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Abstract—This paper presents a novel test solution directly 

embedded inside CMOS Image Sensors (CIS) to sort out PASS 

and FAIL dies during production test. The solution aims at 

reducing test time, which can represent up to 30% of the final 

product cost. By simplifying the way optical tests are usually 

applied with an ATE, the proposed Built-In Self-Test (BIST) 

solution overcomes the drawbacks of long test time and huge 

amount of test data storage. We experimented our solution by 

considering that roughly half of the tests usually performed with 

an ATE can be embedded and applied using the proposed fast 

and low cost BIST engine. Results obtained on more than 2,400 

sensors have shown that our solution reduces test time by about 

30% without impacting the defect coverage. The area cost of our 

solution is about 1% of the digital part of the sensor, i.e., 

approximately 0.25% of the total sensor area. The proposed 

embedded CIS test solution outperforms existing solutions in 

terms of area overhead and test time saving, thus encouraging 

its future implementation in an industrial production flow. 

Keywords—CMOS image sensor, BIST, optical test, pixel array. 

I. INTRODUCTION 

CMOS Image Sensors (CISs) are widely used in many 

electronic devices for various industrial applications, such as 

smartphones, autonomous vehicles, night vision systems, 

medical imaging equipments, etc., as well as applications for 

the space conquest, such as cameras used by the Perseverance 

Mars rover in 2021. Although the Charge Coupled Device 

(CDD) technology was initially dominant due to superior 

sensitivity and picture quality, various improvements in CISs 

have led them to surpass CCD sensors in shipment volume 

since about 15 years. In particular, they can benefit from their 

low fabrication cost, low power consumption, as well as the 

possibility of combining analog and digital functions [1, 2]. 

As any other electrical sensor, a CIS translates physical 

information into electrical information [3]. Its architecture is 

divided into two parts: the optical part contains an array of 

pixels (picture elements) that capture photons (light 

information) and the electrical part converts this light 

information into electrical signals that are transmitted outside 

the sensor to display an image composed of pixel values. 

Irrespective of the application field, verifying and ensuring 

that a CIS, especially the pixel array, will be able to operate 

correctly during in-field application is mandatory. To this 

purpose, test at the end of the manufacturing process is a 

crucial step to exhibit potential failures and check various 

functional, optical and electrical parameters. 

Various solutions for manufacturing test of CIS have been 

proposed so far. A brief summary of these solutions is given 

in Section III.B. In the meantime, industrial practices for CIS 

testing are mainly based on using external test approaches 

based on the use of an ATE (Automatic Test Equipment). 

Unfortunately, these practices have a significant impact on 

the final cost of the product [4]. Depending on the targeted 

application, the test cost for a complex IC (Integrated Circuit) 

like a CIS may represent up to 30% of the final product cost, 

which is now considered as prohibitive [5]. 

In this paper, we present a fast and low cost BIST solution 

for CIS that aims at verifying the good functionality of the 

optical part (pixel array) inside the sensor. The main objective 

is to reduce the significant CIS test time required by typical 

external test procedures at a low cost. Our strategy consists 

of using the proposed BIST solution to screen out local 

defects (singlets, couplets, clusters) and to use ATE-based 

tests to target global defects. To deal with output images 

provided by a CIS, the BIST solution reuses the way pixels 

are scanned in conventional image processing algorithms 

(convolution and median filtering) applied with an ATE. By 

transforming two-dimensional computations into one-

dimensional computations realized inside the sensor, test 

complexity and test data storage requirements are limited, 

and test time is saved. 

Performances of our solution have been evaluated owing 

to a software emulation of the developed BIST engine. 

Validation of the solution has been done through experiments 

performed on output images coming from 2,400 CMOS 

image sensors, showing that test time can be reduced by 

roughly 30% without impacting the defect coverage when 

compared to a full ATE-based test solution. Moreover, the 

silicon area estimated to implement the BIST engine is about 

1% of the digital part of the sensor, i.e., approximately 0.25% 

of the total area of a CIS. 

The rest of this paper is organized as follows. Section II 

presents the general architecture of a CIS and details the 

1

2021 IEEE International Test Conference (ITC)



 

 

 

conversion flow from the physical information to the output 

image. A brief summary of the state of the art in the field is 

also proposed. Section III provides a taxonomy of defects in 

a CIS and shows how they can be detected by the proposed 

test solution. Section IV presents the novel BIST solution and 

its hardware implementation. Section V summarizes the 

results achieved and compared to optical tests usually 

performed with an ATE. Section VI concludes the paper. 

II. BACKGROUND ON CIS TESTING 

A. CMOS image sensor overview 

Thanks to his optical and electrical blocks, a CIS is able to 

transform the light information into electrical information 

through the following conversion flow. The light arrives 

directly on a micro lens located on top of the pixel so as to do 

not miss any light rays and to focus them on the 

photosensitive element. This element inside the pixel, 

generally a photodiode, converts photons in electrons owing 

to the photoelectric effect [6]. The general anatomy of a pixel 

in the array of a CIS is shown in Fig. 1. 

 

Figure 1: General anatomy of an active pixel in a CIS [6] 

To deal with the color aspect, a color filter organized in a 

Bayer pattern (Red, Green and Blue) is located on the pixel 

array, bellow each micro lens (cf. red color filter as example 

in Fig. 1), so that one pixel contains one color information. 

Note that this color filter contains more green filtering 

patterns than red or blue patterns to mimic the human eye 

features with the dominance of green color. 

A pixel can be characterized as passive or active. A passive 

pixel contains only the photosensitive element and a single 

transistor to select and read the information (electrons) from 

the photosensitive element. An active pixel has a quite similar 

architecture with the addition of a reset transistor and an 

amplifier transistor (cf. Fig. 1). The reset transistor is used to 

completely discharge the photodiode and hence be sure that 

there are no parasitic electrons from the previous capture that 

could contaminate the pixel output [7]. The amplifier 

transistor allows to verify the electron-to-voltage 

amplification directly inside the pixel. Due to the addition of 

transistors in an active pixel, a drawback is that the area 

occupied by the photosensitive element inside the pixel is 

reduced. The advantage is that the signal degradation is lower 

since the parasitic capacitance from the direct connection 

between the photodiode and the column bus is reduced. 

At the high level, row select bus and column bus transistors 

of each pixel are addressed by row and column decoders to 

scan and to read out the whole pixel array row by row. These 

blocks are depicted in Fig. 2. They are managed by a 

sequencer block which controls the system in conjunction 

with an external clock. When the pixel is addressed by the 

sequencer, the output voltage of the pixel is converted into a 

digital signal thanks to an Analog-to-Digital Converter 

(ADC). ADC settings, e.g. gain of the ramp used to sample 

and to quantify the analog signal, allows to define the digital 

value of the pixel encoded in a bit word. 

 
Figure 2: General architecture of a CIS 

From the image containing the digital values of all pixels, 

various operations are carried out by the Image Signal 

Processor (ISP) such as white balancing to calibrate and 

correct the color dominance according to the ambient light, 

noise reduction to avoid “pepper and salt” aspect, sharpening 

to ensure good contrast in the image, etc. [8]. The ISP also 

performs an interpolation on the output RGB image between 

pixels of the same type (Red, Green or Blue) to rebuild the 

CIS image on the common three-channels RGB. This 

principle, also called demosaicing, is illustrated in Fig. 3. The 

goal of the demosaicing operation is to fill the white boxes as 

shown in Fig. 3 with values computed from the same-colored 

neighbors. The output image of CIS is a superposition of the 

three-channel images and can be displayed on a display 

module thanks to the interface block (cf. Fig. 2). 

 
Figure 3: From Bayer RGB to 3 channels RGB image by the ISP 

demosaicing operation 

The output image of a CIS does not reflect exactly the 

physical scene in front of the sensor but rather is an 

approximation. There are sources of inaccuracy such as the 

gap, called pitch, between pixels that creates a loss of 

information, the potential loss of light rays on the 

photosensitive element (even if the micro lens catches the 

majority of rays), or the light level definition. Note that, a 

light level is the interpretation of the brightness. Naturally, 

the light level seen by a human eye is proportional to the 

arithmetical value of the pixel, i.e., the lighter the pixel, the 

higher is its value. 
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B. State of the art in CIS testing 

CIS testing is done at various stages of a sensor life, from 

characterization of the die on the wafer to online test during 

sensor lifetime. The work presented in this paper in intended 

to be used at a production test level in order to sort out PASS 

and FAIL sensor dies. Test of a CIS comprises electrical and 

optical tests, all usually performed on an ATE, in order to test 

all the elements inside the sensor. When one test fails (optical 

or electrical), the sensor is declared as defective and is 

withdrawn from the production line. 

Electrical tests can be functional, structural, or parametric 

depending on the part of the circuit (analog, digital or mix) 

which is under test [9]. Electrical tests include continuity test, 

leakage control, IDDQ test, conventional stuck-at fault tests, 

as well as test for memories, ADC, PLL, etc. [10]. 

Optical tests are performed on the output images coming 

from a CIS and use image processing algorithms like defect 

tracking, dark current capture, signal imbalance verification, 

gain verification, etc. [11]. Results of these optical tests allow 

to check if output images are correct according to predefined 

image quality criteria [12]. During optical testing, the CIS 

under test is put in two main states (dark or light) to avoid 

error sources such as non-uniformity and presence of a scene 

or colours. Moreover, there is not only “light on” and “light 

off” extremes cases but a panel of settings variations 

(different converter gains, integration time, etc.) [13]. Note 

that it is possible to detect a physical defect on the pixel array 

of a CIS in dark and in light images or independently in dark 

or in light images. 

Optical tests are performed thanks to image processing 

algorithms applied on the output images of the CIS under test. 

Usually, it is necessary to wait for several images to be 

captured entirely and stored by the ATE before computing 

metrics and determine if the sensor images pass the optical 

tests or not. This mean that test time and data storage 

dedicated to test may become prohibitive, e.g. test time can 

go from 10 seconds to 1 minute [14]. 

In the literature, some solutions have been proposed to 

embed test facilities inside a CIS and hence save test time. 

Authors in [14-16] and in [17-18] propose to reduce the 

amount of optical tests and proceed with a fully electrical test 

set so as to avoid precise and restrictive settings needed in 

optical tests. Authors in [14], [15] and [16] propose a solution 

based on the generation of a pulse (voltage stimuli) which is 

sent on the anode of the photodiode inside the pixel to 

simulate the light illumination. Authors indicate that the 

implementation of this method is very dependent on the pixel 

architecture. This structural-based test is done on the pixels 

of the array independently of each other, without any 

management of clustering pixels. Experimental results 

demonstrate a relatively good correlation in dark conditions 

with respect to tests performed with an ATE, but the 

comparison is unreliable in the light conditions due to the use 

of a light source not stable enough.  

The work presented in [17] and [18] proposes a BIST 

framework to detect defective lines used to read out or 

addressing pixels, thanks to the extraction of the impedance 

of lines. Authors use two solutions for the detection of 

continuous and partial defective lines. One solution deals 

with continuous defective lines by reusing the ADC circuitry 

to measure resistances. The other solution uses a vector 

network analyzer equipment to drive the RF impedance used 

to detect partial defective lines. Despite its efficiency, this 

solution needs additionnal equipment (line delay detector, 

delay controler, pulse detector, etc.) to detect defective lines. 

Note that all these BIST solutions in [14-18] aimed at 

reducing optical test time, a common objective with the BIST 

solution proposed in this paper. 

III. DEFECTIVE PIXEL DEFINITION AND DETERMINATION 

A defect is an unwanted particularity of a device that can 

create a failure. It may come from particle deposition (e.g., 

bridging between two metal lines, bad contact definition) or 

process deviation (e.g., diffusion depth issue, misalignment 

of masks) during manufacturing. 

Regarding CIS, defects can often be seen after reading of 

the pixel array, when the output images are available. Figure 

4 shows some examples of image defects. Note that A*A is a 

Kernel containing A² pixels, with A being a positive odd 

integer. A Kernel is used to stake out an area in an image that 

allows to classify a defective pixel with respect to its 

neighbors. The choice of A depends on the sensor resolution 

and on the customer specifications. 

Several categories of defects have been defined [6]:  

• A singlet is a defective pixel with no immediate 

defective neighbors and located at the center of a Kernel 

of A*A pixels, as shown in Fig. 4; 

• A couplet is a defective pixel with only one immediate 

defective neighbor in a Kernel of A*A pixels. One of the 

defective pixels is at the center of the Kernel; 

• A cluster is a group of more than two defective pixels in 

a Kernel of A*A pixels. A defective row or a defective 

column (continuous, partial, dotted, etc.) are two 

particular cases of clusters.  

 
Figure 4: Examples of possible image defects [18] 

The classification illustrated in Fig. 4 is based on the 

defective pixel definition and each of these categories can 

reflect a physical defect. In order to determine whether or not 

a pixel is defective, its light level and arithmetic value need 

to be considered. In a fault-free case, the light level of the 

pixel needs to be in accordance with the light level of its 

neighbors so as to ensure uniformity. The arithmetic value of 

the pixel is used to evaluate its lightness level with respect to 

a predefined range of values. This range depends on the 

sensor features. For example, if the pixel value is encoded on 

8 bits, the range of pixel values will be [0; 255].  

There exist three different types of defective pixels: hot, 

dead and weak. A hot pixel is a pixel with the highest 

arithmetic value and a dead pixel is a pixel with the lowest 

value [19][20]. A hot pixel can be seen as a pixel stuck at ‘1’ 

and a dead pixel can be seen as a pixel stuck at ‘0’. A weak 

pixel is a pixel with a lower arithmetic value when compared 

to a threshold computed with the values of its neighbors [21].  

3



 

 

 

To detect a defective pixel, a local average has to be 

determined to check if the pixel value is in accordance to the 

values of its neighbors. Several local averages are calculated 

by using different mask sizes. A mask is composed of a group 

of several neighboring pixels located on the same row. For 

example, a local average can be computed with a 1x5 size 

mask (i.e., a 1D array of five pixel values) and is computed 

by excluding the pixel at the center, i.e. the pixel under test. 

A defective pixel has a pixel value which is outside a range 

defined by its higher and lower bounds, called “thresholds” 

in the sequel. To implement the proposed BIST solution, 

these thresholds need to be unified, i.e., they need to be 

calculated in the same way by using constant parameters, 

named amin and bmin for the lower threshold, and amax and bmax 

for the higher threshold. As can be seen in Equations (1), 

these thresholds are represented by affine functions in which 

constants are defined depending on whether the CIS operates 

in a dark or in a light environment (cf. Fig. 5).  

 
Figure 5: Example of light and dark images of a CIS [19] 

In a dark environment, the distribution of pixel values for 

a given mask should be uniform in a fault-free case. So, we 

just need to add a fix number to the local average (bmin and 

bmax in Equations (1)) to compute the thresholds and 

determine whether the pixel is defective or not. In a light 

environment, a lens is used to diffuse while focusing the light 

on the sensor, thus provoking a shaded aspect (cf. example of 

a light image presented in Fig. 5) on the output image [22]. 

Due to the difference of light repartition, a fixed value cannot 

be used to compute the local average. Indeed, a pixel at the 

center of the image has a high arithmetic value due to the light 

concentration. Therefore, it could be falsely declared as 

defective if the computation would be done in the same way 

as for pixels located at the borders of the pixel array, which 

have a lower arithmetic value due to the darkness. To 

compute the thresholds (“Thr”), an alternative is to use a 

percentage of the local average (amin and amax) based on the 

values of the neighbors of the pixel: 

� Thr��� = a��� × local������� + b���  Thr��� = a��� × local������� + b���          (1) 

Equations in (1) are defined in a generic manner to allow 

their use irrespective of the CIS under test, considering that 

the threshold values may change from one CIS to another 

with the modification of the pixel architecture, the gain of the 

ADC, the number of pixels in the array, etc. This generic 

formulation also allows the computation of thresholds values 

irrespective of the detection environment (light or dark). Note 

that the constant parameter values in (1) are chosen 

empirically based on the acceptable rate of defective pixels 

in CIS output images. 

IV. NEW BUILT-IN SELF-TEST SOLUTION 

A. Principle of the proposed test approach 

CIS testing consists of electrical and optical testing phases. 

A CIS can pass electrical tests and fail optical tests, or vice 

versa. In both cases, the CIS is declared as FAIL if at least 

one test reports a failure. However, electrical tests are 

significantly faster than optical tests, thus motivating the need 

to minimize the duration of optical tests for CIS. 

In order to save test time of a CIS, a solution consists in 

using an embedded test solution (BIST) to screen out local 

defects (singlets, couplets, clusters) and to use ATE-based 

tests to target global defects, such as pixel values uniformity 

along the array or noises like Fixed Pattern Noise (FPN) [1], 

which represents the variation of pixel values in the array. 

BIST allows to test each pixel on-the-fly without the need to 

store a full image before testing as is the case with ATE-based 

testing. Moreover, BIST is performed at-speed so that test 

time can be greatly reduced compared with ATE-based test. 

 
Figure 6: From a 2D Kernel to a 1D mask on a pixel under test 

Of course, the area overhead required by the BIST 

hardware limits the amount and complexity of possible 

computations, so that embedding conventional image 

processing algorithms used for optical test in a BIST engine 

can be too costly. Indeed, convolution and filtering methods 

used in image processing algorithms are generally based on 

two-dimensional data that are available when an entire image 

has been stored. However, when only a flow of pixels coming 

from a row (i.e. a mask) of the pixel array is available, using 

such methods becomes impossible. To alleviate this issue, we 

simply reuse the way pixels are scanned in 2D convolution 

and 2D median filtering methods to deal with 1D masks of 

pixels (cf. Fig. 6). With this modification, we avoid the need 

of additional hardware to store data during the reading of the 

array, and we limit the complexity of operations that are 

specific to 2D data management, thus reducing test time. 

B. BIST workflow 

To test the pixel array, the BIST engine needs to access 

each arithmetic pixel value inside the array. The array is 

streamed row by row at the pixel rate thanks to the sequencer 

block presented in Fig. 2. When a pixel is dealt with the BIST 

module, first, the pixel type (Red, Green or Blue) is 

determined from the pixel coordinates. Then, the arithmetic 

value of the pixel is compared with the two thresholds 

computed from a local average (cf. Equations (1)). If the pixel 

value is outside the defined range, the pixel is defective and 

its data (value and coordinates) are stored in a memory for the 

next phase. Otherwise, these data are not saved.  

Once all the pixels of the array have been evaluated by the 

BIST, the data of each defective pixels stored inside a 
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memory is read by a software program which is able to count 

singlets, couplets and determine whether there is a cluster or 

not into the pixel array of the CIS under test. 

C. General BIST architecture 

In our work, CIS die sorting is done by resorting to two 

types of resources: the first one is a BIST infrastructure 

embedded in the CIS for test and defective pixel detection, 

and the second one is an external memory for test data 

storage. This distribution of tasks has been decided to achieve 

the best tradeoff between test time efficiency and CIS 

hardware overhead. An external CPU (Central Processing 

Unit) is used for defect classification. 

One important point is the location of the BIST module 

inside the CIS architecture. In order to avoid pre-processing 

on pixel values by the ISP, that could potentially correct and 

hide potential defects, pixel values must come directly from 

the pixel array without going through intermediate hardware 

modules like correction modules, filtering block, scaler 

block, etc. [8]. Fig. 7 shows the integration and interfacing of 

the BIST module inside a CIS. 

 
Figure 7: Insertion of the BIST module inside a CIS 

The proposed BIST solution has been implemented in 

Verilog language. The general BIST architecture is depicted 

in Fig. 8 where each digital block is dedicated to one function.  

 
Figure 8: General BIST architecture 

All the blocks detailed in this architecture are 

synchronized by a Finite State Machine (BIST FSM) which is 

used to manage the BIST process by launching appropriate 

signals and collecting required information. Communications 

between the various blocks is done owing to wires (1-bit 

signal carriers) or bus (word of several bits carrier). 

In order to test all pixels in a CIS array, each pixel is 

selected based on its type (red, green or blue) since a pixel of 

one type can only be tagged as defective with respect to pixels 

of the same type. The block Pixel data mgt guides the pixel 

in dedicated accumulators located inside the Defective pixel 

& line detection block to store pixel values of the same type. 

This allows to do parallel computations on several 

accumulators to pipeline the detection on several pixel types. 

If a pixel is located near the borders of the array, it is 

mandatory to compute a padding value to detect if the pixel 

is defective or not. This suggests a coordinate management 

inside the BIST module, that can be done with counters 

operating at the pixel rate and returning row and column 

relative positions in the array. 

Then, the pixel is processed by the Defective pixel & line 

detection block. More precisely, the value of the pixel is 

compared to the thresholds (Thrmin & Thrmax) to determine if 

the pixel is correct or defective. The pixel data, i.e. the value 

of the pixel, its coordinates and its type, are stored in the 

memory of the sensor in case it is declared as defective.  

The information “the pixel is defective” in the form of a 

boolean will launch the writing of the pixel data inside the 

external memory. Note that, to avoid test hardware overhead, 

the external memory is a memory already existing in the CIS 

but not used during the test phase and hence available to store 

pixel data of defective pixels. The coordinates and values of 

a defective pixel are encoded by the Data formatting block 

before storage in the memory.  

 
Figure 9: Singlet or couplet according to the size of the Kernel  

When all the pixels in the array have been evaluated and 

have passed through the BIST engine, the memory fulfilled 

by all the defective pixels data is read by a python program 

embedded on the CPU of the system to classify the defective 

pixels. By using information about the Kernel size, this 

program is able to compare pixel coordinates to determine 

whether a defective pixel can be linked with neighboring 

pixels and placed in a given category. Let us consider the 

example in Fig. 9. Here, the program will count two singlets 

in the left image if the size of the Kernel is defined by 3*3 

whereas it will count one couplet in the right image if the 

Kernel size is 5*5. The number of singlets, couplets and the 

presence of clusters are information that can make the die 

passing from PASS to FAIL. If the number of singlets or 

couplets in the dark or light images is too high considering a 

given limit, the CIS is tagged as FAIL. Note that the presence 

of only one cluster in dark or light conditions is a FAIL factor. 

V. VALIDATION OF THE BIST SOLUTION 

In order to validate the proposed BIST solution, we 

performed experiments by using a dataset composed of 

images taken by CISs in dark and light environments. The 

output of the BIST engine is a PASS/FAIL information 

related to the CIS under test as well as the number of singlets, 

couplets and cluster associated to each image. The goal of our 

experiments is to demonstrate the efficiency of the BIST 

solution in reproducing part of optical tests for CIS as they 
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are usually applied with an ATE without the drawbacks of 

long-time duration and huge amount of data storage. 

A. Experimental setup 

A dataset composed of output images coming from more 

than 2,400 CMOS image sensors originating from the same 

packet were used in our experiments. Among these 2,400 

CISs, a part of them were identified as FAIL by former ATE-

based optical tests. Images coming from these CISs were 

selected so as to get a representative sample of various defect 

categories, i.e., singlets, couplets, defective columns, 

defective rows, clusters of various sizes, etc. For each CIS, 

we collected the same number of dark and light images so 

that the dataset was split into two equivalent sets of dark and 

light images as shown in Fig. 10.  
 

 
Figure 10: Dark & Light image distribution of the dataset [6] 

The subset of images coming from the FAIL CISs was 

organized into several categories with respect to the defect 

type. For each image, the numbers of singlets and couplets 

are known, as well as the presence of cluster, thanks to the 

output data from former optical tests performed on ATE. 

Many other information coming from electrical tests formerly 

performed on these CISs are also available for each image. 

For this reason, there is a need to analyze all data related to a 

given image to sort out relevant information and to be sure 

that the FAIL classification of a given CIS came from an 

optical failure and not from an electrical failure. To this end, 

these information are stored in a csv file to be further used in 

a postprocessing stage and observe correlation between 

results from the BIST solution and those from the ATE-based 

tests. 

B. Results and correlation 

In order to evaluate our BIST solution, we define some 

error metrics to quantify the relative error between results 

obtained with the ATE-based solution, considered as a 

reference, and those produced by the emulated BIST solution. 

For each defect category, an error metric has been defined by 

Equations (2) as follows:  

� ���������� !"#$ = %#&'(�)*+,-"#$ . %#&'(�)/-0"#$�����1234� !"#$ = 5�67(�)*+,-"#$ . %#&'(�)/-0"#$7��%�&5�1�3�! 8"#$ = 95(6%)��*+,-"#$ == 5(6%)��/-0"#$:   (2) 

where “i” is an integer in [0; N-1] associated to a given image, 

N being the total number of images in the dataset. 

For all experiments, errors were computed for dark and 

light images in the dataset. A negative error indicates that the 

BIST solution has identified a lower number of defects than 

the ATE-based solution. Note that applying such type of error 

computation for the cluster category is unfeasible as the 

presence of a cluster is represented by a Boolean indicator (0 

or 1) and not by an integer value. So, in this case, we count 

the number of common images with a cluster reported by the 

BIST and by the ATE-based tests. 

To quantify the efficiency of the proposed BIST solution, 

we have computed the mean of the relative error for all output 

images owing to Equations (3) shown below: 

   � ;<��='�_���������� ! =  ∑   8828@ABCDEF"�$A∈"H;JKL$ M;<��='�_�����1234� ! =  ∑   8828NOPQDEF"�$A∈"H;JKL$ M
        (3) 

To determine the threshold values as defined in Section III, 

we need to calculate the local average for each pixel under 

test and define values of constant parameters. The local 

average is calculated by considering a mask size and the 

values of pixels inside the mask. Several mask sizes (1x3, 1x5 

and 1x7) have been considered based on experience. The 

values of constant parameters used to determine higher and 

lower thresholds were empirically chosen as shown in (4).  

Constants for dark img : � =RST_U/VW = 1;        YRST_U/VW = +120=���_U/VW = =RST_U/VW;  Y���_U/VW = . \]^__`abcd    

Constants for light img : e =RST_f+gh- = 1 + 0.15; YRST_f+gh- = 0=���_f+gh- = 1 . 0.15; YR��_f+gh- = YRST_f+gh- 

The two sets of constants given in (4) are chosen to detect 

defective pixels with values outside the range [local_avg-60; 

local_avg+120] for dark images (“img”) and outside the 

range [local_avg*(100%-15%); local_avg*(100%+15%)] for 

light images. These values are very dependent on the type of 

CIS and have been chosen empirically. 

TABLE I.  SINGLET AND COUPLET MEAN ERROR (IN PIXEL) IN DARK 

AND LIGHT IMAGES DEPENDING ON THE MASK SIZE 

 Mask size  1x3 1x5 1x7 3x3 

Dark 
Singlet 3.70 4.40 -66.20 4.80 

Couplet -0.05 -0.08 -0.26 -0.08 

Light 
Singlet -1.90 -2.10 30.00 -1.80 

Couplet 0.05 0.00 0.06 0.01 

Table I reports the mean error calculated for singlets and 

couplets with respect to a given mask size. Three differents 

1D mask sizes (1x3, 1x5 and 1x7) have been experimented. 

The selection of these mask sizes has been done so as to limit 

storage of pixel values used in the local average computation. 

The 3x3 mask size, which is based on a 2D computation 

performed by the ATE-based test, is used to compare results 

with a 1D computation. We can observe that the singlet mean 

error for dark and light images are acceptable for 1x3 and 1x5 

mask sizes. Indeed, a mean error of 4.4 pixels with a 1x5 

mask size for dark images represents a deviation of 0.0003% 

with respect to the total number of pixels in the CIS array, 

which is a negligible error. Conversely, we can observe that 

the 1x7 mask size is not approppriate for the detection of 

singlets in dark or light images. Indeed, 66.2 defective pixels 

are missing with the BIST solution for the dark images and 

30 additional pixels have been found for the light images, 

which is not acceptable. The detection of couplets in dark or 

(4) 
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light images performs very well irrespective of the mask size 

(mean errors are around 0), thus demonstrating the efficiency 

of the BIST solution in detecting double defective pixels. 

From the results reported in Table I, we can conclude that the 

detection of singlets and couplets performs very well for 1x3 

and 1x5 mask sizes. 

Table II reports the number of images containing a cluster 

with respect to a given mask size. The 1x3 mask allows to 

detect a higher number of bad images with the BIST 

compared to the ATE-based solution (92 against 69) in a light 

environement. However, as only 63 images over the 92 are in 

common with the ATE-based solution, we can conclude that 

using a 1x3 mask size is not appropriate. 

TABLE II.  NUMBER OF IMAGES WITH A CLUSTER DEPENDING ON THE 

MASK SIZE 

 Mask size 1x3 1x5 1x7 3x3 

Dark 

Found by ATE-based test 33 

Common images 32 33 31 33 

Found by BIST solution 34 36 33 35 

Light 

Found by ATE 69 

Common images 63 65 60 64 

Found by BIST solution 92 65 67 68 

Conversely, results regarding cluster detection obtained 

with a 1x5 mask size perfectly correlates the results found by 

the ATE-based solution for dark images (33/33 images in 

common). Moreover, this 1x5 mask size allows to detect 

three additional images containing a cluster with the BIST 

solution (36/33). After analysis, these images were confirmed 

to be bad images actually containing a cluster (defective row). 

This is an interesting feature of our BIST solution which was 

able to detect the cluster on dark and light images, whereas 

the ATE found the cluster only on light images. 

Regarding light images, the use of a 1x5 mask prevented 

the BIST solution to identify four bad images containing a 

cluster (65 versus 69). However, a careful analysis revealed 

that these four images contained shaded rows that were found 

by the BIST solution on the dark images. So, finally the BIST 

do not miss any defect on any sensor, thus demonstrating the 

effectiveness of our solution. 

Finally, for the sensor type considered in our experiments, 

we have chosen the 1x5 mask size, that offers the best 

tradeoff between lowest singlet and couplet error rate and 

good cluster detection. 

Figure 11 depicts the singlet error distribution for dark and 

light images given in the form of a histogram. Each bar of the 

histogram refers to the number of images having the same 

singlet errors. Ideally, the two singlet error distributions 

should be placed around the “0” meaning that there is no error 

between ATE-based and BIST solutions. The standard 

deviation (σ in Fig. 11) is used to show that the dispersion of 

values around the mean is low, with 1.6 pixels in light images 

and 2.3 pixels in dark images. From the standard deviation 

definition, it means that 99.7% of the data is included inside 

[mean-3σ; mean+3σ] [23]. For dark and light images, we can 

see that the “mean±3σ” extrema values are +11.2 pixels 

(dark) and -6.8 pixels (light). These values represent 

respectively 0.0008% and 0.0005% of the total number of 

pixels in the CIS array. 

 
Figure 11: Distribution of singlet errors in dark and light images 

We can also observe in Fig. 11 that the distribution of 

singlet error in dark images is shifted to the positive values 

and the distribution in light images is shifted to the negative 

values. This means that BIST testing has detected a bit more 

singlets than the based-ATE tests in dark images and a bit less 

in light images. A solution to even more increase the 

effectiveness of our BIST solution would consist in adjusting 

the constant values used in Equations (1) in order to shift the 

two distributions in Fig. 11 towards ‘0’. 

With a mask size fixed at 1x5 thanks to information given 

in Tables I and II, we can now adjust the constant values used 

to define the thresholds. Note that by changing constant amax 

or bmax, constants amin and bmin will change too due to the 

dependency between the high and low thresholds of the 

range. Table III gives the mean error for singlet and couplet 

detection on dark images when the constant bmax_DARK varies. 

As can be observed, the choice of bmax_DARK = +120 is 

validated in the dark as it is the only one which has the lowest 

singlet error number. Note that, if the BIST engine detects 

more singlets with +110, it is because the higher threshold is 

set too low and the lower threshold is too high, resulting in a 

very restricted range of good pixel values. The same 

comment can be done with bmax_DARK = +140. The BIST 

engine misses a lot of defective pixels as the thresholds create 

a large range where all pixel values have been tagged as not 

defective. For the couplet mean error rate, we can see that the 

BIST classifies correctly double defective pixels even if the 

constant bmax_DARK varies. 

TABLE III.  MEAN ERROR RATE FOR SINGLET AND COUPLET 

DETECTION IN DARK IMAGES WITH VARIATION OF BMAX_DARK  

 bmax_DARK 110 120 130 140 

Dark 
Singlet 37.30 4.40 -21.90 -44.30 

Couplet 0.05 -0.08 -0.15 -0.22 

TABLE IV.  NUMBER OF DARK IMAGES WITH A CLUSTER DEPENDING 

ON BMAX_DARK 

 bmax_DARK 110 120 130 140 

Dark 

Found by ATE-based test 33 

Common images 33 33 32 31 

Found by BIST solution 38 36 34 35 

Table IV gives the number of detected dark images with a 

cluster when bmax_DARK varies. The same comments as done 

for Table II can be raised since, for example, the BIST 

solution with bmax_DARK = +110 allows to detect five more 
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images than the ATE-based solution, but nevertheless detects 

the same 33 bad images found than the ATE-based solution.  

We have done the same comparison for light images by 

varying constant amax_LIGHT. Table V shows the mean error 

rate for singlets and couplets. As for dark images settings, the 

choice of 15% has been found to be the most appropriate due 

to the lowest singlet error rate and considering that the 

couplet error rate is very good irrespective of the percent 

value.  

TABLE V.  MEAN ERROR RATE FOR SINGLET AND COUPLET 

DETECTION IN LIGHT IMAGES WITH VARIATION OF AMAX_LIGHT  

 amax_LIGHT 10% 15% 20% 

Light 
Singlet 16.00 -2.10 -4.20 

Couplet 0.64 0.00 -0.01 

As for dark images, the number of images with cluster was 

computed and results are given in Table VI. These results 

show that 15% is indeed the most appropriate constant value.  

TABLE VI.  NUMBER OF LIGHT IMAGES WITH A CLUSTER DEPENDING 

ON AMAX_LIGHT 

 amax_LIGHT 10% 15% 20% 

Light 

Found by ATE 69 

Common images 67 65 59 

Found by BIST solution 143 65 62 

From all the above experiments and results, we can 

conclude that correctly setting values of constants amax, bmax 

and amin, bmin is crucial, as well as correctly selecting the mask 

size. A precise setting is mandatory to avoid image 

missclassification due to a false number of singlets or 

couplets. Regarding couplet detection, the proposed BIST 

performs always very well irrespective of the mask size or the 

constant values.   

 
Figure 12: Singlet mean error for dark images with respect to 

bmax_DARK constant variation 

To be even more precise in the analysis of the bmax_DARK 

parameter, linear approximations have been done to find the 

optimal constant value. Figure 12 reports the result of the 

linear approximations and shows that bmax_DARK should be 

precisely set to +122 to get a perfect correlation between 

number of singlets found by the BIST solution and those 

found by the ATE-based solution. 

As for bmax_DARK, linear approximations have also been 

done to find the optimal value for amax_LIGHT. The result led to 

14.4%. 

C. Discussion 

With a correct setting of constant values, the proposed 

BIST solution is able to appropriately sort the dark or light 

images into good or bad images. Nevertheless, PASS and 

FAIL sensors classification from dark and light images 

require further analysis. More precisely, if a dark or a light 

image is labelled as bad by the BIST solution, the sensor will 

be declared as FAIL. A sensor will be declared as PASS if 

both dark and light images are identified as good. To be 

“good”, an image must not contain any cluster and we need 

to verify that the number of singlets and couplets are under 

admitted values defined according to a given application. 

Considering the whole dataset of 2,400 sensors, the BIST 

solution has a 99.95% correlation with the PASS/FAIL 

classification provided by the ATE-based solution. Only one 

CIS has been misclassified as FAIL by the BIST engine. 

Results obtained with our BIST engine shows that, from 

quite simple computations used to detect defective images, it 

allows to sort reliable PASS and FAIL information for a CIS 

under test. The optical part of a CIS is tested directly inside 

the sensor, without any interface that can add sources of 

errors (potential contact resistance, pad continuity, etc.). 

Regarding the coverage of optical algorithms usually 

performed on ATE, we estimate that more than 50% of these 

algorithms can be embedded inside the CIS under test, thus 

leading to a reduction of approximately 30% of the test time 

for each sensor. This estimation is based on a deep analysis 

of optical tests, demonstrating that 50% of them usually target 

local defects and hence can be embedded. The area taken by 

the BIST architecture has been estimated in terms of 

additionnal logic gates. It represents roughly only 1 % of the 

digital part of a sensor.   

As BIST solutions presented in Section II.B, the proposed 

BIST engine does not embed all optical tests usually 

performed on an ATE. Compared to existing BIST 

approches, the advantages of the proposed BIST solution are 

that i) it represents less than a few percents of the total CIS 

area, far below what can be achieved with some of the 

existing solutions, and ii) all potential local defects in the 

pixel array can be detected, while only a part of them are 

covered by existing BIST solutions. 

VI. CONCLUSION AND DISCUSSION 

In this paper, we have presented a novel BIST solution for 

CIS testing. It is based on the detection of defects such as 

singlets, couplets and cluster in dark or light output images 

from a CIS under test. These detection information are used 

to define whether images are good or bad and, finally, if the 

CIS is PASS or FAIL. A software emulation of the BIST 

engine has been done to validate our solution. Experiments 

carried out on images coming from 2,400 CIS have shown 

that our proposed solution adequately classify CIS into PASS 

and FAIL categories in 99.95% of cases. In addition to be 

useful for testing CIS, this type of embedded test solution is 

also valuable for diagnosis purpose, since the coordinates of 

defective pixels stored inside the memory are easily 

reachable. 

Despite its effectiveness, it is still possible to improve our 

solution by considering the following aspects:  
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• Our BIST solution currently focuses on local defects 

(singlets, couplets and clusters) and not yet on global 

defects such as shading (difference of values along the 

array, change of uniformity) or noises like temporal 

noise (non-desired variations of pixel values between 

different captures). Even if the probability to have a 

local defect is higher than the probability to have a 

global defect (except for some noises such as FPN and 

dark current, which are very common in CISs), 

complementing our solution to cover global defects is 

of real interest. To this end, simple modifications can be 

implemented to add functionalities to the BIST solution 

and hence cover these global defects.  

• Bus latency to communicate between the external 

memory and the BIST module can be extensive and the 

size of the memory can be inadequate compared with 

what we need to store (too large or too small pixel data). 

A possible solution would consist in adding a small 

memory inside the CIS, together with the BIST 

hardware. This could be done at the cost of additional 

area overhead. 

• Location information about defects were not used in our 

work to compute the correlation between optical tests 

performed on ATE and with the BIST solution. Indeed, 

the correlation relies only on the number of defects in 

each category (singlet, couplet and cluster). However, it 

may happen that two different defects are detected 

respectively by the ATE-based test and the BIST 

solution, and hence are considered in the correlation 

computation. Adding a comparison between 

coordinates of defective pixels detected by the BIST and 

those detected by the ATE could provide even better 

correlation information. 
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