and we
want to know whether there exists a spanning tree (find a minimum spanning tree) T of
G such that E(T ) ∩ {u, v} 6= ∅ for every uv ∈ E(D). We denote the feasibility problem by
FCST and the optimization problem by FCMST.

This problem was introduced in [19], where the authors prove that FCST is NP-complete
even if the conflict graph is a forest of paths of length at most two. To the best of our
knowledge, this is the only existing paper that investigates this problem. Here, we show a
reduction from FCST(G,D) to G-DCST(G′,D′, ℓ, u), where ℓ(e) ∈ {0, 1} and u(e) = |dep(e)|
for every e ∈ E(G′), and the maximum in-degree of D′ is 2. If weights are being considered,
such a reduction can be made to preserve the value of the solutions, and therefore it also
applies to the optimization problem.

At least one/all dependency constraints: The following two dependency constrained prob-
lems are introduced in [45]. Given a graph G and a digraph D such that V (D) = E(G), one
wants to know whether there exists a spanning tree T of G such that: E(T )∩dep(e) 6= ∅ for
every e ∈ E(T ) with dep(e) 6= ∅, called the At Least One Dependency Constrained
Spanning Tree problem; or dep(e) ⊆ E(T ) for every e ∈ E(T ), called the All Depen-
dency Constrained Spanning Tree problem. We denote these problems by L-DCST

and A-DCST, and the related optimization problems by L-DCMST and A-DCMST, respectively.
Note that these are special cases of our problem.

In [45], it is proved that both L-DCST and A-DCST are NPcomplete, even if G is a planar
chordal graph with diameter two or maximum degree three, and D is the disjoint union of
arborescences of height two. Here, we strengthen the constraints on D, while also getting a
lower bound on the running time of exponential algorithms for these problems (result (i)).
Observe that this result comprises cases where the maximum in-degree of D is one, and so
the generalized problem coincides with both L-DCST and A-DCST.

Still in [45], the authors prove that L-DCMST and A-DCMST are W[2]-hard when parame-
terized by the weight of a solution, and that, unless P = NP, they cannot be approximated
with a ratio of ln |V (G)| even if: G is bipartite; the dependency relations occur only between
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adjacent edges of G; and each weak component of D has diameter one. One can notice
that the weight of a solution in their W[2]-hardness reduction is O(n), where n = |V (G)|.
This means that there is no FPT algorithm for L-DCMST and A-DCMST parameterized by n,
unless FPT = W[1]. This contrasts with the decision problem, which can be solved in time
O(2m · (n + m)) = O(2n

2

· n2), where m = |E(G)| (result (c)).

Maximum degree constraints: Given a graph G = (V,E), and a positive integer k, the
Maximum Degree Constrained Spanning Tree problem consists in deciding whether
G has a spanning tree T such that dT (v) ≤ k for every v ∈ V (G), where dT (v) is the
degree of v in T . This problem was introduced in [20]. Observe that it is NP-complete,
even for k = 2, since this case generalizes the Hamiltonian path problem [25]. In [39], it
is proved to be NP-complete even for grid graphs of maximum degree three. Also, [39]
tackles the Euclidean optimization version of the problem (i.e., vertices are points on
the plane, and edges are weighted according to the Euclidean distance). The Euclidean
optimization version remains NP-hard when k ≤ 3, and is polynomial-time solvable when
k ≥ 5, remaining open for k = 4. Several heuristic, approximation, and exact approaches
have been proposed for the problem (see [8, 33,43] and references therein).

Here, we denote the feasibility version of this problem by MDST, and the optimization
version by MDMST. We present a reduction from MDST(G, k) to G-DCST(G′,D, 0, u) where
u(e) ∈ {0, k} for every e ∈ E(G′). The reduction also applies to the optimization problem
since it preserves the value of the solutions.

Minimum degree constraints: Given a graph G = (V,E), and a positive integer k, the
Minimum Degree Constrained Spanning Tree problem consists in deciding whether
G has a spanning tree T such that dT (v) ≥ k for every non-leaf vertex v of T . Here,
we denote the feasibility version of this problem by mDST, and the optimization version
by mDMST. This problem was introduced in [2], where it is shown to be NP-hard for every

k ∈ {4, · · · , |V (G)|
2 }. On the other hand, [2] proves that the problem can be solved (by

inspection) for degree bounds between |V (G)|
2 + 1 and |V (G)| − 1. In [3], the problem was

shown to be NP-hard for k = 3. The case k ≤ 2 is equivalent to the classical spanning tree
problem. Integer linear programs and solution methods were proposed in [1, 2, 37].

An interesting variation of mDST is obtained when the set of leaves is fixed in the input.
More formally, given a graph G, a subset C ⊆ V , and a positive integer k, it consists in
finding a spanning tree T of G such that dT (v) ≥ k, for every v ∈ C, and dT (v) = 1,
for every v ∈ V \ C. We denote the feasibility version of this problem by FmDST, and the
optimization version by FmDMST. This problem was introduced in [22], where the authors
prove that FmDST is NP-complete for k ≥ 2, and FmDMST is NP-hard even for complete
graphs. Also, some necessary and sufficient conditions are given for feasibility.

Here, we present a reduction from both mDST(G, k) and FmDST(G,C, k) to
G-DCST(G′,D, ℓ, u) where ℓ(e) ∈ {0, 1, k} and u(e) ∈ {1, |dep(e)|} for every e ∈ E(G).
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Again, our reduction preserves the values of the solutions and therefore works for the
optimization version as well.

Applications. As G-DCST generalizes all these problems, it inherits their applications,
such as design of wind farm networks [12], VLSI global routing [41], or low-traffic com-
munication networks [37]. In particular, dependency relations can model communication
systems with protocol conversion restrictions [44]. Besides, we can get unified results for
all of them by considering G-DCST.

Organization. In Section 2, we present the formal definitions and notation used through-
out the paper; in Section 3 we present our NP-complete results; in Section 4, our positive
results; in Section 5, we show how to model the many constrained spanning tree problems
as special cases of our problem; and in Section 6, we discuss our results and pose some
open questions.

2 Definitions and notation

Graphs. For missing basic definitions on graph theory, we refer the reader to [46]. Let G
be a simple graph (henceforth called simply a graph), and D be a digraph. We denote by
E(G), E(D) the edge set of G and arc set of D, respectively. Also, we denote an edge {u, v}
of G by uv, and arc with head v and tail u of D by (u, v). We say that D is symmetric
if (v, u) ∈ E(D) whenever (u, v) ∈ E(D). A (di)graph G (D) is complete if uv ∈ E(G)
({(u, v), (v, u)} ⊆ E(D)) for every pair of vertices u and v in G (D). It is empty if has no
edges (no arcs).

If C ⊆ V (G) is such that uv ∈ E(G) for every u, v ∈ V (G), u 6= v, then we call C a
clique. And if there are no edges between vertices in C, we say that C is an independent
set. A vertex v ∈ V (G) is called universal if N(v) = V (G)\{v}, where N(v) stands for the
set of neighbors of v. A tree T is called a star if it has a universal vertex v, called center.
Similarly, an out-star (in-star) is a directed graph D with a vertex v such that any other
vertex is an out-neighbor (in-neighbor) of v and V (D) \ {v} is an independent set.

Definition of the problems. Let G = (V,E) be a graph and D = (E,A) be a digraph
whose vertices are the edges of G. We say that e1 ∈ E is a D-dependency of e2 ∈ E if
(e1, e2) ∈ A. For each e ∈ E, we define its D-dependency set as depD(e) = {e′ ∈ E :
(e′, e) ∈ A}, and for E′ ⊆ E, let depD(E′) = ∪e∈E′depD(e); from now on we omit D from
the subscript whenever it is clear from the context. Also, let ℓ, u : E → N be functions
that assign a non-negative integer to each edge of G. We say that a subgraph H of G
(ℓ, u)-satisfies D if ℓ(e) ≤ |dep(e) ∩ E(H)| ≤ u(e), for every e ∈ E(H).

We introduce the Generalized Dependency Constrained Spanning Tree prob-
lem as, given a graph G, a digraph D = (E(G), A), and functions ℓ, u : E(G) → N, deciding
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whether there exists a spanning tree T of G such that T (ℓ, u)-satisfies D. We abbreviate
this with G-DCST(G,D, ℓ, u). Observe that it corresponds to the feasibility problem. If
we are also given a weight function w : E → R, then we define the Generalized De-
pendency Constrained Minimum Spanning Tree problem as the problem of finding
a spanning tree T ∗ of G that minimizes the weight sum and that (ℓ, u)-satisfies D; this
problem is denoted by G-DCMST.

Polynomial reductions and Exponential Time Hypothesis. Given problems Π and
Π′, we write Π �P Π′ if there exists a polynomial reduction from Π to Π′. This means that
problem Π′ is at least as hard as problem Π. The Exponential Time Hypothesis (denoted
by ETH) of Impagliazzo et al. [29, 30] states that the 3-SAT problem cannot be solved in
time 2o(n+m), where n is the number of variables and m the number of clauses of the input
formula. In particular, if it is possible to reduce 3-SAT to problem Π and the produced
instance has size linear in the size of the input formula, then the ETH implies that problem
Π cannot be solved in time 2|x| either, where |x| denotes the size of the input of Π. We
refer the reader to [5] for basic background on computational complexity.

Parameterized complexity. We refer to [16] for a recent monograph on parameterized
complexity. Here, we recall only some basic definitions. A parameterized problem is a
decision problem whose instances are pairs (x, k) ∈ Σ∗×N, where k is called the parameter.
A parameterized problem L is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that, given an instance I = (x, k) of L,
we get that A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded
by f(k) · |I|c. For instance, the Vertex Cover problem parameterized by the size of the
solution is FPT.

Within parameterized problems, the class W[1] may be seen as the parameterized equiv-
alent to the class NP of classical optimization problems. Without entering into details
(see [16] for the formal definitions), a parameterized problem being W[1]-hard can be seen
as a strong evidence that this problem is not FPT. The canonical example of W[1]-hard
problem is Independent Set parameterized by the size of the solution. The class W[2] of
parameterized problems is a class that contains W[1], and such that the problems that are
W[2]-hard are even more unlikely to be FPT than those that are W[1]-hard (again, see [16]
for the formal definitions). The canonical example of W[2]-hard problem is Dominating
Set parameterized by the size of the solution.

Matroids. We state here some basic tools about matroids that we will use in the algo-
rithms of Section 4, and we refer to [34,38] for more background. A (finite) matroid M is
a pair (E,I), where E is a finite set, called the ground set, and I is a family of subsets of
E, called the independent sets, satisfying the following properties:

1. The empty set is independent, that is, ∅ ∈ I.
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2. Every subset of an independent set is independent, that is, for each A′ ⊆ A ⊆ E, if
A ∈ I then A′ ∈ I. This is called the hereditary property.

3. If A,B ∈ I with |A| > |B|, then there exists x ∈ A \B such that B ∪ {x} ∈ I. This
is called the augmentation property.

Every graph or multigraph G = (V,E) gives rise to a so-called graphic matroid having
E as ground set, and a set F ⊆ E is independent if and only if G[F ] is acyclic.

Given a collection E = {E1, E2, . . . , Ek} of pairwise disjoint sets, and integers
{d1, . . . , dk} such that 0 ≤ di ≤ |Ei| for every i ∈ [k] = {1, . . . , k}, the partition matroid
with ground set E =

⋃k
i=1Ei has S ⊆ E as an independent set if and only if |S ∩Ei| ≤ di

for every i ∈ [k].
The Matroid Intersection Theorem, proved by Edmonds [23], states that the problem

of finding a largest common independent set of two matroids over the same ground set can
be solved in polynomial time.

3 NP-completeness results

In this section, we present our NP-complete results. First, we impose in Section 3.1 con-
straints on the structure of D (also getting constraints on G as a byproduct), and then we
focus in Section 3.2 on hardness results imposing constraints on functions ℓ and u.

3.1 Constraints on D

We prove result (i). First, we consider the case where D is a forest of out-stars with at most
three vertices. Later we show that the orientation of D in the reduction can be changed to
get a forest of directed paths of length at most two. In addition, in Theorem 3, we modify
the reduction to obtain D as a forest of in-stars with at most three vertices, thus closing
all the possible orientations of forest of paths of length at most two.

Theorem 1. G-DCST(G,D, ℓ, u) is NP-complete, even when ℓ(e) = u(e) = |dep(e)| for
every e ∈ E(G), D is a forest of out-stars of maximum degree two, and G is an outerplanar
chordal graph with diameter at most two. Furthermore, this problem cannot be solved in
time 2o(n+m) unless the ETH fails, where n = |V (G)| and m = |E(G)|.

Proof. Notice that, given a spanning tree T , one can check whether T (ℓ, u)-satisfies D
in polynomial time; hence, G-DCST(G,D, ℓ, u) is in NP. To prove NP-completeness, we
present a reduction from (3, 2, 2)-SAT to G-DCST. In the (3, 2, 2)-SAT problem, we are given
a CNF formula φ where each clause has at most three literals, and each variable appears
at most twice positively and at most twice negatively. This problem is well-known to be
NP-complete [14,25]. So consider a CNF formula φ on n variables and m clauses; we build
an instance (G,D, ℓ, u) of G-DCST as follows (follow the construction in Figure 1):

9



• Add to G vertex v, and vertices vx, vx̄, and wx related to each variable x, and at
most three vertices {v1c , v

2
c , v

3
c} related to each clause c (these vertices represent the

literals in c). Then, make v adjacent to every other vertex; vx adjacent to vx̄ for every
variable x; and add for each clause c a path (v1c , v

2
c ) or (v1c , v

2
c , v

3
c ), depending on how

many literals c has (observe that we can suppose that c has at least two literals).
Edge vvx will be interpreted as the true assignment of x, while edge vvx̄ as the false
one.

• For each variable x, add arc (vxvx̄, vwx) to D. For every variable x and each occur-
rence of x in a clause c, say as the i-th literal in c, add to D arc (vvx, vv

i
c) if x appears

positively in c, or arc (vvx, vv
i
c) if x appears negatively in c.

• Finally, let ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G).

vx

v

wx vx̄

v1c
v2c

v3c

(a) Graph G.

vxvx̄

vwx

vvx

vv1c1 vv1c2

vvx̄

vv1c3

(b) Digraph D.

Figure 1: Illustration of the reduction from (3, 2, 2)-SAT in Theorem 1. In Figure 1(a), we
represent a variable gadget together with a gadget of a clause containing three literals. In
Figure 1(b), for a variable x, we represent the dependency between vxvx̄ and vwx, and also
the arcs leaving vvx and vvx̄ when x appears positively in c1 and c2, and negatively in c3,
being related to the first literal in each of these clauses.

One can see that G is an outerplanar chordal graph, and that each component (different
from the one containing vxvx and vwx) of D is an out-star from vvx or vvx̄, for some variable
x; we get ∆+(D) ≤ 2 by the constraint in the number of appearances of a literal.

To show the correctness of the reduction, consider first a satisfying assignment of φ.
We build a spanning tree T of G with the following edges: for each variable x, add to T
vxvx̄, vwx, and either vvx if x is true, or vvx̄, if x is false; for each clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3),
add path (v1c , v

2
c , v

3
c ) and an edge vvic for some i ∈ {1, 2, 3} such that ℓi is a true literal

(analogously when c has only two literals). Because, for every variable x, vwx, vxvx̄ and
exactly one edge among {vvx, vvx̄} are chosen, and for every clause c exactly one edge
among {vv1c , vv

2
c , vv

3
c} is chosen, apart from the path (v1c , v

2
c , v

3
c ), one can see that T is

10



indeed a spanning tree of G. The dependencies can also be seen to be satisfied since we
only choose an edge vvic if the corresponding literal is true (hence the dependency is chosen
too).

Conversely, let T be a solution for G-DCST(G,D, ℓ, u). For each variable x, because
vwx is a cut edge and (vxvx̄, vwx) ∈ E(D), we get that {vwx, vxvx̄} ⊆ E(T ). Besides, for
each variable x, since vvx and vvx̄ form a cut and also form a cycle with vxvx̄, we get that
exactly one between vvx and vvx̄ is in T . We then assign x to true if vvx ∈ E(T ), and to
false otherwise. Now, consider a clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3); since the edges {vv1c , vv

2
c , vv

3
c}

form a cut, at least one of them is in T , say vv1c ∈ E(T ) and say that x is the variable
related to ℓ1. If ℓ1 = x, then (vvx, vv

1
c ) ∈ E(D), which implies that vvx ∈ E(T ) and that

x is true. And if ℓ1 = x, then (vvx̄, vv
1
c ) ∈ E(D), which implies that vvx̄ ∈ E(T ) and that

x is false (therefore ℓ1 is true). In any case, c is satisfied. The case where c has only two
literals is analogous.

Finally, for the lower bound 2o(n+m), just observe that the constructed instance has
size linear in the size of the given formula.

Observe that when either ∆−(D) = 0 or ∆+(D) = 0, we get that D is the empty
graph, and that G-DCST(G,D, ℓ, u) reduces to deciding whether G is connected. Also, by
the previous theorem, we get that the problem is NP-complete if ∆−(D) = 1, thus giving us
a dichotomy with regard to the value of ∆−(D). Concerning ∆+(D), the previous theorem
tells us that the problem becomes NP-complete for ∆+(D) = 2. With a small modification
on the previous reduction, we can also get a dichotomy with regard to ∆+(D).

Theorem 2. G-DCST(G,D, ℓ, u) is NP-complete, even when ℓ(e) = u(e) = |dep(e)| for
every e ∈ E(G), D is a union of directed paths with length at most two, and G is a chordal
outerplanar graph with diameter two. Furthermore, this problem cannot be solved in time
2o(n+m) unless the ETH fails, where n = |V (G)| and m = |E(G)|.

Proof. Consider the same construction from the Theorem 1, except that each out-star with
two leaves is turned into a directed path of length two. Observe that if (vvic, uvx, vv

j
c′) is a

path in D, then the previous arguments might not work simply because we might be forced
to pick edge vvic when variable x is set to true (i.e., edge uvx is chosen). However, in this
case we can remove some of the edges of the path (v1c , v

2
c , v

3
c ) in order to avoid cycles. A

similar argument is made for out-stars containing a vertex of type vvx.

Recall that L-DCST(G,D) and A-DCST(G,D) denote the dependency constrained span-
ning tree problem (G-DCST) where at least one dependency (if any exists) or all dependencies
are satisfied, respectively. Also, note that, if ∆−(D) ≤ 1, then we get that L-DCST(G,D)
and A-DCST(G,D) coincide with G-DCST(G,D, ℓ, u) by assigning ℓ(e) = u(e) = |dep(e)| for
every e ∈ E(G). Thus, the following corollary, which strengthens the results in [45], is a
direct consequence of the previous two theorems.

11
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vx vx

wx

(a) Graph G (variable gad-
get).

v

aℓic bℓic

wℓi
c

vℓ1c
vℓ2c

vℓ3c

(b) Graph G (clause gad-
get).

vwx

vxvx aℓic b
ℓi
c

vwℓi
c

vaℓic

vvℓic

vbℓic

vvℓi

(c) Digraph D (variable and literal gad-
gets).

Figure 2: Illustration of the reduction from (3, 2, 2)-SAT used in Theorem 3.

Corollary 1. L-DCST(G,D) and A-DCST(G,D) are NP-complete, even if G is an outer-
planar chordal graph with diameter two, and D is the union of out-stars with ∆+(D) = 2,
or the union of paths of lenght at most two. Furthermore, these problems cannot be solved
in time 2o(n+m) unless the ETH fails, where n = |V (G)| and m = |E(G)|.

In [19], it is shown that CCMST is NP-complete if the conflict graph is a forest of paths of
length at most two. An orientation of such a forest may lead to directed paths, out-stars,
or in-stars. The NP-completeness of G-DCST in the first two cases is proved in Theorems 1
and 2. The case of in-stars is approached next.

Theorem 3. G-DCST(G,D, ℓ, u) is NP-complete, even when ℓ(e) = u(e) = |dep(e)| for ev-
ery e ∈ E(G), D is a forest of in-stars of maximum in-degree two, and G is an outerplanar
chordal graph with diameter at most two. Furthermore, this problem cannot be solved in
time 2o(n+m) unless the ETH fails, where n = |V (G)| and m = |E(G)|.

Proof. Notice that a spanning tree T of G can be checked to (l, u)-satisfy D in polynomial
time, thus G-DCST(G,D, ℓ, u) is in NP. To prove NP-completeness, we again make a reduc-
tion from (3, 2, 2)-SAT to G-DCST. This way, consider a CNF formula φ on n variables and
m clauses. We build an instance (G,D, ℓ, u) of G-DCST as follows (see Figure 2):

• Start by adding a vertex v, which will be universal. For each variable x, add to G
vertices vx, vx, and wx, making them adjacent to v, and add edge vxvx; see Figure
2(a). Selecting edge vvx will correspond to the true assignment for x, and vvx to the
false one.

• For each clause c = (ℓ1∨ℓ2∨ℓ3) with three literals, add to G vertices {vℓic , a
ℓi
c , b

ℓi
c , w

ℓi
c |

i ∈ [3]}, and make them adjacent to v. Then, add path (vℓ1c , vℓ2c , vℓ3c ), and edges
{aℓic b

ℓi
c | i ∈ [3]}; see Figure 2(b). Proceed analogously if c has two literals. For each

literal ℓi, selecting edge vaℓic will indicate that c is satisfied by ℓi, and selecting edge
vbℓic will indicate that c must be satisfied by some of its other literals.
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• For each variable x, add arc (vxvx, vwx) to D. For each clause c and each literal ℓi
of c, add arcs (aℓic b

ℓi
c , vw

ℓi
c ), (vaℓic , vv

ℓi
c ), and (vbℓic , vvℓi) to D; see Figure 2(c).

• Finally, let ℓ(e) = u(e) = |dep(e)| for every e ∈ E(G).

Observe that G is an outerplanar chordal graph, and that each component of D is an
in-star. We get ∆−(D) ≤ 2 by the constraint in the number of appearances of a literal.

To show the correctness of the reduction, consider first a satisfying assignment of φ.
We build a spanning tree T of G as follows. For each variable x, choose edges vxvx and
vwx; then choose edge vvx if x is true, and edge vvx otherwise. For each clause c with
three literals, add edges {aℓic b

ℓi
c , vw

ℓi
c | i ∈ [3]}. Also, for each i ∈ [3], add {vvℓic , va

ℓi
c }

if ℓi is true; otherwise, add vbℓic . Finally, use path (vℓ1c , vℓ2c , vℓ3c ) to connect any possibly
disconnected vertex. Proceed analogously if c has two literals. Denote by X the set of
variables of φ, and by C the set of clauses; also, write ℓi ∈ c to denote the fact that literal
ℓi appears in c. We first show that T is a spanning tree of G. It is easy to see that T
spans {vx, vx, v, wx | x ∈ X}, and also every vertex of degree 1 in G. Now, given a clause c,
because each literal ℓi in c is either true or false, we get that either vaℓic or vbℓic is in T , and
since aℓic b

ℓi
c ∈ E(T ) we get that T also spans {aℓic , b

ℓi
c | c ∈ C, ℓi ∈ c}. Finally, for each clause

c, we know that at least one of its literals is true, which means that at least one of the edges
linking the path (vℓ1c , vℓ2c , vℓ3c ) to v is chosen, and since it is always possible to choose edges
from this path to connect any possible remaining disconnected vertex, we are done. Now,
we prove that dependencies are satisfied. Dependencies in {(vxvx, vwx) | x ∈ X}, and in
{(aℓic b

ℓi
c , vw

ℓi
c ) | c ∈ C, ℓi ∈ c} are all satisfied since all the involved edges are contained in

T . Dependencies in {(vaℓic , vv
ℓi
c ) | c ∈ C, ℓi ∈ c} are also valid because we only add these

edges together. Finally, given a variable x, if x is true, then we choose edge vvx, and vbℓic
for each clause c such that x is the i-th literal of c; and if x is false then we choose edge
vvx, and vbℓic for each clause c such that x is the i-th literal of c. This settles the last type
of dependencies.

Conversely, let T be a solution for G-DCST(G,D, ℓ, u). For each variable x, because vwx

is a cut edge and (vxvx, vwx) ∈ E(D), we get that {vwx, vxvx} ⊆ E(T ). Besides, for each
variable x, since vvx and vvx form a cut and also form a cycle with vxvx, we get that exactly
one between vvx and vvx is in T . We then assign x to true if vvx ∈ E(T ), and to false
otherwise. Now, consider a clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3); since the edges {vvℓ1c , vvℓ2c , vvℓ3c } form
a cut, at least one of them is in T , say vvℓ1c ∈ E(T ). Hence, because (vaℓ1c , vvℓ1c ) ∈ A(D),
we get that vaℓ1c ∈ E(T ). But then, since aℓ1c bℓ1c ∈ E(T ), we have that vbℓ1c /∈ E(T ), which
in turn implies that vvℓ1 /∈ E(T ) because of the dependency (vbℓ1c , vvℓ1). We then conclude
that vvℓ1 must be chosen, henceforth ℓ1 is a true literal in c. The case where c has only
two literals is analogous.

Finally, since the constructed instance has size linear in the size of φ, we obtain the
claimed lower bound 2o(n+m) under the ETH.

Let us observe that, similarly to Corollary 1, the results in Theorem 3 can be stated to
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A-DCST(G,D), since this problem is equivalent to G-DCST(G,D, dep, dep). This also extends
the achievements from [45].

3.2 Constraints on functions ℓ and u

In this subsection, we examine the complexity of G-DCST(G,D, ℓ, u) by focusing on func-
tions ℓ and u. Recall that, given constants c, c′, G-DCST(G,D, c, c′) denotes the problem
restricted to instances where ℓ(e) = c and u(e) = c′ for every e ∈ E(G). Given a function
f : E → N and a positive integer c, we denote by f + c the function obtained from f by
adding c to f(e) for every e ∈ E. The following lemma will be useful.

Lemma 1. Let c, ℓ, u be positive integers with u ≥ ℓ. Then, instances (G,D, ℓ, u) and
(G′,D′, ℓ + c, u + c) of G-DCST are equivalent.

Proof. Choose any v ∈ V (G), and let G′ be obtained from G by adding ℓ+ c+ 1 vertices of
degree one pending in v; denote the new edges by e1, . . . , eℓ+c+1. Now, add the symmetric
clique on vertices {e1, . . . , eℓ+c+1} to D, and add eie to D, for every i ∈ [c] and every
e ∈ E(G). Let G′ and D′ be the obtained graph and digraph, respectively. Finally, let
ℓ′(e) = ℓ + c and u′(e) = u + c, for every e ∈ E(G′). We prove that (G,D, ℓ, u) is a
yes-instance of G-DCST if and only if (G′,D′, ℓ′, u′) is a yes-instance of G-DCST.

First, let T be a spanning tree of G that (ℓ, u)-satisfies D. Let T ′ be obtained from T by
adding e1, . . . , eℓ+c+1. Clearly T ′ is a spanning tree of G′; we prove that T ′ (ℓ′, u′)-satisfies
D′. Let e ∈ E(G′). If e ∈ E(G), because at least ℓ and at most u dependencies of e are
in T , and because E(T ′)∩ depD′(e) = (E(T ) ∩ depD(e)) ∪ {e1, . . . , ec}, we get that at least
ℓ + c and at most u + c dependencies of e are in T ′. And if e ∈ {e1, . . . , eℓ+c+1}, we get
that E(T ′) ∩ depD′(e) = {e1, . . . , eℓ+c+1} \ {e} and again the constraints hold.

On the other hand, let T ′ be a spanning tree of G′; we know that {e1, . . . , eℓ+c+1} ⊆
E(T ′). Let T be obtained from T ′ by removing these edges, and consider e ∈ E(G). It
follows that |depD(e)∩E(T )| = |(depD′(e)∩E(T ′)) \ {e1, . . . , ec}| = |depD′(e)∩E(T ′)| − c,
and since ℓ + c ≤ |depD′(e) ∩ E(T ′)| ≤ u + c we get that T (ℓ, u)-satisfies D.

First, we analyze the cases where ℓ = 0. Recall that in CCST, whenever an edge e is
chosen, no dependencies of e can be chosen; this translates to having ℓ(e) = u(e) = 0 for
every e ∈ E(G). So in a sense, when one considers instances (G,D, ℓ, u) of G-DCST where
ℓ(e) = 0 for each e ∈ E(G), one can think of the problem as a “weak” version of CCST.
It thus makes sense to ask whether this version turns out to be polynomial. Indeed, we
notice that G-DCST(G,D, ℓ, u) with ℓ = 0 and u(e) ≥ |depD(e)|, for each e ∈ E(G), is an
easily solvable problem since every spanning tree of G trivially (ℓ, u)-satisfies D. In the
following theorem, we see that this is not the case when u is a constant function.

Theorem 4. Let c be a positive integer. Then G-DCST(G,D, 0, c) is NP-complete.

14



Proof. Recall that CCST(G,D) is NP-complete [19] and equivalent to G-DCST(G,D′, 0, 0)
when D′ is an arbitrary orientation of D. Given an instance (G = (V,E),D) of CCST,
where D is an undirected graph with V (D) = E, we construct and equivalent instance
(G′,D′, 0, c) of G-DCST as follows (cf. Figure 3)

• Let G′ be obtained from G by adding a new vertex p and, for each i ∈ [c] and each
edge e ∈ E(G), adding a new vertex pie. Then, make p adjacent to every pie, and to
an arbitrary vertex q ∈ V (G). More formally, G′ = (V ∪ V ′, E ∪ E′), where

V ′ = {p} ∪ {pie : e ∈ E, i ∈ [c]} and

E′ = {pq} ∪ {ppie : e ∈ E, i ∈ [c]}.

• Let D′ be obtained from an arbitrary orientation of D by adding an arc (ppie, e) for
every e ∈ E(G) and every i ∈ [c].

The constructed instance has size clearly polynomial on the size of (G,D) (recall that c is
a constant). Note that G′[V ′ ∪ {q}] is a star. Now, we show that (G,D) is a yes-instance
of CCST if and only if (G′,D′, 0, c) is a yes-instance of G-DCST.

First, let T be a solution for CCST(G,D), and let T ′ be obtained from T by adding E′.
Clearly T ′ is a spanning tree of G′; hence it remains to show that T ′ (0, c)-satisfies D′.
For this, consider e ∈ E(T ′). If e ∈ E(T ), then because T (0, 0)-satisfies D, we have that
E(T ′)∩ depD′(e) = {pp1e, . . . , pp

c
e} and therefore 0 ≤ |E(T ′)∩ depD′(e)| = c. And if e ∈ E′,

we have that depD′(e) = ∅ and trivially 0 = |depD′(e) ∩ E(T ′)| ≤ c.
Conversely, let T ′ be a spanning tree of G′ that (0, c)-satisfies D′, and let T = T ′[V ].

Because p separates V ′ \ {p} from V , we know that T is connected and, therefore, it is
a spanning tree of G; so it remains to show that T (0, 0)-satisfies D. For this consider
e ∈ E(T ). Since each edge in E′ is a cut edge in G′, we get that E′ ⊆ E(T ′). Therefore,
since |E(T ′) ∩ depD′(e)| ≤ c and {pp1c , . . . , pp

c
e} ⊆ E(T ′) ∩ depD′(e), we get that E(T ′) ∩

(E(G) \ E′) = ∅, i.e., |E(T ) ∩ depD(e)| = 0, as we wanted to show.

Combining Lemma 1 and Theorem 4, we get result (ii), that is, G-DCST(G,D, ℓ, u) is
NP-complete for every combination of constant values ℓ and u.

Corollary 2. For every pair of positive integers ℓ, u with ℓ ≤ u, we have that
G-DCST(G,D, ℓ, u) is NP-complete.

Proof. Let c = u− ℓ. By Theorem 4, we have that G-DCST(G,D, 0, c) is NP-complete, and
by Lemma 1, we have that G-DCST(G,D, ℓ, c + ℓ = u) also is.

As we have already mentioned, if u(e) = |dep(e)| for every e ∈ E(G), then
G-DCST(G,D, 0, u) is easy since any spanning tree (0, u)-satisfies D. Hence, it is natu-
ral to ask whether the problem continues to be easy when u(e) is just slightly smaller than
|dep(e)|. The following corollary is trivially obtained from previous results. It answers the
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Figure 3: Illustration of the reduction for CCMST.

aforementioned question negatively and yields result (iii). Given a positive integer c, we
denote by dep− c the function u : E(G) → N defined by u(e) = max{|dep(e)| − c, 0}.

Corollary 3. G-DCST(G,D, 0, dep − 1) is NP-complete, even when D is a collection of
directed paths of length at most two.

Proof. Assume that D is a collection of directed paths of length at most two. Then,
∆−(D) = 1 and therefore dep− 1 is equal to the constant function zero. It means that we
are considering G-DCST(G,D, 0, 0). This problem is equivalent to CCST(G,D′), where D′ is
the (undirected) underlying graph of D. Then D′ is a collection of paths of length at most
two, and it is known that CCST(G,D′) is NP-complete [19].

4 Positive results

In this section, we present some polynomial cases of the G-DCST problem. Whenever
possible, we deal with the optimization version instead, i.e., we consider that we are also
given a weight function w and that the objective is to find a spanning tree that (ℓ, u)-satisfies
D having minimum weighted sum-weight. This is denoted by G-DCMST(G,D, ℓ, u,w).

Similarly to the previous section, we first focus in Section 4.1 on constraints on the
dependency graph D, and then in Section 4.2 on constraints on the functions ℓ and u.
Finally, we present in Section 4.3 a simple exponential-time algorithm to solve the problem.

4.1 Constraints on D

We start by investigating the case where D is a collection of directed paths of length at
most one (note that there might be some edges of G that are isolated vertices in D). So,
given a graph G = (V,E) and a digraph D = (E,A), write E as {e1, . . . , em} and assume
that A = {(ei, ei+t) : i ∈ {1, . . . , t}}, for some t ≤ ⌊m2 ⌋. Let S = {ei : i ∈ {t + 1, . . . , 2t}},
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i.e., S is the set of the edges e ∈ E(G) with dep(e) 6= ∅. The idea is to find a subset of
edges S′ ⊆ S that connects the components of G − S and such that the dependencies of
S′ do not form a cycle in G. Let C = {C1, . . . , Ck} be the set of connected components of
G − S, and let H be the multigraph obtained from G by contracting each Ci to a single
vertex (loops are removed). Observe that there is an injection from the multiedges of H to
the edges in S. Hence, given S′ ⊆ S, we can pick H(S′) to be the subgraph of H induced
by S′, i.e., H(S′) has C as vertex set, and there is an edge between Ci, Cj , i 6= j, for each
edge e ∈ S′ with one endpoint in Ci and the other one in Cj . Observe that some of the
edges of S might appear inside a component. However, as we will see, these edges can
actually be ignored, and this is why we do not need to add the loops in H.

Lemma 2. Let G = (V,E) be a graph, D = (E,A) be a digraph, before, and ℓ, u be such
that ℓ(e) = u(e) = |dep(e)| ∈ {0, 1} for every e ∈ E(G). If there exists S′ ⊆ S such
that H(S′) is a spanning tree of H and (V, dep(S′)) is acyclic, then G-DCST(G,D, ℓ, u) is
feasible. Conversely, any feasible solution of G-DCST(G,D, ℓ, u) contains such a subset S′.

Proof. First, consider S′ ⊆ S such that H(S′) is a spanning tree of H and (V, dep(S′)) is
acyclic. Observe that, because (V, dep(S′)) is acyclic, S′ ⊆ S, and S ∩ dep(S′) = ∅, we get
that each Ci is a connected component of G − S. Thus, we can add edges of G − S to
(V, dep(S′)) so as to obtain a spanning forest F of G having connected components with
the same vertex sets as C1, . . . , Ck. After this, just add edges of S′ to F ; because H(S′)
is a spanning tree of H, we get that the obtained graph T connects all components of F
without forming a cycle (i.e., T is a spanning tree of G). Finally, since dep(S′) ⊆ E(T )
and S ∩ E(T ) = S′, we get that T satisfies D.

Conversely, let T = (V,ET ) be a feasible solution of DCST(G,D). As T is a spanning
tree of G, we get that the edges in ET ∩ S must connect the components of G − S, i.e.,
H(ET ∩S) is connected. Thus, choose S′ as the edge set of any spanning tree of H(ET ∩S).
We get that S′ also forms a spanning tree of H, and since S′ ⊆ ET and T satisfies D, we
get that dep(S′) ⊆ ET and therefore (V, dep(S′)) cannot contain a cycle.

In the following theorem we use the Matroid Intersection Theorem [23] to get result (a).

Theorem 5. Let G = (V,E) be a graph, D = (E,A) be a digraph such that each component
is a directed path of length at most 1, and ℓ, u be such that ℓ(e) = u(e) = |dep(e)| ∈ {0, 1}
for every e ∈ E(G). Then DCST(G,D) can be solved in polynomial time.

Proof. Given E′ ⊆ E(G), denote by G(E′) the subgraph (V (G), E′). Let H be ob-
tained as before. Also, let I1 = {S′ ⊆ S | G(dep(S′)) is acyclic} and I2 = {S′ ⊆ S |
H(S′) is acyclic}. We have that (S,I1) and (S,I2) are matroids (on a common ground
set S), since they are equivalent to the graphic matroids of the graph (V, dep(S)) and of
the multigraph H, respectively. According to Lemma 2, DCST(G,D) is feasible if and only
if there is S′ ∈ I1 ∩ I2 such that |S′| = k − 1, where k is the number of components of
G′ = (V,E \ S). The existence of such S′ can be checked in polynomial time using the
Matroid Intersection Theorem [23].
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4.2 Constraints on ℓ and u

Recall that CCMST(G,Gc, w) is equivalent to G-DCMST(G,D, 0, 0, w) when D is a symmetric
digraph. From a result in [47] for the CCMST problem, we get that G-DCMST(G,D, 0, 0, w) is
solvable in polynomial time when D is the union of complete digraphs. We generalize this
result for upper bound functions that have the same value on each clique (result (b)).

Theorem 6. Let (G,D, 0, u, w) be an instance of G-DCMST such that D = D1∪D2∪· · ·∪Dk

is the union of k disjoint complete digraphs and, for each i ∈ [k], there exists ui ∈ [|V (Di)|]
such that u(e) = ui− 1 for every e ∈ V (Di). Then, G-DCMST(G,D, 0, u, w) can be solved in
polynomial time.

Proof. Note that, in this case, a solution for G-DCMST(G,D, 0, u, w) can have at most ui
edges from Di, for each i ∈ [k]. We show that solving such an instance can be formulated
as a matroid intersection problem.

Observe that a subgraph T of G (0, u)-satisfies D if and only if |E(T )∩Di| ≤ ui for every
i ∈ [k]. Therefore, if M is the partition matroid on E(G) defined by {V (D1), . . . , V (Dk)}
and {u1, . . . , uk}, we get that T ⊆ G is a solution for our problem if and only if T is a
spanning tree of G and E(T ) is an independent set of M . Hence, if M ′ is the graphic
matroid associated with G (where the independent sets are the sets of edges inducing a
spanning tree of G), we can solve our problem in polynomial time by applying the Matroid
Intersection Theorem [23] to the matroids M and M ′.

Observe that the same approach used in the previous theorem does not work when the
values of u can differ inside the same clique. For instance, suppose that D1 is the complete
digraph on edges {e1, . . . , e4} and that u(e1) = 1 and u(ei) = 2 for every i ∈ {2, 3, 4}.
Then S1 = {e1, e2} and S2 = {e2, e3, e4} are acceptable subsets within a solution, however
because of e1, there does not exist e ∈ S2 \ S1 such that S1 ∪ {e} is an acceptable subset.
This means that the augmentation property (cf. Section 2) is not satisfied and the subsets
that define feasible solutions do not form a matroid.

4.3 Exponential exact algorithm

In this section, we present an exponential exact algorithm for G-DCST(G,D, ℓ, u), as states
result (c). Recall that, as a consequence of Theorem 3 in [45] for the optimization problems
L-DCMST and A-DCMST, we get that the optimization problem G-DCMST(G,D, ℓ, u,w) is W[2]-
hard when parameterized by n = |V (G)|. The importance of the algorithm below, despite
its simplicity, is that it separates the complexity of the feasibility and the optimization
problems.

Theorem 7. G-DCST(G,D, ℓ, u) can be solved in time O(2m · (n + m)), where n = |V (G)|
and m = |E(G)|.
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Proof. It suffices to observe that, given a subset S ⊆ E(G), one can test in time O(n+m)
whether S forms a spanning tree of G, and whether the constraints imposed by D, ℓ, u are
satisfied by S. Because there are 2m possible subsets to be tested, the theorem follows.

5 Modeling other constrained problems

As discussed in the introduction, the spanning tree problem has been investigated under
the most various constraints. In this section, we show that some of them can be modeled
as special cases of our problem. We have already remarked that this is the case for the
Conflict Constrained Spanning Tree problem. One should also notice that, in all
the reductions presented below, when the feasibility version reduces to our problem, so does
the optimization version. It is a matter of observing that the graph in the source instance
is a subgraph of the graph in the G-DCST instance, and that the reduction preserves the
solution value when keeping the weights of the initial edges and setting to zero the weights
of the new edges.

In Subsection 5.1, we present a reduction from Forcing CST (denoted by FCST), in
Subsection 5.2, a reduction from Maximum Degree CST (denoted by MDST), and in
Section 5.3, from Minimum Degree CST and Fixed-Leaves Minimum Degree CST
(denoted by mDST and FmDST, respectively).

5.1 Forcing constrained spanning trees

Recall that, given graphs G and D such that V (D) = E(G), FCST consists in deciding
whether G has a spanning tree T such that |E(T ) ∩ {e, f}| ≥ 1 for every ef ∈ E(D).

Theorem 8. Denote by G-DCST
∗ the problem G-DCST restricted to instances (G′,D′, ℓ, 2)

such that ℓ(e) ∈ {0, 1} for every e ∈ E(G′) and ∆−(D′) = 2. Then, FCST �P G-DCST
∗.

Proof. Let (G,D) be an instance of FCST, and construct G′,D′ as follows (cf. Figure 4).
Choose any v ∈ V (G), and let G′ be obtained from G by adding, for each ee′ ∈ E(D), a
pendant degree one vertex in v; denote the new edge by pee′. Then, let D′ be the digraph
with vertex set E(G′) and arcs (e, pee′) and (e′, pee′) for every ee′ ∈ E(D). Finally, let
ℓ(e) = 0 if e ∈ E(G), and ℓ(e) = 1 otherwise. We prove that (G,D) is a yes-instance of
FCST if and only (G,D, ℓ, 2) is a yes-instance of G-DCST.

First, let T be a solution for FCST, and let T ′ be obtained from T by adding pee′ for
every ee′ ∈ E(D). Clearly T ′ is a spanning tree of G′, and since |E(T ) ∩ {e, e′}| ≥ 1 for
every ee′ ∈ E(D), we get that |E(T ′) ∩ depD′(pee′)| ≥ 1. The reverse implication can be
proved similarly.
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Figure 4: Illustration of the reduction for FCST.

5.2 Max-degree constrained spanning trees

Given a graph G = (V,E) and a positive integer k, recall that in the MDST(G, k) problem
we want to find a spanning tree T such that dT (v) ≤ k, for every v ∈ V (G). We prove that
a generalized version of this problem reduces to ours. In MDST(G, d∗), instead of being given
an integer k, we are given a function d∗ : V (G) → N that separately sets upper bounds to
the degrees of the vertices.

Theorem 9. Denote by G-DCST
∗∗ the problem G-DCST restricted to instances (G,D, 0, u).

Then, MDST �P G-DCST
∗∗.

Proof. Let (G, d∗) be an instance of MDST. We build an equivalent instance (G′,D, 0, u) of
G-DCST as follows (cf. Figure 5).

• G′ = (V ∪ V ′, E ∪ E′), where V ′ = {v′ | v ∈ V } has a copy of each vertex, and
E′ = {vv′ | v ∈ V } connects each vertex v ∈ V to its copy v′ ∈ V ′.

• D = (E ∪ E′, A), where A = {(uv, uu′), (uv, vv′) | uv ∈ E}.

• u(e) = 0, for each e ∈ E, while u(vv′) = d∗(v), for each v ∈ V .

Observe that dep(vv′) is the set of edges incident to v in G for every v ∈ V , and that
dep(e) = ∅ for every e ∈ E. Also, note that because ℓ(e) = u(e) = 0 = |dep(e)| for every
e ∈ E, and ℓ(e) = 0 for every e ∈ E′, the only real constraints being imposed by D are
upper bounds on the chosen dependencies for edges in E′. More specifically, we get that a
spanning tree T ′ of G′ (ℓ, u)-satisfies D if and only if |E(T ′) ∩ dep(vv′)| ≤ d∗(v) for every
vv′ ∈ E′ ∩E(T ′). Note that each v′ has degree one in G′, which implies that every edge in
E′ must be part of every spanning tree of G′. Thus, we get that (V,ET ) ⊆ G is a tree that
satisfies the maximum degree constraints if and only if (V ∪ V ′, ET ∪ E′) (ℓ, u)-satisfies
D.
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Figure 5: Illustration of the reduction for MDST.

5.3 Minimum degree constrained spanning trees

Given a graph G and a positive integer k, recall that the mDST(G, k) problem consists in
finding a spanning tree T of G such that dT (v) ≥ k for every nonleaf vertex v ∈ V (T ).
We introduce a generalized version of this problem, denoted by G-mDST(G, ℓ, u), where we
replace the integer k by functions ℓ, u : V → N and require that each nonleaf vertex v of T
satisfies ℓ(v) ≤ dT (v) ≤ u(v). Clearly, mDST(G, k) is a special case of G-mDST(G, ℓ, u) where
ℓ(v) = k and u(v) = d(v) for every v ∈ V (G).

Theorem 10. G-mDST �P G-DCST.

Proof. Given an instance (G = (V,E), ℓ, u) of G-mDST, we build an instance (G′,D, ℓ′, u′)
of G-DCST as follows (cf. Figure 6):

• G′ = (V ∪V ′, E ∪E′), where V ′ = {v1, v2, v3 | v ∈ V } and E′ = {vv1, vv2, v1v3, v2v3 |
v ∈ V };

• D = (E ∪ E′, A1 ∪ A2), where A1 = {(uv, vv1), (uv, vv2) | uv ∈ E} and A2 =
{(v2v3, v1v3), (v1v3, v2v3) | v ∈ V };

• For each e ∈ E, let ℓ′(e) = u′(e) = 0; and for each v ∈ V , let ℓ′(vv1) = ℓ(v),
u′(vv1) = u(v), and ℓ′(e) = u′(e) = 1, for each e ∈ {vv2, v1v3, v2v3}.

Observe that, for each v ∈ V and i ∈ {1, 2}, we have that dep(vvi) is the set of
edges incident to v in G. We show that (G, ℓ, u) is a yes-instance of G-mDST if and only
(G′,D, ℓ′, u′) is a yes-instance of G-DCST.

First, let T = (V,ET ) be a solution for G-mDST(G, ℓ, u). We expand T into T ′ =
(V ∪ V ′, ET ′) ⊆ G′, where ET ′ is equal to ET together with the following edges. For
each v ∈ V , add v1v3 and v2v3, and if v is a leaf in T then add vv2, otherwise add vv1.
Observe that T ′ is a spanning tree of G′ such that T = T ′[V ]. It remains to show that the
D-dependencies are satisfied. Every edge e ∈ ET has dep(e) = ∅ and ℓ′(e) = u′(e) = 0, so
ℓ′(e) ≤ |dep(e) ∩E(T ′)| ≤ u′(e) trivially follows. The remaining types of edges in ET ′ \ET

are analyzed below:
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Figure 6: Illustration of the reduction for G-mDST.

(i) viv3, for v ∈ V and i ∈ {1, 2}: recall that v1v3 is the unique dependency of v2v3,
and vice-versa, and they are both in T ′. Hence 1 = ℓ′(viv) ≤ |dep(viv) ∩ E(T ′)| ≤
u′(viv) = 1.

(ii) vv2: by construction of T ′, we get that v is necessarily a leaf in T . Since exactly
one edge of dep(vv2) is in ET ′ , namely the edge incident to v in T , we have that
1 = ℓ′(vv2) ≤ |dep(vv2) ∩ E(T ′)| ≤ u′(vv2) = 1.

(iii) vv1: by construction of T ′, we get that v in T is not a leaf in T . From the feasibility
of T , we know that ℓ(v) ≤ dT (v) ≤ u(v), i.e., at least ℓ(v) and at most u(v) edges of
dep(ev1) are in ET ⊆ ET ′ , which implies that ℓ(v) = ℓ′(vv1) ≤ |dep(vv1) ∩ E(T ′)| ≤
u′(vv1) = u(v).

Conversely, suppose that T ′ = (V ∪ V ′, ET ′) is a solution for G-DCST(G′,D, ℓ′, u′). We
show that T = T ′[V ] is a solution for G-mDST(G, ℓ, u). Due to the dependency constraints,
we get that v1v3 and v2v3 are in T ′, for each v ∈ V . From this, and since vv1 and vv2 are
a cut in G′, exactly one of vv1 and vv2 is in T ′, for each v ∈ V . Take v ∈ V . If vv1 is in
T ′, then there are at least ℓ(v) and at most u(v) edges incident to v in T ′. And if vv2 is
in T ′, then there is exactly one edge uv ∈ E in ET ′ . Therefore, either ℓ(v) ≤ dT (v) ≤ u(v)
or dT (v) = 1. Since T ′ is a spanning tree of G′, T is a spanning tree of G, and thus T is a
solution of GD-MST(G, ℓ, u,w).

Finally, given a graph G, a subset C ⊆ V , and a function ℓ : C → Z
+, recall that

FmDST(G,C, ℓ) denotes the problem of finding a spanning tree T of G such that dT (u) ≥ ℓ(u)
for every u ∈ C, and dT (v) = 1 for every v ∈ V \ C (i.e., the set of leaves is prefixed).
Observe that the same reduction of Theorem 10 can be applied to this problem by removing
edge ev2 for each v ∈ C, and edge ev1 for each v ∈ V \ C. We then get the following:

Theorem 11. FmDST �P G-DCST.

6 Conclusion

In this paper, we investigated a dependency constrained spanning tree problem that gener-
alizes many previously studied spanning tree problems with local constraints, as for instance
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degree constraints. We then inherit all of the NP-completeness results for these problems,
as well as polynomial results and practical approaches to our problem will therefore hold
for these other problems. Interestingly, there are other spanning tree problems that impose
global constraints on the tree, as for instance, a bound on the diameter of the produced
tree [10, 11], or on the number of leaves [25, 35]. A good question therefore is whether
problems with this kind of constraints can be modeled within our framework.

Question 1. Can instances of CST problems with global constraints be modeled as G-DCST
instances?

Concerning NP-completeness results, we have investigated the problem under restric-
tions on the dependency digraph D, and on the lower and upper bound functions ℓ and u.
Among other restrictions, we have proved that G-DCST is NP-complete when D is either a
forest of directed paths, a forest of out-stars, or a forest of in-stars, and each component
has at most three vertices. In the first two cases, we have considered all possible values for
constant functions ℓ, u. The following cases for in-stars remain open.

Question 2. What is the complexity of G-DCST(G,D, ℓ, u) when D is a forest of in-stars
with at most three vertices and (ℓ, u) = (0, 1) or, for every e ∈ E(G) such that dep(e) 6= ∅,
ℓ(e) = 1 and u(e) ∈ {1, 2}?

Concerning positive results, we have proved that G-DCST(G,D, dep, dep) can be solved
in polynomial time when D is an oriented matching. We ask whether this also holds for
the optimization problem (recall that G-DCMST(G,D, 0, 0) is polynomial in this case [18]).

Question 3. What is the complexity of G-DCMST(G,D, dep, dep) when D is an oriented
matching?

Finally, we have proved that G-DCMST can be solved in polynomial time when ℓ = 0, D
is a collection of symmetric graphs D1, . . . ,Dk, and u(e) = u(e′) whenever e, e′ are within
the same component, and that G-DCST(G,D, ℓ, u) can be solved in time O(2m · (n + m))
by a naive brute-force algorithm, where n = |V (G)| and m = |E(G)|. The latter result
is important in the face of the fact that, as a byproduct of a result in [45], we get that
no algorithm running in time 2O(n) exists for the optimization problem, unless ETH fails.
Also, the results presented in Section 3.1 imply that no algorithm that runs in time 2o(n+m)

exists for the feasibility problem under the ETH, which means that the algorithm presented
in Section 4.3 is asymptotically optimal. We mention that our algorithm can also be seen
as an FPT algorithm parameterized by m. We ask whether the problem is FPT under
other parameters.

Question 4. Under which parameters is G-DCST or G-DCMST FPT?

In order to identify parameters for the above question, note that the maximum degree
of the input graph G is not enough, since a particular case of the problem is already NP-
complete restricted to graphs with maximum degree at most three [45]. Similarly, the
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maximum degree of the dependency graph D is not enough either, as another particular
case of the problem is NP-complete even if D is a forest of paths of length at most two (see
e.g. [19], as well as our results presented in Section 3.1).

A promising candidate parameter for obtaining FPT algorithms is the treewidth of
the input graph G (see [16] for the definition); note that the treewidth of the underlying
graph of D is not enough by the last sentence of the above paragraph, since forests have
treewidth one. Suppose that, in order to use Courcelle’s Theorem [15] or any of its op-
timization variants [4], one tries to express the G-DCST problem in monadic second-order
(MSO) logic. In order to guarantee that the dependencies of D are satisfied for every edge
e of the desired spanning tree of the input graph G, one would probably need to evaluate

the functions ℓ(e) and u(e) inside the eventual MSO formula, and this seems to be a funda-
mental hurdle since these values are a priori unrelated to the treewidth of G. Nevertheless,
for the particular case of G-DCST (or G-DCMST) where both functions ℓ and u are constants

(or even equal to some constant value that depends on the treewidth of G), it is indeed
possible, using standard techniques, to write such an MSO formula expressing the problem,
and therefore it is FPT parameterized by the treewidth of the input graph. Note that this
restriction of the G-DCST problem is NP-complete by Corollary 2, for every pair of positive
integers ℓ, u with ℓ ≤ u. The next natural step would be to consider as parameters both

the treewidth of G and the maximum degree of D.
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