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Smallest Maximum Cable Tension Determination
for Cable-Driven Parallel Robots

Hussein Hussein1, João Cavalcanti Santos1, Jean-Baptiste Izard2, Marc Gouttefarde1

Abstract—The maximum cable tension is a crucial parameter
in the design of a cable-driven parallel robot (CDPR) since the
various mechanical components of the CDPR must be designed to
safely withstand the loads induced by this maximum tension. For
CDPRs having a number of cables at least equal to its number
of DOFs, this paper deals with the determination of the smallest
maximum cable tension vectors allowing a required wrench set
to be feasible. The problem is formulated as the minimization of
the maximum cable tension infinity norm under linear inequality
constraints which include the wrench-feasibility constraints. The
solution to this minimization problem is not unique, and the
solution set is shown to be a convex polytope in the maximum
tension space. Hence, various smallest maximum tension vectors
generally exist and the computations of two different solution
vectors are introduced. The first vector has all its components
equal to the minimum infinity norm which can be directly
obtained from the minimization problem inequality constraints.
An algorithm is proposed to determine the second vector as the
solution vector having the least possible value for each of its
components. The computation of the smallest maximum tension
vectors for general required wrench sets are then presented.
The cases of particular wrench set definitions relevant to heavy
payload manipulation applications are also introduced. Finally,
these contributions are applied to the configuration (geometry)
optimization of a large-dimension 6-DOF CDPR installed on a
building facade to manipulate heavy payloads.

Index Terms—Cable-driven parallel robots (CDPR), parallel
robots, design, wrench feasibility.

I. INTRODUCTION

IN an effort to introduce novel robotic systems in the
construction industry, the motivation of this paper is the

design of a cable-driven parallel robot (CDPR) intended for
the construction or maintenance of building facades (Fig. 1).
Tasks such as installation of curtain wall modules and facade
cleaning may be efficiently performed using a mobile platform
able to move in front of the building [1]. CDPRs have the
capabilities to efficiently perform such tasks since all the
degrees of freedom of their mobile platform can be controlled
across a large workspace while handling heavy loads. CDPRs
accomplishing tasks in a large workspace, possibly involving
heavy payloads, have been demonstrated in several previous
works [2], e.g., the Skycam [3], NIST RoboCrane [4], FAST
radio telescope [5], CoGiRo [6], IPAnema [7], Fastkit [8],
storage and retrieval machine [9], motion simulation platform
[10], 3D printer [11].
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Fig. 1. CDPR prototype built in the framework of project Hephaestus [1].

Fundamental characteristics such as workspace size as well
as wrench capabilities and stiffness across this workspace
strongly depend on the CDPR configuration. The latter refers
to the positions of both the cable exit points on the base
frame and the attachment points on the mobile platform, as
well as to the cable arrangement between these points. For
instance, the size and shape of the wrench-feasible workspace
are generally sensitive to changes in the dimensional param-
eters and in the cable arrangement of a CDPR [12], [13].
Finding an efficient CDPR configuration being given a set of
requirements is generally challenging. The configuration can
be synthesized based on previously known configurations or
on the designer experience and intuition e.g., [9], [14], [15]
but, in many previous works, the configuration is synthesized
by formulating a constrained optimization problem.

The ability of the CDPR to generate wrenches in all pos-
sible directions despite the unidirectional character of cable
actuation, i.e., wrench-closure [16]–[18], is included in the
optimization problem in several of these previous works, e.g.,
[19]–[23]. The work presented in [19] is one of the first
configuration design studies where wrench-closure but also
cable collisions and multiple cable arrangement combinations
were taken into account. In [21], [22], the problem of finding a
CDPR configuration for which the Wrench-Closure Workspace
(WCW) includes a prescribed workspace is tackled by means
of convex relaxations allowing the formulation of a sufficient
condition for a box to be fully inside the WCW. Besides,



unilateral dexterity and force amplification quality indices have
been proposed in [24] for n-degree-of-freedom (DOF) CDPRs
driven by m = n+ 1 cables and recently generalized to the
case m > n+1 in [25]. These indices, as well as others, e.g.,
[26]–[28], can be used in the formulation of a configuration
design optimization problem to account for the unidirectional
nature of cable actuation. Besides, the stiffness of CDPRs may
be an issue and has thus been included into the formulation
of configuration optimization problems in [28]–[30].

However, on the one hand, suspended CDPRs, e.g., [4]–
[6], [31], cannot have wrench closure. On the other hand,
in addition to the non-negative cable tension constraint, a
maximum admissible cable tension tmax may have to be
included in a CDPR configuration design problem to deal
with possible overloads of mechanical components. Therefore,
replacing or complementing wrench closure [32], wrench-
feasibility analysis, e.g., [12], [13], [33], [34] has been used
to analyze CDPR wrench capabilities and to formulate con-
figuration design optimization problems.

In the context of CDPR configuration design, minimum
and maximum cable tensions tmin and tmax are considered in
[27], where cable tension performance functions are defined.
As a possible wrench-feasibility performance index, the so-
called minimum degree of constraint satisfaction is proposed
in [35], also known as the capacity margin [36]. Configuration
optimization problems with the capacity margin as an objec-
tive function and constraints based on wrench feasibility are
formulated in [36], [37] for usual CDPRs, and in [8] for a
mobile CDPR where tipping constraints are also considered.
Based on a wrench-feasibility analysis, the cable-suspended
configuration of the CDPR CoGiRo is obtained by optimizing
the maximum acceptable distance between the platform geo-
metrical center and the center of mass [6]. If the designed
robot is meant for a rather specific task, the configuration
optimization can be based on the performance associated
to this task. This design-to-task approach is considered for
CDPRs in [38], where interval analysis is used to solve the
corresponding constraint satisfaction problem, this approach
being similar to the ones in [39], [40]. In [41], particle swarm
optimization is used to optimize a cable-driven robot leg.

As proposed in our preliminary work [42], formulating a
CDPR configuration optimization problem with the maximum
cable tension tmax as the objective function to be minimized is
relevant. Indeed, tmax is a crucial parameter since the various
mechanical components of the CDPR must withstand this
maximum cable tension safely. Consequently, the character-
istics of these components strongly depend on the value of
tmax. In all the works cited above, the maximum cable tension
tmax has a fixed value chosen from the outset of the design
procedure. To the best of our knowledge, only two previous
works [43], [44] do not consider a pre-selected constant tmax.
In [43], Dykstra’s alternating projection algorithm is used
to determine the minimum tmax allowing to balance a given
wrench. This method may be used in a configuration design
problem but Dykstra’s algorithm is relatively slow. Moreover,
in the framework of a design problem including wrench-
feasibility, all the individual wrenches (of a discretization) of
the required wrench set must be considered. Hence, the use of

this method can result in overly time-consuming computations
since Dykstra’s algorithm must, at each iteration of the design
parameter optimization algorithm, be repeated for all the poses
of a discretized prescribed workspace. Finding the smallest
tmax such that all the wrenches of a given required wrench
set are feasible without resorting to a brute-force wrench set
discretization is thus relevant. In [44], an efficient means of
calculating the smallest tmax is found in the form of a closed-
form expression. However, this closed-form expression of tmax
is obtained by taking advantage of the particular form of the
equations of a reduced-DOF CDPR performing translational
motions and it cannot be applied to the general case of a n-
DOF CDPR driven by m cables (m≥ n).

The main contribution of this paper is the determination
of the smallest maximum cable tension vector tmax such that
all wrenches in a given required wrench set can be generated
with feasible cable tensions t, i.e., tmin ≤ t≤ tmax, where tmin
is a given vector of minimum cable tensions. Among all the
maximum cable tension vectors tmax allowing these wrench-
feasibility constraints to be satisfied, the smallest maximum
cable tension vector is defined as the one having the smallest
maximum component. The latter will be referred to as the
smallest maximum tension value.

A preliminary version of this work was published in [42].
This preliminary work deals with the configuration design
optimization of a CDPR while the present paper contribution is
focused on the determination of the smallest maximum tension
for n-DOF CDPRs driven by m≥ n cables. More specifically,
the novel contributions of the present paper are as follows.

First, in Section III, the case of a required wrench set
reduced to a single wrench is addressed. The problem of
determining the smallest maximum cable tension vector such
that this wrench can be generated with feasible cable tensions
is formulated as a minimization problem with linear inequality
constraints. We prove that the smallest maximum tension
value t∗max can be calculated directly from the linear inequality
constraints of this problem. For a pose inside the WCW,
it is also shown that these inequality constraints are always
consistent so that t∗max always exists. Outside the WCW or for
a non-existent WCW, conditions on the wrench and on tmin
for the constraints to be consistent, and thus for t∗max to exist,
are presented. Then, we point out that there exist infinitely
many smallest maximum tension vectors allowing the wrench
to be generated with feasible cable tensions In fact, we
prove that the optimal solution set is a convex polytope. The
determinations of two particular smallest maximum tension
vectors are presented. The first one has all its components
equal to t∗max while the second one has the least possible
value for each of its components. Subsequently, in Section IV,
the determination of these smallest maximum cable tension
vectors is extended to the case of a set of required wrenches.
In particular, we show how the formula providing the smallest
maximum tension value t∗max can be modified to handle a
wrench set instead of a single wrench. The computations
involved in this formula for general wrench sets, including
polytopes and ellipsoids, are presented. Moreover, for several
practical wrench set definitions, closed-form expressions of
wrench components permitting an efficient computation of t∗max
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Fig. 2. Schematic representation of a CDPR installed on a building facade.

are introduced.
Finally, in Section V, these contributions are applied to the

configuration design of a CDPR installed on the facade of a
building to manipulate heavy loads. The previously defined
practical wrench set definitions are used and the objective of
the CDPR configuration design is to minimize the smallest
maximum cable tension across a prescribed workspace. Based
on the resulting best configuration, the 6-DOF large-dimension
CDPR shown in Fig. 1 has been built and used for demon-
strations of curtain wall module installation.

II. BASIC MODELING AND WRENCH FEASIBILITY

A schematic representation of a 6-DOF CDPR installed on a
building facade is shown in Fig. 2. In the context of this work,
the CDPR is intended to displace heavy payloads, at relatively
low velocities and accelerations, and within a large workspace.
Such heavy payload displacements are common in applications
in the construction, lifting and other heavy industries. In such
applications, low velocities are usually required for safety
reasons. Consequently, this work focuses on CDPRs expected
to work in a quasi-static manner and whose dynamics are
neglected. The cable mass, and thus cable sagging, is also
neglected. The latter assumption is reasonable in a design
procedure where a very accurate model is not required contrary
to the case of control and calibration. The cables are thus
assumed to be straight line segments. As shown in Fig. 2,
they are attached to the mobile platform at points Bi, referred
to as the attachment points, and exit from the base at points
Ai, referred to as the drawing points, where i = 1,2, . . . ,m and
m is the number of cables. K0 is a fixed reference frame and
Kp is a frame attached to the CDPR mobile platform at its
reference point P.

Based on these assumptions, the remainder of this section
summarizes the wrench-feasibility analysis formalized in pre-
vious works on CDPRs, e.g., [12], [13], [33], [45].

A. Wrench feasibility

The wrench matrix W of a n-DOF CDPR driven by m cables
maps the cable tensions t to the wrench f applied by the cables
on the mobile platform [46]:

Wt = f. (1)

The n×m wrench matrix W depends on the CDPR geometry
(positions of points Ai and Bi) and on the mobile platform
pose. Its i-th column is denoted wi (W = [w1, . . . ,wm]). This
paper deals with CDPRs with as many or more cables than
DOFs, i.e., m≥ n.

A common necessary condition in the design of a CDPR is
wrench feasibility. A given mobile platform pose is said to be
wrench-feasible [12], [33], when a required wrench set RW is
entirely contained within the available wrench set AW:

RW⊆ AW. (2)

On the one hand, the RW is the set of wrenches f that
the cables must be able to generate at the mobile platform
reference point P. Its exact definition depends on the task(s)
to be accomplished by the CDPR. On the other hand, the AW
is defined from admissible cable tensions:

AW = {f = Wt | tmin ≤ t≤ tmax} (3)

where tmin is the vector of minimum tensions, tmax is the
vector of maximum tensions, and ≤ denotes a componentwise
inequality between two vectors. The latter notation is used
in the remainder of the paper. The minimum and maximum
admissible tensions may be defined differently for each cable,
i.e., the components tmin,i (resp. tmax,i) of tmin (resp. tmax) are
not necessarily all equal. Since cables can pull but not push,
all components of tmin are non-negative (tmin ≥ 0). In addition,
to avoid cable sagging, strictly positive values are often used
to define tmin. Besides, the components of tmax are defined
to account for the capabilities and limitations of the cables,
winches, supports, etc.

B. Wrench feasibility as a system of linear inequalities

The feasibility conditions in (2) are necessary conditions for
the CDPR to be able to produce all wrenches in the RW with
admissible cable tensions. The set of admissible cable tensions
is a hyperrectangle in tension space. According to (3), the
AW is the image of this hyperrectangle under the linear map
represented by matrix W. The AW is then a convex polytope
in the wrench space (more precisely, it is a zonotope [33]) and
it can thus be represented as the solution set of a system of
linear inequalities [47]:

AW = {f | Cf≤ d} . (4)

This system of linear inequalities is defined by the p×n matrix
C and p-dimensional column vector d. Each inequality in this
system defines a facet of the AW. C and d can be determined
by means of the hyperplane shifting method introduced in
[33]. In brief, each combination {wi1 ,wi2 , . . . ,win−1} of n−1
linearly independent columns of the n×m wrench matrix
W spans a facet-defining hyperplane of the AW and thus
provides two rows of C, say ck and cl . Each of these two
row vectors ck and cl spans the one-dimensional nullspace
of the matrix MI = [wi1 ,wi2 , . . . ,win−1 ]

T , where I denotes the
index set I = {i1, . . . , in−1} ⊂ {1, . . . ,m}. Moreover, ck and cl
are pointing in opposite directions, i.e.:

ck =−cl = null(MI)
T . (5)



In other words, ck and cl are orthogonal to the n−1 column
vectors wi1 ,wi2 , . . . ,win−1 . Hence, the number p of rows of C
and d is less or equal to 2Cn−1

m where Cn−1
m is the number

of (n−1)-combinations of the m columns of W. Note that p
is equal to 2Cn−1

m when each (n−1)-combination of columns
of W is a set of linearly independent vectors. Provided that
tmax ≥ tmin, the component d j of d corresponding to the row
c j of C is given by [45]:

d j = ∑
i∈I+j

tmax,i c jwi + ∑
i∈I−j

tmin,i c jwi (6)

where I+j and I−j are the subsets of {1, . . . ,m} defined as
I+j =

{
i | c jwi > 0

}
and I−j =

{
i | c jwi < 0

}
, and tmax,i and

tmin,i are the i-th components of tmax and tmin, respectively.
Taking advantage of the formulation of the AW as a system

of linear inequalities in (4), the wrench-feasibility conditions
in (2), i.e., RW⊆ AW, are equivalent to:

Cf≤ d, ∀ f ∈ RW. (7)

The wrench-feasibility conditions formulated in (7) can gen-
erally be tested in a straightforward manner [33] and can also
be used to conduct particular wrench-feasibility analyses, e.g.,
[6], [8]. In the present paper, they will be used to determine
the smallest maximum tension vectors verifying the wrench-
feasibility constraints (2).

III. SMALLEST MAXIMUM CABLE TENSION

This section introduces an original formulation of the small-
est maximum cable tension such that a wrench f belongs to
the available wrench set AW, i.e., such that f can be produced
at the CDPR mobile platform with admissible cable tensions.

A. Minimization problem formulation and optimal solution
Being given a vector tmin of minimum tensions and a

wrench f, if Cf ≤ d in (4), tmax is such that f belongs to the
available wrench set AW. With the definition of d j in (6), each
row of Cf≤ d can be written in terms of the components tmax,i
of tmax:

∑
i∈I+j

c jwi tmax,i ≥ c jf− ∑
i∈I−j

tmin,i c jwi. (8)

The components of tmax must satisfy (8) for all j, 1≤ j ≤ p,
for f to belong to the AW. Moreover, it is important to note that
(6) is obtained by assuming that tmax ≥ tmin [45]. Hence, the
inequalities tmax ≥ tmin have to be enforced since otherwise
there may exist some vectors tmax satisfying (8) but having
some components tmax,i smaller than tmin,i, An example of such
a vector will be given in Section III-D.

The inequalities (8) (for all j) and tmax ≥ tmin can be
aggregated into a single system of linear inequalities:

Atmax ≥ b (9)

which represents the set of vectors tmax such that f belongs to
the AW. The q×m matrix A and q×1 vector b in this system
of linear inequalities, where q = p+m, can be written:

A =

[
A1
A2

]
=

 a1
...

aq

 , b =

[
b1
b2

]
=

 b1
...

bq

 (10)

where the components of matrix A1 and vector b1 are defined
as follows, for j = 1 to p:

a ji = c jwi, for i ∈ I+j and a ji = 0, for i 6∈ I+j (11)

b j = c jf− ∑
i∈I−j

tmin,i c jwi (12)

and A2 = [aT
p+1, . . . ,a

T
q ]

T = In (identitity matrix) and
b2 = [bT

p+1, . . . ,b
T
q ]

T = tmin. With these definitions, the first
p rows of (9) are equivalent to Cf ≤ d and its last m rows
are tmax ≥ tmin. Note that a ji ≥ 0 ∀ j, i and that each row
of A contains at least n− 1 zeros since c j is orthogonal to
n−1 wrenches wi according to (5).

For given minimum cable tensions tmin, mobile platform
pose, and wrench f, the matrix A and vector b are constant.
The problem of determining the smallest maximum cable
tension vectors such that f ∈ AW can then be formulated as
the following optimization problem:

min
tmax

max
i

tmax,i

subject to Atmax ≥ b
(13)

where A and b are defined in (10). Note that max
i

tmax,i =

‖tmax‖∞
where ‖·‖

∞
is the infinity norm.

Since a ji ≥ 0 ∀ j, i, it suffices to take a tmax with sufficiently
large components to have Atmax ≥ b (see Section III-B for
a discussion of the case a j = 0). Moreover, considering only
one inequality (one row) of (9), a ji ≥ 0 ∀i also implies that the
smallest tmax (in the infinity norm sense) such that a jtmax ≥ b j
is obtained by setting this inequality to equality. Then, consid-
ering a component of tmax multiplied by a strictly positive a ji,
reducing the value of this component leads necessarily to
increasing the value of another component of tmax in order to
maintain this equality. Consequently, the smallest tmax such
that a jtmax ≥ b j can have all its components equal. This
property can also be seen from simple 2D or 3D drawings1

and it leads to the following optimal solution to (13):

t∗max = max
j∈J+

(
b j

∑
m
i=1 a ji

)
1m (14)

where 1m = [1, 1, . . . , 1]T ∈ Rm and J+ =
{

j | ∑
m
i=1 a ji > 0

}
or equivalently J+ = { j, 1≤ j ≤ p | I+j 6= /0}∪{p+1, . . . ,q}.
The fact that t∗max is an optimal solution to (13) is formally
proved in Appendix A.

The following properties of t∗max and (14) are pointed out.
• All the components of t∗max in (14) are equal and:

‖t∗max‖∞
= t∗max = max

j∈J+

(
b j

∑
m
i=1 a ji

)
= max

j∈J+

(
b j

∑a ji>0 a ji

)
.

(15)
In terms of f and tmin, we have: t∗max =

chf−∑i∈I−h
tmin,i chwi

∑i∈I+h
chwi

when h≤ p

t∗max = tmin,h when h > p
(16)

1The level sets of the infinity norm ‖tmax‖∞
are squares in 2D (resp. cubes

in 3D) and the smallest level set such that a jtmax ≥ b j has one of its vertices
touching the line a jtmax = b j (resp. plane). This vertex corresponds to a tmax
having all its components equal.



where h is the index of the row of (9) defined as:

h = argmax
j∈J+

(
b j

∑
m
i=1 a ji

)
. (17)

• By definition of the last m rows of A and last m
components of b, we have t∗max ≥ tmin (≥ 0).

• The index set J+ is equal to {1,2, . . . ,q} if and only if
the pose of the mobile platform belongs to the WCW,
since the latter is a necessary and sufficient condition for
I+j 6= /0 for all j, 1≤ j ≤ p (see Section III-B).

• When rank(W) = n, it is proved in Appendix A that⋃
j I+j = {1, . . . ,m} so that all components of tmax are

impacted by the wrench feasibility conditions on f (first p
rows of Atmax ≥ b).

The system of linear inequalities Atmax ≥ b should be
consistent for t∗max in (14) to be well defined (cf. Appendix A).
The conditions under which this system of linear inequalities
possesses some solutions tmax is examined in the next section.

B. Consistency of the inequality constraints

By definition, c j is orthogonal to n− 1 columns of W
(Eq. (5)). Hence, in each row of A, at least n−1 components
a ji are equal to zero. Moreover, for j = 1 to p, a row j of A
is the zero vector (a j = 0 and j 6∈ J+) if and only if I+j = /0
(for j = p+1 to q, by definition, a j 6= 0). Consequently, when
I+j = /0, no component of tmax is involved in the j-th row of the
feasibility conditions (9) and some components of tmin must
satisfy the following inequality:

c jf≤ ∑
i∈I−j

tmin,ic jwi ⇐⇒ b j ≤ 0. (18)

If (18) is not satisfied, b j > 0 and, since a j = 0, the sys-
tem of inequalities (9) is inconsistent which means that
@tmax ∈ Rm | Atmax ≥ b. It is proved in Appendix B that
I+j 6= /0 ∀ j if and only if the pose of the CDPR mobile platform
belongs to the wrench-closure workspace (WCW). Hence,
inside the WCW, any wrench can be generated with non-
negative cable tensions and no condition like the one in (18)
needs to be verified to ensure the existence of a tmax such
that f belongs to the AW. However, outside the WCW or
for a nonexistent WCW, the inequalities (18) for all j such
that I+j = /0 must be fulfilled for f to be feasible at a given
platform pose, i.e., for being able to find a tmax such that f can
be generated with cable tensions t satisfying tmin ≤ t ≤ tmax.
Indeed, the inequalities (18) ensure that all rows j of Atmax≥ b
such that a j = 0 are satisfied and, regarding the other rows,
since a ji ≥ 0 ∀ j, i, one can always find a tmax verifying
Atmax ≥ b (it suffices to take a tmax with sufficiently large
components).

Note that the WCW of a suspended CDPR (such as the one
in [6], [48]) is nonexistent so that there exist indices j such
that I+j = /0 for all poses of the mobile platform of this type
of CDPR.

C. Set of optimal solutions: A convex polytope

The smallest maximum cable tension vector given in (14) is
not the unique optimal solution to (13). Indeed, it is obtained

Algorithm 1 Computation of tm
max ∈ Tmax

Input: W, f, tmin % W is an n×m matrix
Output: tm

max % an optimal solution to (13)
1: Ar = A and br = b % Initializations of Ar and br

2: Iremoved = { /0} % Iremoved ≡ a set of column indices
3: while Iremoved 6= {1, . . . ,m} do
4: % Computation of tr,∗

max = min ‖tr
max‖∞

s.t. Artr
max ≥ br

5: tr,∗
max← Eq. (15) applied to Ar and br

6: h← Eq. (17) applied to Ar and br

7: I+h = {i | ahi > 0} % ahi ≡ components of row h of A
8: I+h ← I+h − Iremoved % Remove from I+h indices already

removed at previous iterations so that I+h =
{

i | ar
hi > 0

}
9: tm

max,i = tr,∗
max for i ∈ I+h % Components i ∈ I+h of tm

max

10: % Compute the new Ar and br

11: br
j← br

j−∑i∈I+h
a ji t

r,∗
max for all j % Compute the compo-

nents of the new br

12: Iremoved ← Iremoved ∪ I+h % Update Iremoved
13: Ar ← Remove Columns(A, Iremoved) % Ar is obtained

from A by removing its columns whose indices ∈ Iremoved

14: end while

from row h of (9), with h defined in (17), and the components
tmax,i of tmax such that i 6∈ I+h are not involved in this row
since ahi = 0 for i 6∈ I+h . Other optimal solutions to (13) may
thus be obtained since the maximum cable tension components
tmax,i, i 6∈ I+h , can be smaller than the optimal value t∗max defined
in (15) while the inequality constraints in (9) remain satisfied.

In fact, for a given pose of the CDPR mobile platform
and given minimum tensions tmin, let Tmax be the set of all
optimal solutions to (13). In other words, Tmax is the set
of smallest maximum cable tension vectors tmax such that
f can be generated with cable tensions t verifying (3). It
is proved in Appendix C that Tmax is a convex polytope
whose representation as the solution set of a system of linear
inequalities can directly be obtained from (9) and (14)-(15).

Based on this representation, it can be of interest to find
maximum cable tension vectors in Tmax other than t∗max.
Indeed, referring to Appendix C and in particular to (55)
and (56), any such maximum cable tension vector has several
(but not all) components smaller than t∗max. In order to compute
these other maximum cable tension vectors, a vertex enumer-
ation algorithm [47], [49], may be used to find all the vertices
of Tmax. However, such calculations require non-negligible
computation times and difficult issues linked to degeneracy
may have to be dealt with because the rows of matrix A contain
at least n−1 zeros (c j is orthogonal to n−1 wrenches wi).

As an alternative, an efficient and original method allowing
the computation of a maximum cable tension vector in Tmax
is proposed. This maximum cable tension vector is denoted
tm
max and its components can be significantly smaller than t∗max

(cf the examples in Section III-D). The method to compute
tm
max consists in solving the minimization problem (13) several

times in order to successively minimize all the components of
tmax. Thereby, tm

max is the solution vector in Tmax having the
least possible value for each of its components. Specifically,
as noted at the beginning of this section and according to



Fig. 3. Set Tmax and vectors t∗max and tm
max shown in the 3D space of the

maximum tension vectors tmax for the planar 2-DOF 3-cable CDPR example
at position P = (0.3;1) — In this example, h defined in (17) is equal to 5.
Hence, according to (20), we have t∗max = b5/a52 = 490.24 N and Tmax lies
on the facet tmax,2 = 490.24 N of the infinity norm level set. This level set is
the set of tmax such that ‖tmax‖∞

= t∗max and it corresponds to the facets of the
grey cube shown in the figure. Referring to the constraints of the minimization
problem (13), the straight line segments L3 and L7 are the intersections of
the hyperplanes a3tmax = b3 and a7tmax = b7 with this cube, respectively. As
can be seen, L3 and L7 delimit boundaries of Tmax and tm

max is the smallest
maximum tension in Tmax.

(55)-(57), there exists tmax ∈ Tmax whose components of
index i 6∈ I+h are smaller than t∗max. These components can
then in turn be minimized by suitably formulating and solving
successive minimization problems similar to (13) as detailed
in Appendix D and illustrated by the implementation shown
in Algorithm 1. Finally, as proved in Appendix E, note that:{

tmax | tm
max,i ≤ tmax,i ≤ t∗max, i = 1 . . .m

}
⊆ Tmax (19)

i.e., the box defined in the left-hand side of (19) is fully
contained in Tmax.2

D. Examples
As a first example, let us consider a simple planar two-

DOF CDPR driven by three cables with a mobile platform
reduced to a point mass. The cable drawing point coordi-
nates in the fixed reference frame are A1 = (0;0), A2 = (1;2)
and A3 = (−1;2). The wrench applied by the cables is
f = [ fx, fz]

T ∈ R2 and the cable tensions are t = [t1, t2, t3]T . The
minimum tension tmin for each cable is 100 N.

The point mass position P = (0.3;1) is considered. At this
position, the point mass is fully constrained by the cables.
As explained in Section II-B, the rows c j of the 6×2 matrix
C involved in (4) are computed (p = 6 and n = 2). Then,
according to their definitions in Section III-A, the 9×3 matrix
A and vector b (q = 9) are obtained as:

A =



0 0 0.934
0 0.314 0
0 0 0.999

0.314 0 0
0 0.999 0

0.934 0 0
1.000 0 0

0 1.000 0
0 0 1.000


b =



175.0612
−50.23
318.12
−186.83
489.75
−296.41
100.00
100.00
100.00


(20)

2We never found vectors of Tmax outside of this box but we do not have a
proof of Tmax being equal to this box.

where the wrench f = [0,500]T (N) has been considered to
compute b. A and b define the inequality constraints of (13)
and the optimal vectors t∗max and tm

max are calculated as:

t∗max =

 490.24
490.24
490.24

 (N) tm
max =

 100.00
490.24
318.44

 (N). (21)

These optimal vectors and the set Tmax of all optimal solutions
to (13) are shown in Fig. 3.

The second example is a 6-DOF 8-cable fully-constrained
CDPR (configuration 23 in Fig. 13) for which the matrices C
and A have dimensions 112×6 and 120×8, respectively. An
example of smallest maximum tension vectors obtained for
this CDPR configuration are (in N):

t∗max =



4656
4656
4656
4656
4656
4656
4656
4656


tm
max =



200
3783
226
200

1075
1702
4656
767


(22)

where tmin = 200 N in this example. It can be noticed that some
maximum tension values in tm

max are significantly smaller than
those in t∗max and that some components of tm

max are equal to
tmin. In fact, if the inequalities tmax ≥ tmin were not enforced
by being included in (9), the fourth component of tm

max in (22)
would have been smaller than tmin = 200 N. This result can be
verified by removing the last m rows of (9) and then applying
Algorithm 1.

IV. SMALLEST MAXIMUM CABLE TENSION FOR A SET OF
WRENCHES

In Section III, the determination of the smallest tmax such
that a given wrench f can be generated with admissible cable
tensions (i.e., tensions verifying (3)) has been introduced. In
the present section, this contribution is extended to the case
of a set of wrenches. Moreover, for several practical wrench
set definitions, closed-form expressions of the components of
wrenches permitting an efficient computation of the smallest
maximum tension vectors are given.

A. Problem formulation and solution

Referring to Section II-A, a common necessary condition
in the design of a CDPR is to satisfy wrench-feasibility
conditions formulated as in (2). For a given pose of the CDPR
mobile platform, determining the smallest maximum cable
tension vectors such that (2) is satisfied can be formulated
as the following optimization problem:

min
tmax

max
i

tmax,i

subject to Atmax ≥ b, ∀ f ∈ RW
(23)

where RW is the required wrench set defined in Section II-A,
and A and b are defined in (10). Note that b depends on the
wrench f according to the definitions of its components b j



Algorithm 2 Computation of tm
max,RW ∈ Tmax,RW

Input: W, RW, tmin % W is an n×m matrix
Output: tm

max,RW % an optimal solution to (23)
1: Ar = A and br

max = bmax % bmax is computed from the RW
2: Iremoved = { /0}
3: while Iremoved 6= {1, . . . ,m} do
4: % Compute tr,∗

max,RW = min ‖tr
max‖∞

s.t. Artr
max ≥ br

max
5: tr,∗

max,RW← Eq. (15) applied to Ar and br
max

6: h← Eq. (17) applied to Ar and br
max

7: I+h = {i | ahi > 0} % ahi ≡ components of row h of A
8: I+h ← I+h − Iremoved % Remove from I+h indices already

removed at previous iterations so that I+h =
{

i | ar
hi > 0

}
9: tm

max,RW,i = tr,∗
max,RW, for all i ∈ I+h

10: % Compute the new Ar and br
max

11: br
max, j← br

max, j−∑i∈I+h
a ji t

r,∗
max,RW for all j % Compute

the components of the new br
max

12: Iremoved ← Iremoved ∪ I+h % Update Iremoved
13: Ar ← Remove Columns(A, Iremoved) % Ar is obtained

from A by removing its columns whose indices ∈ Iremoved

14: end while

in (12) and that A is independent of the wrench f according
to (11). A depends only on the wrench matrix W and is thus
constant for a given pose of the CDPR.

The minimization problem in (23) is an extension of (13) to
the case of a set of wrenches RW. As detailed in Section III-C,
there exists a set of optimal solutions Tmax to the minimization
problem (13) and the computations of two particular optimal
solutions t∗max and tm

max have been introduced. The infinity
norms of these optimal solutions are all equal to t∗max defined
in (15). Examining (15) and since the a ji are independent of f,
it can be inferred that the optimal value of (23) is:

t∗max,RW = max
j∈J+

( max
f∈RW

b j

∑
m
i=1 a ji

)
(24)

and thus that an optimal solution to (23) is the vector t∗max,RW
whose components are all equal to t∗max,RW. A proof of this
result is provided in Appendix F.

Similarly to the results introduced in Section III-C, the set
Tmax,RW of all optimal solutions to (23) is a convex polytope
as proved in Appendix G. Furthermore, Algorithm 2 allows the
computation of an optimal solution tm

max,RW ∈ Tmax,RW, which
has components smaller than t∗max,RW. In Algorithm 2 at line 1,
the components of vector bmax are defined as bmax, j = max

f∈RW
b j

(cf in Appendix G). Algorithm 2 is explained in Appendix H
where it is pointed out that, by definition of bmax:

Atmax ≥ b, ∀ f ∈ RW ⇐⇒ Atmax ≥ bmax (25)

so that Algorithm 2 is mostly the same as Algorithm 1, the
difference being that bmax is used in place of b.

From (12), since b j is equal to c jf minus a term independent
of f, we have:

argmax
f∈RW

b j = argmax
f∈RW

c jf, 1≤ j ≤ p. (26)

Eq. (26) shows that computing the maximum of b j over RW
in (24) (i.e., computing the components of bmax) amounts
to determining the wrench(es) f which maximizes the linear
form c jf. Note that this computation is trivial for p+1≤ j≤ q
since b j is constant (b2 = tmin in (10)). The calculation of
these wrenches is discussed in Sections IV-B and IV-C in the
general cases of a convex polytope RW and an ellipsoidal
RW, respectively. This calculation is then illustrated in Sec-
tion IV-F in several practical examples of RW definitions.
These calculations are relevant to avoid having to discretize
the RW, and then to determine the smallest tmax for all the
individual wrenches f in this discretization. This would be
highly time consuming, notably when used within a design
procedure where a prescribed workspace is also discretized.

B. Case of a convex polytope RW
When the RW is a (bounded) convex polytope, it can be

represented as the set of convex combinations of a finite
number of wrenches fi (its vertices) [47]. Consider the parallel
hyperplanes c jf = c, where c is a scalar. Geometrically, the
maximum of the linear form c jf is attained at one vertex
fi of RW, the one corresponding to the largest value of c such
that the hyperplane c jf = c touches the convex polytope RW.
This result is well-known in linear programming (e.g., [50,
Chapter 13].

Then, according to (26), the computation of max
f∈RW

b j in (24)

amounts to calculating b j for all the vertices fi of the RW and
retaining the maximum value. The latter method is convenient
when the vertices of RW are known and limited in number,
such as illustrated in Section IV-E, as well as in Section IV-F
for RWrect and RWsquare. Otherwise, a linear programming
problem can be solved to compute max

f∈RW
b j.

C. Case of an ellipsoidal RW
Another common case of a convex RW is the ellipsoid.

According to (26), the computation of max
f∈RW

b j in (24) then
amounts to determining the maximum of a linear function over
the ellipsoid, i.e.:

max
f∈RW

c jf

subject to (f− e)T E(f− e)≤ 1
(27)

where the ellipsoid is centered at e and E is a symmetric
positive definite matrix. A known result (straightforward to
prove with the method of Lagrange multipliers) is the fol-
lowing closed-form expression of the wrench f∗j at which this
maximum is obtained:

f∗j = e+
E−1cT

j√
c jE−1cT

j

(28)

and thus
max
f∈RW

c jf = c jf∗j = c je+
√

c jE−1cT
j (29)

which is useful to compute t∗max,RW in (24) since the maximum
can be directly computed from c j, e and E. This result is
used in Appendix J to determine the wrench due to lateral
disturbance forces yielding max

f∈RW
b j.
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Fig. 4. (a) The AW and an example RW in the wrench space, and (b) the
cube of feasible cable tensions and the image of the RW in the cable tension
space. Only the subset of the image of the RW contained inside the cube of
feasible cable tensions is shown.

D. Case of a non-convex RW

If the RW is not a convex set, the computation of max
f∈RW

b j

can be done over its convex hull since:

max
f∈RW

c jf = max
f∈conv(RW)

c jf (30)

where conv(RW) is the convex hull of RW defined as [47]:

conv(RW) = {f | f = ∑
k

λkfk, fk ∈ RW, λk ≥ 0, ∑
k

λk = 1}.

(31)
Let f∗ be the wrench in RW corresponding to the maximum
of c jf: f∗ = argmax

f∈RW
c jf. Then, for any f∈ conv(RW), we have:

c jf = ∑
k

λkc jfk ≤∑
k

λkc jf∗ = c jf∗ (32)

where fk ∈ RW, the first and last equalities come from (31)
and c jfk ≤ c jf∗ by definition of f∗. Eq. (32) implies that f∗
yields also the maximum of c jf over conv(RW), i.e.:

max
f∈RW

c jf = c jf∗ = max
f∈conv(RW)

c jf (33)

which proves (30).

E. Example and graphical interpretation

Let us consider again the simple planar two-DOF three-
cable CDPR used as an example in Section III-D. With
tmin = 100 N and tmax = 1000 N for each cable, and at
position P = (0.3;1), the set of feasible cable tensions is a
cube in the three-dimensional space of tensions t = [t1, t2, t3]T

(Fig. 4 (b)). This cube is mapped by the wrench matrix W
to the AW defined in (3). As shown in Fig. 4 (a), in this
example, the wrench space is of dimensional two and the AW
is thus a convex polygon, more precisely an hexagon (a two-
dimensional zonotope). This figure also shows a RW defined
as a convex polygon whose vertices are f1 = [−300,−100]T ,
f2 = [−150,200]T , f3 = [−200,350]T , f4 = [−400,600]T and
f5 = [−600,100]T (N). The image of this RW in the tension
space is shown in Fig. 4 (b). Since the nullspace of the wrench
matrix W is not empty and, in this example, one-dimensional,
this image is an unbounded convex polyhedron extending to
infinity along the direction defined by a vector spanning the
nullspace of W. In Fig. 4 (b), only the subset of the image of

AW
RW

(a) (b)

704

325
414

Fig. 5. The AW and the example RW in the case tmax = tm
max,RW: (a) in the

wrench space, and (b) in the cable tension space.

the RW contained inside the cube of feasible cable tensions is
shown. This subset is non-empty since the RW lies inside the
AW as shown in Fig. 4 (a).

Aiming to reduce the value of tmax in the example above,
the smallest maximum tension vectors t∗max,RW and tm

max,RW can
be calculated as explained in Section IV-A and IV-B, yielding:

t∗max,RW =

 703.87
703.87
703.87

 (N) tm
max,RW =

 413.60
325.46
703.87

 (N).

(34)
As illustrated in Fig 5, the smallest maximum cable tensions
tmax = tm

max,RW actually yields an AW tightly enclosing the RW.
Note that this AW would even more tightly enclose the RW
for larger minimum tensions tmin (here, tmin = 100 N has been
kept constant).

F. Practical RW cases

This section introduces RW definitions related to heavy
payload manipulation and which are notably of interest in the
configuration design case study presented in Section V. In this
case study, the CDPR is intended to work on the facade of a
building in construction, operating in a quasi-static manner
(for safety purposes) while carrying heavy payloads.

Two cases are considered to define the RW. In the first one,
the mobile platform weight must be balanced by the cables
and the vertical projection of the mobile platform center of
mass (CoM) lies in a square centered at the CDPR mobile
platform reference point (Section IV-F1). In the second case, in
Section IV-F2, the platform is carrying heavy payloads along
the building facade and the overall (platform and payload)
CoM is thus shifted towards the building. In addition, distur-
bances are unavoidable in outdoor construction applications.
The case of a RW accounting in a simple manner for lateral
disturbance forces on the CDPR mobile platform is thus
discussed in Section IV-F3. For each of these RWs, a closed-
form expression of the wrench f yielding the maximum of b j
in (24) is determined. Such closed-form expressions are useful
to efficiently compute (24), and thus to efficiently determine
the smallest maximum cable tension vectors, since the RW
does not need to be discretized.

1) First case (unloaded)–CoM projection lying in a square:
Let us first consider the RW defined as the set of wrenches
f = [ fx, fy, fz, tx, ty, tz]T allowing to balance the total mass m



Fig. 6. (a) Set of possible positions of the CoM vertical projection (square
zone), and (b) the corresponding set of torques in the wrench subspace (tx, ty)
for a given force fz.

of the mobile platform, where mmin ≤ m ≤ mmax and where
the projection on the horizontal plane containing the platform
reference point P of the CoM lies in a square of dimen-
sions 2s×2s centered at P, i.e.:

RWsquare ={f | fx = fy = tz = 0, mming≤ fz ≤ mmaxg,

|tx| ≤ fzs, |ty| ≤ fzs} (35)

where g is the gravity acceleration. fx, fy, fz, tx, ty and tz are
the components of f in a coordinate frame having a vertical
axis z and whose origin is the platform reference point P.

This RW is of interest for CDPRs whose mobile platform
mass and CoM position are not exactly known or varying.
Figure 6 shows the square of the possible positions of the CoM
vertical projection and the set of torques tx and ty required to
balance the associated weight for a given value of the total
mass m, mmin ≤ m≤ mmax.

In order to compute (24) or bmax in (25), max
f∈RW

b j must
be determined for each j. The components of the wrench in
RWsquare defined in (35) yielding this maximum of b j (i.e.,
the components of the wrench defined in (26)) are given by:

fx = fy = tz = 0

fz =

{
mmaxg if c j f z + s(|c jtx|+ |c jty|)≥ 0
mming if c j f z + s(|c jtx|+ |c jty|)< 0

tx = sgn(c jtx) fzs, ty = sgn(c jty) fzs

(36)

where c j =
[
c j f x,c j f y,c j f z,c jtx,c jty,c jtz

]
and sgn(x) = 1

if x≥ 0 and sgn(x) = −1 if x < 0. Eq. (36) is proved in
Appendix I, where the fact that RWsquare is a convex polytope
is used to obtain (36) from the general result stated in
Section IV-B.

2) Second case (loaded)–Shifted CoM: This case is typ-
ically relevant to CDPRs carrying heavy payloads along a
building facade. The total mass m, mminl ≤ m≤ mmaxl, of the
platform and payload is larger than in the previous RW case
(mmaxl > mmax) and the CoM is shifted towards the mobile
platform side to which a heavy payload is secured. A possible
RW definition accounting for this shift of the overall CoM
consists in choosing the platform reference point P at the ex-
pected (shifted) position of the overall CoM and in considering
a square projected CoM zone centered at P. However, placing
the reference point at the overall CoM requires a knowledge of
the detailed design of the platform and on-board components

Fig. 7. (a) Set of possible positions of the CoM vertical projection (rectangular
zone), and (b) the corresponding set of torques in the wrench subspace (tx, ty)
for a given force fz.

Fig. 8. (a) Directions of possible lateral disturbance forces, and (b) the
corresponding set of forces in the wrench subspace ( fx, fy).

as well as of the payload mass. Alternatively, the reference
point P can be taken at the platform center of geometry and a
shifted rectangular projected CoM zone is defined. In the case
of a CDPR installed on a building facade such as illustrated
in Fig. 2, the rectangular zone can be defined to be symmetric
with respect to the y axis and shifted with respect to the x axis
to account for the payload placed as shown in Fig. 7, yielding
the following RW definition:

RWrect ={f | fx = fy = tz = 0, mminlg≤ fz ≤ mmaxlg,

− fzsy− ≤ tx ≤ fzsy+, |ty| ≤ fzsx} (37)

where sx is the half length along x of the rectangular projected
CoM zone (sx > 0), while the side lengths along the negative
and positive y directions are sy− and sy+, respectively (sy− > 0
and sy+ > 0).

The components of the wrench in RWrect yielding max
f∈RW

b j

are given by:

fx = fy = tz = 0

fz =

{
mmaxlg if c j f z + sy j c jtx + sx | c jty |≥ 0
mminlg if c j f z + sy j c jtx + sx | c jty |< 0

tx = fz sy j, ty = sgn(c jty) fz sx

(38)

where sy j =

{
sy+ if c jtx ≥ 0
−sy− if c jtx < 0 . The proof of (38) is not

presented since it is similar to the one of (36) in Appendix I.
3) Disturbances and definition of two working modes:

In outdoor construction applications, disturbances such as
wind or interaction forces with the robot environment are
unavoidable. On the one hand, vertical disturbance forces are



considered negligible compared to the weights of the heavy
platform and payload. On the other hand, in order to account
for the CDPR capabilities to balance lateral forces in a simple
manner (and in quasi-static analysis), the line of action of the
net lateral disturbance force Fd is considered to pass through
the reference point P so that its moment at P is null (Fig. 8).
Accordingly, to balance these lateral disturbance forces, the
following RW is defined:

RWdistb =
{

f |
√

f 2
x + f 2

y ≤ Fd , fz = tx = ty = tz = 0
}
. (39)

The components of the wrench in RWdistb yielding max
f∈RW

b j

are all zero except fx and fy which are given by:

fx = Fd
c j f x√

c2
j f x + c2

j f y

, fy = Fd
c j f y√

c2
j f x + c2

j f y

. (40)

The proof of (40) is presented in Appendix J where the case of
a lateral force Fd whose line of action is not passing through
P is also dealt with.

Note that RWdistb is complementary to RWsquare and RWrect
since it contains non-zero lateral forces fx and fy. In fact,
two working modes will be considered in Section V in the
configuration design of a CDPR intended to work on the
facade of a building. In the first one, the mobile platform
is unloaded, in the second one, it is loaded and, in both,
lateral disturbance forces have to be balanced. Accordingly,
two required wrench sets, RWunloaded (first working mode) and
RWloaded (second working mode), are defined as follows:

RWunloaded = RWsquare +RWdistb
RWloaded = RWrect +RWdistb

(41)

where + denotes the Minkowski sum of two sets. Accord-
ing to (36), (38) and (40), the components of the wrench
in RWunloaded yielding max

f∈RW
b j are:

fx = Fd
c j f x√

c2
j f x+c2

j f y

, fy = Fd
c j f y√

c2
j f x+c2

j f y

,

fz =

{
mmaxg if c j f z + s(|c jtx|+ |c jty|)≥ 0
mming if c j f z + s(|c jtx|+ |c jty|)< 0

tx = sgn(c jtx) fzs, ty = sgn(c jty) fzs, tz = 0

(42)

and those in RWloaded yielding max
f∈RW

b j are:

fx = Fd
c j f x√

c2
j f x+c2

j f y

, fy = Fd
c j f y√

c2
j f x+c2

j f y

,

fz =

{
mmaxlg if c j f z + sy j c jtx + sx | c jty |≥ 0
mminlg if c j f z + sy j c jtx + sx | c jty |< 0

tx = fz sy j, ty = sgn(c jty) fz sx, tz = 0.

(43)

G. Summary and performance index definition

The smallest maximum cable tension satisfying the wrench-
feasibility constraints in (2) is a relevant performance index to
be minimized in a CDPR configuration design optimization.
In the case study of Section V, among the optimal solutions
t∗max,RW and tm

max,RW to (23), the vector t∗max,RW whose compo-
nents are all equal to t∗max,RW given in (24) is selected since
the maximum cable tension is desired to be the same for all
the cables of the designed CDPR.

Fig. 9. CDPR working over a building facade to install curtain walls.

The expression of the smallest maximum cable tension
t∗max,RW in (24) has been obtained for a given pose of the CDPR
mobile platform (for a given wrench matrix W). In CDPR
configuration optimization, t∗max,RW must usually be calculated
over a prescribed workspace W. In particular, the performance
index in Section V is chosen to be the smallest maximum
cable tension t∗max,W such that wrench-feasibility constraints
are satisfied across W, i.e.:

t∗max,W = max
W

t∗max,RW = max
W

max
j∈J+

( max
f∈RW

b j

∑
m
i=1 a ji

)
. (44)

Note that in (44), considering the two working modes
defined in IV-F 3) (RW = RWunloaded or RW = RWloaded),
either (42) or (43) are used to computed max

f∈RW
b j. If both

working modes shall be taken into account, which is the
case in Section V, t∗max,W is calculated for each working
mode separately and the maximum of these two values is
retained since it is the smallest maximum tension allowing
the satisfaction of the wrench-feasibility constraints of the two
working modes.

V. DESIGN OF A CDPR CONFIGURATION

In this case study, the CDPR mobile platform is expected to
manipulate heavy loads, e.g., curtain walls, across the facade
of a building in construction, such as illustrated in Fig. 9.
The CDPR motions are quasi-static (relatively slow) and the
loads may be off-centered. Motions along the building facade
vertical plane and perpendicular to it are both necessary.
Rotations of the platform, possibly of small amplitudes, must
also be controlled in order to adjust the module pose during
its installation and for picking it from a storage place on the
ground. Accordingly, the positioning accuracy of the CDPR
and its capability to balance shifted loads are important. These
requirements justify the consideration of fully-constrained 6-
DOF CDPRs (n= 6) since wrench capabilities and positioning
accuracy along all six DOFs are needed.

This section presents the design of the configuration of such
a 6-DOF CDPR where configuration refers to the positions
of the cable attachment points on the mobile platform, the
positions of the cable drawing points on the fixed base and
the cable arrangement between these two sets of points. The
CDPR configuration must be carefully designed in order to
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Fig. 10. (a) Fixed base geometry, and (b) mobile platform geometry.

obtain a suitable wrench-feasible workspace. Eight cables
(m= 8) are considered in this work since this number of cables
allows cable arrangements with symmetry properties which
lead generally to more homogeneous performances across the
workspace [6], [7], [9], [10].

A configuration design methodology similar to the one
introduced in [6] is used. It consists of two phases which can
be summarized as follows:

• Phase 1: Generation and test of a large number of possible
CDPR configurations in order to define a set of candidate
configurations. The tests consist in verifying that each
generated CDPR configuration satisfies a number of con-
straints. The feasible configurations are sorted according
to their smallest maximum cable tension t∗max,W defined
in (44) in Section IV-G.

• Phase 2: Among the feasible CDPR configurations found
in Phase 1, the ones having the smallest values of t∗max,W
are retained. The number of retained configurations is
defined by the user. These configurations serve as initial
guesses for local constrained optimization problems and
each of them is thereby refined. The objective function of
the optimization is the performance index defined in (44).

The differences with the procedure in [6] lie in the constraint
and performance index definitions and in the fact that several
CDPR configurations are optimized in Phase 2. Similarly
to [6], the main limitations of this procedure are that only
a finite set of poses in the CDPR prescribed workspace
are considered and the overall computation time increases
proportionally to the number Nw of poses in this set and to
the number Nc of tested configurations, i.e., O(NwNc) using the
big O notation. These limitations may be mitigated by using a
relatively small number of poses and by verifying, at the end of
the design procedure, that the best configurations found satisfy
the constraints across the prescribed workspace, e.g., by means
of a fine discretization of the latter (cf. in Section V-C).

A. Phase 1: Candidate CDPR configurations

1) Base and platform geometries: Inputs to the configura-
tion design methodology include the fixed base and mobile
platform geometries shown in Fig. 10. The corresponding
cable drawing points at the base and attachment points on
the platform are given in Table I and III, respectively. The

TABLE I
DRAWING POINTS COORDINATES

Drawing points
1 2 3 4

x w/2+ p1x w/2+ p2x w/2+ p3y tan(p34α ) w/2+ p4y tan(p34α )
y −p1y −p2y −p3y −p4y
z p12z p12z h+ p3z h+ p3z + p4z

TABLE II
BOUNDS ON DRAWING POINT DIMENSIONAL PARAMETERS

p1x p1y p2x p2y p3y p3z p4y p34α

units (m) (◦)
min. 0 3 0 0 0.3 1 2 0
max. 2 5 2 2 1 1.5 3 45

bounds on the corresponding dimensional parameters are given
in Table II and IV.

The building facade has a height h of 10.4 m and a width w
of 8.5 m. The cable drawing points are defined in such a way
that the CDPR workspace can cover the building facade while
limiting their extension outside of the building. The drawing
point positions are symmetric with respect to the vertical
O− yz plane at the middle of the building. Hence, Table I
only defines the coordinates of the first four drawing points
since the coordinates of the four other ones can be deduced by
symmetry. Some dimensional parameters have constant values.
The height of the drawing points close to the ground is fixed
at p12z = 1.2 m and the drawing point 4 is slightly higher than
point 3 (p4z = 0.1 m) to facilitate cable routing.

As shown in Fig. 10, the CDPR mobile platform geometry
is a box of dimensions wp × tp × hp. Only the first four
attachment points are defined since the other four ones are
obtained by symmetry with respect to the P− yz plane. The
notations p+i and p−i used in Table III are defined as:

p+i =

{
pi if pi > 0
0 if pi ≤ 0 , p−i =

{
0 if pi ≥ 0
pi if pi < 0 . (45)

To accommodate cables up to 15 mm in diameter, routing
pulleys of diameter 30 cm are considered [51]. The output
pulley kinematics is then non negligible and the method
presented in [52] is used to account for the output pulley
kinematics in computing the wrench matrix W.

2) Generation of candidate CDPR configurations: The
cable arrangements between the drawing and attachment points
are generated as follows. Each drawing point is linked to
one attachment point not already linked to another drawing
point. The symmetries of the base and platform with respect
to their yz planes are reflected into the cable arrangements,
i.e., if the drawing point i is linked to the attachment point
j, the symmetric of point i is linked to the symmetric of
point j. Besides, cable arrangements that clearly lead to
collisions between some cables and the platform are discarded.
Thereby, 24 different cable arrangements are generated. In
addition, each base and platform dimensional parameter can
take its minimum and maximum values (as defined in Tables II
and IV), as well a few values in between. Thereby, a total of
746 496 candidate CDPR configurations were generated in the
present case study.



TABLE III
ATTACHMENT POINTS COORDINATES IN THE MOBILE PLATFORM FRAME

Attachment points
1 2 3 4

x = wp/2× 1 1 1 1
y = tp/2× −1+ p+1 −1− p+2 1− p+3 −1+ p+4
z = hp/2× −1− p−1 −1− p−2 1+ p−3 −1+ p−4

TABLE IV
BOUNDS ON ATTACHMENT POINT DIMENSIONAL PARAMETERS

wp tp hp p1 p2 p3 p4
units (m)
min. 1.5 1 2 -1 -1 -1 -1
max. 1.5 1.5 3 1 1 1 1

3) Prescribed workspace: The CDPR mobile platform is
required to span the surface in front of the building within a
limited depth. Hence, the prescribed workspace W is located
in front of the building, spanning the whole facade while
being relatively flat. In both phases of the configuration design
methodology, the objective function defined in (44) and the
different constraints (defined below) are evaluated at a set of
discrete poses inside this workspace.

This set of poses is defined as follows. Taking advantage
of the building and CDPR symmetries with respect to the
middle yz plane, eighteen workspace points are considered,
these points being distributed on only one side of the building
as shown in Fig. 11. Along the x axis, the points are distributed
between the middle and side of the building. Along the y
axis, the points are distributed on two parallel planes, one at
distance of 0.4+ tp/2 m from the building facade (“installation
distance”) and the other one at 1+ tp/2 m (load “transportation
distance”). Along the z axis, the lower points are at 1.2 m
above the ground and correspond to the mobile platform being
positioned in front of the building ground floor, i.e., at the bot-
tom of W. The upper points are at 1.2 m below the top which
corresponds to the last floor, i.e., to the top of W. Moreover, at
each of these points, platform orientation angles about the z-
axis of −2◦, 0◦ and 2◦ are considered to accommodate possible
building construction deviations along the facade. On overall,
54 poses inside W are thus used to test the constraints and
calculate the objective function. This discrete set comprises
poses located inside and on the boundary of W. While the
computation time of the various steps of the configuration
design methodology is (approximately) proportional to the
number of poses in this discretization of W, in our experience,
it was not necessary to consider a discrete set containing a
large number of poses as long as poses on the boundary of
the prescribed workspace were included. Note also that the
final configuration obtained by the design procedure can be
tested with a much finer discretization in order to check the
feasibility of the different constraints and compute the values
of the objective function across the prescribed workspace
(Section V-C).

4) Definition of the constraints: The CDPR mobile plat-
form can be subjected to external disturbances and the CDPR
has a relatively low stiffness along the direction perpendicular
to the building facade (y axis). Hence, the first constraint is

Fig. 11. The workspace points considered in the CDPR configuration design
procedure.
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Fig. 12. Definition of Lc in the example of curtain wall module positioning.
The curtain wall needs to be fixed to the building facade by means of brackets
and connectors. Point M defines the position of one of the connectors.

the displacement of the mobile platform due to variations of
the external wrench which must remain smaller than 10 mm.
A point M of the platform, whose positioning accuracy is
considered critical, is chosen in order to define this displace-
ment, denoted δM. For instance, if the CDPR displaces and
positions curtain wall modules, the point M is defined as the
position of one of the module connectors such as illustrated in
Fig. 12. For the disturbances, a maximal wind speed of 15 m/s
applied over the surface of a curtain wall module is considered
(with a simple model for the calculation of the resulting lateral
force) and the worst case payload variation is considered to
be a modification of 30 kg located at 400 mm away from
the platform reference point P. These disturbances yield a
variation of the external wrench, which is used to compute
the displacement δM by means of the CDPR stiffness matrix.
The latter is homogenized with the procedure presented in [53]
using the characteristic length Lc = PM shown in Fig. 12. The
cable stiffness value is EA = 8.5e6 N obtained by stress-strain
measurements on a sample of a steel cable of diameter 12 mm.

The second constraint is the absence of cable collisions
which includes here cable-cable and cable-environment colli-
sions. The cable-cable collision is tested by computing the
distance between two cables considering cable sagging as
negligible and for a maximum cable diameter of 20 mm.
The cable-environment collision test consists in checking the
collision between the cables and the platform and between
the cables and a curtain wall module fixed on one side of the
mobile platform as illustrated in Fig. 12.



Fig. 13. CDPR configurations obtained after the optimization made in Phase
2 of the configuration design methodology. Each one has a different cable
arrangement. Configuration 23 is the best one since it possesses the smallest
value of t∗max,W.

5) Evaluation of the candidate CDPR configurations:
The configurations generated in step 2) which have no cable
collision and a platform displacement δM < 10 mm for all
poses in the discretized workspace W, are classified according
to the value of their smallest maximum cable tension t∗max,W
defined in (44). The smaller is t∗max,W, the better is the
configuration. In these calculations, the following values have
been used: mmin = 150 kg, mmax = 500 kg, mminl = 350 kg, and
mmaxl = 1000 kg. Considering different possible orientations
of the mobile platform, the dimensions of the sets of possible
CoM positions have been set as s = 300 mm, sx = 300 mm,
sy− = 300 mm, and sy+ = tp/2. Furthermore, the net lateral
disturbance force is Fd = 500 N and the minimum cable
tension is tmin = 200 N.

Among the 746 496 candidate configurations generated in
step 2), 730 configurations are found to be feasible with
respect to the constraints. These configurations are sorted in
ascending order of their values of t∗max,W. It is noticed that,
out of 24 different cable arrangements obtained in step 2),
the remaining 730 configurations comprise only four different
cable arrangements.

B. Phase 2: Refinement by optimization

Each feasible configuration resulting from Phase 1 can be
used as an initial guess of an optimization problem and is
thereby refined. The optimization problem is non-linear and
can have numerous local minima, which is the rationale of
considering multiple initial guesses. The problem is formulated
as follows:

min
xd ,xa

t∗max,W

subject to
{

absence of cable collisions over W
displacement constraint over W

xm
d ≤ xd ≤ xM

d , xm
a ≤ xa ≤ xM

a

(46)

where the vectors xd and xa contain the dimensional parame-
ters defining the cable drawing points and attachment points,
respectively. These parameters are defined in Table II and IV.
The vectors xm

d , xM
d , xm

a and xM
a contain the dimensional

parameter lower and upper bounds which are also defined in
these tables. In (46), t∗max,W is defined in (44) and thereby in-
cludes wrench-feasibility constraints (RWs) defined with mass,
dimension and force values equal to those in Section V-A
5). The wording “over W” in the optimization problem (46)

5 kN

10 kN

15 kN

20 kN

Fig. 14. The smallest maximum cable tension t∗max,RW of configuration 23
evaluated in two vertical cross sections of an extension of the prescribed
workspace W.

means for the 54 poses of the discretized workspace W defined
in Section V-A 3). The displacement constraint in (46) is
δM < 10 mm as detailed in Section V-A 4). The results of
Phase 2 are discussed in the next section.

C. Results

The optimization in (46) can be applied with the 730
configurations retained in Phase 1 as initial guesses. However,
as confirmed by experience, compared to the best CDPR
configurations found in Phase 1, using as an initial guess a
CDPR configuration which is low in the ranking often leads
to local minimum with a larger value of t∗max,W. Hence, in
the results presented here, ten configurations for each of the
cable arrangements remaining after Phase 1 were optimized
using (46), which require several hours of computation time
on a standard computer (Intel Core i7- 7820HQ @ 2.9 GHZ
16 GB RAM).

Besides, out of the four different cable arrangements re-
maining after Phase 1, one has values of t∗max,W which turned
out to be sensitive to uncertainties on the dimensional param-
eters. Such a significant degradation of CDPR performance
due to uncertainties has previously been noticed in [54].
Inspired from this previous work, the method to test sensitivity
to uncertainties used in the present paper is presented in
Appendix K. The configurations having this cable arrangement
were thus discarded. For each of the remaining three cable
arrangements, the best CDPR configuration, i.e., the one with
smallest value of t∗max,W, is shown in Fig. 13. The green areas
in this figure are the zones where the drawing points can be
located (according to Tables I and II).

Among the three configurations shown in Fig. 13, the
best one is configuration 23 with t∗max,W = 13.61 kN. The
largest values of the components of tm

max,RW for configuration
23, computed with Algorithm 2 of SectionIV-A across the
prescribed workspace W, are:

max
W

(
tm
max,RW

)
=



13560
13560
7940
13610
13610
7940
13560
13560


(N) (47)



where the max is taken component by component. These
values show that for the optimal configuration 23, the maxi-
mum cable tensions in two cables (number 3 and 6) can be
significantly smaller than those in the other cables. The other
smallest maximum cable tensions are equal or similar across
W because of symmetries in the definition of this CDPR con-
figuration. Since only 54 poses of the discretized workspace
W were considered in phases 1 and 2, configuration 23 was
verified to satisfy the constraints—absence of cable collisions
and maximum displacement constraint δM < 10 mm—across
the prescribed workspace W by means of a fine discretization
of W. Moreover, the values of t∗max,RW (defined in (24))
for all poses of a fine discretization of an extension of W
have also been computed. The results of these computations
are shown in Fig. 14 for two vertical cross sections of the
extended workspace. It can be seen that the optimal value
t∗max,W = 13.61 kN obtained in phase 2 is valid everywhere in
the prescribed workspace W. Otherwise, or if the constraints
were not satisfied across W, a discretization of W containing
a larger number of poses should be considered in Phases 1
and 2 of the configuration design methodology.

It can be noted that configuration 23 is different from the
best one obtained in our preliminary works presented in [42]
which can be explained by different definitions of the RWs,
of the dimensional parameters and of the constraints. The
difference in the best configuration obtained also illustrates
that the CDPR performances are sensitive to the choice of its
configuration.

In the framework of the project Hephaestus [1], based on
configuration 23 shown in Fig. 13, the CDPR prototype shown
in Fig. 1 has been designed and built. The accompanying video
shows the first tests of this prototype. The latter is intended to
manipulate curtain wall modules along a building facade and
to position a manipulator placed on-board its mobile platform
to perform various tasks related to the installation of the
curtain walls. These experimental demonstrations validate the
usefulness and performance of the CDPR configuration found
by minimizing the smallest maximum cable tension. It can be
noted that the actual masses, 973 kg and 1323 kg without
and with the curtain wall module secured to the platform,
respectively, are significantly larger than initially expected
(mmax = 500 kg and mmaxl = 1000 kg in Section V-A).

VI. CONCLUSION

This paper contributed to the analysis and design of cable-
driven parallel robots by disclosing means of computing small-
est maximum cable tension vectors allowing, by construction,
wrench-feasibility constraints to be satisfied. The problem of
determining such maximum tension vectors was formulated as
a minimization problem with linear inequality constraints. The
set of optimal solutions to this problem was shown to be a con-
vex polytope and, thus, it contains infinitely many solutions.
Hence, there exists various smallest maximum tension vectors
allowing a required wrench set to be generated with feasible
cable tensions and the calculations of two different smallest
maximum tension vectors were presented. The first one has
all its components equal to the smallest maximum tension

value t∗max. The second one has several components smaller
than this value since it is calculated as the solution vector
having the least possible value for each of its components.
An explicit expression of t∗max in terms of the linear inequality
constraints of the proposed minimization problem was also
introduced. Moreover, the general case of a wrench set,
including wrench sets defined as polytopes and ellipsoids, was
addressed. For several practical wrench set definitions, closed-
form expressions of the components of wrenches permitting an
efficient computation of the smallest maximum tension vectors
were also provided. These contributions were applied to the
configuration optimization of a CDPR installed on the facade
of a building to manipulate heavy payloads. Based on the
resulting best configuration, a 6-DOF large-dimension CDPR
was built and used for testing and demonstration purposes.

In the configuration optimization case study presented in
this paper, only the smallest maximum tension vector which
has all its components equal was used. The other smallest
maximum tension vector tm

max,RW, whose components are not
all equal, may notably prove useful for non-symmetric CDPR
configurations or non-symmetric required wrench set formu-
lations. In such cases, the computation of the components
of tm

max,RW across the workspace may lead to significant
differences in the individual smallest maximum cable tensions.
In an extension of the present work, smallest maximum force
or torque vectors having components not all equal should also
be relevant in the case of parallel robots with hybrid actuation
where all actuators are not of the same type, or of the same
size.
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APPENDIX A
PROOF OF (14)

Consider the optimization problem (13):

min
tmax
‖tmax‖∞

subject to Atmax ≥ b

where A =
[
aT

1 , . . . ,a
T
q
]T , b = [b1, . . . ,bq]

T , a ji ≥ 0 ∀i, j, and
Atmax ≥ b is assumed consistent (there exists at least one
x ∈ Rm such that Ax≥ b; i.e., b j ≤ 0 if a j = 0).



An optimal solution to this problem is given by:

t∗max = max
j∈J+

(
b j

∑
m
i=1 a ji

)
1m

where 1m = [1, 1, . . . , 1]T ∈ Rm and J+ =
{

j | ∑
m
i=1 a ji > 0

}
,

J+ ⊆ {1,2, . . . ,q}.
Proof : First, note that t∗max satisfies the problem constraints
Atmax ≥ b since, for any j ∈ J+:

a jt∗max = max
j∈J+

(
b j

∑
m
i=1 a ji

)
a j1m = max

j∈J+

(
b j

∑
m
i=1 a ji

) m

∑
i=1

a ji

≥
b j

∑
m
i=1 a ji

m

∑
i=1

a ji = b j.

Moreover, by contradiction, assume that there is a vector
x ∈ Rm, x = [x1, . . . ,xm]

T verifying the following two condi-
tions:

Ax≥ b (48)

‖x‖
∞
< ‖t∗max‖∞

⇐⇒ max
i

(xi)< max
j∈J+

(
b j

∑
m
i=1 a ji

)
.(49)

Let h = argmax
j∈J+

(
b j

∑
m
i=1 a ji

)
, then (49) implies max

i
(xi)<

bh
∑

m
i=1 ahi

and hence xi <
bh

∑
m
i=1 ahi

, ∀i. Consequently, since ahi > 0 for
some i and ahi = 0 for all other i (because h ∈ J+ and a ji ≥ 0,
∀i, j), we have ∑

m
i=1 ahi = ∑ahi>0 ahi and then:

ahx =
m

∑
i=1

ahixi = ∑
ahi>0

ahixi < ∑
ahi>0

ahi
bh

∑
m
i=1 ahi

= bh (50)

i.e., ahx < bh which contradicts (48). Therefore, ∀x such that
Ax ≥ b, ‖x‖

∞
≥ ‖t∗max‖∞

, i.e., t∗max is an optimal solution to
the optimization problem (13). �

Note that this solution is generally not unique as discussed
in Section III-C.

Furthermore, let us prove the following result stated in
Section III-A: When rank(W) = n,

⋃
j I+j = {1, . . . ,m}.

Proof : Consider any i ∈ {1, . . . ,m}. Since rank(W) = n,
there exists n − 1 linearly independent columns
wi1 , wi2 , . . ., win−1 of the wrench matrix W such
that rank

(
[wi,wi1 ,wi2 , . . . ,win−1 ]

)
= n. Let us define

I = {i1, . . . , in−1} and MI = [wi1 ,wi2 , . . . ,win−1 ]
T . According

to (5), there exists two rows of C, ck and cl , such that
ck =−cl = null(MI)

T . If ckwi = clwi = 0, it means that wi is
orthogonal to null(MI), i.e., that wi ∈ span

(
wi1 ,wi2 , . . . ,win−1

)
which contradicts rank

(
[wi,wi1 ,wi2 , . . . ,win−1 ]

)
= n. Hence,

ckwi 6= 0 and clwi 6= 0 which implies that i ∈ I+k or i ∈ I+l
(i ∈ I+k if ckwi > 0 and i ∈ I+l otherwise since ckwi < 0
implies clwi > 0 because ck = −cl). We just proved that for
any i ∈ {1, . . . ,m}, there exists j such that i ∈ I+j and hence⋃

j I+j = {1, . . . ,m}. �

APPENDIX B
A NECESSARY AND SUFFICIENT CONDITION FOR I+j 6= /0

A pose of the mobile platform of a CDPR belongs to the
WCW if any wrench f can be produced at the platform by
pulling on it with the non-negative cable tensions, i.e.:

∀ f ∈ Rn, ∃ t≥ 0 ∈ Rm such that Wt = f. (51)

Well-known necessary conditions for the WCW to exist are
rank(W) = n (full rank) and m ≥ n + 1 (more cables than
DOFs). Furthermore, the poses belonging to the WCW can be
characterized by means of the following theorem [16], [55].
Theorem Assuming that rank(W) = n, a pose of the mobile
platform belongs to the WCW if and only if all the hyperplanes
H of Rn spanned by n−1 linearly independent columns of
the wrench matrix W are separating, i.e.,

∃ (i,k), i 6= k, such that qT wi > 0 and qT wk < 0 (52)

where q 6= 0 is a vector orthogonal to H .
Based on this Theorem, the following result is proved

below: I+j 6= /0 ∀ j, 1 ≤ j ≤ p, if and only if the pose of
the CDPR mobile platform belongs to the wrench-closure
workspace (WCW).

Proof : By definition, I+j =
{

i | c jwi > 0
}

and according to
its definition in (5), c j is orthogonal to a hyperplane spanned
by n−1 columns of W. Consequently, if a pose belongs to the
WCW, the Theorem above implies that there exists i such that
c jwi > 0 for all j, 1≤ j≤ p (choosing q= cT

j in (52)), i.e., that
I+j 6= /0 ∀ j which proves the “if” part. Now, to prove the “only
if” part, assume that I+j 6= /0 ∀ j, 1 ≤ j ≤ p, and consider any
hyperplane H spanned by n−1 linearly independent columns
of W. By definition of matrix C (Section II-B), there is a row
c j of C orthogonal to H . Since I+j 6= /0, there exists i such that
c jwi > 0 (note that this implies that rank(W) = n). Moreover,
according to (5), there is a row cl in C such that cl = −c j.
Since I+l 6= /0, there exists k such that clwk > 0 and hence
c jwk < 0. Since c jwi > 0 and c jwk < 0, the hyperplane H is
separating. H being any hyperplane spanned by n−1 linearly
independent columns of W, the Theorem above implies that
the pose of the mobile platform belongs to the WCW. �

APPENDIX C
PROOF OF THE NATURE OF TMAX

Let Tmax be the set of all optimal solutions to (13). This
appendix proves that Tmax can be represented as the solution
set of a system of linear inequalities. As a consequence, Tmax
is a convex polytope.

Since t∗max defined in (14) belongs to Tmax, any other tmax
in Tmax shall verify ‖tmax‖∞

= t∗max. Hence, Tmax lies in Rm

on a face of the infinity norm level set (a hypercube) of value
t∗max. More precisely, let us first prove that:

tmax ∈ Tmax =⇒ tmax,i = t∗max, ∀ i ∈ I+h (53)

where h is defined in (17) and, referring to Sections II-B
and III-A, I+h = {i | chwi > 0}= {i | ahi > 0}.

Proof : Any tmax ∈ Tmax is such that Atmax ≥ b and
‖tmax‖∞

= t∗max. The latter implies that tmax,i ≤ t∗max for all i.
Assume that ∃ i∈ I+h such that tmax,i < t∗max. By definition of h,
we have t∗max =

bh
∑ahi>0 ahi

= bh
∑i∈I+h

ahi
. Then, similarly to (50) in

Appendix A, we can write:

ahtmax = ∑
ahi>0

ahi tmax,i < t∗max ∑
ahi>0

ahi = bh (54)

which contradicts the fact that Atmax ≥ b and thus proves that
tmax,i = t∗max, ∀ i ∈ I+h . �



Note that for each i∈ I+h , tmax,i = t∗max defines an hyperplane
in the space of the maximum cable tensions tmax. Then,
(53) shows that Tmax lies on the intersection of all these
hyperplanes.

Now, let us prove that the set Tmax of all optimal solutions
tmax to (13) corresponds to the solution set of the following
system of linear inequalities (and is thus a convex polytope):

tmax,i = t∗max, ∀ i ∈ I+h (55)

tmax,i ≤ t∗max, ∀ i /∈ I+h (56)

Atmax ≥ b (57)

where h is defined in (17) and t∗max is defined in (15).
Proof : On the one hand, if tmax verifies (55), (56) and

(57), its infinity norm is equal to t∗max and Atmax ≥ b. Hence,
tmax ∈ Tmax, i.e., it is an optimal solution to (13). On the other
hand, if tmax ∈Tmax then (56) is satisfied since ‖tmax‖∞

= t∗max
and (57) is true since tmax is a solution to (13). Moreover, (55)
is true according to (53). �

Note also that (55) and (56) indicate that all the optimal
solutions in Tmax have maximum cable tension components
smaller or equal to those of t∗max (i.e., to t∗max), which shall be
expected from the outset from the formulation of (13) where
the minimum of the infinity norm is used.

APPENDIX D
CALCULATION OF tm

MAX AND ALGORITHM 1

At the first iteration of the while loop in Algorithm 1,
Ar = A, br = b and Iremoved = { /0} so that the components of
tm
max of indices i ∈ I+h = {i | ahi > 0} are calculated as being

equal to t∗max given in (15). Then, Ar is obtained from A by
removing all its columns of indices i ∈ I+h (Ar ∈ Rq×(m−z)

where z = card
(
I+h
)
) and the components br

j of br are defined
as br

j = b j−∑i∈I+h
a ji t∗max. Let us prove that the set Tmax of

all optimal solutions tmax to (13) corresponds to the solution
set of the following system of linear inequalities:

tmax,i = t∗max, ∀ i ∈ I+h (58)

tmax,i ≤ t∗max, ∀ i /∈ I+h (59)

Artr
max ≥ br (60)

where tr
max is obtained from tmax by removing all components

of index i ∈ I+h , i.e., tr
max ∈ Rm−z is composed of the compo-

nents tmax,i for all i /∈ I+h . In words, the inequality system (60)
is obtained from Atmax ≥ b as follows: For all i ∈ I+h and
all j, 1 ≤ j ≤ q, move a ji tmax,i to the right-hand side of the
inequality a jtmax ≥ b j and set tmax,i = t∗max.

Proof : On the one hand, if tmax verifies (58), (59) and
(60), its infinity norm is equal to t∗max and Atmax ≥ b by
definition of Ar, tr

max and br. Hence, tmax is an optimal solution
to (13) (tmax ∈ Tmax). On the other hand, if tmax ∈ Tmax then
(59) is satisfied since ‖tmax‖∞

= t∗max. Moreover, (58) is true
according to (53) and, as a consequence, Atmax ≥ b implies
that Artr

max ≥ br. Hence, tmax verifies (58), (59) and (60). �
Now, our goal is to minimize the maximum of the compo-

nents tmax,i, i /∈ I+h , of tmax while keeping the resulting vector
inside Tmax. Since the components tmax,i, i /∈ I+h , are those of

tr
max and according to (60), this minimization problem can be

written as:
min
tr
max
‖tr

max‖∞

subject to Artr
max ≥ br.

(61)

According to Section III-A, the optimal value of this problem,
denoted here as tr,∗

max, is obtained by using (15) with Ar and
br in place of A and b. Hence, tr,∗

max is obtained from row hr

of Artr
max ≥ br, with hr defined as (cf. (17)):

hr = argmax
j∈Jr

+

(
br

j

∑i ar
ji

)
(62)

where ar
ji are the components of matrix Ar. Row hr of

Artr
max ≥ br only involves the components of tr

max of indices i
such that ar

hr i > 0. Hence, to obtain an optimal solution to (61),
we set tr

max,i = tr,∗
max for i ∈

{
i | ar

hr i > 0
}

. For the moment, we
leave free the other components of tr

max in order to be able to
further minimize them in the next steps of the method (next
iterations of the while loop in Algorithm 1). Then, the while
loop in Algorithm 1 ends with the computations of the new Ar

and br which are computed from the current Ar and br as the
latter were computed from A and b. In the next while loop,
the minimization problem (61) is solved again for the new Ar

and br and this process continues until all components of tm
max

have been set, Iremoved = {1, . . . ,m} and line 13 of Algorithm 1
results in Ar being empty.

Note that the manipulations on Iremoved and I+h at lines 7, 8
and 12 of Algorithm 1 are used to keep track of the indices of
the components tm

max,i of tm
max which must be set to tr,∗

max at each
iteration of the while loop (at line 9). Notably, I+h is calculated
at line 7 from row h of matrix A and not from matrix Ar for
that purpose. Besides, h is used in place of hr in Algorithm 1
for simplicity of notation.

The principle of the computation of tm
max proposed in

Section III-C and its implementation in Algorithm 1 have been
outlined above. However, it remains to be proved that this
method is correct, i.e., that tm

max ∈ Tmax, that the components
tm
max,i of tm

max, which are successively computed in the method
(line 9 in Algorithm 1), are smaller and smaller, and that the
while loop in Algorithm 1 terminates in a finite number of
steps (in fact, in a maximum of m steps).

First, let us prove that tr,∗
max ≤ t∗max where:

tr,∗
max = max

j∈Jr
+

(
br

j

∑i ar
ji

)
=

br
hr

∑i ar
hr i

. (63)

Jr
+ = { j | ∑i ar

ji > 0}, hr is given by (62), and t∗max is given
by (15), i.e., prove that the optimal value of problem (61)
is smaller than the one of problem (13). This allows one to
straightforwardly prove by induction that the components tm

max,i
of tm

max, which are successively computed in the while loop at
line 9 in Algorithm 1, are smaller and smaller, all of them
being less than or equal to t∗max.

Proof of tr,∗
max ≤ t∗max: By definition of br, we have

br
hr = bhr − t∗max ∑i∈I+h

ahr i and then, according to (63):

tr,∗
max =

bhr − t∗max ∑i∈I+h
ahr i

∑i ar
hr i

. (64)



Moreover:
∑

i
ar

hr i = ∑
i∈Ir,+

hr

ar
hr i (65)

where Ir,+
hr = {i | ar

hr i > 0} (sorry for the cumbersome nota-
tions). Now, the crucial observation is that:

∑
i∈I+hr

ahr i = ∑
i∈Ir,+

hr

ar
hr i + ∑

i∈I+h

ahr i (66)

where by definition I+hr = {i | ahr i > 0} is the index set of all the
strictly positive components of row hr of A. Eq. (66) is true
since Ar has been obtained from A by removing all columns
of A of indices i ∈ I+h . Hence, the components ar

hr i > 0 of row
hr of Ar correspond to some of the components ahr i > 0 of
row hr of A and the indices i of the ahr i > 0 which are not
in row hr of Ar belong necessarily to I+h , which proves (66).
But, by definition of t∗max in (15), we have:

t∗max ≥
bhr

∑i∈I+hr
ahr i

(67)

and hence, using (66):

( ∑
i∈I+hr

ahr i)t∗max = ( ∑
i∈Ir,+

hr

ar
hr i + ∑

i∈I+h

ahr i)t∗max ≥ bhr (68)

i.e.,

t∗max ≥
bhr − t∗max ∑i∈I+h

ahr i

∑i∈Ir,+
hr

ar
hr i

. (69)

According to (64) and (65), the right-hand side of (69) is equal
to tr,∗

max which proves that t∗max ≥ tr,∗
max. �

Note that it is not difficult to figure out that t∗max ≥ 0 and
tm
max,i ≥ tmin,i for all i since the last n rows of Atmax ≥ b in (9)

were defined to enforce tmax ≥ tmin ≥ 0.
Now, let us prove that Algorithm 1 terminates in a finite

number of steps, this number being less than or equal to m.
Proof : It suffices to prove that, from one iteration to the next

one of the while loop in Algorithm 1, the number of columns
of Ar is decreasing. It amounts to show that I+hr , calculated at
line 8 in Algorithm 1, is not empty (h is used in place of hr

in Algorithm 1 for simplicity of notation). I+hr is the index set
of the strictly positive components of row hr of Ar, where hr

is obtained at line 6. According to (62), I+hr is empty if and
only if Jr

+ = { j | ∑i ar
ji > 0} is empty which is not possible

because of the last m rows of Atmax ≥ b in (9). Indeed, these
last m rows form the identity matrix and, since Ar has been
obtained at line 13 of the previous iteration by removing some
of columns of A (but not all its columns since otherwise the
algorithm would have already been terminated), it ensures that
there exists at least one row of Ar with at least one ar

ji > 0,
i.e., that Jr

+ is not empty. As a consequence, the index of at
least one new column of A is added to Iremoved at each iteration
of the while loop in Algorithm 1 which shows that the latter
terminates in a maximum of m steps. �

Finally, to prove that tm
max belongs to Tmax, it suffices to

prove that tm
max satisfies (55), (56) and (57) (see Appendix C).

Proof : First, referring to the calculations made at the first
iteration of the while loop in Algorithm 1, (55) is satisfied by
tm
max by construction. Moreover, the components tm

max,i satisfies

(56) for all i /∈ I+h since we proved above that the tm
max,i which

are successively computed in the while loop in Algorithm 1,
are smaller and smaller, all of them being less than or equal to
t∗max. Finally, to see that tm

max satisfies (57), it suffices to note
that at the end of Algorithm 1, at line 11, we have for all j:

0≥ b j− ∑
(0)I+h

a ji
(0)t∗max− ∑

(1)I+h

a ji
(1)t∗max− . . .− ∑

(s)I+h

a ji
(s)t∗max

(70)
where s is the total number of iterations (s≤m), and (i)t∗max and
(i)I+h are tr,∗

max and I+h calculated respectively at lines 5 and 8 at
the i-th iteration of the while loop in Algorithm 1. The right-
hand side of (70) is less than or equal to zero by definition
of (s)t∗max (Eq. (15) applied to the matrix Ar and vector br

obtained in the end of the second to last iteration of the while
loop). By construction of tm

max (line 9 in Algorithm 1), its
components of indices in (i)I+h are set equal to (i)t∗max at the
i-th iteration. Hence, (70) is equivalent to 0≥ b−Atm

max, i.e.,
tm
max satisfies (57). �

APPENDIX E
PROOF OF (19)

As stated in Section III-C, the set Tmax of all optimal
solutions to (13) is a convex polytope. In this appendix, it
is proved that the box:

B=
{

tmax | tm
max,i ≤ tmax,i ≤ t∗max, i = 1 . . .m

}
(71)

is included into Tmax (B⊆Tmax), where tm
max and t∗max are two

particular optimal solutions to (13) defined in Section III-C.
Proof : Consider tmax ∈ B. The inequality constraints

Atmax ≥ b are satisfied since tmax ≥ tm
max according to (71)

and, all components a ji of A being non-negative, we have
Atmax ≥ Atm

max ≥ b. Moreover, there exists at least one i such
that tm

max,i = t∗max (i = h with h defined in (17)). According
to (71), we then have ‖tmax‖∞

= t∗max, i.e., tmax belongs to
Tmax (it is an optimal solution to (13)). �

It may be true that Tmax = B (we did not find a counter
example) but we did not have a proof of this result.

APPENDIX F
PROOF OF (24)

The proof of (24) is similar to the one of (14) in Appendix A
and it is thus only sketched. First, note that Atmax ≥ b is
assumed to be consistent for all f ∈ RW, i.e., we assume
that, for all f ∈ RW, b j = b j(f) ≤ 0 for all j such that
a j = 0 (otherwise, the current pose if outside the wrench-
feasible workspace whatever tmax). Then, t∗max,RW satisfies the
constraints of (23) for any f ∈ RW since, for any j ∈ J+:

a jt∗max,RW = max
j∈J+

( max
f∈RW

b j

∑
m
i=1 a ji

)
a j1m = max

j∈J+

( max
f∈RW

b j

∑
m
i=1 a ji

)
m

∑
i=1

a ji

≥
max
f∈RW

b j

∑
m
i=1 a ji

m

∑
i=1

a ji = max
f∈RW

b j ≥ b j

which proves that At∗max,RW ≥ b for all f ∈ RW. Finally, to
prove that t∗max,RW is an optimal solution to (23) (and thus that



t∗max,RW defined in (24) is the optimal value of (23)), assume
to the contrary that there exists a vector tmax such that:

Atmax ≥ b, ∀ f ∈ RW (72)
‖tmax‖∞

<
∥∥t∗max,RW

∥∥
∞
= t∗max,RW. (73)

Let index h be defined as:

h = argmax
j∈J+

(max
f∈RW

b j

∑i a ji

)
. (74)

Then (73) implies max
i

(tmax,i) <
max
f∈RW

bh

∑i ahi
. Consequently, since

ahi ≥ 0 for all i and ahi > 0 for some i (since h∈ J+), we have:

ahtmax = ∑
i

ahitmax,i < ∑
i

ahi

max
f∈RW

bh

∑i ahi
= max

f∈RW
bh. (75)

With f∗ = argmax
f∈RW

bh and b∗h = bh(f∗) = max
f∈RW

bh, (75) is

ahtmax < b∗h which implies that (72) is false since f∗ ∈ RW,
a contradiction. �

This proof illustrates basically that replacing b j by max
f∈RW

b j

and Atmax ≥ b by Atmax ≥ b, ∀ f ∈ RW allow us to generalize
(14) to (24), i.e., to generalize to a set of wrenches RW. This
generalization is simple since matrix A is independent of the
wrench f.

APPENDIX G
PROOF OF THE NATURE OF TMAX,RW

Let Tmax,RW be the set of all optimal solutions to (23). This
appendix proves that Tmax,RW is the solution set of a system
of linear inequalities and is thus a convex polytope. The proof
is very similar to the one presented in Appendix C.

First, let us prove that:

tmax ∈ Tmax,RW =⇒ tmax,i = t∗max,RW, ∀ i ∈ I+h (76)

where h is defined in (74) and I+h = {i | ahi > 0}.
Proof : Any tmax ∈Tmax,RW is such that Atmax≥ b, ∀ f∈RW

and ‖tmax‖∞
= t∗max,RW, i.e., tmax,i ≤ t∗max,RW for all i. Assume

that ∃ i ∈ I+h such that tmax,i < t∗max,RW, then:

ahtmax = ∑
ahi>0

ahi tmax,i < t∗max,RW ∑
ahi>0

ahi = max
f∈RW

bh (77)

where the last equality holds since t∗max,RW =
max
f∈RW

bh

∑ahi>0 ahi
. This

contradicts the fact that Atmax ≥ b, ∀ f ∈ RW so that tmax,i =
t∗max,RW for all i ∈ I+h . �

Now, let us prove that the set Tmax,RW is a convex polytope
since it is the solution set of the following linear inequality
system:

tmax,i = t∗max,RW, ∀ i ∈ I+h (78)

tmax,i ≤ t∗max,RW, ∀ i /∈ I+h (79)

Atmax ≥ bmax (80)

where h and t∗max,RW are defined in (74) and (24), respectively,
and the components of bmax are defined as bmax, j = max

f∈RW
b j.

Proof : On the one hand, if tmax verifies (78), (79) and (80),
its infinity norm is equal to t∗max,RW and Atmax ≥ b, ∀ f ∈ RW

by definition of bmax. Hence, tmax belongs to Tmax,RW. On
the other hand, if tmax ∈ Tmax,RW then (79) is satisfied since
‖tmax‖∞

= t∗max,RW, (80) is true since Atmax ≥ b, ∀ f∈RW, and
(78) is true according to (76). �

APPENDIX H
CALCULATION OF tm

MAX,RW AND ALGORITHM 2

In addition to being the solution set of (78)-(80), Tmax,RW
is also the solution set of:

tmax,i = t∗max,RW, ∀ i ∈ I+h (81)

tmax,i ≤ t∗max,RW, ∀ i /∈ I+h (82)

Artr
max ≥ br

max (83)

where tr
max is obtained from tmax by removing all components

of index i∈ I+h , Ar is obtained from A by removing all columns
of indices i∈ I+h and the components br

max, j of br
max are defined

as br
max, j = bmax, j−∑i∈I+h

a ji t∗max,RW. The proof of this result
is straightforward and the same as the one for (58)-(60) in
Appendix D. In fact, (83) is simply a rewriting of (80).

Algorithm 2 in Section IV-A, which computes tm
max,RW,

consists in repeatedly solving the minimization problem:

min
tr
max
‖tr

max‖∞
subject to Artr

max ≥ br
max (84)

where at each step the components tm
max,RW,i of tm

max,RW corre-
sponding to the indices in I+hr = {i | ahr i > 0} are computed.
Following the same methodology and arguments used in
Appendix D to prove the validity of Algorithm 1, it can
be proved that tm

max,RW computed in Algorithm 2 belongs to
Tmax,RW, that its components tm

max,i, successively computed in
while loop in Algorithm 2, are smaller and smaller, and that
Algorithm 2 terminates in at most m steps. A more direct proof
of the validity of Algorithm 2 can be obtained by noticing that:

Atmax ≥ b, ∀ f ∈ RW ⇐⇒ Atmax ≥ bmax (85)

which holds by definition of bmax (cf. in Appendix G for this
definition). Hence, finding the optimal solution tm

max,RW to (23)
is the same as computing tm

max for (13) but with bmax in place
of b in the inequality constraints Atmax ≥ b.

APPENDIX I
FIRST RW CASE – PROOF OF (36)

The RW defined in (35), RWsquare, is a convex
polytope whose eight vertices have the following form
fi = [0,0, fz,± fzs,± fzs,0]T with fz = mming or fz = mmaxg.
From the general result stated in Section IV-B, max

f∈RWsquare
b j

is obtained at the vertex fi giving the largest value of the
linear form c jf. For all the vertices fi of RWsquare, c jfi has the
following form c jfi = fz(c j f z±sc jtx±sc jty) where fz = mming
or fz = mmaxg. In both cases, fz > 0 and, hence, c jfi is
maximized at a vertex fi such that:

c jfi = fzµ with µ = c j f z + s(|c jtx|+ |c jty|). (86)

Finally, according to (86), to maximize c jfi, fz is given by:

fz =

{
mmaxg if µ ≥ 0
mming if µ < 0 (87)



so that the components of the vertex fi of RWsquare yielding
the maximum of c jf (and thus the maximum of b j), are:

fx = fy = tz = 0

fz =

{
mmaxg if c j f z + s(|c jtx|+ |c jty|)≥ 0
mming if c j f z + s(|c jtx|+ |c jty|)< 0

tx = sgn(c jtx) fzs, ty = sgn(c jty) fzs.

(88)

APPENDIX J
THIRD RW CASE – PROOF OF (40)

Eq. (39) defines a disc in the wrench space and is thus a
particular case of an ellipsoid. Eq. (40) can thus be proved
by using the result presented in Section IV-C. In brief, for a
given force Fd , this disc is the set of forces ( fx, fy) such that:

f 2
x + f 2

y ≤ F2
d ⇐⇒ [ fx, fy]E [ fx, fy]

T ≤ 1, E =
1

F2
d

I2 (89)

where I2 is the 2× 2 identity matrix. From (28) with e = 0
and c j reduced to

[
c j f x,c j f y

]
, the forces fx and fy maximizing

c jf are given by:[
fx
fy

]
=

F2
d

[
c j f x,c j f y

]
Fd

√
c2

j f x + c2
j f y

=
Fd√

c2
j f x + c2

j f y

[
c j f x
c j f y

]
. (90)

Note that, if the line of action of the lateral Fd does not
pass through P, a moment tz around the vertical axis must be
balanced. If r denotes the maximum distance between the line
of action and P, RWdistb can be redefined as:

RWdistb =
{

f |
√

f 2
x + f 2

y ≤ Fd , |tz| ≤ Fdr, fz = tx = ty = 0
}

(91)
and the wrench yielding the maximum of c jf has fx and fy
given in (90) and tz = sgn(c jtz)Fdr.

APPENDIX K
TESTING SENSITIVITY TO DIMENSIONAL PARAMETER

UNCERTAINTIES

The method used to test sensitivity to dimensional parameter
uncertainties consists in computing the maximum value of
the smallest maximum cable tension t∗max,W considering that
the CDPR drawing and attachment points can be located
anywhere in given (tolerance) cubes centered at their nominal
values. This computation is achieved by numerically solving
the following optimization problem:

max
x

t∗max,W subject to xm ≤ x≤ xM (92)

where the (6m)-dimensional vectors x, xm and xM contain
the coordinates of all the CDPR attachment and drawing
points and the lower and upper bounds on these coordinates,
respectively. xm and xM can be directly obtained from the
tolerance cube definitions. The componentwise inequalities
xm ≤ x≤ xM mean that the coordinates of the drawing and
attachment points are uncertain and can be located anywhere
in the tolerance cubes. In the sensitivity analysis made in the
use case of Section V, the nominal values of the drawing
and attachment points were those obtained by means of the
optimization problem (46) solved in Phase 2. The tolerance
cubes representing the uncertainties on the locations of these

points were cubes of edge length equal to 2 cm. Note that the
configurations resulting from the optimization (46) made in
Phase 2, may have to be reordered according to the values
of t∗max,W obtained by solving (92). A configuration was
considered to be (too) sensitive to uncertainties when t∗max,W
computed by means of (92) shows a strong increase compared
to the one computed in (46), e.g., twice as large.
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