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Gradual emerging patterns (GEPs) are gradual item sets that occur less frequently in

one data set and more frequently in another. For instance, let ‘fan speed’ and ‘tempera-

ture’ be attributes of two numerical data sets. A gradual item set “the higher the speed,
the lower the temperature” (which correlates a data set’s attributes) becomes a GEP if

it is less frequent (in terms of support as in frequent pattern mining) in one data set and

more frequent in another. However, such patterns do not indicate how time gap impacts
the emergence. Many correlations appear over time, for instance when phenomena ap-

pear after some meteorological situation due to latency. Previous works have not taken

this temporal aspect into account. In this paper, we introduce temporal gradual emerg-
ing patterns (TGEPs) which are temporal gradual patterns (TGPs) whose frequency

supports increase significantly between transformed data sets. For instance, a TGP “the

higher the speed, the lower the temperature, almost 3 minutes later” becomes a TGEP
if it occurs more frequently in one transformed data set than in another. Furthermore,

we extend border manipulation to the case of mining TGEPs. In addition, we propose
a more efficient ant colony optimization technique that exploits a heuristic approach to

construct TGEPs.

Keywords: frequent pattern mining; gradual patterns; emergent patterns; temporal data;

ant colony optimization
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1. Introduction

Emerging patterns (EPs) are item sets whose frequency increases significantly from

one data set to another. EPs are described using growth rate, which is the ra-

tio of an EP’s frequency support in one data set to its frequency support in an-

other data set. For instance, suppose a car shop in 2017 had 200 purchases of

{FOG LAMPS,BATTERY, TY RES} out of 1000 transactions, and in 2018 it

had 500 such purchases out of 1000 transactions. This purchase is an EP with a

growth rate of 2.5 from the year 2017 to 2018.

More specifically, an EP is present if its growth rate across data sets is larger

than a given specified minimal numerical threshold. EPs can be applied to discover

distinctions that exist amongst a collection of data sets with classes such as “hot vs

cold”, “poisonous vs edible”. In other words, EPs are a powerful tool for capturing

discriminating characteristics between the classes of different data sets.1–3

Gradual patterns identify relationships among data sets’ attributes in order to

discover correlation knowledge that take linguistic representations such as: “the

more A, the less B”.4–6 Further, as an extension to gradual patterns, temporal

gradual patterns (TGPs) additionally identify the temporal tendencies of correla-

tions among these attributes.7 For instance a TGP may take the form: “the more A,

the less B, 2 days later.” This is achieved by a technique that allows for transfor-

mation of a single timestamped data set into numerous data sets based on date-time

attribute then, mining them for TGPs.

In this paper, we extend TGPs described in order to introduce temporal gradual

emerging patterns (TGEPs). TGEPs may be defined as temporal gradual item

sets whose frequency supports increase significantly between transformed data sets.

TGEP mining unearths a new possibility for discovering gradual trends with respect

to time in timestamped numerical data sets. For example, given a timestamped

weather data set with attributes ‘rain’ and ‘wind’, a TGEP may take the form:

“the more rain, the more wind, almost 2 hours later” with a frequency support

of 0.06 in one transformed data set and, “the more rain, the more wind, almost 2

hours later” with a frequency support of 0.84 in another transformed data set.

Most often, apart from the significant increase in frequency support, it may

be possible for a drift of time gap to additionally occur. For instance the second

transformed data set may produce the pattern: “the more rain, the more wind,

almost 5 hours later” with a frequency support of 0.84. The latter extracts

more meaningful knowledge from the data set, since it also shows the amount of

time that elapses before/after a temporal gradual item emerges. This pattern has

a growth rate of 14 after approximately 3 hours. This example can be extended to

real-life timestamped data sets to extract more interesting TGEPs.

In spite of this, it should be remembered that TGEPs are extracted from trans-

formed data sets. For this reason, the complexity of dealing with more than 2 trans-

formed data sets when extracting TGEPs arises. The process of mining all TGPs

from each of these data sets and comparing the patterns against each other to iden-
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tify emerging ones proves to be computationally time-consuming. Consequently, we

introduce 3 contributions in the section that follows.

Main Contributions

• We introduce and describe temporal gradual emerging patterns (TGEPs).

• We propose a novel approach based on an ant colony optimization (ACO)

technique for mining TGEPs. ACO, originally described by,8 is a heuristic

approach for optimizing combinatory problems. In this study, we extend

ant colony optimization to the problem of mining TGEPs.

• We extend border manipulation technique to the case of mining TGEPs

and, compare the computational efficiency of this border-based technique to

that of ant-based technique. A border is a concept that is used to represent

interval closed item setsa as a pair.9,10

The remainder of this paper is organized as follows: we provide preliminary

definitions and notations of gradual patterns and emerging patterns in Section 2.

We describe temporal gradual patterns (TGPs) and introduce TGEPs in Section 3.

We propose a border-based approach and an ant-based approach for extracting

TGEPs in Section 4 and Section 5 respectively. We compare the performance of

these two proposed approaches in Section 6. Finally, we conclude in Section 7.

2. Preliminary Concepts and Notations

In order to describe TGEPs, we provide some preliminary definitions of gradual

patterns (as given by5,7, 11,12) and emerging patterns (as given by3,9, 13).

2.1. Gradual Patterns

In the case of gradual patterns, assume a data set Dg is defined by attributes

{A1, A2, ..., An} and it consists of tuples {r1, r2, ..., rk} (as shown in Table 1).

Table 1: Sample data set containing rainfall amount and wind speed recordings.

id rain wind
(mm) (km/h)

r1 10 42
r2 13 21
r3 18 35
r4 10 21
r5 18 35

acollection S of sets are said to be interval closed if X and Z are in S and Y is a set such that
X ⊆ Y ⊆ Z.
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Example 2.1. Let us consider a data set (Dg) in Table 1

Definition 2.1. Gradual Item. A gradual item is a pair (i, v) where i is an

attribute and v is a variation v ∈ {↑, ↓}. ↑ stands for an increasing variation while

↓ stands for a decreasing variation.

For example, (rain, ↑) may be interpreted as “the more rain”.

Definition 2.2. Gradual Pattern. A gradual pattern (GP ) is a set of gradual

items, denoted by GP = {(i1, v1), ..., (in, vn)}.
For example, {(rain, ↑), (wind, ↓)} is a gradual item set that may be interpreted

as “the more rain, the less wind”.

The quality of a gradual pattern is measured by support. Support (sup) of a

gradual pattern is the ratio of the proportion of tuples that respect the pattern to

the total number of tuples. Therefore, given a minimum numerical threshold σ, a

gradual pattern GP is said to be frequent only if:

sup(GP ) ≥ σ (1)

It should be underlined that the process of summing up tuples that respect a

particular gradual pattern is achieved by pairing the affected tuples in the order of

their values. Therefore, it is impossible to determine if a gradual pattern is valid

by counting each tuple individually. For this reason, one efficient technique for

calculating the support of a gradual pattern involves exploiting a representation of

these tuple pairings as concordant or discordant pairs.6,7

For example, given the data set in Table 1, the total number of pairs is given

by the formula: k(k − 1)/2 where k is the number of tuples in the data set. In

this example the total number of pairs is 10 and the pairs of tuples that respect

the gradual pattern (concordant pairs) {(rain, ↑), (wind, ↓)} are: {[r1, r2], [r1, r3]}.
Therefore, the support for the pattern is 2/10.

It should be emphasized that it is trivial to extract 1-item set gradual patterns

(i.e. {(rain, ↑)}) since they do not uncover any meaningful correlation knowledge.

Hence, the least length for any elementary gradual pattern is 2.12

2.2. Emerging Patterns

In the case of emerging patterns, assume a data set D is defined by item set I =

{i1, i2, ..., in} and it consists of transactions {t1, t2, ..., tn}. Every transaction is a

subset of item set I (as shown in Table 2 (a)).

Definition 2.3. Emerging Pattern. An emerging pattern (EP ) is a set of

items that appear less frequently in transactions of one data set D1 and more fre-

quently in transactions of another data set D2.

Example 2.2. Let us consider two data sets: (D1) in Table 2 (a), and (D2) in

Table 2 (b).
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Table 2: Two sample data sets containing transactions

transaction items

t1 bread, milk, sugar
t2 eggs, milk
t3 cheese, bread
t4 butter, sugar

(a)

transaction items

t1 bread, milk, sugar
t2 eggs, bread, milk
t3 bread, milk, sugar, cheese
t4 bread, milk, sugar, eggs

(b)

For example, (as illustrated in Table 2) {bread,milk, sugar} is an emerging item

set since its frequency occurrence count in transactions (or frequency support) is

significantly greater in data set D2 than in data set D1.

The quality of an emerging pattern is measured by growth rate. Growth rate

(gr) of an emerging pattern (EP ) is the ratio of frequency support of the pattern in

data set D2 to another data set D1. For example, given D1 and D2, the growth rate

of item set EP in favour of data set D2 is given as follows:

gr(EP ) =


0 if sup(EP )D2

= 0

∞ if sup(EP )D1 6= 0 , sup(EP )D2 = 0
sup(EP )D2

sup(EP )D1

otherwise

(2)

Therefore, given a numerical threshold ρ, item set EP is emerging only if:

gr(EP ) ≥ ρ (3)

It is important to emphasize that growth rate is derived from frequency support

of the involved patterns.9,10 Similar to transactional frequent pattern mining, fre-

quency support as a quality measure for extracted patterns also applies to gradual

pattern mining. It is for this reason that the concept of emerging patterns can be

extended to the case of gradual pattern mining.12 Therefore, a gradual emerging

pattern may be defined as follows:

Definition 2.4. Gradual Emerging Pattern. A gradual emerging pattern

(GEP ) is a set of gradual item sets whose support sup(GEP )Dg2 > sup(GEP )Dg1 .

For example, GP = {(rain, ↑), (wind, ↑)} is a gradual emerging pattern if sup-

port sup(GP ) is significantly greater in data set Dg2 than in data set Dg1.

3. Temporal Gradual Emerging Patterns

In this section, we seek to describe temporal gradual emerging patterns (TGEPs).

We begin by describing temporal gradual patterns (TGPs) because an emerging

TGP makes up a TGEP. TGP mining extends gradual pattern mining in order to

additionally estimate the time lag that may exist between gradual item sets.7
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For instance, a TGP may take the form “the higher X, the higher Y almost

3 months later”. For the purpose of clarity, we provide definitions of TGPs (as

given by7) as follows.

Definition 3.1. Time Lag. “a time lag (tl) is the amount of time that passes

before or after changes in one gradual item affects the changes in another gradual

item denoted by tl = αβt”. Where α is an operator α ∈ {+,−} and ‘+’ implies after

and ‘−’ implies before; β is an operator β ∈ {=,'} and ‘=’ implies equal to and

‘'’ implies almost; t is the value of time lag.

For example, ‘− ' 1week’ is a time lag that may be interpreted as ‘almost 1

week earlier’.

Definition 3.2. Fuzzy-Temporal Gradual Item. A fuzzy-temporal gradual

item is a temporal gradual item with a fuzzy time lag αβt where α ∈ {+,−} and

β ∈ {'} so that ‘+ ' t’ implies a time lag of almost t later and, ‘− ' t’ implies a

time lag of almost t earlier.

For example, (wind, ↑)−'1week is a fuzzy-temporal gradual item that may be

interpreted as the “the more wind, almost 1 week earlier”.

Definition 3.3. Fuzzy-Temporal Gradual Pattern. A fuzzy-temporal gradual

pattern (TGPf ) consists of one reference gradual item and a set of fuzzy-temporal

gradual items, denoted by TGPf = {(i1, v1), (i2, v2)αβt2 , ..., (in, vn)αβtn}.
It should be realized that for Definition 3.3 to be relevant, there must be one

reference gradual item. A reference gradual item is determined by a user-specified

reference attribute. From the reference gradual item other temporal gradual items

are added with an associated time lag.

For example, {(rain, ↑), (temperature, ↓)+'2weeks} is a fuzzy-temporal gradual

pattern: where (rain, ↑) is a reference gradual item and the pattern may be inter-

preted as “the more rain, the lower the temperature, almost 2 weeks later”.

Example 3.1. Let us consider a data set (Dg) shown in Table 3.

Table 3: Sample timestamped data set containing rainfall amount and wind speed

id date rain wind
(day/month) (mm) (km/h)

r1 01/06 10 42
r2 04/06 13 21
r3 05/06 18 35
r4 10/06 10 21
r5 12/06 18 35

The first process in the extraction of TGPs is to transform a timestamped

numerical data set step-wisely into a temporal format. This process requires that

one attribute be selected as a reference attribute and transformation step be set. For

example, (using data set in Table 3) if ‘rain’ is selected as the reference attribute
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and a transformation step be set at 1; then the data set (Dg) in this table will be

transformed into data set (D′g) in Table 4 such that:

• every tuple (rn) of ‘rain’ attribute is mapped to tuple (rn+1) of ‘wind’

attribute, and

• date difference is calculated as (rn − rn+1).

Table 4: Data set (D′g) transformed from data set Dg by step: s = 1.

id date diff rain wind
(rn − rn+1) (rn) (rn+1)

t1 3 10 21
t2 1 13 35
t3 5 18 21
t4 2 10 35
t5 - - -

It is observable that a transformation step of 1, leads to generation of a trans-

formed data set (D′g) that represents 4 out of the 5 tuples of the original data set

(Dg). Therefore, D′g has a representativity of 0.8. Representativity (rep) of a TGP

is the ratio of tuple size in a transformed data set (D′g) to tuple size in the orig-

inal data set (Dg). Therefore, given a minimum numerical threshold δ, a TGP is

relevant only if:

rep(TGP ) ≥ δ (4)

The second process in the mining of TGPs is to extract gradual patterns from

the transformed data set and approximate a time lag associated with the extracted

gradual patterns.

As shown above, TGPs are extracted from transformed data sets. The value of

the specified minimum representativity (δ) determines the number of transformation

steps; consequently, the number of transformed data sets. It may be the case that

a particular TGP occurs frequently in more than one transformed data set; as a

result, it becomes an emerging TGP. Under those circumstance, we may define a

TGEP as follows.

Definition 3.4. Temporal Gradual Emerging Pattern. A temporal gradual

emerging pattern (TGEP ) is a set of temporal gradual patterns that appear more

frequently in one transformed data set D′g and less frequently in another transformed

data set D′′g .
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4. Border-based Discovery of TGEPs

In this section, we propose an approach that exploits border manipulation for ex-

traction of TGEPs. First, we describe how border manipulation technique may be

applied to the case of frequent item sets and gradual item sets. Finally, we propose

to extend it to the case of temporal gradual item sets.

4.1. Border Representation of Frequent Item Sets

The border-based approach was introduced by9 and it offers condensed representa-

tion and efficient manipulation of large interval closed item sets. In considerations of

clearly describing the border-based approach for discovery of TGEPs, we formalize

the notion of interval-closed sets and provide the definition of a border as given

by.1,2, 9, 12

Property 4.1. Interval Closed Sets. Collections of sets C are said to be

interval closed if: ∀X,Z ∈ C; ∀Y such that X ⊆ Y ⊆ Z, it also holds that Y ∈ C.
Such sets are also referred to as convex sets.

Definition 4.1. Border. A border is an ordered pair < L,R >, (where L -

left-hand bound of the border and R - right-hand bound of the border)

if: (a) each of L and R is an antichainb collection of sets, and (b) each element of

L is a subset of some element in R and each element of R is a superset of some

element in L.

For example, a collection of sets [L,R] may be represented by (or is said to have)

a border < L,R >, where [L,R] = {Y | ∃X ∈ L,∃Z ∈ R such that X ⊆ Y ⊆ Z}.
For the purpose of relating Property 4.1 to Definition 4.1,9 presents three main

propositions: (a) the collection of all large item sets with respect to a minimum

threshold (σ) is interval closed, (b) each interval-closed collection C of sets has a

unique border < L,R >, where L is the collection of minimal item sets in C and R
is the collection of maximal item sets, and (c) the collection of large item sets with

respect to a minimum threshold (σ) in a data set has a left-rooted border.

To clarify, a border < L,R > is called left-rooted if L is a singleton set (i.e. the

left-hand bound is {∅} and its right-hand bound is the collection of maximal item

sets) and it is right-rooted if R is a singleton set. As a result of these propositions,9

illustrates that an efficient maximal set pattern mining algorithm (i.e. Max-Miner)

may be used to extract collections of large item sets from data sets which in-turn

provide left-rooted borders for each data set with respect to a minimum support

threshold.

All in all,9 demonstrates how an efficient discovery of left-rooted borders from

two data sets (i.e. D1 and D2) through Max-Miner algorithm, followed by a repet-

itive border differential procedure (implemented as BORDER-DIFF algorithm) on

the two borders allows for extraction of emerging patterns. The overall algorithm

is known as MBD-LLBORDER algorithm.

bA collection of sets C is an antichain if ∀X,Y ∈ C, X 6⊆ Y and Y 6⊆ X
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4.2. Border Representation of Gradual Item Sets

It should be noted that the MBD-LLBORDER algorithm cannot be applied directly

to the case of gradual item sets, since the nature of gradual item sets is slightly

different from that of classical frequent item sets. Unlike frequent item sets, (in

terms of tuple transactions and gradual items) gradual item sets in both cases deal

with pairs and not singletons. We demonstrate this in Section 2.1.

As demonstrated in Section 2.1: (a) deriving the frequency support of a grad-

ual pattern involves ordering tuples in concordant pairs; and (b) discovering any

meaningful correlation knowledge among attributes of a data set involves extract-

ing non-trivial gradual patterns composed of at least 2 gradual items. It should be

remembered that the border representation of large item sets presented by9 (see

Section 4.1) is most suitable for classic frequent item sets that are each composed

of singleton items.

For example, in the classic item set case a 4-length pattern {A,B,C,D}
may fully be decomposed into its 4 items: {A}, {B}, {C}, {D}. In the grad-

ual item set case a 4-length pattern {(A, ↑), (B, ↓), (C, ↑), (D, ↓)} at best may be

decomposed into its 6 gradual items: {(A, ↑), (B, ↓)}, {(A, ↑), (C, ↑)}, {(A, ↑), (D, ↓
)}, {(B, ↓), (C, ↑)}, {(B, ↓), (D, ↓)}, {(C, ↑), (D, ↓)}.

Nevertheless,12 identifies two properties of gradual patterns that allow for border

representation of gradual patterns. They are: (a) a collection of frequent gradual

patterns is interval-closed, and (b) a collection of frequent gradual patterns may

be represented as a left-rooted border < {∅},R >, where R is the set of maximal

gradual item sets in the collection broken down into gradual items of length 2.

With reference to the first identified property of gradual patterns, it derives ex-

plicitly from anti-monotonicity feature of gradual patterns. The anti-monotonicity

property states that: “no frequent gradual pattern containing n items can be built

over an infrequent gradual pattern containing a subset of these n items.” For in-

stance, if a maximal gradual pattern {(A, ↑), (B, ↓), (C, ↑)} is frequent, then all

subsets of this pattern are also frequent.7,11

Regarding the second identified property of gradual patterns, it derives from

pairings that come with mining non-trivial gradual patterns. Consequently,12 pro-

poses a subsequent representation of maximal gradual item sets into its smaller

gradual items of length 2. That is to say, a maximal gradual pattern of length k

may be re-represented by a set of k(k − 1)/2 gradual items of length 2.

4.3. Border Representation of Temporal Gradual Item Sets

Temporal gradual patterns (TGPs) (as described in Section 3) are simply gradual

patterns that have been improved to indicate an estimated time lag among the grad-

ual item sets. In fact7 presents T-GRAANK approach which extends the GRAANK

approach (proposed by6) for mining TGPs.

It should be clarified that the distinctive feature of approximated time lag of

TGPs is majorly introduced by the data set transformation process. As an advan-
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tage, the transformation process allows for generation of multiple transformed data

sets from the original timestamped data set using a specified representativity thresh-

old.7 The novel idea of harnessing this process so as to mine a single data set for

emerging TGPs (or TGEPs) is quite interesting. In fact, we propose Algorithm 1,

BT-GRAANK stands for MBD-LLBORDER Temporal GRAdual rANKing.

Algorithm 1: BT-GRAANK algorithm

Input : D− data set, refCol− reference column, σ− minimum support, δ−
minimum representativity

Output: TGEPs− TGEPs represented as borders
1 D∗, T ∗d ← transform (D, δ, refCol) ; /* D− transformed data set, Td− time

differences, ∗ denotes multiple */

2 tgps∗ ← extract-tgps (D∗, T ∗d , σ);
3 leftBdr∗ ← maximal (tgps∗); /* maximal TGPs as left-rooted borders */

4 TGEPs← MBD-LLBORDER (leftBdr∗);
5 return TGEPs;

(1) Build multiple transformed data sets D′g,D′′g , ...,D∗g from a timestamped data

set Dg from a specified representativity threshold δ (see Section 3).

(2) Extract all TGPs from each transformed data set w.r.t a minimum support

threshold σ.

(3) Construct border representations of all maximal TGPs from the transformed

data sets as described in Section 4.2.

(4) Apply a modified MBD-LLBORDER algorithm (using modified a union oper-

ator) to the borders obtained in Step 3 (two borders at a time).

It is important to note that this border-based strategy is an efficient technique

for mining TGEPs; however, the search space grows exponentially with respect to

the number of attributes.7,14 Therefore, this strategy is not suitable for discovering

patterns in huge data sets with a large number of attributes.

5. Ant-based Discovery of TGEPs

In this section, first we introduce an alternative approach that is based on ant

colony optimization (ACO) for mining gradual patterns (GPs) and temporal gradual

patterns (TPGs), and second we extend this approach in order to mine for temporal

gradual emerging patterns (TGEPs).

5.1. Ant Colony Optimization

We propose an ACO strategy that uses a probabilistic approach to efficiently gen-

erate gradual item set candidates from a data set’s attributes. ACO, as originally

described by,8 is a general-purpose heuristic approach for optimizing various com-
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binatorial problems. It exploits the behavior of a colony of artificial ants in order

to search for approximate solutions to discrete optimization problems.

ACO imitates the positive feedback reinforcement behavior of biological ants

as they search for food: where the more ants following a path, the more chemical

pheromones are deposited on that path and, the more appealing that path becomes

for being followed by other ants.8,15–19

According to,20 ACO utilizes a set of artificial ants to probabilistically contrive

solutions S through a collective memory, pheromones stored in matrix T , together

with a problem specific heuristic η. In this section, we will consider one variant

of ACO called ‘MAX-MIN ant system’ presented by21 for probabilistic generation of

gradual item set candidates.

5.2. ACO for Gradual Pattern Mining

The principal aim of gradual pattern mining approaches is to extract (if possible

maximal) gradual item sets whose support surpass a specified threshold. It can

be shown that a heuristic approach can generate, with extremely high efficiency,

maximal gradual item set candidates whose probability of being valid is high.22,23

In this paper, we present an ant-based approach that guides artificial ants to find

highly probable maximal candidates.

In order to apply ACO to the problem of GP mining, we need to define: (1) a

suitable representation of the gradual item set candidate generation problem, (2)

a probabilistic rule P for generating solutions Sn, (3) a technique for updating the

pheromone matrix Ta,j , (4) a convergence proof for confirming that this approach

finds an optimal gradual pattern from a data set.

Representation of the problem. In order to represent GP mining problem as

a combinatorial problem, we take the position that a gradual item set may also be

known as a pattern solution. In that case all possible gradual item set solutions

(Sn) are admissible and can be generated based on the pheromone matrix (Ta,j);
therefore, a tabu list is not necessary. To clarify, a tabu list consists of solution

candidates that violate the admissible conditions.17,24,25 Notwithstanding, all the

gradual item sets in a generated solution will be evaluated and the solution updated

with only valid item sets.

For instance, let {Rain, Wind, Temperature} be the attributes of a numeric

data set. Given minimum specified support threshold (σ), for every attribute there

exists only 3 gradual item set possibilities: increase (↑), decrease (↓), or irrelevant

(×). Therefore, examples of maximal pattern solutions may be: {Rain ↑,Wind ↑
, T emperature ↓}, {Rain ↑,Wind ↓, T emperature ↓}.

Probabilistic rule. First we mention that initially there exists an equal chance

for any attribute A (of data set D) to either increase (↑) or decrease (↓) or be

irrelevant (×). As the algorithm acquires more knowledge about valid patterns, the

possibilities of the 3 options are adjusted accordingly. For this reason, the probability

rule P(A∗) (where ∗ ∈ {↑, ↓,×}) is given by calculating the proportions of its
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artificial pheromones pa∗ as shown in Equations (5), (6), (7).

P(A↑) =

{
1 if 0 < k 6 pa↑

((pa↑) + (pa↓) + (pa×))

0 otherwise
(5)

P(A↓) =

{
1 if

pa↑
((pa↑) + (pa↓) + (pa×))

< k 6 ((pa↑) + (pa↓))
((pa↑) + (pa↓) + (pa×))

0 otherwise
(6)

P(A×) =

{
1 if

((pa↑) + (pa↓))
((pa↑) + (pa↓) + (pa×))

< k 6 ((pa↑) + (pa↓) + (pa×))
((pa↑) + (pa↓) + (pa×))

0 otherwise
(7)

Pheromone update. We define an artificial pheromone matrix as shown in

Equation (8). The matrix contains knowledge about pheromone proportions of the

3 gradual options for each attribute. In fact, it is through the pheromone matrix

that the algorithm learns how to generate highly probably valid gradual item set

candidates.

Ta,j = q × 3 (8)

where q: number of attributes, a = 1, ..., q and, j ∈ {+,−,×}

At the beginning all the artificial pheromones paj in the pheromone matrix Ta,j
are initialized to 1, then they are updated as follows:

• Every generated gradual item set solution is evaluated and only valid solutions

are used to update the artificial pheromone matrix. Invalid solutions are stored

with aim of using them to reject their supersets.

• In a given valid solution, each gradual item set is used to update the corre-

sponding artificial pheromone paj (where j is either ↑ or ↓) using Equation (9).

It is essential to point out that since the attribute possibilities do not cancel

each other out, we ignore the evaporation factor.

• Again using the same valid solution, for every attribute that does not have

a gradual item set appearing in the solution - we update the corresponding

irrelevant pheromone paj (where j is ×) using Equation (9).

paj = paj + sup(Sol) (9)

where sup(Sol) is the frequency support of the generated pattern solution

Convergence proof. In the case of GP mining we wish to find an optimal

solution (which is a valid maximal gradual item set) that updates the matrix such

that the preceding generated solutions are either subsets of or similar to the optimal

solution. Such a characteristic may also be referred to as a Convergence Property.
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The study of26 illustrates a convergence proof that applied directly to MAX--MIN

Ant System. The proof holds that:

“for any small constant ε > 0 and for a sufficiently large number of algorithm

iterations t, the probability of finding an optimal solution at least once is P ∗ (t) ≥
1− ε and that the probability tends to 1 for t→∞.”

Further,26 establishes that after an optimal solution has been found, it takes

a limited number of algorithm iterations for the pheromone trails that belong to

the found optimal solution to grow higher than any other pheromone trail. With

regard to GP mining, this implies that the values of the pheromone matrix will

no longer change significantly after such iterations. Therefore, we propose that this

convergence property can be harnessed to determine the limit of algorithm iterations

for generating gradual item set candidates.

Not only may the ACO strategy be applied to the case of GP mining but also

to the case of TGP mining. As described in Section 3, TGP mining involves two

main processes: (1) transforming a timestamped data set into multiple data sets

using a specified representativity threshold, and (2) applying a modified GRAANK

algorithm that extracts gradual patterns together with an approximated time lag.

Therefore, we substitute the modified GRAANK algorithm for a modified ACO-

based algorithm.

5.3. Growth-rate Manipulation for Mining TGEPs

It should be noted that applying the proposed ACO-based approach on a data

set extracts numerous GPs or TGPs, but only one pheromone matrix for every

data set or transformed data set respectively (see Equation (8)). As illustrated in

the Section 5.2, the values of the matrix depend on the patterns extracted since

each valid pattern increments it by its support (see Equation (9)). In that case,

a single matrix cumulatively stores support values of all extracted patterns. The

matrix can be normalized using the number of algorithm iterations determined by

the convergence property.

The definitions given in Section 2.2 about emerging patterns (EPs) and their

growth-rate validates the idea that: if two data sets each provide its support-

based pheromone matrix, then dividing the two matrices element-wisely generates a

growth-rate matrix. Through division, the growth-rate matrix reduces any irrelevant

EPs to zero but allows for construction of relevant EPs. To this end, there exists

no reason to keep the gradual patterns previously extracted.

Example 5.1. Let {Rain, Wind, Temperature} be attributes of data sets D1 and

D2. P1 and P2 (shown in Figure 1) be the pheromone matrices of data sets D1

and D2 respectively. A growth-rate matrix in favor of P1 is shown in Figure 2. As

can be deduced from the growth-rate matrix in Figure 2, we may construct a GEP

{(Rain, ↑), (Wind, ↓)} with a growth-rate of at least 1.5 from data set D1 to D2.
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↑ ↓ ×
Rain .8 0 0
Wind 0 .9 0
Temp 0 0 .85

(a)

↑ ↓ ×
Rain .4 0 0
Wind 0 .6 0
Temp 0 .75 0

(b)

Figure 1: (a) normalized support values of P1, and (b) normalized support values

of P2

↑ ↓ ×
Rain 2 0 0
Wind 0 1.5 0
Temp 0 0 ∞

Figure 2: Growth-rate matrix from pheromone matrix P1 to P2

In this paper, our main aim is to extend the ACO strategy to the case of TGEP

mining and compare its performance to the border-based strategy. Although mining

TGPs using an ACO-based approach is easily achievable (see Section 5.2), construct-

ing TGEPs from growth-rate matrices is difficult since the matrices do not provide

information about associated time-lags.

For this reason, we propose an additional time-lag matrix which is updated with

approximated time-lags of validated patterns every time the pheromone matrix is

updated with support values of these patterns. Finally, the combined content of the

growth-rate matrix and the time-lag matrix allow for the construction of TGEPs.

↑ ↓ ×
Rain .8 0 0
Wind 0 .8 0
Temp 0 0 .8

(a)

↑ ↓ ×
Rain +2mins 0 0
Wind 0 +2mins 0
Temp 0 0 0

(b)

↑ ↓ ×
Rain .4 0 0
Wind 0 .4 0
Temp 0 0 .4

(c)

↑ ↓ ×
Rain +6mins 0 0
Wind 0 +6mins 0
Temp 0 0 0

(d)

Figure 3: (a) pheromone matrix for D′g, (b) time-lag matrix for D′g, (c) pheromone

matrix D′′g , and (d) time-lag matrix for D′′g ,

Example 5.2. Let TGP1 = {(Rain↑,Wind↓)≈+2mins, sup = 0.8} be extracted
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from a transformed data set D′g, and TGP2 = {(Rain↑,Wind↓)≈+6mins, sup = 0.4}
be extracted from a transformed data set D′′g . Figure 3 shows the support pheromone

matrices and the corresponding time-lag matrices for the transformed data sets.

A growth-rate matrix in favor of the support-based pheromone matrix of trans-

formed data set D′g is shown in Figure 4. This growth-rate matrix is mapped

element-wisely onto time-lag matrices of D′g and D′′g in order to eliminate irrele-

vant time-lag elements; in this case none of the elements are irrelevant.

↑ ↓ ×
Rain 2 0 0
Wind 0 2 0
Temp 0 0 2

Figure 4: Growth-rate matrix from pheromone matrix of data set D′g to D′′g

As can be deduced by combining growth-rate matrix in Figure 4 and time-lag

matrices in Figure 3 (b) and (d), we may construct a TGEP {(Rain, ↑), (Wind, ↓)}
with a growth-rate of 2 after approximately 4 minutes. All things considered, we

propose Algorithm 2, TRENC stands for Temporal gRadual Emerging aNt Colony

optimization.

Algorithm 2: TRENC algorithm

Input : D− data set, refCol− reference column, σ− minimum support, δ−
minimum repsentatitvity

Output: TGEPs− TGEPs in JSON format
1 D∗, T ∗d ← transform (D, δ, refCol) ; /* D− transformed data set, Td− time

differences, ∗ denotes multiple */

2 P∗, T ∗ ← aco-matrices (D∗, T ∗d , σ) ; /* P− pheromone matrix, T − time-lag

matrix */

3 G∗ ← gen-growthrate (P[x], P∗); /* G− growth-rate matrix, x−
user-specified w.r.t preferred transformed data set */

4 TGEPs← construct (G∗, T ∗);
5 return TGEPs;

(1) Build multiple transformed data sets D′g,D′′g , ...,D∗g from a timestamped data

set Dg using a specified representativity threshold δ (see Section 3).

(2) From each transformed data set, build a normalized support pheromone matrix

along with corresponding time-lag matrices.

(3) Generate growth-rate matrices from the pheromone matrices obtained in Step

2 (two pheromone matrices at a time).

(4) Combine each growth-rate matrix with the two corresponding time-lag matrices

to construct TGEPs.
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6. Experiments

In this section, we implement the border-based BT-GRAANK algorithm (described

in Section 4) and the ant-based TRENC algorithm (described in Section 5) for

mining TGEPs and analyze their computational performances. All experiments were

conducted on a (High Performance Computing) HPC platform Meso@LRc. We

used one node made up of 112 cores and 128GB of RAM.

6.1. Source Code

The Python source code of our proposed algorithms are available at our GitHub

repository: https://github.com/owuordickson/trenc.git.

6.2. Data Set Description

Table 5 shows the features of the data sets used in the experiments for evaluating

the computational performance of our proposed algorithms.

Table 5: Experiment data sets

Data set #tuples #attributes Timestamped Domain Origin

Buoys (Directio) 6121 21 Yes Coastline 27

Power Consumption 10001 9 Yes Electrical 28

The ‘Power Consumption’ data set, obtained from UCI Machine Learning

Repository,28 describes the electric power consumption in one household (located

in Sceaux, France) in terms of active power, voltage and global intensity with a

one-minute sampling rate between December 2006 and November 2010.

The ‘Directio’ data set is one of 4 data sets obtained from OREMES’s data por-

tald that recorded swell sensor signals of 4 buoys near the coast of the Languedoc-

Roussillon region in France between 2012 and 2019.27 These data sets can be re-

trieved from: https://github.com/owuordickson/trenc/tree/master/data.

6.3. Experiment Results

In this section, we present the results of our experimental study on the two data sets

using our proposed algorithms. These results reveal that the two algorithms behave

differently when applied on different data sets (especially if they vary in number

of attributes). We use these results to analyze and compare the computational

efficiency and parallel efficiency of the algorithms as presented in Sub-section 6.3.1

and Sub-section 6.3.2 respectively. We discuss these results in Section 6.4. All the

chttps://meso-lr.umontpellier.fr
dhttps://data.oreme.org

https://github.com/owuordickson/trenc.git
https://github.com/owuordickson/trenc/tree/master/data
https://meso-lr.umontpellier.fr
https://data.oreme.org
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experiment results can be obtained from: https://github.com/owuordickson/

meso-hpc-lr/tree/master/results/tgeps/112cores.

6.3.1. Comparative Experiments: computational efficiency

This experiment compares the run-time and number of temporal gradual emerging

patterns (TGEPs) extracted by TRENC and BT-GRAANK from data sets UCI

and Directio. We mention that the minimum representativity threshold is set at

0.99 so that very few transformations are applied on the original data sets, which

improves the quality of TGEPs (see Section 3).

UCI data set: #attributes=9/#tuples=10K/cores=56/min-rep=0.99
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Figure 5: UCI data set: (a) plot of run time against minimum support threshold

and, (b) bar graph of number of patterns against minimum support threshold.

Figure 5 (a) shows run-time and, Figure 5 (b) shows the number of TGEPs

extracted by TRENC and BT-GRAANK algorithms when applied on the UCI data

set. We observe that the run-time of BT-GRAANK (blue curve) is lower than that

of TRENC (red curve) and it reduce significantly (as well as the number of TGEPs)

as support threshold is increased. For the case of TRENC, the run-time and number

of TGEPs are almost constant.

Figure 6 (a) shows run-time performance and, Figure 6 (b) shows the number of

TGEPs extracted by TRENC and Border-TGRAANK algorithms when applied on

the Directio data set. In this instance, BT-GRAANK (in comparison to TRENC)

has the highest run-time (which reduces) and fewest TGEPs as the support thresh-

old is increased. Again, the run-time and number of extracted of TGEPs are almost

constant for the case of TRENC.

It should be remembered that support threshold plays an important role in de-

termining the quality and quantity of extracted frequent patterns (see Section 2.1).

The higher the threshold, the higher the quality of the patterns; consequently, triv-

https://github.com/owuordickson/meso-hpc-lr/tree/master/results/tgeps/112cores
https://github.com/owuordickson/meso-hpc-lr/tree/master/results/tgeps/112cores
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Directio data set: #attributes=21/#tuples=6K/cores=56/min-rep=0.99
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Figure 6: Directio data set: (a) plot of run time against minimum support threshold

and, (b) bar graph of number of patterns against minimum support threshold.

ial patterns are ignored. This explains why the run-time and number of TGEPs

reduce significantly for the case of BT-GRAANK. Concerning TRENC, it seems

this threshold has little effect on the quantity of TGEPs.

6.3.2. Comparative Experiments: parallel efficiency

This experiment compares the run-time of BT-GRAANK and TRENC algorithms

against different number of CPU cores on data sets UCI and Directio. In Figure 7,

the run-time of both algorithms reduce as the number of cores increase.
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Figure 7: Plot of run time versus no. of cores on data sets (a) UCI and, (b) Directio

We use these results to analyze their multiprocessing behavior using the speedup

and parallel efficiency performance measures. (1) Speedup S(n) may be de-
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fined as: “the ratio of the execution time of a single processor to the execution time

of n processors” (S(n) = T1/Tn). (2) Parallel efficiency E(n) may be defined

as: “the average utilization of n processors” (E(n) = S(n)/n).29

UCI data set: #attributes=9/#tuples=10K/min-rep=0.99/min-sup=0.8
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Figure 8: UCI data set: (a) plot of speed up versus number of cores (b) plot of

parallel efficiency versus number of cores

In Figure 8 (a), we observe that BT-GRAANK (in comparison to TRENC) has a

highest Speedup and, in Figure 8 (b) has a highest parallel efficiency when both are

applied on the UCI data set. Again, in Figure 9 (a), we observe that BT-GRAANK

(in comparison to TRENC) has a highest Speedup and, in Figure 9 (b) has a highest

parallel efficiency when both are applied on the Directio data set. However, it should

be observed, from Figure 7 (b), that the run-time of BT-GRAANK is higher than

that of TRENC on data set Directio.

Directio data set: #attributes=21/#tuples=6K/min-rep=0.99/min-sup=0.8
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Figure 9: Directio data set: (a) plot of speed up versus number of cores (b) plot of

parallel efficiency versus number of cores
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6.3.3. Consistent Temporal Gradual Emerging Patterns (TGEPs)

In this section, we present the consistent TGEPs (see Section 3 for Definition)

extracted from the two data sets described above.

Table 6: Consistent TGEPs extracted from data sets UCI and Directio

Data set Consistent TGEPs

Buoys (Directio) {(Tz, ↑), (Hm0, ↑)}: growth-rate 1.0
after every 2.5 hours

Power Consumption (UCI) {(activepower, ↑), (voltage, ↓)}: growth-rate 1.04
after every 24 hours

6.4. Discussion of Results

6.4.1. Computation Run-time Complexity

Unlike BT-GRAANK, we observe that the run-time for TRENC on both data sets

is almost constant. As described in Section 5.2 is based on a heuristic technique

for efficiently generating maximal gradual item sets. Therefore, the run-time re-

quired for extracting patterns through this technique is determined by how long

the pheromone matrix takes to converge. Again, this property enables TRENC to

have a lower run-time than BT-GRAANK (see Section 4.3) when executed on a

data set with a large number of attributes. For example since data set Directio has

more attributes than data set UCI, there is a significant increase in run-time for

the case BT-GRAANK and a relatively small change for the case of TRENC (see

Figure 5 (a) and Figure 6 (a).

Finally, we observe that BT-GRAANK has a higher Speedup and parallel effi-

ciency than TRENC for both data sets as shown in Figure 8 and Figure 9. Majorly,

this is due the fact that TRENC’s run-time is almost constant despite the variations

in support threshold and number of cores. This implies the advantage that TRENC

can extract high quality TGEPs using few processors and at any support threshold.

6.4.2. Extracted TGEPs

We observe that BT-GRAANK extracts more TGEPs than TRENC from the UCI

data set. It should be emphasized that BT-GRAANK identifies borders from two

maximal items. For this reason, numerous borders are used to construct few TGEPs

(see Section 4.3). In fact, we discover that both algorithms identify similar consistent

TGEPs from the UCI data set as shown in Table 6.

7. Conclusion

In this work, first we have introduced the concept of temporal gradual emerging

patterns; second, we have proposed two strategies for mining temporal gradual
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emerging patterns; third, we have proposed an experimental computational per-

formance comparison including a parallel implementation of these two approaches

on a HPC supercomputer. Finally, we recommend ant-based strategy as the most

suitable strategy for mining temporal gradual emerging patterns especially when

dealing with huge data sets having large numbers of attributes.
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