
HAL Id: lirmm-03400751
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03400751

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CG2A: Conceptual Graphs Generation Algorithm
Adam Faci, Marie-Jeanne Lesot, Claire Laudy

To cite this version:
Adam Faci, Marie-Jeanne Lesot, Claire Laudy. CG2A: Conceptual Graphs Generation Algorithm.
Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA),
the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the
11th International Summer School on Aggregation Operators (AGOP), Sep 2021, Bratislava, Slovakia.
pp.63-70, �10.2991/asum.k.210827.009�. �lirmm-03400751�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03400751
https://hal.archives-ouvertes.fr


CG2A: Conceptual Graphs Generation Algorithm

Adam Facia,b and Marie-Jeanne Lesota and Claire Laudyb

aSorbonne Université, CNRS, LIP6, F-75005 Paris, France {adam.faci,marie-jeanne.lesot}@lip6.fr
bLRASC, Thales, 91477 Palaiseau, France claire.laudy@thalesgroup.com

Abstract

Conceptual Graphs (CGs) are a formalism
to represent knowledge. However produc-
ing a CG database is complex. To the best
of our knowledge, existing methods do not
fully use the expressivity of CGs. It is par-
ticularly troublesome as it is necessary to
have CG databases to test and validate algo-
rithms running on CGs. This paper proposes
CG2A, an algorithm to build synthetic CGs
exploiting most of their expressivity. CG2A
takes as input constraints that constitute on-
tological knowledge including a vocabulary
and a set of CGs with some label variables,
called γ-CGs, as components of the gener-
ated CGs. Extensions also enable the auto-
matic generation of the set of γ-CGs and vo-
cabulary to ease the database generation and
increase variability.

Keywords: Conceptual Graphs, Data gener-
ation, Predictability, Variability

1 Introduction

Conceptual graphs (CGs) [5] refer to a family of
formalisms of graph-based knowledge representation,
close to existing semantic web languages such as
RDF(S) [14, 3] and OWL [15]. Their advantages in-
clude their data modeling capacities, grounded on first-
order logic (FOL) semantics, as well as the possibility
to manage knowledge through graph-based operations.
They differ from other graph-based semantic knowl-
edge representations by the clear distinction between
ontological knowledge and factual knowledge which
ensures conformity of reasoning with FOL formulas.
CGs have many applications in research and industry,
eg. in security [11], semi-structure data modeling [18],
software development [19], clustering [16], music [10]

or decision-making [17] to name a few. One draw-
back is the major difficulty in designing a CG database
without prior expertise. It may be one of the reasons
why there has been for a long time the need of CG
datasets of quality [1, 7], in particular for benchmark-
ing. Indeed, existing CGs are either private properties,
small examples to illustrate the formalism or specific
use cases that only represent a reduced part of the for-
malism, for instance with no ontological part. As will
be discussed in Section 2, Tnat [2] is a translation al-
gorithm from RDF(S)/OWL [14, 3, 15] to CGs. The
quality of the resulting CG base depends on the qual-
ity of the RDF(S)/OWL input base and only a part of
the CG formalism is taken into account. The notion
of quality is here mainly understood as the combina-
tion of two criteria: variability, i.e. the fact that many
datasets varying on several characteristics can be gen-
erated from the same input, and predictability, i.e. the
fact that the characteristics of the resulting database
can be derived from the input without mining of the
base. Two additionnal criteria are used: expressive-
ness, i.e. how much of the CG formalism is repre-
sented, and computational efficiency.

This paper proposes CG2A (Conceptual Graphs Gen-
eration Algorithm), an algorithm generating a CG
database from a set of constraints corresponding to on-
tological knowledge. In essence, factual knowledge
is generated from the input ontological knowledge de-
fined as a vocabulary and a set of CGs with some label
variables, called γ-CGs. The ontological knowledge
thus constitutes an underlying model of the generated
dataset. A benefit is that the user has explicit knowl-
edge on datasets generated from this model, without
analysis of the generated datasets. It is inspired by the
benchmark generation process in the clustering com-
munity, where synthetic datasets are generated from
given data distributions that determine expected results
for a clustering algorithm running on these datasets. It
has been used to validate cgSpan [9], an algorithm pro-
posed to mine frequent patterns in CGs.



In order to generate realistic datasets, without a to-
tal randomization of labels and structure, ontological
knowledge is required as input. This corresponds to
constraints on the generated CGs domain. Still this in-
put can be generated automatically from a reduced set
of numerical parameters based on three proposed ex-
tensions to the algorithm, respectively automating the
generation of the vocabulary, the γ-CGs and the γ-CGs
variables. The generated CGs domain is therefore ex-
tended to all CGs that can be defined over the ontolog-
ical knowledge generated from the given set of numer-
ical parameters. The use of these extensions requires
further analysis to establish the same quantity of onto-
logical knowledge and thereby of expected results, i.e.
reduces predictability. Consequently the CG2A ver-
sion to use depends on the use case: on one hand it is
possible to define all input ontological knowledge or
reuse an existing one to represent a specific situation;
on the other hand the use of automatically generated
input enables a swift CG generation and leads to more
variability.

Section 2 presents a short reminder about the Concep-
tual Graphs formalism, including the proposed γ-CGs,
and a state of the art on CG datasets generation. Sec-
tion 3 presents the proposed Conceptual Graphs Gen-
eration Algorithm as well as its randomzsation mod-
ules. Section 4 describes the conducted experimental
study, detailing the proposed criteria, to measure nu-
merically variability and efficiency, and to assess qual-
itatively immediate predictability and representativity
of CGs formalism. Section 5 concludes the paper and
discusses some directions for future works.

2 State of the art

2.1 Conceptual Graphs

Conceptual graphs [5] are a family of formalisms for
knowledge representation, made of ontological and
factual knowledge. A CG is a bipartite graph rep-
resenting factual knowledge referring to a vocabulary
that represents the ontological knowledge.

A vocabulary is a 5-tuple V = (TC,TR,σ , I,τ). TC and
TR, that respectively correspond to concept and rela-
tion types, are two partially ordered disjoint finite sets,
where ordering corresponds to generalisation. TC con-
tains a greatest element >. Each relation type has an
associated arity; which subdivides TR in subsets re-
grouping types of equal arity. σ is a mapping asso-
ciating a signature with each relation type, i.e. a func-
tion with constraints on the type of arguments, where
a more specific relation type is mapped with a more
restrictive signature respectively for each argument.
σ(r) returns (t1, . . . , tn) where n is r arity and the ti are

elements of TC. For c connected to r, σ(r)(c) denotes
the type restriction matching c. I is a set of individual
markers used to instantiate concept nodes. τ is a map-
ping from I to TC that defines the type instantiated by
each individual marker.

A CG is a bipartite labeled multigraph represented as
a 4-tuple G = (C,R,E,label) defined over such a vo-
cabulary V . C and R correspond to concept and re-
lation nodes, E denotes the set of the edges connect-
ing elements of C and R. label is a labelling function
from C to TC × I and from R to TR. For any r ∈ R,
label(r) = tr ∈ TR is the type of r and for any c ∈ C,
label(c) = (tc, ic) ∈ TC× I where tc is the type of c and
ic is the optional individual marker of c.

We extend this formalism to represent CGs
where some labels are replaced with variables,
named γ-Conceptual Graphs and inspired by
λ -BGs from the CG formalism [5]. A γ-CG
Γ = ((v1,D1) . . .(vn,Dn))G, n ≥ 1 is a concep-
tual graph G with n variables vi and their respective
domains Di. Each variable vi is assigned to a label
of G, either a relation type label, concept type label or
marker label. It is illustrated in Fig. 6 where v1, v2 and
v3 are respectively assigned to a concept type, marker
and relation type. For a variable vi associated with a
relation type of r with label(r) = tr, its domain Di
is a subset of TR reduced to relation types of same
arity, i.e. Di = {t ∈ TR,arity(t) = arity(tr)}. For a
variable vi associated with a concept type of c with
label(c) = (tc, ic), its domain Di is a subset of TC
reduced to the concept types respecting all constraints
imposed by the signatures of connected relation nodes,
i.e. Di = {t ∈ TC,∀ r ∈ R,(c,r) ∈ E, t ≤ σ(r)(c)}.
For a variable vi associated with a marker mi,
the domain is a subset of I reduced to mark-
ers of same or more specific concept types, i.e.
Di = {m ∈ I, type(m)≤ type(mi)}.

Finally we define a neighborhood as a node and its con-
nected nodes, for instance a relation node and its con-
nected concept nodes.

2.2 Conceptual graphs data generation

To the best of our knowledge, there is no CG dataset
of quality available. Available CG datasets are for in-
stance based on flat hierarchy, i.e. with no order de-
fined between types, as the conceptual graph data-set
for NLP/NLU [8]1, or even actually not consistent with
the CG formalism. There exit CG datasets in industry
but they remain company property, as they may be the
result of intense work and may contain private data.

1https://github.com/alexge233/conceptual_
graph_set



CG datasets can be obtained as the result of translation
algorithms to generate them from a dataset respecting
another formalism. The main differences with a proper
generation algorithm are that the goal is different and
that the resulting dataset depends on the chosen input
dataset and its formalism. T3 and Tnat [2] are existing
algorithms translating knowledge datasets expressed in
the RDF(S)/OWL [14, 3, 15] formalism to knowledge
datasets expressed in the CG formalism. They are im-
plemented in CoGUi2, a tool to visualize and manipu-
late CGs. Their main validation criterion is the equiva-
lence between reasoning in RDF(S)/OWL before trans-
lation and reasoning in the CGs formalism after trans-
lation: they aim at ensuring that the same conclusions
are deduced from the same premises in both datasets,
and that reasoning remains identical when translating
back to RDF(S)/OWL. In this regard, T3 is a sound and
complete translation w.r.t. RDF(S) but not intuitive vi-
sually. Indeed, it represents the RDF(S)/OWL triplets
constituted of subject, object and predicate by a blank
relation node linking these three elements as concept
nodes. As a consequence the fact that relations in CGs
correspond to relations between entities is not repre-
sented. It is more intuitive to represent relations nodes
connecting concepts nodes as predicates linking sub-
ject and object, as is the case of Tnat .

In addition Tnat focuses on exploiting the separation
between background knowledge and factual knowl-
edge by translating the predicates as binary relation
nodes linking the subject and object, both translated as
concept nodes. This translation ensures two properties
that enable a better representation of CGs but hinders
the reasoning equivalence. First, a separability con-
dition has to be satisfied by the input RDF(S)/OWL
dataset: it states that any entity in the knowledge base
appears either as a class, a property or an instance (in
the RDF(S) sense). Otherwise the entity is considered
ambiguous and different choices are made depending
on the situation: if a violation of this separation re-
quirement between classes and properties occurs, the
ambiguous predicates are ignored: if a violation oc-
curs between classes and instances, or properties and
instances, the triples involving the ambiguous entity as
an instance are ignored. Second, a distinction between
ontological and factual triples is performed to populate
either the vocabulary or the conceptual graphs when a
new triple is processed. This distinction stems from the
flexibility of RDF(S) that does not impose a clear dis-
tinction between factual and ontological knowledge.
A particularity of GC databases constituted with Tnat
is that only relations of arity 2 are built because of
RDF(S) restrictions. This drawback is minimised by
the fact that relation of arity greater than 2 can always

2http://www.lirmm.fr/cogui/

be brought back to a set of relations of arity 2, and con-
versely. This is immediate considering that CGs are
graph-based representations of first-order logic formu-
las and that relations correspond to atomic formulas,
which are 2-decomposable [12].

3 CG2A: generation from a set of
constraints

CG2A is a three step algorithm that generates a CG
dataset from ontological knowledge. It ensures rep-
resentativity of the CG formalism as well as variabil-
ity and immediate predictability of the generated base
characteristics. First CG2A generates a CG by ran-
domly combining input γ-CGs until reaching a speci-
fied minimum size. Then variables are assigned ran-
dom values from their respective domains. Finally the
nodes in the generated CGs with the same individual
marker are merged to increase the connectivity of the
resulting CG. CG2A iterates until a specified number
of CGs is reached. This section first describes CG2A
input and details its three steps. It then presents its ex-
tension modules automating the generation of input.

3.1 Input

CG2A, in its default mode, takes five parameters. They
include the number of CGs to be generated, maxCGs,
the minimum size, in number of nodes, for each gen-
erated CG, minSize, and the maximum number of spe-
cializations to be operated on each variable assigned to
a type label, maxSpe. They are used in the stopping
conditions of the algorithm. The two other parameters
are a vocabulary V and a set of γ-CGs G , as detailed
hereinafter.

The vocabulary, as formally presented in Section 2.1,
contains a hierarchy on concept types, a hierarchy on
relation types and a set of signatures corresponding
to the relation types in the hierarchy. The individ-
ual markers set is populated during generation when
a concept node is instantiated. The set G of γ-CGs are
the components of the generated CGs. Compared to
a classic CG, as described in Section 2.1, some labels
are replaced with a variable referring to a list of val-
ues from the vocabulary. Thus γ-CGs are configurable
constraints.

3.2 Proposed algorithm

Fig. 1 gives the pseudo-code of CG2A, commented be-
low: CG2A generates sets of CGs by randomly com-
bining elements from the set G of input γ-CGs into
bigger CGs. Let Gc = (Cc,Rc,Ec, labelc) be the cur-
rently generated CG and Γ = ((v1,D1) . . .(vn,Dn))G =



Input: V = (TC,TR,σ , I,τ), G ,
maxCGs, minSize, maxSpe.

• Initialize Go to an empty set

• Iterate until size(Go)≥maxCGs

– Initialize Gc = (Cc,Rc,Ec, labelc) to an
empty CG

– Iterate until size(Gc)≥ minSize
1. Get (v1, . . . ,vn)G = (C,R,E, label) in G

2. Attribute value to each variable vi

3. Specialize each type label var from 0 to
maxSpe times

4. Gc = Join(Gc,G)

– Add Gc to Go

• Return Go

Figure 1: Pseudo-code of the proposed CG2A.

(C,R,E, label) be a γ-CG from the input set G . First
G variables are instantiated with values from their do-
mains, and the ones assigned to type labels are special-
ized from 0 to maxSpe times using hierarchies from V .
Then Go = (Cc ]C,Rc ∪ R,Ec ] E, labelc ] label) is
formed from the join of Gc and G where ], based on
coreferent nodes merge [4], is a specific union whose
differences follow: if there are elements of Cc with an
individual marker similar to one of C, only the most
specialised is kept. Then neighborhoods are merged so
that both neighborhoods are connected to the resulting
node, i.e. elements of Ec and E corresponding to the
two merged nodes are reassigned to the resulting node.

This join operator is illustrated in Fig. 2, where the
node colour indicates their associated markers: the two
green nodes, resp. at the right end of the current CG
and at the top of the added CG, are merged. They are
not necessarily of same type; the most specific type is
retained, indeed as illustrated in the example, the con-
nected signatures enforce a specialisation of this type.

Without operator ], the algorithm would obtain for
each generated CG a set of unconnected instantiated
elements from G . The connectivity of the resulting
CGs thus depends on the number of common nodes.
There are other techniques available for graph fusion
based on the join operator [13, 6], but this simple fu-
sion operator based on coreferent nodes merge opera-
tor is sufficient in this case.

CG2A stops CGs combinations upon reaching the de-
sired minimum size, minSize and stops generation
upon reaching the desired number of generated CGs,
maxCGs. Since CGs of potentially several nodes are

CG
 combination

Current CG Added CG Resulting CG

Figure 2: CG join step in CG2A. In this representa-
tion, concept nodes are squares and relation nodes are
circles.

added at the same time, the resulting CGs are typically
greater than minSize.

The advantages of using γ-CGs instead of directly
defining many variants of a CG is that the process is au-
tomatic and that from one designed γ-CG, many can be
generated while keeping its structure and its semantic.
As a consequence CG2A guarantees variability from
one input as well as predictability thanks to knowledge
of input γ-CGs and their characteristics.

3.3 Input generation to increase variability

This section presents three modules to generate auto-
matically the input so as to increase variability and ease
the generation. All mentioned numerical parameters
can be replaced by mean and standard deviation, and
drawn from the associated normal distribution.

3.3.1 Automatic generation of vocabulary

This module generates automatically the vocabulary V
from four parameters: the desired depth of hierar-
chies both for concept and relation types, the maxi-
mum number of children of each node of the hierarchy
and the number of individual markers for each concept
type. This generation is random, however the four pa-
rameters ensure a number of fixed characteristics in the
resulting vocabulary.

As illustrated on Fig. 3 and 4, for concepts and rela-
tions respectively, a hierarchical structure is generated
until the desired depth is reached and random unique
labels are assigned to each node of the hierarchy. The
hierarchy of concept types is a rooted tree with the
most general type>, denoted "Top" in Fig. 3. For each
concept type, a list of individual markers is generated.
For relation types, a top type is respectively defined
for each arity, e.g. denoted T3 for the case of arity 3
illustrated in Fig. 4. Then signatures are defined us-
ing the previously generated hierarchy of concepts for
each relation type, with each relation top type having a
default signature with only > as concept type restric-
tion. A more specific relation type has a more restric-



Top

A

Top

A

B C D

Top

A

B C D

E F G H I

J

Top

c1, c2, c3d1, d2, d3

e1,e2,e3 f1, f2, f3 g1, g2, g3 h1, h2, h3 i1, i2, i3

j1, j2, j3

Individual markers:a1, a2, a3

b1, b2, b3

Figure 3: Automatic generation of a hierarchy of con-
cept types, here performed in three steps. Parameters
are: Depth = 4; Maximum number of children = 3;
Number of individual markers per type = 3.

T3

T3A T3B

T3

T3A T3B

T3C T3D T3E

T3A A

A

A 0 2

1T3 Top

Top

Top 0 2

1

T3B B

I

A 0 2

1

T3C A

A

A 0 2

1

T3E E

I

A
0

2

1

T3D G

D

A 0 2

1

T3

T3

T3A T3BHierarchy:

Signatures:

Figure 4: Automatic generation of a hierarchy of rela-
tion types with their signatures, here performed in two
steps. Parameters are: Depth = 3; Maximum number
of children = 3.

tive signature, meaning that the specified restrictions
require an identical or more specific concept type. It
is illustrated in Fig. 4 where at each step the hierarchy
is deepened and signatures are defined as identical or
more restrictive than signatures of more general rela-
tion types.

3.3.2 Automatic generation of input γ-CGs

This module generates automatically a set of input γ-
CGs so as to define G , as illustrated in Fig. 5. The
generated γ-CGs actually have no defined variable, but
as this module can be used independently, one can
subsequently define variables manually or use auto-
matic generation. This module takes as input a vocab-
ulary V (possibly generated automatically using the
module described in the previous subsection 3.3.1) and
two numbers: the number of γ-CGs to be generated
and their minimum size. While designing CGs requires
proficiency in the formalism and also requires to re-
spect of the vocabulary constraints, only two numbers
restrict the domain of γ-CGs generation.

The γ-CGs module is similar to applying CG2A to the
set of signatures taken from the input vocabulary V .
The only difference is that each label is treated as a
variable with no constraint, so that they all have a ran-

T1Top 0

T3B B

I

A 0 2

1

T3C A

A

A 0 2

1

Signatures:

T2A ED 0 2

T1Top:
a1

0 T3B B:a2

I:i3

A:a1 0 2

1Addition Fusion
T1 T3B B:a2

I:i3

A:a1 0 2

1

Addition

T1 T3B B:a2

I:i3

A:a1 0 2

1

T3C A:i3

A:a2

A 0 2

1

Fusion
T1 T3B B:a2

I:i3

A:a1 0 2

1

T3CA 0 2

0

0
0

1

Figure 5: Automatic generation of input γ-CGs.

T1 T3B B:a2

I:i3

A:a1 0 2

1

T3CA 0 2

0

1

T1 *v3 B:*v2

I:i3

A:a1 0 2

1

T3C*v1 0 2

0

1

*v1: B, G
*v2: f2, f3

*v3: T3B, T3 

Input CG: Generated γ-CG:

Figure 6: Automatic generation of γ-CGs variables.

domly attributed label and are randomly specialized.

3.3.3 Automatic generation of variables

This module generates variables in input γ-CGs. In-
stead of having to choose which labels are variables
and their respective domains, this module takes a set of
γ-CGs and a matching vocabulary as input, which can
be generated with the previous modules, as well as five
numbers: the numbers of concept types, relation types
and individual marker variables per CG, the number of
values per variable and the number of specialisations.
It may be run even if variables have already been de-
fined in the γ-CGs to increase their number.

First, for each CG, variables are attributed to a relation
type, a concept type or an individual marker. Then a
list of values is associated with each variable. Fig. 6 il-
lustrates this operation with the variables v1,v2 and v3.
For a relation type as v3 in Fig. 6, the module chooses
from relations with the same arity and identical or less
restrictive concept types. For a concept type as v1 in
Fig. 6, the module chooses from concept types equal to
or more specific than the ones compatible with the sig-
natures of the neighborhood. For an individual marker
as v2 in Fig. 6, it chooses from individual markers with
an assigned concept type equal to or more specific than
the concept node type. Because of these restrictions,
first relation type variables are defined, then concept
type variables and finally individual marker variables.
Then, all assigned variables corresponding to type la-
bels are specialized a number of times up to the number
of specialisations parameter.

4 Experimental study

This section presents the experimental study conducted
to evaluate CG2A both per se and compared to existing



translation techniques. The input used in these exper-
iments as well as the desired properties of variability,
predictability, representativity and efficiency are pre-
sented in the following subsection. Then results are
subsequently examined in view of each criterion.

4.1 Experimental protocol

We consider four criteria to optimize for a data gener-
ation algorithm. First the algorithm has to enable vari-
ability in the generated data from one input. Indeed
from a unique ensemble of ontological knowledge the
possibility to produce datasets with various sizes and
characteristics may be required to assess the breadth
of corresponding possible facts. Second it has to pro-
vide a certain level of immediate predictability. This
means that from a given data generation algorithm, de-
noted dGenA, the expected results of a data mining al-
gorithm, denoted dMinA, run on a database generated
by dGenA can be defined. Obviously the expected re-
sults will differ depending on dMinA goal and whether
all that can be deduced from the dGenA input is rel-
evant regarding this goal. This criterion is essential
to enable dMinA validation but is difficult to quantify.
Third the generation algorithm has to achieve repre-
sentativity, i.e. exploit as much of the CG formalism as
possible. Any fragment that cannot be represented lim-
its the use of the generation algorithm to the subset of
situations where this fragment is unnecessary. Fourth
the computational time has to be minimised. Indeed
it may be crucial to obtain quickly a set of examples
datasets when given ontological knowledge. Besides
many generations may be required while testing pa-
rameters variations to satisfy expectations.

These criteria are used to compare CG2A with Tnat us-
ing the following configuration. The input of Tnat is
an RDF(S)/OWL dataset3, modified to resolve some
issues when parsing for translation. The modified
dataset includes an ontology constituted of 39 concept
types and 35 relation types organized in a hierarchy
with a depth of 5 and between 1 and 3 children for
each non-leaf type. An option proposed by Tnat to split
CGs in several connected components has been used,
so that each resulting CG is a connected graph. Oth-
erwise it results in one big unconnected CG. The input
for CG2A matches the characteristics of Tnat produced
base to ensure that we mostly evaluate the influence of
the algorithmic part rather than the variability induced
by parameters. Running T3 on the same dataset results
in a unique CG of about 6000 vertices and no ontol-
ogy (other than RDF/RDF(S) knowledge). All relation
nodes are the "triple" relation node to connect elements

3http://www.semanticbible.com/ntn/ntn-view.
html

of a triple. As it does not lead to many CGs nor a
proper ontology, T3 is irrelevant for our concerns and
in consequence its results are not used in what follows.

The first row of Tab. 1 displays the results of Tnat and
the following ones display the average results across
100 runs on CG2A and its variants with each exten-
sion module individually (Auto Voc, Auto γCG and
Auto Var respectively) and CG2A with all extension
modules (Full Auto).

4.2 Variability results

In order to assess numerically the notion of variabil-
ity, we consider the following criteria: the average size
of generated CGs in number of nodes, denoted NbN,
and the average number of unique labels, denoted NbL,
in one CG, both with their standard deviation, and the
distribution of relation arity from 1 to 3, denoted Ar1,
Ar2 and Ar3. These criteria are defined for the sake
of comparison with existing techniques providing CG
datasets. They are not optimized or even considered by
the translation algorithm Tnat that aims at maximizing
conformity of reasoning between the input and output
databases. CG2A and its variants can represent rela-
tion of arities greater than 3, but the use Ar1, Ar2 and
Ar3 seems to suffice for the presented experiments.

It can first be observed that the translation of Tnat re-
sults in a huge CG of hundreds of nodes and many CGs
of a few nodes. This is why in Tab. 1 the standard de-
viation of NbN is significantly more important than the
average NbN, and the average NbL is relatively small.
Moreover Ar1 and Ar3 are zero, which is due to the
fact that the RDF(S)/OWL languages do not represent
relations of arities different than 2.

CG2A leads to significantly smaller standard devia-
tions, and the resulting CGs characteristics are close
to the input parameters.

It is expected that the use of automatically generated
input leads to more variability in the expected results.
It can be observed that, indeed, the use of random vo-
cabulary increases NbL standard deviation and relation
arities while the use of random CGs increases the stan-
dard deviation of NbN and arities. The results of the
fully automated CG2A combine these consequences.

4.3 Predictability results

Predictability refers to the possibility to define a priori
the results a data mining algorithm is expected to ob-
tain when run on a generated data set. It can be put in
balance with the cost of the specific resources to deploy
and efforts to undertake to define the input, in particu-
lar the ontological knowledge.



Test NbN (avg. ± sd.) NbL (avg. ± sd.) Ar1 Ar2 Ar3
Tnat 15.2 ± 321 3 ± 1 0 3 0

CG2A 36.3 ± 4 22.5 ± 4 0.5 44 3
Auto Voc 33 ± 3.5 55 ± 14 4 34 9
Auto γCG 39.9 ± 2 22 ± 4.1 6 22 31
Auto Var 35.3 ± 4 32 ± 7 0.4 42 7
Full Auto 35 ± 4 67 ± 17 8 33 26

Table 1: Results for one run of Tnat and different versions of CG2A averaged across 100 runs (see experimental
protocol in Sec. 4.1).

Tnat possesses the advantage that it generates a CG
database from a RDF(S)/OWL dataset, without requir-
ing any prior knowledge on this dataset. However this
implies that without mining the input dataset first, Tnat
cannot be considered as predictable. As such, it does
not meet the immediate predictability aim.

CG2A can be considered as predictable as the gener-
ated CG are defined as combination of the input γ-CG
that are defined over the input vocabulary: G together
with V determine the expected results whose charac-
teristics are known.

CG2A used with automatic generation of vocabulary
or γ-CGs changes the nature of the expected results,
that are defined in terms of their general character-
istics rather than specific information. As compared
to CG2A, in the case of Auto Voc, only the general
characteristics of the vocabulary are known, its speci-
ficities are not. In the case of Auto γ-CG, only the
general characteristics of the components used to build
the generated CG are known (number and size of the
γ-CGs, as well as the signatures they are built on):
Auto γ-CG adds to the CG2A variation from γ-CGs to
generated CGs another variation, from the signatures
to the input γ-CGs.

CG2A used with automatic variable generation,
Auto Var, does not modify predictability significantly.
We consider that automatic variables slightly reduce
the immediate predictability by increasing variability.

The fully automated CG2A variant, that includes the
three random modules, combines their respective prop-
erties and defines expected results in terms of their gen-
eral characteristics. Overall, the results are significant
when compared with Tnat : there is much more vari-
ability with CG2A, and while CG2A has to cope with a
balance between variability and immediate predictabil-
ity, Tnat does not enable immediate expected results.

4.4 Representativity results

As discussed earlier, Tnat outputs CG databases only
including relations of arity 2, that are unbalanced with

respect to ontological or factual knowledge, i.e. that
mostly comprehend one of the two types. Yet, if can be
argued that the advantage of disposing of relations with
varying arity only is a question of perspective or refor-
mulation and that the lack of balance is due to the con-
sidered input RDF(S)/OWL knowledge bases. Simi-
larly, the fact that Tnat often results in bases constituted
of one or two huge conceptual graphs and the rest con-
taining only a few nodes is mostly due to the available
RDF(S)/OWL bases, rather than the algorithm itself.

CG2A and its variants more naturally avoid these
drawbacks. They enable the representation of most of
the CG formalism as reminded in Sec. 2. CG2A retains
most of Tnat advantages by using the CoGui formalism
and adds the possibility to generate a large proportion
of relation nodes with various arities, and to have both
a wide vocabulary and a considerable quantity of CGs,
i.e. both ontological and factual knowledge. Besides
when defining the input, e.g. the characteristics of the
vocabulary, the user can determine the extent of the
CGs formalisms that is exploited, which is one main
advantage of CG2A. Generally speaking, CG2A en-
sures that the user can choose more precisely the char-
acteristics of the resulting base.

4.5 Efficiency results

In the conducted experiments, depending on the stop-
ping conditions parameters, most CG2A runs last less
than one second and never exceed 5 seconds. The
use of the automatic generation modules increases the
computational time, with a factor 2, however the time
spent to design input without these modules is not ac-
counted for. Tnat generation lasts much longer, with
factor of three up to ten depending on the size of the
input base. At some point if the input is too massive,
Tnat aborts so the tests could not be pursued.

5 Conclusion

This papers proposes CG2A, an algorithm to produce
Conceptual Graphs. CG2A enables more variability in



the generated dataset than any other known method as
it offers a lot of variance in the size and labels of CGs
as well as a reasonable proportion of relation nodes
with an arity different than 2 in the generated CGs.
As such, numerous different situations can be tested
through the use of CG2A, either a strongly constrained
domain to test a specific case or a more relaxed gener-
ation to test a broad variety of situations. In addition
the CG formalism is well represented with deep hierar-
chies, variation in the signatures and various arities of
relation nodes. Finally, when using a different method
to obtain a CG dataset, it is not possible to define ex-
pected results without first mining the dataset or having
prior knowledge on this dataset.

Ongoing works aim at extending CG2A to generate
more complex CGs, e.g. nested or fuzzy CGs. An-
other direction considers a different possibility in terms
of predictability, expressed as a desired distribution
over CGs parameters so as to ensure that the resulting
dataset respects such a distribution.

References

[1] J.-F. Baget, O. Carloni, M. Chein, D. Genest,
A. Gutierrez, M. Leclere, M.-L. Mugnier, E. Sal-
vat, R. Thomopoulos, Towards benchmarks for
conceptual graphs tools, in: CS-TIW’2006, Aal-
borg University Press, 2006, pp. 72–86.

[2] J.-F. Baget, M. Croitoru, A. Gutierrez,
M. Leclère, M.-L. Mugnier, Translations
between rdf(s) and conceptual graphs, in:
Springer (Ed.), Conceptual Structures: From
Information to Intelligence, Springer, Berlin,
Heidelberg, 2010, pp. 28–41.

[3] D. Brickley, R. V. Guha, B. McBride, Rdf schema
1.1, W3C recommendation 25 (2014) 2004–
2014.

[4] M. Chein, M.-L. Mugnier, Concept types and
coreference in simple conceptual graphs, in: Int.
Conf. on Conceptual Structures, Springer, 2004,
pp. 303–318.

[5] M. Chein, M.-L. Mugnier, A Graph-Based Ap-
proach to Knowledge Representation: Computa-
tional Foundations of Conceptual Graphs (Part.
I), Springer, 2008.

[6] M. Chein, M.-L. Mugnier, Conceptual graphs are
also graphs, in: Int. Conf. on Conceptual Struc-
tures, Springer, 2014, pp. 1–18.

[7] M. Croitoru, B. Hu, S. Dashmapatra, P. Lewis,
D. Dupplaw, L. Xiao, A conceptual graph based
approach to ontology similarity measure, in: Int.

Conf. on Conceptual Structures, Springer, 2007,
pp. 154–164.

[8] M. Elseidy, E. Abdelhamid, S. Skiadopoulos,
P. Kalnis, Grami: Frequent subgraph and pattern
mining in a single large graph, Proc. of the VLDB
Endowment 7 (7) (2014) 517–528.

[9] A. Faci, M.-J. Lesot, C. Laudy, cgSpan: Pattern
Mining in Conceptual Graphs, in: Int. Conf. on
Artificial Intelligence and Soft Computing, 2021.

[10] M. D. Fowler, John cage’s silent piece and the
japanese gardening technique of shakkei: For-
malizing Whittington’s conjecture through con-
ceptual graphs, Journal of Mathematics and Mu-
sic 13 (1) (2019) 4–26.

[11] Z. Fu, F. Huang, K. Ren, J. Weng, C. Wang,
Privacy-preserving smart semantic search based
on conceptual graphs over encrypted outsourced
data, IEEE Transactions on Information Foren-
sics and Security 12 (8) (2017) 1874–1884.

[12] P. Jeavons, D. Cohen, M. C. Cooper, Constraints,
consistency and closure, Artificial Intelligence
101 (1-2) (1998) 251–265.

[13] C. Laudy, J.-G. Ganascia, C. Sedogbo, High-level
fusion based on conceptual graphs, in: Int. Conf.
on Information Fusion, IEEE, 2007, pp. 1–8.

[14] F. Manola, E. Miller, B. McBride, Rdf primer,
W3C recommendation 10 (1-107).

[15] D. L. McGuinness, F. Van Harmelen, Owl web
ontology language overview, W3C recommenda-
tion 10 (10) (2004) 2004.

[16] A. Pérez-Suárez, J. F. Martínez-Trinidad, J. A.
Carrasco-Ochoa, A review of conceptual clus-
tering algorithms, Artificial Intelligence Review
52 (2) (2019) 1267–1296.

[17] S. Tremblay, J.-F. Gagnon, D. Lafond, H. M.
Hodgetts, M. Doiron, P. P. Jeuniaux, A cognitive
prosthesis for complex decision-making, Applied
ergonomics 58 (2017) 349–360.

[18] V. Varga, C. Săcărea, A. E. Molnar, Conceptual
graphs based modeling of semi-structured data,
in: Int. Conf. on Conceptual Structures, Springer,
2018, pp. 167–175.

[19] S. V. Vlasenko, G. A. Efimenko, D. V. Gnezdilov,
O. I. Brikova, Approaches to conceptual graphs
notations using in digital manufacturing software
environments, in: 2019 IEEE Conf. of Russian
Young Researchers in Electrical and Electronic
Engineering (EIConRus), 2019, pp. 731–735.


