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Abstract. Conceptual Graphs (CGs) are a graph-based knowledge rep-
resentation formalism. In this paper we propose cgSpan a CG frequent
pattern mining algorithm. It extends the DMGM-GSM algorithm that
takes taxonomy-based labeled graphs as input; it includes three more
kinds of knowledge of the CG formalism: (a) the fixed arity of relation
nodes, handling graphs of neighborhoods centered on relations rather
than graphs of nodes, (b) the signatures, avoiding patterns with con-
cept types more general than the maximal types specified in signatures
and (c) the inference rules, applying them during the pattern mining
process. The experimental study highlights that cgSpan is a functional
CG Frequent Pattern Mining algorithm and that including CGs speci-
ficities results in a faster algorithm with more expressive results and less
redundancy with vocabulary.

Keywords: Conceptual Graphs · Frequent pattern mining.

1 Introduction

Conceptual Graphs (CGs) [3] represent knowledge as graphs containing concept
nodes and relation nodes which refer to ontological knowledge in vocabulary. In
their simplest form, they are similar to taxonomy-based labeled graphs (TLGs)
i.e. labeled graphs with a partial order defined on the set of labels corresponding
to an is-a hierarchy. While there are Frequent Pattern Mining (FPM) algorithms
considering TLGs, an FPM algorithm taking CGs as input has not yet been pro-
posed to the best of our knowledge. Yet mining patterns from sets of structures
is a prevalent research subject [10, 6, 8, 5]. Taking TLGs as input has been the
work of a few propositions [7, 2, 9] and we consider them as a basis to design a
CGs pattern mining algorithm.

We propose cgSpan based on these algorithms. We consider CGs as TLGs
with more layers of information in order to reuse an existing algorithm of the
state of the art. We propose to exploit three differences with the TLGs model; the
relations fixed arity, the signatures and the inference rules. The first difference
corresponds to the biparticity of CGs, the second one to the constraints on
concept nodes labels connected to relation nodes and the third one to deduction
mechanisms.

This paper has two goals. First it aims at defining a functional frequent
pattern mining algorithm running on a CG database, taking the specificities and
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Fig. 1. Example of a CG with its vocabulary: CG in the bottom left part, a hierarchy
on concepts in top left part, two signatures in the top right part and an inference rule
in the bottom right part.

the additional knowledge in CGs into account, as compared to TLGs. Second it
aims at showing that using such specificities results in a more efficient algorithm
in memory space, speed and quality of output as compared to existing algorithms
on TLGs.

Section 2 presents conceptual graphs as well as the current state of the art on
taxonomy-based labeled graph pattern mining algorithms. Section 3 describes
the proposed algorithm named cgSpan. Section 4 describes the experimental
study and the considered quality criteria, as well as the obtained results. Sec-
tion 5 concludes on this work and discusses some directions for future works

2 State of the Art

This section briefly recalls the definitions of conceptual graphs and summarizes
some graph pattern mining algorithms.

2.1 Conceptual Graphs

Conceptual graphs [3] are a family of formalisms of knowledge representation,
made of ontological and factual knowledge. They define sets of bipartite graphs,
the CGs, representing the facts, all referring to ontological knowledge stored
in the so-called vocabulary; an example is illustrated on Fig. 1 and commented
below. Several levels of expressiveness have been defined, see [3] for an exhaustive
review, the formal definitions of the notions used in the paper are recalled below.

The ontological part of a CG is a vocabulary, defined as a 5-tuple V =
(TC , TR, σ, I, τ). TC and TR that respectively correspond to concept and relation
types are two partially ordered disjoint finite sets, where ordering corresponds
to generalisation. TC is illustrated in the top left part of Fig. 1. It contains a
greatest element >, represented as ”Thing” in Fig. 1. TR is partitioned into sub-
sets T 1

R . . . T
k
R, 1 . . . k (k ≥ 1) respectively, meaning that each relation type has
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an associated fixed arity. σ is a mapping associating a signature, illustrated on
top right part of Fig. 1, to each relation. I is a set of individual markers. τ is a
mapping from I to TC .

The factual part are the CGs themselves. A CG is a 4-tuple G = (C,R,E,label).
G is a bipartite labeled multigraph as illustrated on the bottom left part of Fig. 1.
C and R correspond to concept and relation nodes, where elements of C are pairs
from TC × I and elements of R are elements of TC . E contains all the edges
connecting elements of C and R and label is a labelling function.

An extension to the previous basic CG setting consists in defining so-called
inference rules, that define deduction principles to complete CG, either including
additional nodes or updating their labels. As illustrated in bottom right part
of Fig. 1, such a λ-rule is an ordered pair of λ-CG made of a hypothesis and a
conclusion, where a λ-CG is a CG with defined connection nodes, i.e. nodes with
generic marker with an associated variable used to match nodes from hypothesis
to nodes from conclusion. Fig. 1 illustrates the two connection nodes matching
with the associated variable ”∗x”. The application of a rule can be the extension
of a CG, the conclusion then including the hypothesis, or the specialization of a
pattern, the conclusion then being a copy of the hypothesis with more specific
labels, but it can be both. Fig. 1 illustrates the case of an extension rule. Formal
definitions can be looked up to in [3].

We base our proposition on algorithms taking taxonomy-based labeled graphs
(TLGs) [9] as input. A taxonomy is a set of labels with a partial order relation.
For instance, the hierarchy of concepts in Fig. 1 is a taxonomy. The partial order
relation is the generalisation, meaning that if A generalises B, if any instance
of B is an instance of A. A TLG is a labeled graph whose labels are part of
a taxonomy, less expressive than a CG. Fig. 1 would represent a TLG if there
were no distinction between concept and relation nodes, no relation fixed arity,
no signatures, no inference rules and no individual markers.

2.2 Subgraph Mining

Frequent pattern mining (FPM) algorithms, e.g. summarized in [6], are central
in the data mining community. They take a database as input and return a
set of frequent patterns, by counting support, i.e. the number of occurrences, of
each candidate, i.e. a potential frequent pattern, in the considered data. Patterns
can be extracted from sets, also called transactions, sequences or structures for
example. In the case of complex instances such as sequences or graphs, the
support can be defined as the number of instances containing the candidate, not
considering multiple occurrences within an instance as a weight. In this paper,
we consider the classic choice where a graph supports a pattern if and only if
there exists a homomorphism from the pattern to a subgraph of the considered
graph.

One of the most used graph pattern mining algorithms is gSpan [10], that
applies to labeled graphs and relies on encoding graphs as sequences, where a
unique sequence corresponds to a unique graph, switching the context as well
from subgraph mining to subsequence mining. It has been extended to the case



4 A. Faci et al.

of taxonomy-based labeled graphs [7, 2] and then further enriched to add the
possibility of mining directed TLGs with many taxonomies [9].

These TLGs pattern mining algorithms add the inclusion of hierarchies to
find more patterns and gain in efficiency. Indeed, label generalization leads to
a more lenient label comparison, as two different labels can be generalized to a
similar one, increasing the number of returned patterns. Also, they first mine for
structural patterns before considering labels by generalizing to the most general
type, resulting in more patterns explored at once. They also tackle the problem of
the massive amount of patterns returned in classic pattern mining approaches by
pruning or not exploring irrelevant patterns. The pattern relevancy is determined
by several measures such as over-generalization and statistical significance [9].

Our proposition is based on the DMGM-GSM algorithm (Directed Multi-
Graph Miner - Generalized Subgraph Mining) [9]. The latter takes into account
the taxonomy on labels in 3 steps: first for each node in a TLG, the label is re-
placed by the path to its upmost type. Then patterns are mined by considering
only the top type in the newly encoded taxonomy paths labels. Finally, retrieved
patterns are successively specialized until they are no more frequent, i.e. with a
support count lower than the defined support threshold.

3 cgSpan: a CG Frequent Pattern Mining Algorithm

cgSpan is the first frequent pattern mining method running on Conceptual
Graphs, to the best of our knowledge. Based on DMGM-GSM [9], it is con-
ceived as taking consecutive enrichment steps from TLGs to CGs into account.
We use the additional information in CGs to restrict the output and ensure both
conformity of result and speed.

3.1 Overview

cgSpan is made of three modules, each one being dedicated to one specificity of
CGs as opposed to TLGs: the rules fixed arity, the signatures and the inference
rules. They can be combined to exploit simultaneously all characteristics of CGs,
as illustrated in Section 4. They are described in turn in Sections 3.2 to 3.4, this
section describes their common points.

The essential part of cgSpan is a pre-processing step which translates each CG
of the input database to TLG. The basic principle is similar to that of DMGM-
GSM: labels are built by concatenating all concept types, from the top type to
the node type, separating them with a ’ ’. For instance ”Plane:F-DZUX” from
Fig. 1 is replaced by ”Thing Vehicle Plane F-DZUX”. Then this step is modified
accordingly by each of the three modules to take into account CG specificities,
especially by the neighborhood module (see Section 3.2).

Then the pattern mining is run with DMGM-GSM, only modified by the
inference rule module described in Section 3.4 to increase efficiency.

Finally the post-processing translates the obtained frequent patterns back to
the CG formalism. As described in Section 3.3, the signature module includes
an additional pruning step.
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Fig. 2. Translation from CG to TLG as sets of bricks. The taxonomy-path labels
detailed below start from top types and specialize all node labels at the same time.

3.2 Exploiting Relation Arity and Neighborhood Nodes

The first specificity of CGs we propose to exploit is the arity of the relation
nodes: any relation node is necessarily connected to a known number of concept
nodes. In this regard, when operating on candidates, any relation node addition
should immediately result in the addition of its connected nodes.

We therefore define an elementary brick as a node and its connected nodes
of the input CGs, so as to avoid partial neighborhoods in returned patterns and
to increase efficiency. Fig. 2 illustrates how a CG can be encapsulated as a TLG
of elementary bricks where ”T3” is a relation type more general than ”fly-in”.

A brick is associated to a single TLG node. Its label is defined as follows: it is
the concatenation of the taxonomy-enriched labels of the relation node and each
of its associated concept nodes, in the order specified in CGs by the edge labels.
Finally, edges are built between bricks that share a common concept node, as
illustrated in the right part of Fig. 2. The edge labels are the taxonomy paths of
the bricks common concept nodes. Fig. 2 shows for instance the transformation
from a brick in a CG with ”A plane is flown by a human in a location” to N1.

3.3 Exploiting Signatures

The second specificity of CGs considered in cgSpan is the signatures. They define
for each relation type a restriction on concept types: for each relation node, they
specify a maximal generic type for each connected concept node. We propose to
exploit this information in the pre-processing and post-processing steps, respec-
tively to restrict the label generalization of concept nodes and to prune patterns
to avoid redundancy with signatures.

As an instance we consider in this section the relation ”fly-in” with signature
(Human, V ehicle, Location) as illustrated in Fig. 3.

In the pre-processing step we propose to prune the taxonomy path, not build-
ing it up to the most general type, but up to the level indicated in the signature.
For each relation node in a CG, concept nodes connected to this relation see
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their labels compared to the corresponding signature. Each comparison is then
followed by a cut of the taxonomy path down to the matching type in signa-
ture. For instance, ”fly-in(Thing Human,Thing Vehicle Plane,Thing Location)”
is replaced by ”fly-in(Human,Vehicle Plane, Location)” in Fig. 3.

In the post-processing step, two kinds of patterns are affected. First, we
propose to remove patterns that can be reduced to a set of connected signatures.
Second, we propose to modify patterns including parts that can be reduced to
a set of connected signatures by replacing the latter by references to signatures.

For instance, ”fly-in(Human,Vehicle,Location)” is ignored while ”fly-in(Human,
Vehicle Plane, Location)” is not, since ”Plane” is a specialization of ”Vehicle”
type specified in signature as illustrated in Fig. 3.

3.4 Exploiting Rules

The third specificity taken into account by cgSpan is positive rules, considering
the ones including extension and the ones including specialization.

A positive rule including specialization specifies that when a CG includes
the rule hypothesis, some nodes specified in rule conclusion can be specialized.
During pre-processing, after the replacement by taxonomy paths in CGs, we
propose to extend this path for each node matching such a rule to the type in
conclusion.

On the contrary, a positive rule including extension enables the extension
of CGs in database. During the pattern mining step, we propose to extend all
patterns matching the rule hypothesis to the rule conclusion. In the process, the
rule hypothesis and intermediate patterns are ignored. It can be applied more
than once, thus extending a matching CG at each application, but we limit their
use to one.

Fig. 4 illustrates the application of the rule from Fig. 1. All intermediate
patterns, from hypothesis to conclusion, are not explored when using such rules
since the extension is in one step.
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4 Experimental Study

This section describes the experiments we conducted, presenting the considered
synthetic data and quality criteria and discussing the obtained results.

4.1 Data Generation

To the best of our knowledge, no CG dataset of quality is available. Existing ones
are either extremely simple or do not fully respect the CGs formal restrictions.
One possibility would be to use a translation method such as Tnat [1] that makes
it possible to obtain CG datasets from real datasets. However it usually results in
datasets with mainly factual or mainly ontological knowledge. Moreover it does
not allow to define the expected results in terms of frequent patterns to identify
in the data, making it difficult to validate the proposed algorithm. Consequently
we propose CGGen, a new algorithm to generate CG datasets from a set of
constraints, either from a set of defined frequent patterns, used as components
of generated CGs, or from frequency distributions that the generated CGs need
to respect. CGGen thus enables the definition of expected results, as expected
frequent patterns on one hand and frequency distribution on the other hand,
that can be used to validate our algorithm.

We use two datasets in the experimental results, denoted D1 nad D2, con-
sisting in a few hundreds of nodes. They consist of 1000 graphs of around 30
nodes each. The hierarchies contain 50 concept types and 20 relation types. D2

CGs follow two distributions used for generation: one over their size and one
over their labels.

D1 enables the definition of expected results. First we expect the set of pre-
defined CGs used as seed to generate these datasets to be present in the frequent
patterns. Then we expect that some simple constraints verified by D1 are also
verified by the set of frequent patterns. Also we expect that the distribution on
labels in D2 is followed by the returned patterns.
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4.2 Criteria

The comparison of the cgSpan returned patterns with the expected ones allows
to make use of the classic precision and recall criteria, respectively defined as the
proportion of expected patterns present in the returned ones, and reciprocally.

In addition, to assess the computational efficiency of the proposed cgSpan
algorithm, the redundancy of patterns is assessed, defined as the proportion of
pruned patterns w.r.t. all patterns, returned or pruned. The greater it is, the
more redundancy has been removed, the better it is.

Finally, to assess efficiency, the run time of cgSpan is compared to that of
DMGM-GSM.

4.3 Experimental Results

We process D1 and D2 translated to TLG with DMGM-GSM and process them
with four variants of cgSpan, considering each module, as described in Sec-
tions 3.2, 3.3 and 3.4, individually and full cgSpan that includes all three mod-
ules.

Tab. 1 gives the results obtained for D1. All algorithms retrieve all expected
patterns or combination of expected patterns so all versions attain the func-
tional goal and obtain a recall equal to 100%. Regarding precision, all variants
not taking elementary bricks into account return partial neighborhoods, reduc-
ing their performance for this criterion. The use of signatures prunes some of
these incomplete patterns since most of them contain top concept nodes. We can
spot that an increase in redundancy is correlated with an increase in precision.
It can be interpreted as ”Patterns that are pruned are mostly not expected pat-
terns”. Finally, the use of elementary bricks seems to increase the time efficiency
significantly. Indeed, there is a gain of almost 20% in time while the gain with
the use of rules is less than 10%. These observations have been confirmed by
experiments with other generated databases with varying parameters. Tests on
a huge database with millions of nodes are included in future works to observe
how well this improvement keeps up with the increase in size.

Fig. 5 presents the results with cgSpan on D2, showing the number of oc-
currences of the expected and output patterns depending on their size. It shows
the frequency distribution on the number of occurrences of patterns returned by
cgSpan according to their size. The frequency distribution over the input dataset
has been used to generate D2, so we use both distributions to analyze results.
Note that when counting patterns, only the maximal patterns, i.e. patterns not
included in another pattern, contribute to this illustration: all counted patterns
of size 3 are not present in the counted patterns of greater size. We can observe a
global correlation between the input dataset and the frequent patterns. The fact
that there is no frequent pattern of size 1 or 2 is explained with the elementary
brick restriction that does not allow partial neighborhood while in D2 these CGs
correspond to isolated concept nodes.
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Table 1. Comparison of cgSpan and its variants with D1

Test Rec. (%) Prec. (%) Red. (%) T-Eff. (%)

DMGM-GSM 100 57 0 100

cgSpan with bricks 100 83 0 83

cgSpan with signatures 100 75 38 97

cgSpan with rules 100 63 20 93

Full cgSpan 100 85 46 79

Number 
of nodes1

Number of occurrences

50

100

2 3 4 5 6 7 8

Input Dataset

Patterns

Fig. 5. Frequency distributions over D2 and over the set of returned frequent patterns
with cgSpan.

5 Conclusion and Future Works

This paper presents cgSpan, an algorithm to mine frequent patterns from a
CG database. The particularities of CGs are exploited to produce a functional
algorithm, and quality of result is increased w.r.t. defined criteria. We use the
concept and relation difference and inference rules to speed up the process and
we use signatures and other elements to prune less relevant patterns.

Future works will aim at extending the proposed cgSpan algorithm, consider-
ing even richer variants of CGs, in particular nested CGs [3]. Another direction
will focus on the definition of quality criteria: it may be interesting to exploit sta-
tistical significance such as on based on Chung–Lu model [4] adapted to CGs to
propose a functional statistical significance criterion for CGs mining algorithms
such as cgSpan, used both to improve results and validation.
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