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Abstract

Convolutional Neural Networks (CNNs) are currently one of the most widely used predictive models in machine
learning. Recent studies have demonstrated that hardware faults induced by radiation fields, including cosmic rays, may
significantly impact the CNN inference leading to wrong predictions. Therefore, ensuring the reliability of CNNs is crucial,
especially for safety-critical systems. In the literature, several works propose reliability assessments of CNNs mainly based
on statistically injected faults. This work presents a software emulator capable of injecting real faults retrieved from radiation
tests. Specifically, from the device characterisation of a DRAM memory, we extracted event rates and fault models. The
software emulator can reproduce their incidence and access their effect on CNN applications with a reliability assessment
precision close to the physical one. Radiation-based physical injections and emulator-based injections are performed on three
CNNs (LeNet-5) exploiting different data representations. Their outcomes are compared, and the software results evidence
that the emulator is able to reproduce the faulty behaviours observed during the radiation tests for the targeted CNNs. This
approach leads to a more concise use of radiation experiments since the extracted fault models can be reused to explore
different scenarios (e.g., impact on a different application).

Index Terms
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1 INTRODUCTION

D EEP Learning and, in particular, Convolutional Neural Networks (CNNs) are currently one of the most intensively and
widely used predictive models in the field of machine learning [1]. Nowadays, there is an incentive for pushing CNNs

from the cloud to the edge devices and, in particular, for real-time safety-critical systems, e.g., in autonomous driving. Several
recent studies have demonstrated that hardware faults induced by external perturbations (i.e., in a harsh environment) can
significantly impact the inference leading to CNN prediction failures [2], [3]. Therefore, ensuring the reliability of CNNs is
crucial, especially when deployed in safety- and mission-critical applications, such as robotics, aeronautics, smart healthcare,
and autonomous driving.

Reliability assessment is always a costly phase. It is usually carried out by artificial Fault Injections (FIs) into the
application under test. Depending on how faults are injected, we can build a simple taxonomy of FI techniques [4]. Physical-
based FIs expose the system implementation to the same external conditions with respect to the in-field application,
and therefore they guarantee a precise reliability assessment. However, they are also expensive in terms of hardware
resources and exposure time. Moreover, they generally suffer from low controllability and observability, making it difficult
to analyze the results obtained. On the other hand, software-based FIs modify the behaviour of the software to simulate
hardware fault occurrences. The cost is lower compared to physical-based FIs with a higher degree of controllability and
observability. However, the precision assessment of a software-based FI strictly depends on the adopted fault models.
Finally, model-based FIs can be considered a kind of compromise between costs and precision. They work on a model
of the application, i.e., usually, a hardware description language (HDL) model, where faults are injected during the model
simulation or emulation. Therefore, injected faults are more close to a physical-based FI, but the simulation/emulation time
can become quickly unpractical, even if high abstraction level models are used (e.g., Register-Transfer Level (RTL) model
versus transistor model).
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In this paper, an effective emulation platform for FIs is proposed. The injected faults are based on real fault models
that are defined based on the outcomes of actual radiation test campaigns that have targeted an extensive characterisation
of the Device Under Test (DUT). Since memories are the highest contributor of soft errors in systems [5], [6], [7], in this
study, we focus our attention on this device, which, for this purpose, has been exposed to an atmospheric-like neutron
beam. The DUT is a commercial DRAM memory that, in the system, has the role of storing the CNN parameters. As
already pointed out, radiation-based FIs lead to a precise reliability assessment (i.e., the DUT is exposed to a realistic harsh
environment) at a high cost in terms of hardware resources and exposure time. Therefore, we propose to leverage on a
physical characterisation of the DUT through radiation experiments to extract the event rates and fault models. Thanks to
this characterisation, we designed and implemented a software emulator to reproduce the incidence of such real faults and
to evaluate their effect on CNN inferences. In particular, we target the use of CNNs for edge computing and, therefore, for
low power embedded devices with limited resources. In our scenario, the CNN is implemented as a bare-metal application
executed on a low power CPU. The ultimate goal is to have the flexibility of a software-based fault injector with a reliability
assessment precision close to the physical one, thanks to the characterisation made on the actual device in realistic
environmental conditions (through an accelerated neutron beam).

The rest of the paper is organised as follows. Section 2 presents related works that performed CNN reliability assess-
ments. Section 3 describes our proposed approach. Subsequently, Section 4 presents the outcomes of the software-based
fault injector. Finally, the conclusions and future directions are drawn in Section 5.

2 RELATED WORKS

In the literature, several works have been proposed in the last years for addressing the reliability assessment of CNNs.
Concerning physical-based FI, we can cite [2], where the reliability dependence on three different Graphics Processing Unit
(GPU) architectures (Kepler, Maxwell, and Pascal) was evaluated executing the Darknet Neural Network [8] when exposed
to atmospheric-like neutrons. In [9], the authors analyse the reliability of a 54-layer Deep Neural Network injecting faults in
the network weights and input data using an accelerated neutron beam for studying transient errors and FI tests to simulate
permanent faults. The inferences target floating-point values, and the results show that object detection networks tend to
generate wrong results when exposed to hardware faults. Among software-based FI, [10] presents an analysis of the error
propagation through different abstraction layers. The authors used an open-source framework, Tiny-CNN [11], to inject faults
in specific layers. Further examples of software-based FI techniques for CNNs are provided in [12], [13], [14]. A model-based
FI approach is shown in [15], where the authors explore the resilience of an RTL model of a neural network accelerator. The
work focuses on a High-Level Synthesis approach to characterise its vulnerability, injecting permanent and transient faults
in various components in the RTL design.

A further framework developed to study the behaviour of hardware errors in deep learning accelerators is FIdelity [16].
It is able to model a class of hardware errors (transient) in software with high accuracy only leveraging on high-level design
information obtained from architectural descriptions. Based on that, in FIdelity, it is possible to inject bit-flips in weights, input
images and output neurons. In this context, it is also worth mentioning Ares [17], a framework for quantifying the resilience
of DNNs. Ares targets permanent faults occurring in memory and injects errors at the application level: in weights, activators,
and hidden states through bit-flips. Also, in [3], the authors applied several FIs on the configuration memory of the FPGA
in order to understand the impact on the reliability of CNNs implemented on this type of device. Very recently, Xu et al. [18]
proposed a FI framework running on a Xilinx ARM-FPGA platform to investigate the system exceptions that may occur due
to the presence of permanent faults.

Our work proposes to leverage on the outcomes of precise physical characterisation tests to feed a software emulation
platform for running fault injections campaigns with a reliability assessment precision close to the physical one. Radiation
experiments on a CNN application with three different data representations are carried out to confirm the emulation platform
consistency. Specifically, this paper presents two types of radiation experiments: one for the device characterisation to extract
the real fault models and the other to verify the correctness of the emulator outcomes. The proposed emulation platform can
be utilised for more in-depth analysis with different scenarios and applications. Finally, this approach leads to a concise use
of radiation experiments, enhancing time and cost efficiency.

3 PROPOSED APPROACH

We strongly believe that the key point to achieve a meaningful reliability assessment relies on the accuracy of the injected
fault models and the possibility to emulate their behaviour. For this reason, this work provides a comprehensive methodology
for reproducing the incidence of real faults on a CNN application by relying on a software emulator. The flowchart of the
proposed approach is shown in Figure 1. Starting from the characterisation of the target device under an external source
of errors (radiation experiment #1) we extract a real set of fault models and event rates, which are used to configure and
feed a software emulator. This software-based framework, described in Section 3.2, is capable of injecting the fault models
extracted from the DUT characterisation on the parameters (i.e., weights and biases) of a CNN application. Therefore, in
order to establish the effectiveness of the methodology, in parallel, radiation FIs (radiation experiment #2) are also carried
out targeting the DUT storing the CNN parameters (Section 3.1.2). Finally, the outcomes from the emulator are analysed,
and a correlation between the physical-based FI and software-based FI is provided in Section 4.
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Fig. 1. Flow diagram of the proposed approach.

The noteworthy difference between the above-mentioned existing FI frameworks and the proposed one is the injection
methodology and the closeness to physical injection. While most of the approaches that can be found in the literature inject
random errors in a statistical way, our emulator injects faults based on realistic fault occurrences (for SBUs and stuck-at bits)
or more real fault models (such as block errors) derived from radiation test campaigns. Moreover, the occurrence rate of the
different fault models also reflects the actual experimental data (error cross section).

In the following, first, all the radiation experiments and related fault models are detailed in Section 3.1, then the
architecture of the emulator is presented in Section 3.2.

3.1 Radiation Experiments

The radiation test campaigns [19], [20] were carried out at the Rutherford Appleton Laboratories, UK, where an atmospheric-
like neutron spectrum is delivered in the ChipIr beamline at the second target station of the ISIS neutron source. The neutron
flux in the beamline is approximately 109 times larger than the atmospheric neutron flux. The ChipIr facility provides a neutron
flux of about 5 × 106 n/cm2/s for energies above 10 MeV [21].

First, in Section 3.1.1 we provide an overview of the fault models that have been extracted from the DUT characterisation
procedure detailed in [22]. Specifically, a memory device was characterised under an atmospheric-like neutron beam,
and three different fault types were identified. Next, in Section 3.1.2, we present radiation tests on CNN applications and
introduce a different test scenario, which is the focus of this work, where the DUT is storing only the parameters of a CNN
(i.e., the weights and biases). With the presented scenario characteristics and correlating the results obtained by the DUT
characterisation, we estimate the number of occurrences of the three different fault models during the execution of CNNs
(Section 3.1.3). These outcomes are the basis for developing an emulator in which the real fault models identified under
radiation are injected in CNN applications, leveraging software-based FI and allowing an in-depth analysis.

3.1.1 DUT Characterization
The DUT is the S27KS0642GABHI020, a 64 Mib HyperRAM™ self-refresh DRAM manufactured by Cypress Semiconductor.
The evaluation of the device is based on the execution of two different memory test modes: static and dynamic. The static
test mode consists of writing the memory cells with a known data pattern (e.g., solid ‘0’, solid ‘1’, and checkerboard patterns).
The memory is then exposed to radiation to reach a defined particle fluence, and finally, a readback operation is performed
to collect radiation-induced faults [23], [24], [25]. Withal, the application of a dynamic test mode aims at identifying functional
faults during the emulation of real applications that constantly access the memory with write and read operations. The
dynamic mode was executed using four different memory test algorithms: March C-, Dynamic Stress, Dynamic Classic, and
mMats+ [24], [26]. The DUT was exposed to a cumulative neutron fluence of about 8 × 1011 n/cm2, which, by considering
the ChipIr average neutron flux, means approximately 45 h of experiments.

Three different types of faults were observed during the test executions. The first fault type consists of SBUs, appearing
as a ‘0’ to ‘1’, and ‘1’ to ‘0’ transition. A write operation was sufficient to erase these SBUs, and they just occur once in the
memory array. The second one recalls the stuck-at bit fault, which appears as permanent or temporary. The stuck-at bit fault
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Fig. 2. Errors during a mMats+ test run. The dots represent a faulty word detected during the different operations of the algorithm [22].

results in memory cells that had their retention time affected by a particle interaction, resulting in a cell that always returns
the same value. In DRAMs, both SBUs and stuck-at bits are suggested to have the same mechanism: degradation of the
retention time capabilities of the cells, as presented in [27]. The third type of fault consists of block errors that cause a high
concern for the application due to their extension. They appear in different shapes and affect different regions of the memory.
This kind of fault was identified in four different patterns, with intermittent word errors in vertical and horizontal sequential
addresses, affecting up to 2,048 addresses with the vertical pattern and 1,024 addresses with the horizontal pattern. These
block errors are likely generated by a temporary malfunction of the sense amplifier or register that serves a column of the
affected memory addresses. A more detailed view of this behaviour is described in [23].

Figure 2 represents the impact of the three fault models during the memory usage. It presents in the x-axis the timestamp
of the operations realised during the execution of the mMats+ algorithm, in which the dots represent a faulty word detected
during an element of the test. The y-axis presents the address of the faulty word in the memory, and each word is composed
of 16 bits. It is possible to identify several stuck-at bits appearing as temporary and permanent during the test (horizontal
sequences of dots on the graph), and a block error (appearing as two vertical sequences of dots) affecting 2,048 addresses.

To evaluate the memory sensitivity to the presented faults, the fault types were divided into SBUs, stuck-at bits, and block
errors. The estimated event cross section (σ) is defined in two different ways. First, since the stuck-at bits and the SBUs are
cell-related, the cross section takes into account the size of the memory, being the equation as:

σbit =
N

F ×M
(1)

where N is the number of events, F is the cumulative fluence in particles/cm2, and M is the number of bits [28]. When it
comes to the block errors evaluation, since this fault is related to the control logic of the device, we may define the cross
section as:

σdevice =
N

F
(2)

where the memory size is removed from the equation, and the cross section is device-based. Moreover, the Soft-Error Rate
(SER) is defined as:

SERFIT/Mb = σbit × (1, 024 × 1, 024) × 109 × φ (3)

for the SBU and stuck-at bit, where 1, 024× 1, 024 (bits) is the Mb coefficient, 109 is the Failures in Time (FIT) definition, and
φ (13 particles/cm2/h) is the neutron energies’ (> 10 MeV) flux at New York (sea level) outdoors for a mean solar activity
defined in JEDEC JESD89A [29], [30]. Being slightly modified in the evaluation of the block errors SER, where the Mb
coefficient is removed from the equation, which becomes:

SERFIT = σdevice × 109 × φ (4)

Table 1 presents the estimated cross sections and SER for each fault type. The reader should note that the HyperRAM is not
protected with ECC (Error Correction Code). Indeed, in embedded applications, its implementation may come at the cost of
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TABLE 1
Estimated cross section with 95% confidence intervals using a fluence uncertainty of 10%, and SER for the fault types identified in this study. The

values were calculated using the Eq. 1–4 [22].

Fault
type

σ
σ

Lower limit
σ

Upper limit
SER

SBU
2.86 × 10-17

cm2/bit
2.53 × 10-17

cm2/bit
3.19 × 10-17

cm2/bit
3.9 × 10-1

FIT/Mbit
Stuck-at

bit
1.48 × 10-17

cm2/bit
1.30 × 10-17

cm2/bit
1.66 × 10-17

cm2/bit
2.0 × 10-1

FIT/Mbit
Block
error

4.48 × 10-11

cm2/device
3.08 × 10-11

cm2/device
6.23 × 10-11

cm2/device
5.8 × 10-1

FIT

extra circuitry with power/performance overheads. For this reason, all occurrences of SBUs and stuck-at bits are considered
without any filtering. Since CNNs have inherent resiliency to faults [31], the use of memory without ECC is justified. On the
other hand, block errors may be catastrophic for a safety-critical application since they generate more than one bit-flip per
word. Thus, in any case, the introduction of ECC would not be capable of protecting the system against this kind of fault. It is
important to underline that the presented DUT characterization results can be exploited to set up a fault injector to evaluate
the behaviour of any kind of application running on a computing system equipped with the chosen DRAM. Furthermore, the
presented experimental methodology itself can be clearly applied to any other memory device.

3.1.2 Radiation Tests on the CNN Application
This section presents the radiation tests performed on a CNN application. These tests target the evaluation of the radiation-
induced impact on the application and also are the base to verify the correctness of the emulator outcomes. To establish
an actual case study, the analysis of the radiation-induced impact on a CNN application is done using three different neural
networks with different data types based on the same LeNet-5 [32] architecture. Although proposed in 1998, LeNet-5 is
currently being used as a valid and popular benchmark to introduce advances in research and present new ideas. And
beyond this, the advantage of its adoption is mainly due to the size meeting the constraints of the embedded system
environment with limited storage capacity. For the same reason, the simulation time required to run inferences during
radiation tests are contained, with associated costs. Targeting a more complex embedded system, where the resources
constraints are more relaxed, the use of deeper CNNs and larger datasets should also be considered.

3.1.2.1 CNNs implementation: The CNN architecture consists of three Convolutional Layers (CONV) followed by
two Fully Connected (FC) layers and has a total of 61,470 parameters, of which 50% are in the convolutional layers. With
respect to the original LeNet-5 structure, in our own models we removed the last SoftMax layer in order to bind the last FC
layer to the classification output. We trained on the MNIST handwritten digit dataset by using 32 x 32-pixel cropped pictures.
The training set contained 48,000 images, with an additional 12,000 for the validation set and 10,000 for the testing set.
The learning rate started at 0.05, with the decay of 5 × 10−4 every 375(∗128) iterations, and momentum was set to 0.9. The
training was done by using the open-source framework N2D2 [33]. The LeNet-5 model description that we used is available
in the framework itself. We define as “accuracy” of the CNN the capability to correctly classify the input picture. The accuracy
is computed by using the top-1 score [32]. The achieved accuracy over the 10,000 testing images is 99%.

After the training, we exploited the N2D2 framework to export the trained network as C code using three different data
representations:

Float 32 weights are represented by 32-bit floating-point real numbers;
Int 16 weights are quantized as 16-bit integers;

Int 8 weights are quantized as 8-bit integers;

For the last two data types, the quantization is done after training through the following steps.

1) all weights are rescaled in the range [−1.0, 1.0] and activations at each layer are rescaled in the range [−1.0, 1.0]
for signed outputs and [0.0, 1.0] for unsigned outputs;

2) inputs, weights, biases and activations are quantized to the desired nbits by converting [−1.0, 1.0] and [0.0, 1.0] to
[−2nbits−1 − 1,2nbits−1 − 1] and [0, 2nbits−1 − 1]

Details are given in the N2D2 documentation [33].
The C code was ported to a Xilinx Zynq-7000 based system. This device is a System-on-Chip (SoC), which provides an

ARM Cortex™A9 processor attached to a 28 nm Artix®7 FPGA. The CNN application was ported to this embedded system
with the use of three external memories: two units of the MT41K128M16JT-125, which is a 2 Gb SDRAM DDR3L from
Micron Technologies, and the DUT (HyperRAM) described in Section 3.1.1. Furthermore, to increase the reliability of the
system, the SoC configuration memory (CRAM) was monitored by the commercial Xilinx scrubber, the Soft Error Mitigation
(SEM) core, which reports detected SBUs, and, when possible, corrects them [34]. Figure 3 depicts the top-level diagram of
the system.
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3.1.2.2 Test procedure: The testing set was processed by the three versions of the network. Depending on the
data representation, the accuracy of the CNN may present a slight degradation compared to the precise CNN (i.e., the one
using 32-bit floating-point representation). The obtained accuracy based on the testing set (10,000 images) was 99.07% for
Float 32 and Int 16, and 99.05% for the Int 8 version. It is interesting to point out that the accuracy degradation is really minor
and affects only the Int 8 data representation, which was expected because of the intrinsic error resilience of the CNN. On
the other hand, the memory footprint presents a significant reduction thanks to the approximation in the data representation.

Since the memory layout for an application is divided in sections [35], which generally are:

text executable instructions,
data constants and statically allocated variables,

heap dynamically allocated variables,
stack store parameters for function calls, return addresses, and local variables.

The memories sections of the CNN code were split into two memory devices. In our previous work [22], the HyperRAM
stored all data related contents, which basically include the data sections, and the heap, allocating 56.69% for Float 32,
53.70% for Int 16, and 52.17% for Int 8, of the HyperRAM capacity. This scenario was tested with two different portions of
2,000 images randomly chosen from the training set. The outputs during the irradiation were then compared with a golden
result in order to identify faulty executions. For the three CNN versions, the golden accuracy for both datasets was the same,
99.15% and 98.85%, respectively.

The total accuracy obtained in the previous work is presented in Figure 4. This graph considers the total images per data
representation and targets the dataset portion used during the runs.

The accuracy degradation on the previous work resulted from errors occurring in two different ways, affecting the software
execution (when the output frame is corrupted) and affecting the CNN inference (when the network is not able to return the
expected result). It is important to underline that after each execution of the CNN, the whole system was reprogrammed
(FPGA bitstream reloaded, code memory sections rewritten, processor reset), preventing the Soft Error accumulation. Thus,
this faulty behaviour is not due to stuck-at bits accumulated in the memory along with the irradiation, which was not able to
impact the network since a gradual degradation of inference capability was not observed. On the other hand, considering the



8

calculated error cross section, which is relatively low, and taking into account that the memory usage does not correspond to
100% of the memory storage capacity, we may correlate the faulty runs mainly to the effects of block errors in the memory.
However, a more in-depth analysis is required to better understand the correlation between the fault occurrence in the
memory with a faulty execution of the application. In the scenario provided in [22], only the text and stack sections were
not exposed to the neutron beam, and the other variables and CNN parameters were a source of errors. As a result, the
analysis capability was limited.

Then, in order to restrict the source of errors and enable a higher capability analysis, we define a scenario where only
the rodata (read-only data segment) is allocated in the HyperRAM. This section contains static constant data and is mainly
composed of CNN layers’ weights and biases. Moreover, it uses approximately 505 kB in the Float 32 CNN, 273 kB in Int 16
CNN, and 154 kB in Int 8 CNN. The test setup is described in Figure 3. In this case, the CNN parameters (weights and
biases) are stored in the DUT according to the compiled code with GCC, in which we have the following relation: Int 8,
1 weight/bias, 1 byte; Int 16, 1 weight/bias, 2 bytes, and in Float 32, 1 weight/bias, 4 bytes. Furthermore, during the radiation
test campaigns, the boards were mounted in the setup in a configuration that exposed only the DUTs to the beam, with more
than one DUT at the same time.

In addition, to have a more in-depth view of the memory behaviour, at the end of each run, a readback operation in the
rodata contents is performed, enabling the identification of SBUs, stuck-at bits, and block errors.

Henceforth, “run” is defined as the inference of a set of images (e.g., 2,000 or 1,000 images), starting from image ‘0’ up
to the last image within the dataset or when the execution is stopped. This definition is done since some runs did not achieve
the end of their execution once a functional interruption occurred, which did not affect the DUT (HyperRAM), but other parts
of the computation system. In these cases, we consider for calculation only the processed images within a run.

During the first part of the test, the target was the inference of 2,000 images per run. However, mostly for the Float 32
version, which demands more time to be completed, the computing system suffered a functional interruption, and the
execution failed before its end, resulting in runs without the readback operation. The radiation experiments were performed
under an atmospheric-like neutron beam, and the ionisation in silicon is not directly generated by the neutron interaction
with the matter but through neutron-induced silicon recoils and/or nuclear reactions byproducts. The created free charges
of electron-hole pairs generated from the neutron events might lead to single-event effects in the devices [36], [37]. For
example, the scattering of a neutron by collision with an atomic nucleus will lead to a neutron scattering at an angle as well
as the nucleus recoils [38]. In this case, some scattered particles may hit not only the DUT but also some other electronic
components of the system that are located in the irradiation room. Then, considering that the execution time of the Float 32
version is higher when compared to the other versions (Int 8 and Int 16), and adding it to the time needed to complete the
2,000 inferences, the probability to have some particles hitting other parts of the setup electronics increase within a run with
these characteristics. The dataset was then reduced to 1,000 images, to increase the possibility of having complete runs.
Additionally, the data were filtered in order to consider only the part concerning the inferences before the controlling system
failure. The data concerning each inference are independent, so all the data coming up to the last non-failing inference (at
the controlling system level) can be considered good for the analysis. This choice was adopted in order to optimise the use
of the available beam time by stopping the ongoing run after a fixed timeout in the communication between the controller
part, and the acquiring system and then starting a new run. Furthermore, concerning the failure in the controlling part of the
system, this was not explored since it was out of the scope of this study.

From the total number of runs, 57.96% were completed. For the three CNN versions, the golden accuracy for both
datasets was the same, 99.15% (2,000) and 99.30% (1,000). During the tests, the number of inferences for each CNN
version was similar. The number of inferences were 44,370 for Float 32; 57,680 for Int 16, and 52,595 for Int 8.

3.1.2.3 Test results: Figure 5 presents a summary of the readback operation performed in the memory addresses
containing the CNN weights and biases. The graph presents the number of errors identified in these addresses after the
execution of a run of the CNN. From the readback operation, a bitmap is generated and presented the same effects on the
memory running the CNN and the ones from the DUT characterisation test. From the five-block identified errors, all of them
appeared as a vertical line of errors. In Figure 5, they are represented as the five highest points (above 102 in y-axis), and
they were identified only in the Int 16 version. Most of the runs with Float 32 version did not reach the readback operation,
which may result in the lack of identification of this kind of effect. Also, for the Int 8 version, the memory usage is low, and it
is kindly possible that block errors occurred in the memory but in an address range that was not used by the application. An
example of a block error is depicted in Figure 6, where the red lines are used to delimit the region. The grey zones represent
the memory region used by the CNN application, and each bit identified with an error appears as a black pixel. A zoom-in is
added to enhance the bitmap visibility.

The total accuracy for the proposed scenario is presented in Figure 7. This graph considers the total images per data
representation and targets the dataset size used during the runs. The expected result is presented, showing degradation in
the Float 32 and Int 16 versions. All the runs with the Int 8 version returned the expected value. Additionally, from the total
runs, 6.37% presented a difference in the final accuracy. In which, Table 2 summarises these faulty runs by presenting the
first image with a faulty inference and the final accuracy obtained from this run.

From these faulty runs, one case, in particular, was able to increase the final accuracy by resulting in the correct inference
of some digits when compared with a non-faulty (gold) run, where the inference results in a wrong prediction. This behaviour
occurred for two images in the faulty run number 10 (according to Table 2), where the gold run returns the digit ‘3’, being the
expected the digit ‘5’. This run, where a block error was identified, resulted in the right value (‘5’) for both images, and the final
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Fig. 5. The number of bytes with errors identified with the readback operation performed at the end of each run.

Fig. 6. Bitmap obtained from a readback operation after a run of a CNN Int 16 version. Each pixel represents a bit; each bit that was identified with
an error appears in black. The red lines are used to limit the region. The grey zone represents the memory usage. Zoom-in is added to increase
the visibility of the block event.
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Fig. 7. Accuracy obtained from the results of the proposed test scenario.

accuracy increased from 99.3% to 99.5%. This case is really interesting and proves that CNN resilience assessment is quite
different with respect to classical applications. The difference stems from the fact that CNNs are always an approximation of
a function, in our case, a classifier. Thus, a fault can deviate the behaviour of the CNN not only from good to wrong prediction
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TABLE 2
Summary of the runs that return a faulty accuracy based on the proposed scenario tests.

Faulty
run

CNN
version

Dataset
size

First faulty
inference

[image no.]

Run
accuracy

[%]

Expected
accuracy

[%]

1 Int 16 2,000 1,345 99.10 99.15
2* Float 32 2,000 1,384 84.36 99.09
3 Int 16 2,000 583 99.10 99.15
4* Float 32 2,000 120 19.96 99.24
5* Float 32 1,000 720 98.91 99.24
6* Int 16 1,000 988 98.00 99.30
7 Int 16 1,000 102 99.20 99.30
8 Int 16 1,000 720 93.60 99.30
9 Float 32 1,000 673 70.40 99.30
10 Int 16 1,000 189 99.50 99.30

* Incomplete runs.

(the majority of the cases), but also from wrong to good prediction.
The second case is related to an execution based on the 32-bit floating-point version (faulty run number 5), where the

output vector returned all the values as a floating-point exception (NaN, “Not a Number”), which resulted in an invalid floating-
point operation. This behaviour invalidated the top-1 score, and the final output was defined as a digit ‘0’. Again, this case
is really interesting because it cannot be considered as a usual silent data corruption (that is, by definition, non-detectable).
Here, by analysing the CNN outputs, it is possible to detect the faulty behaviour and thus trigger an error signal/trap.

For the other faulty runs, targeting the complete ones, in four of them, a block error was identified during the readback
operation. The other two presented a particular behaviour. First, run number 7, the output vector presented the corrected
top-1 score, but the output application returned a faulty inference, giving a digit ‘0’ instead of ‘2’. This result may be correlated
with a register or a variable allocated in the external memory (DDR3). Second, run number 9, after the first faulty inference,
the output vectors returned the same wrong value for all subsequent inferences, having the digit ‘3’ as a result of the top-1
score. Also, it is interesting to highlight that the incomplete runs presented similar behaviour.

3.1.3 Execution Soft Error Rate Definition
To extract the expected number of events within a run, based on the SER (3), we define the Execution Soft Error Rate
(E-SER) as:

E − SER SBU | stuck-at = σbit ×M × φ̄× t (5)

where σbit is the calculated cross section for SBUs or stuck-at bits, M is the memory size in bits used by the application
(stored in the DUT), φ̄ is the average neutron flux during the test campaigns, and t is the application execution time in
seconds. The same approach is used to define the E-SER related to block errors, in this case, since the block errors are
device related, the rate is defined as:

E − SER BE = σdevice × φ̄× t (6)

From the E-SER definition, it is possible to calculate the expected event rate based on the presented radiation tests. The
calculated values are presented in Table 3.

The results obtained in the previous work contrast with the ones obtained in this work. The previous work presented a
higher E-SER. This difference is mainly due to the difference in memory usage, which is about 10x higher. Although, it is
interesting to highlight that a direct comparison between the tests is inhibited by the difference in the implementation. In the
previous work, all data related sections were stored in the DUT. However, in the scenario proposed in this work, the target is
only the rodata section. The rodata is composed of static read-only contents, in contrast with the first implementation, which
had also, e.g., the heap section, which is a dynamically allocated region in which read and write operations are performed.
This difference can impact, e.g., the SBU analysis, since a write operation will recover the error, in contrast with a read-only
section, where the SBUs will accumulate, and only a reprogramming in the memory contents can restore the SBU effect.
The results obtained in this proposed scenario show that faults occurring in the CNN parameters (weights and biases) are
more relevant when using a floating-point data representation. Also, an outcome from the previous work, where the most
affected implementation was the Int 8, is that faults occurring in other data sections of the memory code had a larger effect
on the resilience of the CNNs. A more in-depth analysis of the outcomes of the radiation tests proposed in this work is
provided in the next sections.

3.2 Emulator

Three types of radiation-induced faults were extracted from the execution of static and dynamic test modes on the HyperRAM
memory: SBUs, stuck-at bits, and block errors. Since the occurrence of such faults was independent of the running
application (the characterization tests and the CNNs were running on separate DUTs in the radiation tests), a software
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TABLE 3
Estimated event rate for the both test scenario. The results are calculated based on the definition of (5) and (6).

Test
scenario

Dataset
size

CNN
version

E-SER [events/run]

SBUs Stuck-at bits Block errors

[22] 2,000
images

Float 32 11.57 5.99 0.47
Int 16 7.97 4.12 0.34
Int 8 6.05 3.12 0.27

This work 1,000
images

Float 32 0.84 0.43 0.32
Int 16 0.24 0.12 0.17
Int 8 0.08 0.04 0.10

This work 2,000
images

Float 32 1.53 0.79 0.59
Int 16 0.48 0.25 0.34
Int 8 0.17 0.08 0.21

emulator was designed to reproduce their incidence and to assess their effects on CNN applications. Particularly, it can be
used to obtain more information that cannot be extracted from physical-based fault injections, such as the impact of faults
on CNN internal structures (e.g., layers, channel or even kernel) or worst-case scenarios.

3.2.1 Architecture
The emulator was built with a multi-threading structure to mimic the process of the radiation campaigns and the neutron flux.
A thread is a task linked to the main process but running independently from it, with its own stack pointer, registers, and
thread-specific data. Although they exist as independent entities within a process, they can share the same resources, such
as the same memory locations. Therefore, the adoption of multi-threading programming gave us the possibility to design
an emulator as close to reality as possible. Its architecture is illustrated in Figure 8. Alongside the main process, it makes
use of two threads: the inference (thread1) and the injector (thread2). They are created in the main process by calling
specific functions belonging to the pthread.h library. Once created, they run independently to accomplish specific tasks. For
instance, the only objective of the inference thread is to complete the inference of N images (also referred to as stimuli).
On the contrary, the duty of the injector thread is to introduce faults in the memory locations. As stated, such resources
are shared between the main process and the different threads. As an example, the network parameters (weights, biases,
and images) are accessible by all threads. To avoid parallel read and write of shared data, the injector thread makes use
of mutexes to achieve thread synchronization and, therefore, safe communications. In other words, when thread2 has to
introduce a fault in the memory (e.g., a stuck-at 0 in a weight), it takes the mutex, injects the fault, and then releases the
mutex. At this juncture, while the mutex is taken, thread1 is not allowed to read the shared memory, resulting in a pause of
the inference process.

Moreover, to emulate a neutron flux and obtain realistic injections, thread2 introduces faults only with a random frequency
determined by the variable randtime. Before injecting, it sleeps for a random time (by exploiting the sleep function), and then
the process is repeated for the next fault to inject. In this way, the amount of affected images is not fixed, neither the injection
time. Clearly, to ensure that the injection occurs within the inference window, a maximum bound is given to the sleep function.
We would like to stress the fact that the possible amount of injections cannot be enumerated. It is therefore crucial for the
characterization phase developed in the previous section to guide the injector and consider the realistic cases. In this regard,
before creating the threads, the emulator is configured to deal with a specific E-SER, detailed in Section 3.1.3, and a definite
fault model. It can work with the three observed fault models: SBUs, stuck-at bits, and block errors. While for SBUs and
stuck-at bits, the faulty location, as well as the injection time, are randomly selected, emulating the block errors requires
a specific parser. As described before, e.g., if up to 2048 sequential memory addresses are affected by an error, a block
error is identified in a specific region of the HyperRAM memory. However, to inject these block errors into the application
parameters, it is first necessary to see whether their corresponding addresses match (the physical addresses returned from
the radiation test campaigns with the virtual addresses of the application). For this purpose, a specific parser was created
to map the physical addresses of the memory to the virtual addresses seen by the main process.

Faults in the HyperRAM memory are reported at the end of the radiation test campaign. These reports include for each
corrupted memory address: a timestamp, an identifier related to the target experiment, a counter named dynamic cycle, the
physical address affected by the fault, the corresponding error data, and the specific cycle of the dynamic test. Then, starting
from those sets of reports and knowing the virtual addresses of the CNN application, the parser was created and included
in the emulator architecture. The fault lists that are provided to the emulator have rows in the form:

< physical address >< bit position >< bit type >

Then, the emulator internally maps the addresses from physical to virtual and, if there is a match, the block errors are injected
in the corresponding memory addresses of the application. The emulator can inject in both weights and biases of the CNN
applications, the same portion of data that are allocated in the rodata memory section under radiation (Section 3.1.2).
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Fig. 8. Emulator block diagram.

4 RESULTS ANALYSIS

In this section, a correlation between the results obtained during the radiation experiments is done alongside the analysis
of the outcomes from the emulator experiments. To prove the effectiveness of the proposed emulator, experiments were
performed on three different CNN applications based on the LeNet-5 model; the same CNNs that were used for the radiation
experiments described in Section 3.1.2. They exploit three different data representations for representing the neural network
parameters: 32-bit floating-point (Float 32), 16-bit integer (Int 16), and 8-bit integer (Int 8). As specified in Section 3.1.2,
they are written in C code and are trained with the open-source N2D2 framework [33]. Since the emulator can inject in both
weights and biases parameters, we exactly reproduced the configuration of the proposed radiation test scenario, where the
.rodata section of the memory hosting weights and biases was under radiation. Therefore, the same dataset of 1,000 images
was chosen from MNIST for a single run. For every CNN application, the injection campaigns of the three fault models (SBUs,
stuck-at bits, and block errors) were driven by the event rate parameter defined in Section 3.1.3 and calculated in Table 3.

The experiments with the software emulator were performed on a Linux server equipped with a dual Intel Xeon CPU
E5-2680 v3 and 256 GB of RAM. To perform a golden run (i.e., the inferences of 1,000 images from MNIST), the software
emulator took about 200 ms in all three CNNs. While, due to the usage of mutexes, it took a maximum of 16 s to inject the
block errors (the most extended ones) during a run.
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TABLE 4
Details of SBUs and stuck-at bits injection for the CNNs Float 32, Int 16, Int 8 with an increasing E-SER: 1x, 25x, 50x, 75x, 100x

E-SER Total Runs
CNN Float 32 CNN Int 16 CNN Int 8

SBUs/run Stuck-at bits SBUs/run Stuck-at bits SBUs/run Stuck-at bits

Stuck-at/run Total Stuck-at/run Total Stuck-at/run Total

1x 50 0.84 0.43 25 0.24 0.12 6 0.08 0.04 2
25x 50 21 11 550 6 3 150 2 1 50
50x 50 42 21 1,050 12 6 300 4 2 100
75x 50 63 32 1,600 18 9 450 6 3 150
100x 50 84 43 2,150 24 12 600 8 4 200

4.1 SBUs and Stuck-at Bits

The first set of experiments dealt with SBUs and stuck-at bits for all the targeted CNNs. For each of them, the emulator
was configured to carry out five different experiments with the two fault models. First, the E-SER retrieved from the radiation
test campaigns was used to assess the CNNs reliability. Then, it was tuned to study worst-case scenarios on the same
CNN application. We aimed at evaluating the CNNs resilience when a growing number of SBUs or stuck-at bit affected the
network weights and biases at a random time. Both the faulty weight/bias location and the bit position within it are randomly
chosen. Then, SBUs are injected through bit-flips, while stuck-at bits introduce a permanent 0 or 1 in the specific bit position
of a given weight or bias.

The figures for the injection campaigns are provided in Table 4. At the beginning (row 1x), the emulator was set up with
the nominal E-SERs for both SBUs and stuck-at bits (the one calculated in Table 3). Then, the E-SER was incremented by
25 times (25x), 50 times (50x), 75 times (75x), and 100 times (100x). Columns 3 and 4 from Table 4 report the number of
SBUs and stuck-at injected during each run. Since stuck-at bits are accumulated, in Column 5 it is reported the total amount
of faults that have been injected at the end of all runs. The same reasoning is applied to the other two CNNs. It is worth
reminding that a run is defined as the inference of a set of 1,000 images from MNIST. A golden run (run without injected
faults) over this set achieves the 99.30% accuracy for the three CNNs.

As for the nominal E-SER (1x), injecting a non-integer number of SBUs or stuck-at bits during a run was not feasible.
Therefore, they have been approximated as follows:

• CNN Float 32: For SBUs, one single random fault was injected during a single run; for stuck-at bits, one single fault
was injected every 2 runs.

• CNN Int 16: For SBUs, one single random fault was injected every 4 runs; for stuck-at bits, one single fault was
injected every 8 runs.

• CNN Int 8: For SBUs, one single random fault was injected every 16 runs; for stuck-at bits, one single fault was
injected every 32 runs.

The big difference was that, while for SBUs, the fault remained active only during a single run, the stuck-at bits were
accumulated over the runs. For each of them, the experiment was repeated 50 times with SBUs or stuck-at affecting random
fault locations (weights or biases), layers and bit positions. The same reasoning was applied for higher E-SER (25x, 50x,
75x, 100x) by injecting SBUs or stuck-at bits according to the terms specified in Table 4.

Experimental results are shown in Figures 9 and 10, where the average accuracy value is depicted for the three CNNs
under assessment, along with the minimum and the maximum value achieved during the 50 runs (small error bars). At first
glance, it is apparent that the CNN application most affected by the occurrence of stuck-at bits and SBUs is the Float 32.
Indeed, as the number of faults increases, the Float 32 accuracy considerably decreases. This effect confirms the outcome
of the radiation test campaigns, where the Int 16 and the Int 8 CNNs show greater resilience. Then, regarding the nominal
E-SER (1x), data show that the final network accuracy for the three CNNs was not affected for stuck-at bits, staying at
99.30%. For SBUs affecting the Float 32 CNN, the final accuracy was equal to 99.29%: only a single run among the fifty
was faulty. This is in line with the results coming from the radiation test campaigns. For instance, regarding the Float 32
CNN application under neutron radiation, despite the occurrence of SBUs or stuck-at bit faults (as highlighted in Figure 5),
only 1 complete run over 17 was faulty. The remaining 16 were able to withstand such radiation-induced faults without
compromising accuracy. Besides, with the nominal E-SER (1x), the two integer CNNs (Int 16 and Int 8) keep the golden
accuracy (99.30%) over the 50 runs, in line with the radiation test campaigns results. Indeed, as shown in Figure 5, despite
some errors appear at the end of the inference process of Int 16 and Int 8 CNNs, in the latter case, they do not affect the
final accuracy percentage at all. In the former, the accuracy degradation that we discuss in Table 2 is more related to the
occurrence of block errors. Next, as the E-SER increases, the final network accuracy considerably decreases in the Float 32
CNN. Contrarily, the increase of the E-SER slightly influences the final accuracy value in both Int 16 and Int 8. Only with
a E-SER 100x we observe a small degradation (respectively 1% and 2%) when the Int 16 and Int 8 CNNs are affected by
stuck-at bits.

Generally, the graphs point out that stuck-at bits are more critical than SBUs. Indeed, once stuck-at bits appear, they
accumulate over 50 runs. A last observation in the Float 32 CNN is related to the scenarios 75x and 100x for stuck-at
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bits. Although the quantity of injected faults was higher in the second case, the results suggest that the choice of the faulty
bit positions (random in our experiments) plays a crucial role in the final accuracy assessment. Consistent with the results
achieved in [10], [13], we found that faults affecting the exponent bits are the most critical, leading in many cases to NaN
(“Not a Number”) values. This specific outcome mirrors and perfectly reproduces the faulty behaviour that was observed
during the radiation tests, as described in Section 3.1.2.
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Fig. 9. Accuracy variation based on the increase of the SBUs E-SER for the three CNNs.
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Fig. 10. Accuracy variation based on the increase of the stuck-at E-SER for the three CNNs.

4.2 Block Errors

From the application of static and dynamic characterization tests during the atmospheric-like neutron radiation (Sec-
tion 3.1.1), a total of 37 block errors (BEs) were identified in the HyperRAM memory. The purpose of the following
experiments is to inject these block errors into the three CNN application parameters (weights and biases), only if their
physical and virtual addresses match. To this end, the parser described in Section 3.2.1 is used, and if there is a
correspondence between addresses, the emulator injects a stuck-at bit in the specific bit position of the respective weight or
bias. For the sake of clarity, the fault lists are not randomly generated (as for SBUs and stuck-at bits), but they derive from
the radiation test campaigns. In Table 5, for each CNN application, we provide details on the number of BEs matching the
addresses, the total faults that can be introduced into the application parameters, and, for the sake of completeness, the
memory footprint of the given CNN application in the HyperRAM memory. The number of injected faults for each single BE
is illustrated in Figure 11, looking at the y-axis on the left.

It is also worth noticing that their incidence can also vary from a few faults injected (e.g., BE1 and BE2 with only 8 faults
in the Int 8 CNN) up to many ones (e.g., BE29 with 972,960 in the Float 32 CNN).
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TABLE 5
Block Error Injection Details

CNN
Application

Total
Injected BEs

Total
Injected Faults

Memory
Footprint (kB)

(.rodata)

Float 32 17 3,278,656 505.81
Int 16 11 1,714,007 273.17
Int 8 15 605,922 154.11
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Fig. 11. Number of injected stuck-at faults for each single block error for each CNN application (y-axis on the left). Average accuracy value for each
single block error affecting at a random time a run (y-axis on the right).

First, we calculated for each CNN the impact of each single BE occurring during a run at a random time. Dealing
with random injection times, each block error was injected 50 times in 50 different random moments (during the run of
1,000 inferences). The y-axis on the right of Figure 11 shows the average accuracy value achieved at the end of the 50
runs. The error bars highlight the minimum and maximum accuracy values. Particularly worth of note is the minimum: it
was computed at time zero, meaning that the BEs were injected before running the 1,000 inferences. In ten cases (seven
in Float 32 and three in Int 16) it was less than the 10%. The maximum of the error bars represents the accuracy obtained
when the random time was close to the end of the 1,000 inferences and in some cases it was slightly higher than the golden.
Considering a block error that affects the inferences, the impact on the final accuracy will clearly have a dependency on the
moment that these faults are injected. Since the final accuracy is based on the 1,000 inferences result, the fault injection
occurring more close to the beginning of the run will cause a more drastic impact on the final accuracy, and the opposite is
also true. From further and more in-depth analyses, we made the following considerations for the three CNN applications. A
set of BEs, once injected, led the CNNs to predict all subsequent images wrongly. Thus, they are referred to as critical for
the given CNN application. In detail, the most criticals for each CNN are:

• Float 32: BE5, BE15, BE18, BE27, BE29, BE30, BE37
• Int 16: BE5, BE15, BE23, BE29
• Int 8: BE5

In the following, we analyze the reasons leading to this critical behaviour, and, generally, we discuss the influence,
as well as the effects that block errors have on the targeted CNN applications. Concerning the Float 32 CNN, the listed
BEs inject stuck-at-1s into the exponent part of the floating-point values in one or multiple bits of the affected weights or
biases. The corruption of such bits produced many floating-point exceptions (NaN) from which the network was not able to
recover anymore. Interestingly, this reproduced a real scenario that occurred for the faulty run number 5 during the proposed
radiation test campaign, detailed in Table 2. This behaviour (NaN exceptions) is observed for all the above critical BEs. The
other two BEs leading to a degradation in the Float 32 CNN accuracy but not included in the list of the most critical (i.e., BE4
and BE23) did not produce NaN values, and thus, the network was still able to yield some correct predictions, despite the
BEs. They inject stuck-at-0 values. Finally, as shown in Figure 11, the remaining 28 BEs did not affect the final accuracy at
all (staying at 99.30% despite the injected BE). The reasons are of two types: they do not inject any faults into the network
parameters, or they inject stuck-at faults into the mantissa part of the floating-point values, which did not lead to a change in
the final CNN prediction.

As for the Int 16 CNN, BE15 and BE23 are of particular interest. In the addresses specified by their respective fault
lists, rows of stuck-at-1 (BE15) or stuck-at-0 (BE23) are injected in all bits of the matching weight/bias addresses. After their
injection, the CNN output vectors (i.e., the vector holding the final predictions) assume fixed values: they all become 0xFFFF
(BE15) or 0x0000 (BE23). As a result, the CNN is not able to make correct predictions anymore. The other two block errors
(BE5 and BE29) are also categorized as critical since, after their occurrence, all network predictions become wrong too.
However, we do not observe specific output patterns (as for BE15 and BE23). The output vectors after the BEs injection



16

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

CONV1
CONV2
CONV3FC

1
FC

2
BI

AS
ES

0
10
20
30
40
50
60
70
80
90

100

C
or

ru
pt

ed
 C

N
N

 P
ar

am
et

er
s 

(%
)

Float 32: Weights Float 32: Biases Int 16: Weights Int 16: Biases Int 8: Weights Int 8: Biases

BE5 BE15 BE29 BE5 BE15 BE23 BE29 BE5
Block Error

Fig. 12. Investigating the incidence of the most critical block errors on CNNs weights and biases.

assume random values. Moreover, also BE4, when injected, degrades the CNN performance (as illustrated in Figure 11).
However, BE4 injects stuck-at-0, and the CNN can still yield some correct predictions after its insertion.

Next, concerning the Int 8 CNN application, the most critical BE is BE5: when it is injected, the network starts predicting
wrong results. More specifically, after its injection, the output vectors of the CNN take on random values. Generally, this CNN
is very robust against the occurrence of block errors. Indeed, as shown in Figure 11, only BE23 and BE29 show a slight
average degradation in the final accuracy value. The remaining BEs, despite the injected stuck-at bits, do not affect the CNN
performance.

While for Float 32, it was straightforward to identify the most worrying problem underlying the wrong executions (i.e.,
stuck-at-1s in the exponent part of the floating-point values), for Int 16 and Int 8 it required further in-depth analysis. To
this end, we performed a thorough study to investigate the impact of BEs on layers and parameters of the given CNN. As
illustrated in Figure 12, for the most critical BEs, the number of corrupted weights or biases (those matching the physical
addresses of the BE) is plotted for every layer and for the total biases of the three CNNs. For the sake of clarity, the BEs
classified as critical but having an incidence (%) lower than 10% are not included in the plot (i.e., BE18, BE27, BE30, BE37
for Float 32).

Depending on the injected block error, the CNN behaviour can be classified in three ways. Once a critical BE occurs in
the CNNs, all the output vectors holding the CNN predictions may assume:

• Random Values: The percentage of corrupted weights or biases is less than 100% in all layers and biases. Therefore
the network continues to propagate values that are not correct but which still depend on inputs (and vary accordingly).
This class covers BE5 in Int 8 and BE29 in Int 16. This particular behaviour is observed during the radiation tests of
the Int 16 CNN, specifically for the faulty run 8 in Table 2. The log of the radiation experiment shows, starting from
the image number 720, the vector outputs returning all random values (leading to wrong predictions).

• Fixed Random Values: In one or more layers the percentage of corrupted weights or biases is 100%. In this case,
two scenarios emerge. First, if the block error injects a stuck-at-0 in all the bits of the weights of a layer (BE23 Int 16,
CONV1), the output of the network no longer depends on the inputs but only on the values assumed by the biases
(corrupted at 60% with stuck-at-0s). After the injection of BE23 with the emulator, we observed all 0x0s in all the
subsequent output vectors. This outcome is completely matching the faulty run number 6 (Table 2) obtained during
the radiation test of the Int 16 CNN. The report log coming from the radiation test returned all 0x0. Second, if the
BE injects stuck-at-1s into all weights of a layer, in the case of integers, the numbers all become negative (since the
sign bit becomes equal to 1). Since we use the rectified linear unit (ReLU) as the activation function between layers
(except in the last Linear), the negative values become 0. Once again, we lose the dependence on the inputs: the
output vector will depend only on the bias values of the last layer, and it will be fixed for all subsequent inferences.
This second scenario covers BE5 and BE15 in Int 16. Lastly, the same corrupted behaviour (i.e., fixed random values)
was observed during run number 9 (Table 2) captured during the radiation test of the Float 32 CNN.

• Saturated Values: This scenario particularly occurred for the Float 32 CNN. A stuck-at-1 in the highest bits of the
exponent part of the floating-point representation leads to NaN exceptions. The propagated values no longer depend
on inputs, and the output vectors are fixed to NaN values for all subsequent inferences. This category covers all the
critical BEs for Float 32.

Based on this classification, the reader could deduce that the injection of BE29 in Float 32 yields random predictions
and, similarly, the occurrence of BE5 and BE29 in Float 32 produces fixed random values. However, the problem lies in
the corrupted bit position: they inject stuck-at-1s in all bits of each affected weight or bias. As a result, they generate NaN
exceptions.

Furthermore, we would like to put a special emphasis on the role of the biases and their resilience against block errors.
In the literature, it is claimed that biases are more resilient than weights against statistically injected transient and stuck-at
faults [17]. Our experiments show a lower resilience level against block errors. If they are massively affected by faults,
the network computation is greatly influenced. For example, BE5 (Int 16) corrupts the 100% of total biases parameters by
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Fig. 13. Accuracy variation based on the increase of the block errors E-SER for the three CNNs.

injecting a stuck-at-1 in the 36% of bits of the matching biases in all the CNN layers. It means that the neuronal computation
is greatly upset and corrupted in all layers. With the 100% of corrupted biases, the computations turn into unbiased values.
Furthermore, we experimentally find out that, in the case of BE5 (Int 8) and BE29 (Int 16), their corruption leads to 4.1%
and 3.8% more wrong predictions, respectively, and biases represent only the 0.38% of the total CNN parameters.

Overall, as for non-critical BEs, the final accuracy can slightly decrease but also increase, as highlighted in Figure 11
with the error bars. The same outcome was noticed during the radiation tests, specifically for the faulty run number 7 (the
final accuracy slightly decreased), and the faulty run number 10 (moderately increased), as depicted in Table 2.

It is worth pointing out that the above analyses cannot be done only using physical-based injection and, at the same
time, a pure software-based fault injection may lead to not significant results if the injected fault models do not reflect the real
hardware faulty behaviour. Indeed, knowing which are the faulty components responsible for the observed faulty behaviour
makes possible the design and implementation of specific (and thus low cost) fault-tolerant mechanisms.

So far, the effects on the CNN applications of single block errors occurring during a run were addressed. The next
analysis is related to the block errors E-SER presented in Table 3 for the 1,000 images dataset. We aimed at evaluating the
CNNs resilience when a growing number of BEs affected the CNN parameters (weights and biases). In Table 6 we report
the details of the injection campaign, specifically the amount of BEs that are injected in a single run. The reader should note
that BEs are not accumulated over the runs, albeit being stuck-at a value.

TABLE 6
Details of block error injections for the CNNs Float 32, Int 16, Int 8 with an increasing E-SER: 1x, 25x, 50x, 75x, 100x

E-SER Total Runs CNN

Float 32 Int 16 Int 8

1x 50 0.32 0.17 0.1
25x 50 8 4 3
50x 50 16 9 5
75x 50 24 13 8
100x 50 32 17 10

First, the emulator was set up with the nominal E-SER (1x) for every CNN application. Then, the E-SER was incremented
by 25 times (25x), up to 100 times (100x). Experimental results are shown in Figure 13. For each point on the x-axis, the
run was repeated 50 times, with 50 different random sorts of BEs and various random times. The y-axis reports the average
final accuracy along with the error bars (depicting the minimum and the maximum value reached). The x-axis reports the
increasing E-SER, for which the amount of injected BEs is specified in Table 6.

Experimental results from Figure 13 suggest that depending on either the injection time, the BE sorting or the amount of
BEs, the final accuracy can consistently vary, with a non-negligible difference between the maximum and the minimum error
bar. In particular, it was observed that the minimum accuracy value was always reached when the first injected BE belonged
to the above-described set of the most critical BEs for all the CNNs.

Moreover, the graph shows that the final average decreases as the E-SER increases, in other words, as the number of
BEs occurring in a run increases in the three CNNs. It is worth noting that, once again, the results show a greater resilience
for the Int 16 and, above all, Int 8 CNNs when the number of BEs grows. This is in line with the outcome of the radiation
tests.
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Finally, it is worth pointing out the following considerations. So far, an enormous effort has been spent in the literature
to investigate the reliability of CNNs against transient and permanent faults (e.g., SBUs and stuck-at). At the same time, it
must be said that the single fault assumption is not totally realistic. CNNs, like many other applications, mainly suffer the
occurrence of multiple faults. However, the establishment of a proper multiple fault injection strategy is still an open challenge
and is not a trivial task: the combinations of fault locations can exponentially explode. Therefore, we believe that the block
errors injection can be considered as a first realistic attempt to cover multiple faults based on radiation tests results.

5 CONCLUSION

In this paper, a comprehensive framework to assess the reliability of CNN applications running in embedded devices is
presented. The proposed flow starts with a study on the radiation-induced soft errors in CNN applications. Radiation experi-
ments were carried out on the commercial DRAM used for storing the neural network parameters. Through characterisation
tests on the system, three types of faults were identified: SBUs, stuck-at bits and block errors. Based on that, we have
extracted fault models and event rates to feed a software fault injector able to inject real faults with a realistic frequency. The
proposed software emulator is capable of reproducing and injecting the identified fault models on CNN applications.

To demonstrate the validity and efficacy of the emulator, we have used the same CNNs during software emulation and
actual radiation tests (Float 32, Int 16, and Int 8), taking care to introduce the errors in the very same portion of data as
in the radiation experiments (i.e., .rodata). Software FI campaigns were executed on the three CNNs and by exploiting the
three types of faults. Experimental results revealed that, in line with the outcomes of the radiation tests, the least resilient
CNN application is the one adopting the floating-point data representation; the most resilient is the one using 8-bit integer
data type.

We demonstrated that, generally, the software emulator is able to reproduce the faulty behaviours observed during the
radiation tests for all three CNNs. For example, by injecting the most critical block errors, we got the same output vectors in
both radiation- and software-based FI campaigns, such as NaN for Float 32 CNN, or all zeros for Int 16 CNN. Furthermore,
we have investigated the reasons for the faulty behavior with the software emulator, by examining the incidence of faults on
each individual layer and the distribution between weights and biases. Interestingly, contrary to what is stated in the literature
about the biases robustness, our experimental results show a low resilience level against block errors. When biases are
massively affected by multiple-bit faults, the CNNs accuracy considerably degrades, and the computations turn into unbiased
random values.

The greatest advantage of the proposed software emulator consists in the possibility of injecting realistic fault models.
Indeed, despite that radiation-based FIs provide precise reliability assessments, they are extremely costly. Based on the
findings in this study, we advocate that this could be complementary to physical testing and may allow optimizing time and
costs. Notwithstanding, since the aim of the article is to present this idea, one drawback could be the adoption of three
neural networks all based on a single architecture, i.e., LeNet-5. The principal reasons are related to radiation costs and the
limited storage capacity of the targeted embedded device. Nevertheless, it is important to underline that one of the goals of
the work is to investigate the reliability of different data representations, therefore the need to use only one architecture. In
the future, we plan to use the software emulator to assess the reliability of deeper CNN applications with different memory
sections and data, as well as other types of memory devices.
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