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Abstract—Conceptual Graphs (CG) are a graph-based knowl-
edge representation and reasoning formalism; fuzzy Conceptual
Graphs (fCG) constitute an extension that enriches their ex-
pressiveness, exploiting the fuzzy set theory so as to relax their
constraints at various levels. This paper proposes a comparative
study of existing approaches over their respective advantages
and possible limitations. The discussion revolves around three
axes: (a) Critical view of each approach and comparison with
previous propositions from the state of the art; (b) Presentation of
the many possible interpretations of each definition to illustrate
its potential and its limits; (c) Clarification of the part of CG
impacted by the definition as well as the relaxed constraint.

Index Terms—Conceptual Graphs, Fuzzy Logic, Knowledge
Representation.

I. INTRODUCTION

Conceptual Graphs (CG) [1] are a graph-based knowledge
representation family of formalisms whose specificities are a
clear distinction between ontological knowledge and factual
knowledge, reasoning mechanisms based on graph operations
and foundations in first-order logic.

Their expressiveness has been extended by the addition
or relaxation of constraints. For instance, inference rules
and constraints have been introduced resulting in different
formalisms of CG [2]; and datatypes have been proposed to
represent non-symbolic values [3].

This paper focuses on propositions that enable the represen-
tation and manipulation of imprecise knowledge, in particular
in the framework of the fuzzy set theory [4], [5]. These
propositions broaden the CG’s knowledge representation ca-
pacity through the definition of weights or the embedding of
fuzzy sets, that quantify the imprecision. These extensions
occur in either the ontological or the factual part. They have
been exploited in different application domains, such as image
matching [6], database querying [7] or ontology mapping [8].

The goal of this paper is to review the state of the art of
the different methods used to represent imprecise information
in CG in order to extend their knowledge representation
capacity. In particular, it examines the constraints on the
CG formalism, by highlighting which constraint is relaxed,
how it is relaxed and what are the consequences in terms of
knowledge representation.

The paper focuses on knowledge representation and does
not consider the question of reasoning mechanisms. Indeed,
it is essential to examine first the knowledge representation
formalisms and distinguish fundamental differences before

even considering associated reasoning elements. Section II
provides a review of the CG formalism, based on Chein &
Mugnier specification [1], with a focus on elements used in
most of the studied fuzzy extensions. Section III presents the
different axes of discussion through the prism of which the
fuzzy formalisms are studied. The following sections identify
and discuss different inclusions of imprecise knowledge in
CG: Section IV details the propositions that enrich concept
nodes with a weighting coefficient, Section V deals with the
use of fuzzy values within concept nodes, Section VI presents
the particular case of nodes including several concepts, Sec-
tion VII discusses contributions on simpler fuzzy extensions
or transpositions of previous cases.

II. REVIEW OF CONCEPTUAL GRAPHS

Conceptual graphs (CG) are constituted of ontological
knowledge on which factual knowledge is based. These two
kinds of knowledge are successively described in this sec-
tion. The ontological part expresses what can be represented,
through the definition of the vocabulary, which constitutes a
terminology of knowledge. The factual part uses the elements
defined in the ontological part to represent facts. All kinds of
knowledge, either ontological or factual, have a logical form,
not used in this paper, and a graph form, i.e. a set of labeled
graphs.

Throughout the paper, we use the following illustrative
example in order to provide an intuitive understanding of the
defined elements as well as their usefulness: the aim is to
represent the factual knowledge linguistically described by the
sentence ”Nouka is a student who attends course 1H001 which
is a history lesson.”

A. Ontological knowledge: vocabulary

Formally, the vocabulary is defined as a quadruplet V =
(TC , TR,M, τ) whose elements are described hereinafter.
TC and TR respectively correspond to the types of concepts

and the types of relations, which respectively correspond to
predicates from first-order logic of arity 1 and of arity equal to
or greater than 1. They are two finite and partially ordered sets.
In the case of the considered example, Student and History are
elements of TC whereas attend is an element of TR. We also
introduce the concept Course such that the partial order on
TC gives Course as more general than History; Student and
the two other types are incomparable.



attendStudent:
Nouka

History:
1H001

0 1

Fig. 1. Representation of the considered example using the graph notation.

Each relation type has a fixed arity, TR can be partitioned
according to these arities. For instance, attend is a relation
type with arity 2.
M = I ∪ {∗} is a set of markers used to instantiate the

concept nodes: I is the set of individual markers which identify
a specific entity from the considered universe of discourse and
∗ the generic marker that references an unspecified entity. For
instance Nouka and 1H001 are specific entities from I .
τ is a function from I to TC defining the most specific con-

cept type instantiated by each individual marker. For instance,
τ(Nouka) = Student; τ(1H001) = History.

B. Factual knowledge: labeled graphs

A conceptual graph is a bipartite labeled multigraph repre-
sented by a quadruplet G = (C,R,E, label) referring to the
defined vocabulary V .
C and R respectively correspond to concept nodes and

relation nodes. Unlike classic multigraphs, the relations are
not represented by edges but by relation nodes. E is the set of
edges connecting elements of C to elements of R, i.e. concept
nodes to relation nodes. label is a labeling function from C
to TC × I , from R to TR and from E to the set of natural
numbers N.

The considered example can be represented by a CG
composed of two concept nodes, respectively labeled (Stu-
dent: Nouka) and (History: 1H001), and a relation node
connected to each concept node, labeled attend. Figure 1
represents this example using a graph notation, with three
nodes n1, n2 and n3, where label(n1) = Student : Nouka,
label(n2) = History : 1H001 and label(n3) = attend, while
the edges are labeled 0 and 1 to specify the respective role of
each concept node in the relation attend.

The classical notation is used along the paper: a concept
node labeled with type c and marker m is denoted

[c : m] (1)

and a relation node labeled with the type r, connected to two
concept nodes respectively labeled with [c : m] and [c′ : m′]

(r) −0− [c : m] (2)
−1− [c′ : m′]

where 0 and 1 are the label of the edges identifying the role
of concepts [c : m] and [c′ : m′] within the relation r.

Following these textual notations, the fact corresponding to
the considered example, graphically represented in Figure 1,
is denoted:

(attend) −0− [Student : Nouka]

−1− [History : 1H001]

Location Section Code
Ontological knowledge IV-A (3b)

VI-D (8b)
VII-C (13)

Concept type IV-C (5)
VI-C (8a)
VI-B (7)

Relation type VII-A (9); (10); (11)
Individual marker V-A (6b)

Value V-A (6a)
Factual knowledge VII-B (12)

Concept IV-A; IV-B (3a); (4)
TABLE I

TAXONOMY OF IMPRECISE KNOWLEDGE LOCATION

III. OVERVIEW

This section presents the reading grid we propose to detail
by which prism the papers are studied. We then give the
taxonomy used to categorize the models and their respective
interpretations.

We name fuzzy conceptual graph, denoted fCG, a CG
enabling the representation of imprecise knowledge. Each
proposition integrating fuzzy components is first presented by
its definition. It is a transposition of the original paper adapted
to the notation introduced in Section II-B (Eq. 1 and 2). A
formalization using the textual notation follows in order to
summarize the proposition.

Our proposals then consist in a critical look at the knowl-
edge representation capacities offered by the studied models,
insisting on their respective properties as well as their com-
parison; the study of different interpretations of these models
in order to highlight their potential and their limits; and finally
further details on the part of the CG impacted by the model,
as well as an explicitation of the relaxed constraints.

Table I presents a taxonomy that categorizes the studied
models according to which type of knowledge in CG is
impacted. The section where the proposal is introduced is
given in the second column. The third column contains a code,
that refers to the different interpretations of the models. The
first number is identical to the corresponding equation, and
the rest of the code distinguishes the interpretations.

As Morton [9]’s works could not be accessed, they are
studied through their transcript in Wuwongse and Manzano’s
paper [10].

IV. WEIGHTED CONCEPT NODE

A first family of methods proposes to represent imprecise
knowledge by enriching the concept nodes. In particular, the
discussed models quantify imprecision by a weight associated
with the node. The first model uses a numerical value between
[0, 1] for this purpose; the second one uses a linguistic variable,
such as veryTrue, which refers to a fuzzy set on [0, 1]; finally
the third one defers the definition of the weight associated
with the node to the level of a fuzzy lattice derived from TC .

A. Weighting by a numerical value

1) General principle: Morton [9] enables the representation
of imprecise knowledge in a concept node with individual



marker by associating it with a value between 0 and 1. The
node takes the form:

[c : i, α], α ∈ [0, 1] (3)

where c is a concept type in TC and i is an individual marker
in I . Such a weight is not allowed for a concept node labeled
with the generic marker ∗ in this model.

The motivation is the context where a perceptual system
has limitations in its ability to observe the external world.
A compatibility between the considered concept type and the
considered entity (represented by the individual marker) is then
defined within the concept node.

For the illustrative example, we can have for example:

[History: 1H202, 0.7]

The value may represent the inherent vagueness of a type, e.g.
”History covers many elements that are not clearly defined,
so it is difficult to say that 1H202 is a history course”, or the
difficulty of determining precisely its compatibility with the
entity under consideration, e.g. ”1H202 is a history course,
but also contains geography parts”.

Morton proposes definitions of the compatibility function
for both the graph and the logical forms. The first one consists
in the definition of a partial function µk from TC × I
to [0, 1] for each node concept k ∈ C. The second one
consists in the definition of µ : TC × I 7→ [0, 1] in the
vocabulary, a function common to any fCG defined on that
vocabulary. The imperfect knowledge inclusion is performed
at a different level depending on the considered definition.
Thus according to Wuwongse and Manzano [10], as detailed
below, Morton defines either the α value as being specific to
each individual concept (3a), or as being defined at the level
of the vocabulary (3b), and thus globally.

2) Individual weighting: In definition (3a), the imprecise
knowledge inclusion is performed in the factual knowledge,
in the concept nodes, and more precisely for each node
individually. This inclusion defines a fuzzy set on TC × I
specific to each individual concept node of a given fCG. Thus,
from one individual concept to another, the same couple can
have different compatibility values. One can then have [His-
tory: 1H202, 0.7] and [History: 1H202, 0.4] within the
same fCG, meaning that the perceptual system that provides
the information changes its conclusions about the features
of 1H202 because of its own imprecision, or because of
new information for example. The constraint thus relaxed by
this fuzzy integration model is the degree to which an entity
belongs to a concept type.

We propose two readings of the constraint relaxation. Ac-
cording to the first one, the fCG keeps the classical constraint:
only one couple of TC × I is associated to each individual
concept node (3a1). In this case the fuzzy set of a given node
is defined only for a single pair of TC × I , which makes the
definition of µk excessive.

In the second reading, we consider that this constraint is
also relaxed, which leads to fCG whose individual concept
nodes are fuzzy sets on TC × I , modeling imprecision both

on the concept type and on the individual marker (3a2). Thus,
one can have the node [(History: 1H202, 0.7),(Geography:
1H202, 0.4)], which can represent imprecision on several type-
entity pairs. Section VI more generally discusses such nodes
labeled by several pairs of TC × I , and examines several
interpretations, in particular conjunctive and disjunctive.

These fuzzy sets remain specific to each individual concept.
For (3a2) as for (3a1), following the definition provided by
Morton [9] according to Wuwongse and Manzano [10], this
can be interpreted as the limitations of a perceptual system
that is not static. For each individual concept, the perceptual
system has a level of precision on its observation depending
on the context (or other parameters). This precision can then
vary for the same given entity from capture to capture.

3) Global weighting: In definition (3b), the imprecise
knowledge is included at the ontological level, in the vocab-
ulary. Thus we propose the interpretation that compatibility
becomes inherent of every pair of TC × I , regardless of the
node k ∈ C under consideration, because it is not established
during the observation of each entity in I . The compatibility
that was defined for the triplet (k, TC , I), for k ∈ C of a
given CG, becomes here defined for the triplet (V, TC , I).
This interpretation may thus refer straightforwardly to the
inherently vague character of a type.

There is therefore the guarantee that, for instance, any
occurrence of the node [History: 1H202, 0.7] in any fCG of
the same vocabulary, its weight is always the same.

The differences with case (3a) have various possible moti-
vations: the origin of the imperfect piece of information, the
paradigm of capturing this piece of information or its interpre-
tation in imperfect knowledge. The first motivation expresses
that cases (3a) and (3b) are different because the imperfect
piece of information stems from different causes: in case (3a)
the imperfect knowledge defined in the factual part of the
fCG is justified by its production by an imperfect perceptual
system. In case (3b) the anchoring in the ontological part is
justified by the partial compatibility inherent to each type-
entity couple.

The second motivation translates the fact that in case (3b)
there is a unique compatibility value for a given type-entity
couple, whereas with case (3a) there is a multitude of values
for the same couple. This multiplicity of values for the same
couple can be justified by captures spread out in time, whose
parameters of observations would vary, or by the capture by
different imperfect systems, with diverse characteristics.

Finally, a third motivation is a difference in the interpreta-
tion of the collected pieces of imperfect information, either in
terms of uncertain or vague knowledge, as proposed by the
author, but also in terms of imprecise knowledge or level of
confidence in the knowledge. Case (3a) describes a weight
that may vary between the observations of a given type-
entity couple. It is in line with the uncertainty or the level
of confidence interpretations, as there are variations of levels
of confidence or certainty associated with the observations of a
given type-entity couple. Case (3b) describes a weight inherent
to the type-entity couple. It is in line with the imprecise or



vague knowledge interpretation, as there may be a level of
imprecision or vagueness associated with a given type-entity
couple, which is specific to this couple and does not vary over
the different observations of the same couple.

B. Weighting by a linguistic variable

A second model, proposed by Wuwongse and Tru [11],
considers weights in the form of a linguistic variable λ
associated with a fuzzy set on [0, 1]. A concept node is written:

[c : m,λ], λ ∈ K (4)

where m ∈M and K is a set of linguistic variables defining
the degree of truthfulness, e.g. K = {veryTrue, true, . . . }.
Each of the terms is associated with a fuzzy set defined on
the universe [0, 1], instead of a single value α ∈ [0, 1] for
Morton.

Considering the illustrative example, one can have [His-
tory: 2H132, quiteTrue] and [Geography: 2H132, veryFalse].
This example represents ”It is quite true that 2H132 deals
with history and it is very false that 2H132 deals with
geography”. The values quiteTrue and veryFalse are defined
at the ontological level and are therefore not specific to an
individual node.

This model uses a linguistic variable instead of a numerical
value which can be considered as making the manipulation
of imprecision by humans more intuitive, following a usual
principle in fuzzy logic.

According to Wuwongse and Tru [11], this choice leads
to more relevant results when integrated in the projection
operation. However their arguments seem debatable and the
claimed issue can be related to differences of interpretation
with respect to Morton’s framework.

The fuzzy sets associated with the linguistic variables λ are
elements of the set K defined at the level of the vocabulary,
which potentially allows the definition of an infinity of vari-
ables. This moderates the previous statement about the more
intuitive use of linguistic variables.

The set K is partitioned into three sets T , F and U
referring to ”True”, ”False” and ”Unknown” respectively. The
membership of a linguistic variable in T , F or U gives
properties on this variable: terms in T are associated with
increasing membership functions on [0, 1] and equal to 1
on 1; terms in F are associated with decreasing membership
functions on [0, 1] and equal to 1 on 0.

This partition alters the reasoning mechanisms. Indeed, it
implies that inference between types of concepts associated
with terms of K is not directly derived from the classical
inference principles between basic concept types and between
fuzzy sets: it is defined to take into account the type of concept,
the degree of truth and the type of truth value.

While Morton’s proposal concerns individual markers only,
Wuwongse and Tru’s allows the use of the generic marker ∗ as
well; it enables the representation of a compatibility between
a type and an undefined entity. This highlights the fact that the
imprecision represented is not inherent of pairs in TC× I , be-
cause then the linguistic value associated with a generic node,

[History: *, true] for example, becomes uniquely defined as
a function of type.

This second definition of fuzzy node relaxes the constraint
at the level of the factual knowledge of CG, in a similar way
as (3a), i.e. at the level of the compatibility between the entity
of a concept node and its type, but also allows the use of
generic marker and the use of fuzzy sets instead of a single
numerical value.

Thus, Wuwongse and Tru also relax the constraint on the
precision of the represented entity (it can be less precise
through the use of the generic marker) and on the precision
of the compatibility values (4).

C. Ontological weighting

A third model, proposed by Cao [12], does not represent
fuzzy types at the level of factual knowledge, but considers
types belonging to a lattice of fuzzy types, giving for m ∈ M
and cλ in this lattice:

[cλ : m], λ ∈ K (5)

In the case of the considered example, one can for instance
build the concept node [HistoryveryTrue: 2H132].

A fCG using such fuzzy concept types is highly similar to a
classical CG. Indeed, the concept nodes are type-marker pairs
whose type belongs to a set with a partial order relation. The
variable λ in Eq. (5) is not determined during the construction
of the factual node, but in the vocabulary, and it is associated
with a type. One then has access to different occurrences of
the basic type History associated with different values of λ,
resulting in different fuzzy types.

By this proposition, as with (3b), the weighting is explicitly
linked to the types, and the imprecision is located at the level
of the ontological knowledge (5).

V. IMPRECISE ATTRIBUTE VALUE

This section discusses a different case of fuzzy semantic
integration: fuzziness occurs within a concept node as well, but
for a particular type of concept, called concept with attribute.
Such concept nodes contain an attribute value in addition to,
or instead of, a marker. The fuzzy extension of such nodes
allows the definition of linguistic variables for the attribute
value. After recalling the definition of these concept types
in the crisp case, this section successively discusses several
fuzzy extensions proposed in the literature. The second one is
formulated as fuzzification of markers, however it represents
fuzzy values.

A. Concept type with attribute

In the classical CG formalism, concept types with at-
tribute [1] constitute a type of concept associated with a value
domain U(c). A concept node with attribute is denoted (c : v)
with c the type of concept attribute and v a value in U(c).

For example, one can represent [Grade: 90], where Grade
is a concept type with attribute domain U(Grade) = [0, 100]
and 90 is a value in the domain U(Grade).



In Sowa’s formalism [13], the values are symbols, and the
markers of the concept nodes with attribute remain, and by
default has a value of 1. Buche et al. [14] on the other hand
introduce the type Value which is linked to a relation node
of type Val linked to a node with of this type are linked to
the parameter considered by the node relationship Val. Such
concept nodes with attributes can actually be represented in
the classic formalisms of CG, as recalled Section II: they can
be represented as nodes linked through a Val relation node
to specific concept nodes with Value as type and the attribute
value as marker.

Types with attributes can thus be formalised in different
forms. In one case, a concept node with attribute is modeled
as a triplet type-marker-value, while in the other case it is
modeled as a couple type-marker linked through a relation
node of type Val to a Value-value couple. The concept node
with attribute in the example are not based on either model
and are a simplification to illustrate our point, with such a
node ending as a couple type-value. It is the basis for concept
node with attribute notation in following sections.

B. Linguistic variable as a value

1) General principle: Morton [9], according to Wuwongse
and Manzano [10], enables the representation of imperfect
knowledge in the value field of a concept node having a
concept type with metric attribute. The latter corresponds to
the case where the attribute value has an associated measure.

The imperfect knowledge is represented by a linguistic
variable λ as a fuzzy set over U(c), the value domain of the
concept type with metric attribute c:

[c : λ], λ ∈ F(U(c)) (6)

where F(U) denotes the set of fuzzy sets defined on do-
main U .

For example, if Grade is metric, one can construct the
node [Grade: Good] where Good is a linguistic variable asso-
ciated with a fuzzy set on [0, 100], whose value is determined
by the measure associated with the concept type with metric
attribute Grade.

Wuwongse and Manzano [10] extend this definition to the
non-metric case, whose distinction with the metric case is
open to interpretation. The authors specify for example, for a
metric attribute concept type Size and a continuous universe U ,
that U(Size) is a continuous set corresponding to the measure
associated to Size. For the non-metric case, it is a discrete
set U ′. They illustrate the latter with a concept Color and an
associated categorical value Red, which is not a value defined
by a measure. In both cases the associated values are fuzzy
sets on U(Size) and U ′ respectively. The distinction seems
to inform on the formalization or not of a measure function
associated to the type of concept with attribute. In the case
where no measure is associated, the set U ′ thus corresponds
to a discrete universe of categories associated to the concept
type with non-metric attribute. (6a)

2) Fuzzy marker: A definition similar to the previous one
introduces the notion of Fuzzy Marker, based on Buche et
al.’s value model [14], by Thomopoulos et al. [15]. It differs
in that the domain of any concept type with attribute is defined
on I , the set of individual markers, instead of a universe U
distinct from I . In these models, a fuzzy marker is a fuzzy
set on I restricted to the domain of the associated concept
type tc within the concept node c. A classical marker is the
special case of a crisp set that associates 1 as the degree of
membership to the considered element m of I on the domain
of tc, and 0 to the others.

It allows the representation of imprecision by going from
a single precise value to a set of weighted values. For each
metric attribute type c a membership function µc is defined
on U(c), i.e. subset of the domain of all possible values
corresponding to the value domain of c. In the non-metric
case, it is defined on a discrete domain U ′. (6b)

3) Analysis: For both definitions, the notion of fuzzy at-
tribute type enables the use of a linguistic variable on the
value domain.

In Thomopoulos et al.’s definition, there is a confusion
between the individual marker i, which refers to an entity in
reality, and a value v, which corresponds to the measure of
a characteristic. As a result, syntactically this model does not
distinguish between concept types with attributes and classical
concept types; however, the semantics remain different, as
these two kinds of concept types have a different interpretation
in reality: a value of an attribute and a symbolic marker
referring an entity in reality are two different things, so the
confusion within this model persists. It should be noted though
that in the application context presented by Thomopoulos et
al. [15], where CGs are used to represent data in microbiology,
the confusion may never happen in practice.

On another note, the distinction between metric and non-
metric attribute types may have its origin in the fact that U
is usually the universe on which concepts, relations and
individual markers are interpreted in logical semantics [1].

In the definition of fuzzy markers, the use of I allows
the definition of domains of values on I , discrete or not,
continuous or discontinuous, which is a second modification
of this set, in addition to the fact that its elements no longer
necessarily refer to entities, but both entities and attribute
values. Or, rather, attribute values are then considered as
entities.

It is not clear whether Morton, Wuwongse and Tru’s defini-
tions define an imperfect knowledge inclusion on the factual
or ontological side. On the one hand there is the possibility
that the value domain U(c) of a metric attribute type t points
to a fuzzy set, thus globally defined, which is in line with an
inclusion on the ontological part. However, this possibility is
not made explicit before its use in a CG, because no additional
element is defined in the ontological part. It is indeed not
explicit that linguistic variables defined on U(c) are defined
prior to their use in the factual part. In the case of the fuzzy
marker, the definition is clearly on the ontological part with
respect to the value domains, and on the factual part with



respect to the fuzzy sets on these value domains, since they
are not associated with any variable or element of the support.

VI. FUZZY MULTI-CONCEPT NODE

A third type of imperfect knowledge integration is observed
in the case of multi-concept nodes, which classically corre-
spond to conjunctive nodes as recalled in Section VI-A below.
Three fuzzy variants are then presented successively.

A. Conjunctive type introduction

Multi-concept nodes extend classical CG enabling the use
of conjunctive types [1], [16], [17]: the node labeling function
associates concept nodes with a subset of TC of incomparable
types. Two types are said to be incomparable if they cannot be
compared by the partial order relation defined on TC , i.e. one
is not the generalization of the other and vice versa. Thus the
label function of a CG does not associate each node k ∈ C
with a single element of TC , but with a subset of TC .

It has to be noted that the conjunctive type does not
correspond to an increase in expressiveness but to a syntactic
shortcut in the factual part of CG: a node with a conjunctive
type c consisting of n incomparable types can be replaced by
n nodes whose respective types are the n types constituting
the conjunctive type c. The conditions to obtain equivalence
are that each resulting node has the same connectivity as the
multi-concept node, and that each node refers to the same
entity.

B. Fuzzy conjunction of types

Cao [16] proposes a natural extension to the fuzzy case,
by replacing the considered concepts by fuzzy concepts as
presented in Section IV-C. It is a conjunction of such fuzzy
concepts, and one obtains with c and c′ in TC , λ and λ′ in K,
m in M :

[cλ, c
′
λ′ : m] (7)

In the same way as for the conjunctive type, it is a syntactic
shortcut which does not increase expressivity as compared to
the propositions on nodes and fuzzy types.

For example, one can build [Historytrue,
GeographynotTrue : 1H002] where 1H002 can be a
history-geography lesson presenting only a few maps to
illustrate the geography part. Note that in this example, the
conjunction of fuzzy types used is relevant, it makes sense
conceptually, but it is not always the case. For instance, the
conjunction of Student and Course is not conceptually clear,
even though it can occur and be relevant in practice. For
instance, it can be the case of a student both attending some
courses and being the subject of one course in particular.

C. Fuzzy disjunction of types

In a different fuzzy multi-concept case, Thomopoulos et
al. [15] propose to define fuzzy disjunction of incomparable
types, giving for c and c′ two types, and α and β two values
on [0, 1]:

[(c, α), (c′, β) : ∗] (8)

The context of this proposition is the use of a CG as queries
in databases, where the results have to match the query CG,
i.e. be equal to it or be a specialization of it. Then the defined
disjunction corresponds to an imprecision or a preference on
the nature of the sought information, and as such enables more
expressive queries returning a broader range of results. The
results must correspond to the disjunctive type, i.e. be of the
same type or a subtype, in proportion to the importance of the
weight associated with each type. Whether the imprecision
or preference interpretation is chosen modifies the notion of
distance with the query CG, and thus returns different results.
In this framework, the weight is a generic marker associated
to a fuzzy set on I corresponding to all individual markers
matching the fuzzy disjunction of types, where each of them
has a membership degree equal to the matching type’s degree
in the fuzzy disjunction.

With this definition, one can for example build [(History,
0.8), (Geography, 0.4): *)] which can represent the lessons
that Nouka would prefer to have next year.

Compared to the previous definitions of crisp and fuzzy
conjunction of types, it must be underlined that the disjunction
does not reduce to a syntactic shortcut. Indeed, the equivalence
between a multi-concept node in the conjunctive case and
several nodes is not possible in the disjunctive case, because
there is, to our knowledge, no other knowledge disjunction
representation in the CG formalism.

The relaxed constraint is the degree of truth associated with
each type. Moreover, an additional notion of fuzziness is added
with the relaxation of the constraint on the type uniqueness. In
mono-concept types cases, a node is associated with a unique
type, even in the fuzzy type case, so that one can state that ”this
entity of such type”, with a possible degree of truth associated.
Here one cannot state that the represented entity is of such or
such type, hence the additional relaxation of constraint. We
thus have a fuzzy set on a subset of incomparable types of TC
instead of a single element of TC . (8a)

D. Fuzzy hierarchy

Thomopoulos et al. [18] extend the previous definition by
deriving from the fuzzy disjunction of type present in the
query, weights for all types of TC , i.e. even the ones not
present in the disjunction. It is a so-called developed form
named fuzzy type in extension in the paper proposing it, in
opposition to the fuzzy disjunction of types named then fuzzy
type in intention. Depending on whether the interpretation
is preference or vagueness, respectively the maximum or
minimum of the supertypes is recursively chosen for each
subtype, and 0 for the more general types, as illustrated in
the example below.

This is a fuzzy type definition that is specific to the
query case in a CG database presented by the paper. In this
sense, other proposals [7] impose to systematically take the
maximum in order not to lose any possibly relevant result,
whichever the chosen interpretation.

For instance, considering the previous the example of the
previous definition [(History, 0.8),(Geography, 0.4): *)], one



can build the hierarchy TC =[(History, 0.8), (Geography, 0.4),
(Course, 0), (History-Geography, α)], where Course is more
general than History and Geography and History-Geography is
more specific than History and Geography. The α coefficient
takes value 0.8 in the case of a preference interpretation,
and 0.4 in the case of a precision interpretation.

This definition has the particularity of including its own
interpretation: the definition depends on the interpretation,
contrary to the previously discussed ones. Indeed, the latter
offer definitions in possibilities of interpretations, and treat the
influence of this interpretation only in the reasoning inference
step. It makes explicit the interpretation of what a fuzzy
disjunction of type on TC represents. (8b)

VII. OTHER FUZZIFICATIONS

This section deals with other cases of imperfect knowledge
inclusion which do not lead to much discussion, either because
of their simplicity or because they are only a transposition of
previously detailed cases. The case of fuzzy relations is first
discussed, then the case of propositional fuzziness and finally
the case of fuzzy inference rules.

A. Fuzzy relations

The integration of fuzzy components can apply to the
relation types, beyond the concept types discussed in Sec-
tion IV, in a straightforward way and following the same
lines of discussion. Indeed, the weights associated with the
concepts described in Section IV, whether they are numerical
or linguistic, can be naturally extended to relations.

1) Weight as numerical value: Wuwongse and Man-
zano [10] propose to generalize the principle discussed in
Section IV-A for the case of concept nodes to the case of
relation nodes: Eq. (2) can be enriched with a numerical
weight α ∈ [0, 1], leading to:

(r, α) −0− [c : i] (9)
−1− [c′ : i′]

The weight can be interpreted as representing the compatibility
of the nodes concepts c and c′ defined by a function specific
to the relation r returning α.

For the considered example, one can for instance build:

(attend, 0.8) −0− [Student: Nouka]

−1− [History: 1H008]

which represents the fact that the student Nouka attended most
of the history class 1H008.

2) Weight as linguistic value: Similarly, Wuwongse and
Tru [11] propose to apply the principle discussed in Sec-
tion IV-B for concept nodes to the case of relation nodes,
i.e. to weight relation nodes with a linguistic variable defined
on K:

(r, λ) −0− [c : i] (10)
−1− [c′ : i′]

where each linguistic variable λ ∈ K corresponds to a fuzzy
set on [0, 1].

3) Weight at the ontological level: Finally, the case of
weights at the ontological level formalised by a fuzzy lattice,
as presented in Section IV-C for concept types, is applied to
the case of relation types by Cao et al. [12]:

(rλ) −0− [c : i] (11)
−1− [c′ : i′]

where λ is a linguistic variable in K as introduced earlier.
From the point of view of the fCG, the relation rλ is a

classical type of relation belonging to a particular lattice of
types, a lattice of basic types associated to linguistic variables
in K. In a sense, as in the case of concepts, such a fCG is a
classical CG with a particular vocabulary.

B. Weighting a concept node description

Morton [9], according to Wuwongse and Manzano [10],
uses a notion of concept node triplets consisting of a type c,
a marker m and a description d. This description is itself a
CG that describes the concept node. This notion is available in
Sowa’s formalism [13], and is similar to that of nested CGs [1],
restricted to a single level of nesting.

Morton generalises this formalization of CGs and includes
a weight of the description d which is written:

[c : m, (d, α)] (12)

The value α represents the compatibility between c and d,
and is, as the other Morton definitions, modeled by a compat-
ibility function. It is specified that compatibility can also be
modeled by a function from [0, 1] to [0, 1] representing then
a compatibility with truth values in [0, 1]. This compatibility
only affects the factual part of CGs as it is defined for
each couple type-description, and that the descriptions in
themselves are CG which are not, apriori, defined in the
ontological part.

C. Fuzzy rule

A λ-rule in the CG formalism, also called inference rule, is a
classical extension of the CG reminded in Section II, allowing
to perform reasoning inference [1]: for two concepts c and c′,
a relation r, an individual marker i and a variable ∗x, such a
rule can be written:

[c : ∗x]⇒ [c : ∗x]− 1− (r)− 0− [c′ : i] (13)

It is interpreted as a rule of the form IF a subset of the CG
matches the hypothesis (e.g. in Eq. (13) the considered CG
contains x of type c), THEN the CG can be extended and/or
specialized to match the conclusion (e.g. in Eq. (13) x is in
relation to i of type c′ via the relation r). Rules with more
complex premises and conclusions can be considered.

For example, we may have the rule:
[History: *x] ⇒ [History: *x]-1-(learned)-0-[Student: *]

which represents the piece of knowledge If x is a history
lesson, then there exists a student who learns lesson x.

Wuwongse and Tru [11] introduce fCG programs and Cao
and Creasy [19] the expansion of λ-fCG and universally quan-
tified fCG, which uses universal quantifiers instead generic



markers. These propositions can be used as extensions of the
λ-rules so that they allow for fuzzy weights in the premise
and in the conclusion.

In the first case [11], they are the direct transposition of
the λ-rules to the case of fCG having fuzzy types at the
level of concepts and relations, and fuzzy values at the level
of the value of an attribute type. Thus the hypothesis and
the conclusion of the rule are such graphs, and the specific
reasoning mechanisms that this induces are detailed. These
specific inferences are a transposition of the deduction rules
defined for fCG [11].

In the second case [19], the operation of expanding the λ-
fCG and the universally quantified fCG puts these specific fCG
in a different form, that corresponds to a λ-rule. For example,
considering the universally quantified CG:

(attend) −0− [Student:∀]
−1− [History: 1H003]

which represents All the students attended the history class
1H003, its extension, which corresponds as stated above to a
λ-rule, is written:

[Student: ∗ x] ⇒
(attend) −0− [Student: *x]

−1− [History: 1H003]

which represents the same information under another form.
The fuzzy case is then when the quantifier ∀ is for example
replaced by a fuzzy set on [0, 1], representing a generic
quantifier. This value represents how far one can deduce the
conclusion from the represented premise, for example with
the value most which would give Most students attended the
history class 1H003.

VIII. CONCLUSION

The comparative discussion presented in this paper shows
the richness and diversity of the propositions allowing to
model imprecise knowledge in the framework of fuzzy con-
ceptual graphs: the latter enriches the classical conceptual
graph model and increases their expressiveness integrating
fuzzy components at different levels with various interpre-
tations and uses. As surveyed in this paper, they include
fuzzy concept nodes, fuzzy relation nodes, fuzzy types, fuzzy
markers and fuzzy values, as well as fuzzy inference rules.
A complementary view is offered in Table I that proposes
a taxonomy of the imprecise knowledge locations, focusing
on the distinction between the ontological and factual parts,
detailing the particularly rich variations of the ontological
fuzzy extensions. It highlights the distinctions operated in this
paper to formalize all proposed fCG models and discuss the
various interpretations of these models, bringing to light that
beyond the specific cases for which they have been defined,
they offer original tools to represent imprecise information.
It has to be noted that these models can be combined, but a
balance has to be established between the expressivity and the
complexity of the resulting formalism.

Ongoing works aim at studying the consequences of these
choices on the reasoning inference processes proposed by the
papers that introduced these fuzzy conceptual graph exten-
sions, depending on the chosen interpretation that can vary, as
discussed in the paper. The case of uncertain knowledge, that
can rely on the same formalization as imprecise knowledge
discussed in this paper but is associated with other interpreta-
tion and reasoning tools, is of specific interest.
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