
HAL Id: lirmm-03379074
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03379074v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emerging Computing Devices: Challenges and
Opportunities for Test and Reliability

Alberto Bosio, Ian O’Connor, Marcello Traiola, Jorge Echavarria, Jürgen
Teich, Muhammad Abdullah Hanif, Muhammad Shafique, Said Hamdioui,

Bastien Deveautour, Patrick Girard, et al.

To cite this version:
Alberto Bosio, Ian O’Connor, Marcello Traiola, Jorge Echavarria, Jürgen Teich, et al.. Emerging
Computing Devices: Challenges and Opportunities for Test and Reliability. ETS 2021 - 26th IEEE
European Test Symposium, May 2021, Bruges, Belgium. pp.1-10, �10.1109/ETS50041.2021.9465409�.
�lirmm-03379074�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03379074v1
https://hal.archives-ouvertes.fr

Emerging Computing Devices: Challenges and
Opportunities for Test and Reliability*

Alberto Bosio, Ian O’Connor, Marcello Traiola
Univ Lyon, ECL

INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270
69130 Ecully, France

�rstname.lastname@ec-lyon.fr

Jorge Echavarria, Jürgen Teich
Department of Computer Science
Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Germany
{jorge.echavarria, juergen.teich}@fau.de

Muhammad Abdullah Hanif
Faculty of Informatics

Technische Universität Wien (TU Wien)
Vienna, Austria

muhammad.hanif@tuwien.ac.at

Muhammad Sha!que
Division of Engineering

New York University Abu Dhabi (NYUAD)
Abu Dhabi, United Arab Emirates
muhammad.sha�que@nyu.edu

Said Hamdioui
Computer Engineering Lab

Delft University of Technology
Delft, the Netherlands
S.Hamdioui@tudelft.nl

Bastien Deveautour, Patrick Girard, Arnaud Virazel
LIRMM

University of Montpellier / CNRS
Montpellier, France

�rstname.lastname@lirmm.fr

Koen Bertels
Quantum Computer Engineering

QBee.eu
Leuven, Belgium

koen.bertels@qbee.eu

Abstract—The paper addresses some of the oppor-
tunities and challenges related to test and reliabil-
ity of three major emerging computing paradigms;
i.e., Quantum Computing, Computing engines based
on Deep Neural Networks for AI, and Approximate
Computing (AxC). We present a quantum accelerator
showing that it can be done even without the presence
of very good qubits. Then, we present Dependability for
Arti)cial Intelligence (AI) oriented Hardware. Indeed,
AI applications shown relevant resilience properties to
faults, meaning that the testing strongly depends on
the application behavior rather than on the hardware
structure. We will cover AI hardware design issues
due to manufacturing defects, aging faults, and soft
errors. Finally, We present the use of AxC to reduce
the cost of hardening a digital circuit without impacting
its reliability. In other words how to go beyond usual
modular redundancy scheme.

Index Terms—Emerging Computing Paradigm,
Quantum Computing, Approximate Computing, AI
hardware, Reliability, Testing

I. Introduction

Performance and e6ciency of Information and Communi-
cations Technology (ICT) devices and systems are undoubt-
edly the major driving forces of the current computer indus-
try. They are relevant for the whole spectrum of computing
systems, from edge to high performance computing. However,
the computational workload involved in the cutting-edge
applications is often out of reach for low-power embedded
devices, and/or is still very costly when running in data

*This work has been partially founded by the project IDEX Lyon
OdeLe.

centers on hardware platforms based on Commercial-O<-
The-Shelf (COTS) components. For instance, the amazing
performance of AlphaGo [1] required 4 to 6 weeks of training
executed on 2000 CPUs and 250 GPUs for a total of about
600kW of power consumption (while the human brain of a go
player requires about 20W).
The main reasons of that ine6ciency is tightly related to

the actual Computing Architecture (CA) and the Tech-
nology enabling that [2]. The major challenges for CAs are
the Instruction-Level-Parallelism (ILP) and Memory Wall.
The ILP wall is due to the complexity of actual processors
in which the overhead to allow ILP (e.g., threads, pipeline,
...) tends to be higher than the execution speed up. The
memory wall is due to the increasing gap between processor
and memory speeds, which limits the data transfer time and
leads to signi�cant energy consumption during this transfer,
ranging from 70% to 90% of the overall energy spent by the
whole computing system [3]. At Technology level, the main
challenge stems from the CMOS technology that now limits
performance and e6ciency improvements, especially for nodes
below 20 nm. At this level, the physical characteristics of such
devices are leading to high static power consumption, reduced
reliability, and increased cost.
Due to these limitations, many alternative computing

paradigms and technologies are under investigation to meet
the demands at an a<ordable cost. Among them we can cite
the In-Memory Computing (IMC) paradigm. IMC consists in
integrating a part of the computation units into the memory
itself, meaning that data do not leave memory. This o<ers
signi�cant execution time gain and power consumption re-
duction. Near-Memory Computing (NMC) is another method

2021 26th IEEE European Test Symposium (ETS)
- Special Session Paper -

20
21

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

78
-1

-6
65

4-
18

49
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

00
41

.2
02

1.
94

65
40

9

iPad de Gouat

iPad de Gouat

with similar objectives. It aims to achieve them by reducing
traveling distance and time of the data [4]. Another promising
paradigm is the Approximate Computing (AxC) [5]. The
main idea behind AxC is that, by relaxing the need for fully
precise or completely deterministic operations, it is possible
to improve energy e6ciency without a signi�cant drop in the
output quality or any damages to the functionality. Finally,
Quantum Computing (QC) [6] exploits quantum mechanics
to do things that no existing computing architecture is able
to do. Indeed, the use of quantum mechanics allows to solve
NP-hard algorithms, such as factorization and unstructured
search.
Clearly, the above list is not exhaustive and each emerging

computing paradigm can be implemented on the top of a
given emerging technology. Moreover, for QC there is not
yet a consensus about which technology has to be used to
implement a quantum bit (qubit). These new technologies
and computing paradigms will not only change the way
we design and program our computers, but also the way
we use to test them to provide the required quality and
reliability. Moreover, the cost in terms of overheads (e.g.
test generation, test application time, fault tolerance, ...) has
yet to be determined. Another interesting question is the
investigation of emerging computing paradigms for test and
reliability: can we leverage on emerging computing paradigms
to reduce test and reliability overheads? Unfortunately this is
not a straightforward process.
This paper intends to point out challenges and opportuni-

ties of emerging computing devices. The main contribution of
this papers can be summarized as follows:

• We present a quantum accelerator showing that it can
be done even without the presence of very good qubits.
In particular, we will highlight the di<erent challenges
that need to be solved to have an operational quantum
device in maybe 10 years.

• We present Dependability for Arti�cial Intelligence (AI)
oriented Hardware. Indeed, AI applications show rele-
vant resilience properties to faults, meaning that the
testing strongly depends on the application behavior
rather than on the hardware structure. We will cover
AI hardware design issues due to manufacturing defects,
aging faults, and soft errors;

• We present the use of AxC to reduce the cost of hard-
ening a digital circuit without impacting its reliability.
In other words, how to go beyond usual modular redun-
dancy scheme.

The rest of the paper is structured as follows. Section
II presents Quantum accelerator architecture. Section III
presents dependability issues of AI hardware accelerator.
Finally, Section IV shows how to exploit Approximate Com-
puting for achieving low cost fault tolerance mechanisms and
Section V concludes the paper.

II. Quantum Accelerators: from quantum

application to simulator execution

A. Quantum Accelerators

The goal of Quantum Computing is to create a more
computationally e6cient computer that can handle incredible

amounts of data in parallel. The quantum computing is also
done in a parallel way but it is good to call it implicit
parallelisation. When we want to execute a quantum circuit
on a classical computer, we need to have a parallel version
of the circuit. In this section, we describe the full stack of
layers that need to be developed before we achieve that level
of performance.1 Not all layers will be described but the most
important ones, on which a lot of work is still needed. We want
to make sure that we are talking about a quantum accelerator,
which can be added to a classical processor, like we develop
computers these days. What is important to understand is
that a quantum accelerator is an in-memory computation
device, meaning that we bring the quantum logic towards
the quantum bits, called qubits, rather than bringing the
qubits to a quantum processor. What is also important to
understand is that multiple runs of the same algorithm on
the same number of initial qubits is needed and after each
run, a measurement is done of the result. These multiple
measurements will give some kind of histogram from which
can be derived what qubit contains the correct outcome of
the algorithm.

Fig. 1: Full-Stack with Perfect Qubits executed on
QBeeSim

The highest layer represents the application for which the
quantum accelerator needs to be developed. Examples in the
�gure refer to avionics, genomics, �nance and others. But
in principle, accelerators can be made for any domain and
problem we are currently trying to solve. It can be expressed
in any high-level quantum programming language but for our
purposes, we use the language we developed at Delft, called
OpenQL. When building one or more applications, one will
most likely reuse algorithms that were developed for other
applications and therefore a quantum library is needed.

1This work started for Intel at Delft University of Technology but
now is continued independently.

Fig. 2: Full architecture for perfect qubits

The OpenQL compiler will translate the application in a
quantum assembler language, called cQASM which stands
for common Quantum Assembler language. openQL as well
as cQASM combine classical programmings structures such
as loops and selections making the programmability closer to
normal programming. That cQASM can be executed by the
quantum micro-architecture and sends the quantum gates and
qubit operations to the simulator we built. If at any point
in time a good quantum chip is developed, then we use an
additional compiler layer, called eQASM where the ‘e’ stands
for Executable QASM.

The micro-architecture controls the digital hardware blocks
and they will interact with the simulator or with the physical
chip that will be used. It has be clearly understood that
the quantum phenomena such as superposition and quantum
gates are in essence analogue events.

So the functionality of these blocks depends on where
they are placed in the micro-architecture. A possible micro-
architecture is shown in Figure2 where the blue box, repre-
senting the micro-architecture is connected to a quantum sim-
ulator, called QBeeSim. In principle, the micro-architecture
receives the quantum instructions either as cQASM or as
eQASM. In the last case, it is connected to a physical
quantum processor. However, such processors are still very
erroneous and also enormously dependent on the quantum
technology used to generate the qubits. At this phase of Quan-
tum Computing, we prefer to use a digital simulation engine
to test the micro-architecture, the programming language, up
to the quantum applications that will be executed.

The goal is of course to execute multiple times the same
algorithm on the same initial qubits and perform after each
run the measurement. This will result in a frequency diagram
that indicates which �nal solution has been measured the
most frequently. Some kind of histogram can be seen as
a visual representation of the qubit chip. In Figure 3, the
solution is contained in qubit 101 as it has the highest
frequency when measuring multiple runs of the algorithm.
This history measurement is needed when we have use a real

Fig. 3: Frequency Distribution for 23 qubits

quantum chip. But as we are explaining also in Figure 2, when
executing on a quantum simulator, there is no need to have
multiple runs but we do need a fully parallel version of the
quantum circuit that needs to be executed such that all paths
are explicitly computed. The �nal result will be similar as it
is also the frequency distribution that indicates what qubit
contains the result.
The main components of the micro-architecture are the

following:

• Instruction Memory: In the main memory of the clas-
sical computer, the instructions are stored and expressed,
either in a classical programming language or in OpenQL
and cQASM.

• Quantum Instruction Cache: The instructions are
decoded by the quantum processor. This means that it
is determined what qubits are used in the instruction and
where they are physically located in the quantum chip.

• Execution Unit: The actual and if possible parallel
execution of the cQASM-instructions is done by the
Execution Unit in the micro-architecture. At that mo-
ment, the cQASM code has been changed in view of the
physical addresses listed in the Qubit Symbol table.

• Mapping Control Unit: Once we reach the execution
unit of the micro-architecture, there is the need to route
the two-qubit instructions as well as the qubit states
to locations close to each other and at the same time

respecting all the timing requirements that are needed.
• Queues: The modi�ed cQASM-instructions are now put
in di<erent queues with a particular time-stamp. The
timing is not that important when we execute on the
QBeeSim simulator but understanding the overall timing
conditions needed for quantum algorithms is important.

• QBeeSim: A major component of our quantum ac-
celerator is the QBeeSim simulator that is capable of
executing the cQASM-code. The QBeeSim simulator
receives the cQASM instructions and also has a local
memory where all the qubits are stored that will be
manipulated in the quantum instructions.

• Measurement Control Unit: When one wants to
know what the result of the quantum algorithm is, the
only way to �nd that out is looking at the Qubit and
Amplitudes Table. All the amplitudes are listed there
and the measurement simply means that you update the
qubit symbol table with the update version of the last
run of the quantum algorithm.

• Partial Qubit and Amplitude Storage Table: Ev-
ery result that is represented by a vector or matrix will
be stored in the Amplitude Storage Table. The content
of that table is a reMection of whatever quantum memory
the quantum device will have in the future but it is too
early to specify that. In the classical quantum accelerator
that information is stored in the classical memory where
the qubit name, type and amplitudes is stored.

• DMA Controller: whenever qubit information needs
to be read or written to the classical memory, the DMA
controller is responsible for transferring that.

B. Challenges in Quantum Computing

The full-stack as proposed in this paper is, according to
the authors, the correct way to build a quantum accelerator.
Quantum algorithms can be expressed in openQL and the
compiler generates the executable version in cQASM. We
brieMy explained that those instructions not only have quan-
tum logic but also other programming features such as loops
and selections. The micro-architecture is capable to execute
them by sending it through queues to the QBeeSim simulator.
Several challenges have to be faced to have an operational
quantum-device in maybe 10 years:

• The pre-transistor phase: in CMOS, the �rst de�ni-
tion of a transistor was done in 1936 and it took more
than 50 years to reach a VLSI-level quality of how to
make CMOS transistors. In Quantum Computing , there
is still no agreement on what technology to use to make
a qubit. There is a lot of diversity ranging, in a non-
exhaustive list, from NV-centers, Ion Traps, Graphene,
Semiconducting up to Superconducting qubits.

• Decoherence to ground state: independent of any
quantum technology used, the qubits all have the same
kind of problems that also needs to be solved at the phys-
ical level. An important one is the decoherence to the
ground state, loosing all the computed information up to
that point. The speed at which this decoherence occurs
is di<erent between the di<erent technologies but also
in the speci�c parameters people use to make a qubit.

The coherent state of any qubit is from milliseconds to
multiple seconds. However, when Morello published very
long coherent states for silicon qubits, he immediately
admitted that he did not know how to apply it to 2 or
more number of qubits.[7]

• Reliability of quantum gates: similar to the deco-
herence of qubits, there are also errors in the kinds
of gate operations are done on the qubits. Important
to emphasise here is that quantum computing implies
bringing the logic to the qubit and not the qubit to a
processor where the computation is done. In CMOS, we
are used to errors around 10−15 where qubits have errors
around 10−2. The extremely big di<erence between qubit
errors and CMOS also explains that we are still at least
10 years away from any reasonable quantum device. One
important paper to be read in this respect is by John
Preskill who warned in 2018 that Surface Code, which
was the dominant logical qubit for many years, is using
too many ancilla qubits so research should be postponed
for multiple years and maybe even go back to the past
were much smaller logical qubits were de�ned. Evidently,
lower number of qubits also means very high error rates.
So, error detection and correction is still a very hot topic
for many years.

• Testing of quantum circuits: Testing quantum gates
and circuits is something that need still to be started.
Identifying the defect mechanisms and physical failures
of quantum devices and accurately modeling them in
order derive the their impact on the quantum operation
and the functional behavior is they key enabler for
structural test solutions. E.g., realizing a gate operation
can be misaligned, mistuned or completely missing [8; 9].

• No realistic quantum applications: because all of the
above challenges, there is a lack of people with enough
competences to look at large problems companies and
other organisations are trying to solve. This is clearly
where universities and research centres can play an
important role in training researchers in that way.

III. AI Hardware Architecture

Deep Learning has shown remarkable potential for solving
complex AI problems such as object detection, scene under-
standing, and language translation [10][11]. This success has
led to the adoption of Deep Neural Networks (DNNs) in
safety-critical applications that include autonomous driving,
robotics, healthcare analytics, etc. The functionality of DNNs
in these systems is important, as they are responsible for
processing data that is then used for decision making. A single
misprediction in safety-critical applications can lead to severe
consequences. For example, a misdetection of an obstacle
ahead of an autonomous vehicle can lead to a fatal accident.
Therefore, the reliability of DNNs is crucial for o<ering safe
and high-quality services.
Besides algorithmic innovations, specialized hardware plays

a vital role in improving the performance and energy ef-
�ciency of a computing system [12][13]. However, modern
systems are becoming increasingly susceptible to reliability
threats such as soft errors, aging, and process variations due

to aggressive technology scaling. These threats manifest as
bit-Mips at the hardware level and, based on the location,
can corrupt the output, leading to inaccurate or potentially
catastrophic results. Studies have shown that, similar to
most applications, DNNs are also vulnerable to bit-Mips at
critical locations in the system [14][15]. Therefore, e6cient
mitigation techniques are required to improve the resilience
of the advanced machine/deep learning systems against these
threats.
Conventional mitigation techniques are based on redun-

dancy, e.g., Dual Modular Redundancy (DMR) [16] and
Triple Modular Redundancy (TMR) [17]. However, due to the
compute-intensive nature of DNNs, these techniques result in
huge overheads that negatively impact the system’s e6ciency.
Error-Correcting Codes (ECC) and Instruction Duplication
(ID) [18] also have similar issues. Therefore, alternate mitiga-
tion techniques are required to improve the resilience of DNN-
based systems at low cost without a<ecting the e6ciency.
These techniques are usually developed by exploiting intrinsic
characteristics of DNNs and deploying protection only at
critical locations in the system or by transforming critical
errors into non-critical ones.

A. Hardware-induced Reliability Threats

Technology scaling in nano-scale devices has led to an
increase in various reliability issues. Fig. 4 highlights the main
types of hardware-induced reliability threats and how they
a<ect the functionality of a DNN-based system.

• Soft Errors are transient faults induced due to high en-
ergy particle strikes on the hardware, e.g., neutrons from
cosmic radiations [19]. These faults manifest as bit-Mips
in the system and can propagate to the application layer
and impact the functionality/accuracy of the system.

• Aging in CMOS devices is associated with various phys-
ical phenomena such as Bias Temperature Instability
(BTI), Hot Carrier Injection (HCI), and Electromigra-
tion (EM). It a<ects the hardware characteristics of the
circuits by increasing the threshold voltage (VT H) of the
transistors [20] or by a<ecting the wires. Aging results
in timing errors and can also lead to permanent faults in
the long run.

• Process Variations are variations in the hardware
characteristics, such as transistor channel length and
wire resistance, from the desired characteristics due
to imperfections in the manufacturing process. These
variations typically a<ect the performance and e6ciency
of the hardware, as they require an increase in the
supply voltage or decrease in operating frequency to
ensure correct functionality. Extreme variations result
in permanent faults, which impact the yield of the
manufacturing process.

B. Cost-E6ective Fault Mitigation Techniques

Various techniques have been proposed to address
hardware-induced reliability threats in DNN-based systems.
In the following paragraphs, we highlight the key concepts
behind di<erent mitigation techniques designed to address
di<erent reliability threats.

Input Expected
Output

Potential Output
with Faults

Red

Light

Green

Light

Process

Variations
Aging Soft ErrorsElectromigration

Hardware-induced Reliability Threats

Accumulators

PE

Control
Unit PE PE

Processing Array
...

PE PE PE...

...

...

...

Off-Chip

Memory

(DRAM)

DNN
Hardware

PE PE PE...On-Chip

Memory

(SRAM)

Activation

and Pooling
Faults

C
O

N
V

 1

C
O

N
V

 2

C
O

N
V

 3

C
O

N
V

 5

F
C

 1

F
C

 3

Pretrained DNN

In
p
u
t

O
u
tp

u
t

F
C

 2

C
O

N
V

 4

Manufacturing

Defects

Fig. 4: Hardware-induced reliability threats and their im-
pact on output of a DNN-based system. (The tra6c light
picture is from the COCO dataset [21])

1) Soft Error Mitigation: Soft errors are transient faults
that manifest as random bit-Mips at the hardware level. These
faults have the potential to degrade the system’s performance
severely, speci�cally when they occur at critical locations [15].
Therefore, several mitigation techniques have been proposed
to alleviate the e<ects of soft errors. At the hardware level,
modi�ed SRAM cell designs have been proposed to generate
0 in case of faults. These designs are based on the observation
that DNNs are, in general, more resilient to 1-to-0 bit-
Mips compared to 0-to-1 bit-Mips. Radiation hardening is
another technique to protect against soft errors by replacing
vulnerable hardware nodes with more robust nodes that
o<er higher resilience [22]. However, these techniques require
modi�cations (additional hardware) in most parts of the
hardware, which leads to high overheads. To overcome this
issue, recently, range-restriction techniques [23][24] have been
proposed that de�ne operating ranges for the activation
values and consider all outliers as faulty and map them within
the range based on some prede�ned policy. These frameworks
are highly e<ective as they restrict high magnitude faults from
propagating into the network and eventually dominating the
result. Fig. 5 presents the main steps involved in deploying
range restriction-based techniques.

Step 1: Profile

Activation Values

Step 2: Determine

Ranges for Activations

/Intermediate Outputs

Step 3: Deploy

Range Restriction

Functions

Protected

DNN

Unprotected
DNN

Fig. 5: Flow of range restriction-based soft error mitigation

2) Permanent Fault Mitigation: The main goal of per-
manent fault mitigation in the context of DNNs is to increase
the manufacturing yield of specialized DNN accelerators. As
permanent faults are static faults, one of the most e<ective
techniques against them is Fault-Aware Pruning (FAP) [25].
FAP exploits the resilience of DNNs to pruning for mitigating
permanent faults by dropping the respective computations
that are mapped onto faulty Processing Elements (PEs). It
requires post-fabrication testing to identify the faulty PEs,
and this information is used at runtime to identify which
PEs are required to be bypassed. Fig. 6(b) presents the

modi�cations required in a PE of the systolic array shown
in Fig. 6(a) to realize FAP. Note that FAP does not o<er
good results at high fault-rates. Therefore, FAP followed by
retraining (i.e., fault-aware retraining) is employed to achieve
better results [25] (see Fig. 7). However, retaining is not
feasible in all scenarios, e.g., due to unavailability of the
dataset or lack of computational resources considering a large
volume of chips. Therefore, to o<er better results without
retraining, Hanif et al. proposed SalvageDNN [26], a fault-
aware mapping methodology that permutes �lters/neurons
in a DNN such that the least signi�cant weights are mapped
to faulty PEs (see Fig. 8 for example) that are then bypassed
through FAP and do not impact the accuracy much.

PE PE PE...

.
.
.

.
.
.

.
.
.

Partial Sums (Output)

PE PE PE

PE PE PE

(a)

.
.
.

. . .

Systolic

Array

...

...
. . .

Weights (Matrix A)

A
ct
iv
a
ti
o
n
(M

a
tr
ix
B
)

X +

Partial Sum

A
ct
iv
a
ti
o
n

PE

Weight

Partial SumWeight

CLK+�

X +

Partial Sums

A
ct
iv
a
ti
o
n

PE

Weight

0 1

P
sum P

sum
’

CLK

Bypass

path
X +

Partial Sum

A
ct
iv
a
ti
o
n

PE

Weight

0 1Fault = 1

P
sum

(b) (c)

Fig. 6: (a) A systolic array designed for accelerating DNN
inference. (b) Modi�ed PE design for for mitigating per-
manent faults [25]. (c) Modi�ed PE design for mitigating
timing errors [27].

Post-fabrication

Testing
Fault Map

Fault-Aware

Masking of Weights

Loss Computation

& Backpropagation

Hardware
Accelerator

DNN
Architecture

Dataset

Weight

Update

Robust

DNN

Fault-Aware Training (repeat for multiple epochs)

Fig. 7: Flow of fault-aware retraining

3) Aging Mitigation: Aging in CMOS circuits results in
timing errors. To detect and mitigate the e<ects of timing
errors in the computational array of a DNN hardware accel-
erator, Zhang et al. proposed ThunderVolt [27], a technique
that exploits razor Mip-Mops together with the resilience of
DNNs to pruning to mitigate timing errors. On detection of a
timing error, ThunderVolt steals a cycle from the subsequent

0.42

0.84

0.63

0.65

0.44

0.61

0.17

0.15

0.58

0.81

0.220.78

0.92

0.36

0.78

0.42

0.84

0.63

0.65

0.44

0.61

0.15

0.58

0.81

0.94

0.220.78

0.92

0.78

0.42

0.84

0.63

0.65 0.78

0.92

0.36

0.78 0.44

0.61

0.17

0.15

0.58

0.81

0.94

0.22

Filter 1 Filter 2 Filter 3 Filter 4

4x4 PE Array (b)

x
0.36

0.94 x0.17

(a)

4x4 PE Array

Faulty

PE

FaultAware

Mapping Results

in Interchanging

Filters 3 and 4
Weight with the

least magnitude

in the row is

mapped to the

faulty PE

Fig. 8: An illustrative example of the working of fault-
aware mapping approach [26]. (a) shows four 2x2 �lters
that are to be mapped on an array composed of 4x4 PEs.
(b) highlights the di<erence between simple FAP approach
(left) and fault-aware mapping (right).

MAC operation by dropping its computation to pass on the
correct result. The dropping of computations avoids stalling
the complete array, while the resilience of DNNs to pruning
helps maintain the baseline accuracy. Fig. 6(c) presents the
modi�cations required in the PE shown in Fig. 6(a) to realize
ThunderVolt. Note that ThunderVolt is mainly designed to
improve energy e6ciency through voltage scaling, but due
to its e<ectiveness against timing errors, it is highly useful
against aging as well.
To alleviate aging of on-chip SRAM cells of a DNN ac-

celerator, recently, Hanif et al. proposed DNN-Life [28]. The
technique employs read and write transducers to balance the
duty-cycle in each cell of the SRAM, thereby minimizing the
NBTI aging, which is the most prominent type of aging in
modern nano-scale devices.

C. Challenges for Developing Highly Dependable DNNs

• Integration of Mitigation Techniques: For each
type of reliability threat, various mitigation techniques
have been proposed, with some designed for particular
modules, e.g., on-chip memory or compute fabric. Each
mitigation technique usually impacts the system’s re-
silience against other reliability threats as well. There-
fore, while building a robust yet e6cient DNN-based
system, it is important to study the interactions of di<er-
ent mitigation techniques and select an appropriate set
of techniques that o<er optimal resilience under de�ned
constraints and conditions. Towards this, there is a need
to design systematic methodologies that can e6ciently
compute the given model’s resilience and propose the
set of mitigation techniques that should be deployed.

• Need for Robust Algorithms: One of the core is-
sues with deep learning is adversarial examples, i.e.,
injection of small perturbations can lead to signi�cant
accuracy loss. Although adversarial examples are con-
sidered important only in the context of security, they
also provide information about the general resilience of
DNNs to faults/errors. Robust DNNs that o<er high re-

silience against adversarial noise would illustrate higher
resilience against reliability threats. Researchers have
proposed various methods to increase the robustness of
DNNs against adversarial noise; however, these methods
either o<er minor gains or show improvements only
under certain conditions. Therefore, there is a dire need
for algorithms/methods that result in models that are
robust-by-design.

• Need for Novel Test Techniques for Emerging
Technologies: Processing-in-memory (PIM) is attract-
ing a lot of attention due to its potential to realize high
energy e6ciency. They are typically based on emerging
memories such as ReRAM and spintronic devices. Such
devices come with their unique failure mechanisms that
cannot be modelled with the traditional faults models
neither tested with traditional test approaches [29; 30].
Moreover, the fact the memory in PIM has two con�g-
urations (storage and computing) poses even additional
requirements on their testing [1; 29].

IV. Approximate computing

Approximate Computing (AxC) is an increasingly-adopted
alternative computing paradigm exploiting the resilience of
some applications – e.g. speech recognition and image en-
coding – to achieve gains in terms of system resources –
e.g., execution time, circuit area, and power consumption.
Indeed, for some applications, relaxing non-critical speci�ca-
tions leads to inaccurate – yet still acceptable – �nal outcomes
while possibly providing disproportionate savings in terms of
resources [5; 31]. AxC has been applied at di<erent layers of
computing systems, from hardware to software [31].

In the following, we focus speci�cally on the Approximate
Integrated Circuits (AxICs), stemming from the application
of AxC to Integrated Circuitss (ICs). In particular, we focus
on functional hardware approximation: selectively changing
the circuit functionality to alleviate resource footprint and
delay2. The well-known Triple Modular Redundancy (TMR)
methodology is a fault-masking form of modular redundancy
in which three identical circuits describe the behavior of a
given Boolean function f . The computation results of the
three replicas are processed by a majority-voter to produce
a single output. The TMR architecture guarantees fault
masking when any of the three copies fails. Indeed, the
majority voter uses the other two functioning copies to deliver
the fault-free result, hence masking the fault. Functional
approximation has been applied to TMR. The goal is to
reduce the overhead deriving from the circuit triplication.
Rather than three precise replicas, an Approximate Triple
Modular Redundancy (ATMR) structure may implement at
least one approximate module to lower the aforementioned
TMR’s overhead. A particular ATMR form, known as Full
Approximate Triple Modular Redundancy (FATMR), can
be obtained by replacing all three modules within a TMR

2Consequently, considering a similar switching activity, power-
consumption savings are expected to be observed due to the reduced
interconnect of the smaller silicon area, which in turn decreases the
capacitive load on the signals of the design.

structure by approximate ones, as shown in Figure 9b3.
Unfortunately, the overall error-masking capability of an
FATMR system is expected to be reduced, thus making this
approach not viable for safety-critical scenarios. To overcome
this issue, we proposed in [33] the Quadruple Approximate
Modular Redundancy (QAMR), a novel system that does
guarantee the same fault-tolerance capabilities of the TMR,
whilst still bene�ting from approximation advantages.

A. The QAMR principle

Let f(x1, ..., xn) : Bn → B
m describe an m-output Boolean

function with n input literals of the form f(x1, ..., xn) =
〈f1, ..., fm〉, as illustrated in Figure 9. Given a Boolean
function f , the conventional TMR architecture uses three
identical copies of the Integrated Circuit (IC) implementing
f (i.e., f1, f2, f3), thus ensuring fault tolerance. When one
of the three replicas (e.g. f1) incurs some defective condition
(represented as a fault at the abstracted function level [34]),
the other two replicas, f2 and f3, still provide correct outputs
to a majority voter. In turn, the latter is capable to deliver
the correct result.

Similarly, the FATMR approach also employs three repli-
cas. Each one is allowed to deliver arbitrary output values
(i.e., they are approximated). The freedom to approximate
a replica function f̂ i allows achieving circuit minimizations,
thus area and power gain. However, this comes at the cost
of accuracy degradation. The approximation of the three
functions – f̂1, f̂2, and f̂3 – is realized in such a way that their
combined e<ect allows obtaining the correct value of f , when
no defective condition occurs. In other words, the voter masks
the approximation error. However, if a fault occurs within
any of the circuits implementing the approximate Boolean
functions, the voting mechanism can no longer guarantee
the error masking. Therefore, to use an ATMR system in
safety-critical scenarios, the approximated implicants of a
given function f̂ must not be critical for the application.
Unfortunately, such a requirement may be impossible to
satisfy when implementing an FATMR.

To overcome this situation, the QAMR architecture [33]
aims at not sacri;cing fault-masking capabilities while still
using AxC to improve the overall e6ciency. The QAMR is not
based on three, but rather four AxICs suitably approximated
to ensure the desired properties of fault tolerance while still
achieving e6ciency gains. Speci�cally, each AxICk removes
only a subset of functions F k = {fk

i , ..., fk
j } such that

F k ⊆ {fk
1

, ..., fk
m} with k ∈ {1, ..., 4}, and F 1 ⊔F 2 ⊔F 3 ⊔F 4 =

{f1, ..., fm}, as shown in Figure 9c. In other words, an output
removed from a speci�c AxIC (represented as a red cross
in Figure 9c) is still present in the others. Note that the
same majority voter used in TMR can also be implemented
within our novel QAMR. The underlying idea behind this
approach is that, by removing parts of the function’s logic,
one can enable new logic synthesis opportunities that were
not possible for the original function.

3The reader can 'nd a comprehensive survey on TMR, ATMR,
and FATMR in [32].

x
n

f1

1

f1

2

...

f1

m

IC1

(f1)

f1

f2

...

fm

f2

1

f2

2

...

f2

m

IC2

(f2)

f1

f2

...

fm

f3

1

f3

2

...

f3

m

IC3

(f3)

f1

f2

...

fm

f1

f2

...

fm

V
O
T
E
R

f

(a) TMR

x
n

f̂1

1

f̂1

2

...

f̂1

m

AxIC1

(f̂1)

f̂1

f̂2
...

f̂m

f̂2

1

f̂2

2

...

f̂2

m

AxIC2

(f̂2)

f̂1

f̂2
...

f̂m

f̂3

1

f̂3

2

...

f̂3

m

AxIC3

(f̂3)

f̂1

f̂2
...

f̂m

f1

f2

...

fm

V
O
T
E
R

f

(b) FATMR

x
n

AxIC1

(f̂1)

AxIC2

(f̂2)

AxIC3

(f̂3)

AxIC4

(f̂4)

f1

1

f1

2

...

f1

m

f2

1

f2

2

...

f2

m

f3

1

f3

2

...

f3

m

f4

1

f4

2

...

f4

m

f1

f2

...

fm

f1

f2

...

fm

f1

f2

...

fm

f1

f2

...
fm

V
O
T
E
R

f

(c) QAMR

Fig. 9: Evolution of approximate modular redundancy. (a) In the TMR, all three replicas f i : i ∈ {1, ..., 3} are designed
to correctly compute values for all fj : j ∈ {1, ..., m} outputs. (b) Using the FATMR, each replica f̂ i implements an
approximate function to reduce its circuit size and achieve silicon-area reductions otherwise impossible to attain by the
TMR. However, the FATMR su<ers from fault-tolerance degradation. (c) The QAMR, instead, uses four approximate
replicas f̂ i : i ∈ {1, ..., 4} to guarantee the same fault-tolerance as the TMR while still bene�ting from AxC.

B. Harnessing the QAMR potential

In the work described in [33], we showcased the feasibility
of the QAMR by proposing a simple pseudo-random approach
to realize the AxICs. In particular, we approximated the
m-output Boolean function f(x) = 〈f1, ..., fm〉 describing
the original IC behavior. As discussed above, we quadrupli-
cated f(x) and removed a pseudo-randomly-chosen subset of
Boolean outputs F k = {fk

i , ..., fk
j } from each one (f1, ..., f4),

so that F 1 ⊔ F 2 ⊔ F 3 ⊔ F 4 = {f1, ..., fm}. We subsequently
synthesized the four designs4 to obtain the four AxICs.
Finally, we estimated the resource footprint of all the replicas
as well as their critical path. We performed a pseudo-random
exploration over such Boolean outputs de�ning the QAMR’s
design space and gathered all the non-dominated solutions
found – i.e., the solutions having either better or at least
equal area or delay w.r.t. each other solution in the set. As
a point of reference, we synthesized also the three identical
fully-accurate replicas constituting the TMR implementation
and estimated area and timing5.

To perform logic optimization, we used Espresso [35] and
ABC’s resyn2 script [36], oriented to the �nal implementation

4Note that we applied a fully-accurate logic optimization to the
multi-output Boolean functions, i.e. to the original non-approximate
one and to all the explored approximate ones.

5Note that the majority voter is not considered in the analysis
since it does not change from the TMR to the QAMR, as previously
explained.

in Application Speci�c Integrated Circuit (ASIC) standard-
cell technology. Finally, we performed a Place & Route
(PAR) of the reference TMR and each non-dominated QAMR
solution using a 45nm ASIC standard-cell technology. This
allowed us to compare area and delay of the �nal set of
non-dominated QAMR solutions with the TMR. We used
Design Compiler from Synopsys, applying standard com-
mands without any further optimizations. To obtain the �nal
area and delay results, we resorted to the tool’s reports.
We applied the described approach to a subset of generic
combinational circuits from the publicly-available benchmark
suite LGSynth’91 [37].

In this section, we show and discuss how considering the
two attributes (area and delay) at once enriches the evalua-
tion. Finally, we show by example that the front de�ned by
the non-dominated solutions found with the pseudo-random
exploration may be still far away from a Pareto front. Figure
10a shows the results of the pseudo-random exploration for
six representative circuits we selected among our experiments.
The results are expressed in terms of relative area gain, as
shown on the abscissa, and relative timing gain, as shown on
the ordinate, w.r.t. the original TMR, shown at the origin.
Both area and timing gains are calculated as follows:

δgain% =
δTMR − δQAMR

δTMR

· 100, (1)

where δ represents either the area or timing of the two

(a) (b)

Fig. 10: (a) Non-dominated solutions, in terms relative area and timing gain, found by pseudo-random exploration.
Due to space limitations, circuits providing only negative gains are not shown. (b) Comparison between non-dominated
solutions by pseudo-random exploration and those found using exhaustive exploration, for a tiny circuit – pm1, m = 13
outputs.

architectures.

For each reported circuit, the non-dominated solutions
found by the pseudo-random exploration are shown. The
graphs highlight that the QAMR implementations can be
found superior, in terms of timing (e.g. 5xp1 and pm1), area
(e.g. x2), or both (e.g. ex4, apex4, and alu2).

In a �rst attempt, we considered the optimization of only
one attribute at a time – i.e., only area or only timing. We
observed that the pseudo-random exploration is fully capable
of �nding optimized QAMR implementations w.r.t. the TMR
counterpart. By considering area and delay independently,
we found QAMR implementations with reduced area con-
sumption and shorter critical paths for 36.5% and 63% of
the circuits, respectively [33]. When considering both area
and delay at once, even if for 15% of the circuits the pseudo-
random exploration did not provide any solutions achieving
any gains, it did lead us to �nd an improved implementation
in terms of area and/or timing for 85% of the circuits. In
particular, for 33% of the experimented circuits, we found at
least one QAMR implementation exhibiting both timing and
area gains simultaneously.

While very simple and even su6cient to prove the feasi-
bility of the QAMR, the pseudo-random exploration is not
suitable to deeply explore the potential advantages of such
approach. To show that, we report in Figure 10b the non-
dominated solutions found for a particular circuit after an
exhaustive exploration compared to those found with the
pseudo-random approach. We chose the pm1 circuit, having
m = 13 outputs, since it is not too complex to make
the exhaustive exploration infeasible and not simple enough
to allow the random approach �nding the best solutions.
This simple example shows that the solutions found using

the pseudo-random approach are far from being optimal.
Therefore, there is the need for a smart approach to suitably
explore the QAMR design space e6ciently also for larger
problems. Indeed, as the number of outputs grows, the
number of possible approximations increases considerably,
making an exhaustive exploration not viable. Moreover, a
multi-objective exploration is needed to correctly �nd QAMR
implementations lying on the area-timing Pareto front.

V. Conclusion

In this paper we presented three emerging computing
paradigms and the associated challenges and opportunities
for testing and reliability. Quantum Computing poses several
challenges that need to be resolved to have an operational
quantum device. AI hardware imposes to take into account
the application behavior while classical test usually only
resort to the hardware structure. Finally, approximate com-
puting can be exploited in achieving low cost, but still
e6cient, fault tolerant mechanisms.

References

[1] A. Bosio et al., “Rebooting computing: The challenges
for test and reliability,” in IEEE DFT, 2019, pp.
8138–8143.

[2] S. Hamdioui et al., “Memristor based computation-in-
memory architecture for data-intensive applications,” in
IEEE DATE, 03 2015, pp. 1718–1725.

[3] S. Hamdioui et al., “Memristor for Computing: Myth
or Reality?” in Proc. Conf. Des. Autom. Test Eur.
European Design and Automation Association, 2017, pp.
722–731.

[4] H. A. D. Nguyen et al., “A classi�cation of memory-
centric computing,” ACM Journal on Emerging Tech-
nologies in Computing Systems, vol. 16, no. 2, pp. 1–26,
Apr. 2020.

[5] S. Mittal, “A survey of techniques for approximate
computing,” ACM Comput. Surv., vol. 48, no. 4, Mar.
2016.

[6] M. M. Savchuk et al., “Quantum computing: Survey
and analysis,” Cybernetics and Systems Analysis, vol. 55,
no. 1, pp. 10–21, Jan. 2019.

[7] P. B. D. A. Morello, J.J. Pla, “E6cient processing of deep
neural networks: A tutorial and survey,” pp. 2295–2329,
Jul 2020.

[8] J. P. Hayes et al., “Testing for missing-gate faults in
reversible circuits,” in IEEE ATS, 2004, pp. 100–105.

[9] A. Deb et al., “Detailed fault model for physical quantum
circuits,” in IEEE ATS, 2019, pp. 153–158.

[10] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[11] M. Capra et al., “Hardware and software optimizations
for accelerating deep neural networks: Survey of current
trends, challenges, and the road ahead,” IEEE Access,
vol. 8, pp. 225 134–225 180, 2020.

[12] Y. Chen et al., “Eyeriss v2: A Mexible accelerator for
emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and
Systems, 2019.

[13] V. Sze et al., “E6cient processing of deep neural net-
works: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[14] Z. Chen et al., “Bin�: an e6cient fault injector for safety-
critical machine learning systems,” in ACM HPCA, 2019,
p. 69.

[15] M. A. Hanif et al., “Robust machine learning systems:
Reliability and security for deep neural networks,” in
IEEE IOLTS, 2018, pp. 257–260.

[16] R. Vadlamani et al., “Multicore soft error rate stabiliza-
tion using adaptive dual modular redundancy,” in IEEE
DATE, 2010, pp. 27–32.

[17] R. E. Lyons et al., “The use of triple-modular redun-
dancy to improve computer reliability,” IBM journal of
research and development, vol. 6, no. 2, pp. 200–209,
1962.

[18] M. Sha�que et al., “Exploiting program-level masking
and error propagation for constrained reliability opti-
mization,” in ACM/IEEE DAC, 2013, pp. 1–9.

[19] R. C. Baumann, “Radiation-induced soft errors in
advanced semiconductor technologies,” IEEE T-DMR,
vol. 5, no. 3, pp. 305–316, 2005.

[20] K. Kang et al., “Nbti induced performance degradation
in logic and memory circuits: How e<ectively can we
approach a reliability solution?” in ACM/IEEE ASP-
DAC, 2008, pp. 726–731.

[21] T.-Y. Lin et al., “Microsoft coco: Common objects in
context,” in European conference on computer vision.
Springer, 2014, pp. 740–755.

[22] D. B. Limbrick et al., “Reliability-aware synthesis of

combinational logic with minimal performance penalty,”
IEEE Transactions on nuclear science, vol. 60, no. 4, pp.
2776–2781, 2013.

[23] L. Hoang et al., “Ft-clipact: Resilience analysis of deep
neural networks and improving their fault tolerance
using clipped activation,” IEEE DATE, 2020.

[24] Z. Chen et al., “Ranger: Boosting error resilience of
deep neural networks through range restriction,” arXiv
preprint arXiv:2003.13874, 2020.

[25] J. J. Zhang et al., “Analyzing and mitigating the impact
of permanent faults on a systolic array based neural
network accelerator,” in IEEE VTS. IEEE, 2018, pp.
1–6.

[26] M. Hanif at al., “Salvagednn: salvaging deep neural
network accelerators with permanent faults through
saliency-driven fault-aware mapping,” Philosophical
Transactions of the Royal Society A, vol. 378, no. 2164,
2020.

[27] J. Zhang et al., “Thundervolt: enabling aggressive volt-
age underscaling and timing error resilience for energy ef-
�cient deep learning accelerators,” in ACM/IEEE DAC,
2018, pp. 1–6.

[28] M. Abdullah Hanif et al., “Dnn-life: An energy-e6cient
aging mitigation framework for improving the lifetime
of on-chip weight memories in deep neural network
hardware architectures,” arXiv e-prints, pp. arXiv–2101,
2021.

[29] S. Hamdioui et al., “Testing computation-in-memory
architectures based on emerging memories,” in IEEE
ITC, 2019, pp. 1–10.

[30] L. Wu et al., “Characterization, modeling and test of
synthetic anti-ferromagnet Mip defect in stt-mrams,” in
IEEE ITC, 2020, pp. 1–10.

[31] Q. Xu et al., “Approximate computing: A survey,” IEEE
Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[32] T. Arifeen et al., “Approximate triple modular re-
dundancy: A survey,” IEEE Access, vol. 8, pp.
139 851–139 867, 2020.

[33] B. Deveautour et al., “QAMR: an Approximation-Based
Fully Reliable TMR Alternative for Area Overhead
Reduction,” in 2020 IEEE European Test Symposium
(ETS), 2020, pp. 1–6.

[34] M. L. Bushnell et al., Essentials of Electronic Testing
for Digital, Memory, and Mixed-Signal VLSI Circuits,
01 2000.

[35] R. L. Rudell et al., “Multiple-valued minimization for pla
optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 6, no. 5,
pp. 727–750, 1987.

[36] Berkeley Logic Synthesis and Veri�cation Group, “ABC:
A System for Sequential Synthesis and Veri�cation.”
[Online]. Available: http://www.eecs.berkeley.edu/$\
sim$alanmi/abc/

[37] S. Yang, “Logic synthesis and optimization
benchmarks user guide version 3.0, technical report,”
1991. [Online]. Available: https://ddd.fit.cvut.cz/prj/
Benchmarks/LGSynth91.7z

		2021-06-27T20:50:28-0400
	Preflight Ticket Signature

