Sangsoo Park

Sung Gwan Park

Bastien Cazaux

Eric Rivals

A Linear Time Algorithm for Constructing Hierarchical Overlap Graphs

Keywords: 2012 ACM Subject Classification Theory of computation → Pattern overlap graph, hierarchical overlap graph, shortest superstring problem, border array Digital Object Identifier 10.4230/LIPIcs.CPM.2021.22

The hierarchical overlap graph (HOG) is a graph that encodes overlaps from a given set P of n strings, as the overlap graph does. A best known algorithm constructs HOG in O(||P || log n) time and O(||P ||) space, where ||P || is the sum of lengths of the strings in P . In this paper we present a new algorithm to construct HOG in O(||P ||) time and space. Hence, the construction time and space of HOG are better than those of the overlap graph, which are O(||P || + n 2).

Introduction

For a set of strings, a superstring of the set is a string that has all strings in the set as substrings. The shortest superstring problem is to find a shortest superstring of a set of strings. This problem is known to play an important role in DNA assembly, which is the problem to restore the entire genome from short sequencing reads. Despite its importance, the shortest superstring problem is known to be NP-hard [START_REF] Gallant | On finding minimal length superstrings[END_REF]. As a result, extensive research has been done to find good approximation algorithms for the shortest superstring problem [START_REF] Blum | Linear approximation of shortest superstrings[END_REF][START_REF] Sweedyk | A 2 1 2 -approximation algorithm for shortest superstring[END_REF][START_REF] Mucha | Lyndon words and short superstrings[END_REF][START_REF] Paluch | Better approximation algorithms for maximum asymmetric traveling salesman and shortest superstring[END_REF][START_REF] Tarhio | A greedy approximation algorithm for constructing shortest common superstrings[END_REF][START_REF] Ukkonen | A linear-time algorithm for finding approximate shortest common superstrings[END_REF].

The shortest superstring problem is reduced to finding a shortest hamiltonian path in a graph that encodes overlaps between the strings [START_REF] Blum | Linear approximation of shortest superstrings[END_REF][START_REF] Myers | The fragment assembly string graph[END_REF][START_REF] Pevzner | An Eulerian path approach to DNA fragment assembly[END_REF], which is the distance graph or equivalent overlap graph. The overlap graph [START_REF] Peltola | Algorithms for some string matching problems arising in molecular genetics[END_REF] of a set of strings is a graph in which each string constitutes a node and an edge connecting two nodes shows the longest overlap between them. Many approaches for approximating the shortest superstring problem focus on the overlap graph, and try to find good approximations of its hamiltonian path [START_REF] Mucha | Lyndon words and short superstrings[END_REF][START_REF] Paluch | Better approximation algorithms for maximum asymmetric traveling salesman and shortest superstring[END_REF]. Given a set of strings P = {s 1 , s 2 , ..., s n }, computing the overlap graph of P is equivalent to solving the all-pair suffix-prefix problem, which is to find the longest overlap for every pair of strings in P . The best theoretical bound for this problem is O(||P || + n 2) [START_REF] Gusfield | An efficient algorithm for the all pairs suffix-prefix problem[END_REF], where ||P || is the sum of lengths of the strings in P . Since the input size of the problem is O(||P ||) and the output size is O(n 2), this bound is optimal. There has also been extensive research on the all-pair suffix-prefix problem in the practical point of view [START_REF] Gonnella | Readjoiner: A fast and memory efficient string graph-based sequence assembler[END_REF][START_REF] Lim | A fast algorithm for the all-pairs suffix-prefix problem[END_REF][START_REF] Rachid | A practical and scalable tool to find overlaps between sequences[END_REF] because it is the first step in DNA assembly.

Recently, Cazaux and Rivals [START_REF] Cazaux | A linear time algorithm for shortest cyclic cover of strings[END_REF][START_REF] Cazaux | Hierarchical overlap graph[END_REF] proposed a new graph which stores the overlap information, called the hierarchical overlap graph (HOG). HOG is a graph with two types of edges (which will be defined in Section 2) in which a node represents either a string or the longest overlap between a pair of strings. The extended hierarchical overlap graph (EHOG) is also a graph with two types of edges in which a node represents either a string or an overlap between a pair of strings (which may be not the longest one). For example, Figure 1 shows EHOG and HOG built with P = {aacaa, aagt, gtc}. Even though HOG and EHOG may be the same for some input instances, there is a series of instances where the ratio of EHOG size over the HOG size tends to infinity with respect to the number of nodes. Therefore, HOG has an advantage over EHOG in both practical and theoretical points of view.

HOG also has a couple of advantages compared to the overlap graph [START_REF] Cazaux | Hierarchical overlap graph[END_REF]. First, HOG uses only O(||P ||) space, while the overlap graph needs O(||P || + n 2) space in total. For input instances with many short strings, HOG uses a considerably smaller amount of space than the overlap graph. Second, HOG contains the relationship between the overlaps themselves, since the overlaps appear as nodes in HOG. In contrast, the overlap graph stores only the lengths of the longest overlaps, and thus we cannot find the relationship between two overlaps easily. Therefore, HOG stores more information than the overlap graph, while using less space.

There have been many works to compute HOG and EHOG efficiently. Computing the EHOG from P costs O(||P ||) time, which is optimal [START_REF] Cazaux | Shortest DNA cyclic cover in compressed space[END_REF]. For computing the HOG, Cazaux and Rivals proposed an O(||P || + n 2) time algorithm using O(||P || + n × min(n, max{|s| : s ∈ P })) space [START_REF] Cazaux | Hierarchical overlap graph[END_REF]. Recently, Park et al. [START_REF] Park | Efficient construction of hierarchical overlap graphs[END_REF] gave an O(||P || log n) time algorithm using O(||P ||) space by using the segment tree data structure.

In this paper we present a new algorithm to compute HOG, which uses O(||P ||) time and space, which are both optimal. The algorithm is based on the Aho-Corasick trie [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF] and the border array [START_REF] Knuth | Fast pattern matching in strings[END_REF]. Therefore, the construction time and space of HOG are better than those of the overlap graph, which are O(||P || + n 2), and this fact may lead to many applications of HOG. For example, consider the problem of finding optimal cycle cover in the overlap graph built with a set P = {s 1 , s 2 , ..., s n } of strings. Typically this problem needs to be solved in finding good approximations of shortest superstrings. A greedy algorithm to solve the optimal cycle cover problem on the overlap graph was given in [START_REF] Blum | Linear approximation of shortest superstrings[END_REF], which takes O(||P || + n 2) time. Recently, Cazaux and Rivals proposed an O(||P ||) time algorithm to solve the optimal cycle cover problem given the HOG or EHOG of P [START_REF] Cazaux | A linear time algorithm for shortest cyclic cover of strings[END_REF]. By using our result in this paper, the optimal cycle cover problem can be solved in O(||P ||) time and space by using HOG instead of the overlap graph.

The rest of the paper is organized as follows. In Section 2 we give preliminary information for HOG and formalize the problem. In Section 3 we present an O(||P ||) time and space algorithm for computing HOG. In Section 4 we conclude and discuss a future work.

Preliminaries

Basic notation

We consider strings over a constant-size alphabet Σ. The length of a string s is denoted by |s|. Given two integers 1 ≤ l ≤ r ≤ |s|, the substring of s which starts from l and ends at r is denoted by s[l..r]. Note that s[l..r] is a prefix of s when l = 1, and a suffix of s when r = |s|. If a prefix (suffix) of s is different from s, we call it a proper prefix (suffix) of s. Given two strings s and t, an overlap from s to t is a string which is both a proper suffix of s and a proper prefix of t. Given a set P = {s 1 , s 2 , ..., s n } of strings, the sum of |s i |'s is denoted by ||P ||.

Hierarchical Overlap Graph

We define hierarchical overlap graph and extended hierarchical overlap graph as in [START_REF] Cazaux | Hierarchical overlap graph[END_REF].

▶ Definition 1 (Hierarchical Overlap Graph). Given a set P = {s 1 , s 2 , . . . , s n }, we define Ov(P) as the set of the longest overlap from s i to s j for 1 ≤ i, j ≤ n. The hierarchical overlap graph of P , denoted by HOG(P), is a directed graph with a vertex set V = P ∪ Ov(P) ∪ {ϵ} and an edge set

E = E 1 ∪ E 2 , where E 1 = {(x, y) ∈ V × V | x is the longest proper prefix of y} and E 2 = {(x, y) ∈ V × V | y is the longest proper suffix of x}.
▶ Definition 2 (Extended Hierarchical Overlap Graph). Given a set P = {s 1 , s 2 , . . . , s n }, we define Ov + (P) as the set of all overlaps from s i to s j for 1 ≤ i, j ≤ n. The extended hierarchical overlap graph of P , denoted by EHOG(P), is a directed graph with a vertex set V + = P ∪ Ov + (P) ∪ {ϵ} and an edge set

E + = E + 1 ∪ E + 2 , where E + 1 = {(x, y) ∈ V + × V + | x is the longest proper prefix of y} and E + 2 = {(x, y) ∈ V + × V + | y is the longest proper suffix of x}.

C P M 2 0 2 1

Figure 1 shows the Aho-Corasick trie [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF], EHOG, and HOG built with P = {aacaa, aagt, gtc}. It is shown in [START_REF] Cazaux | Hierarchical overlap graph[END_REF] that EHOG is a contracted form of the Aho-Corasick trie and HOG is a contracted form of EHOG.

As in the Aho-Corasick trie, each node u in HOG or EHOG corresponds to a string (denoted by S(u)), which is a concatenation of all labels on the path from the root (node representing ϵ) to u.

There are two types of edges in EHOG and HOG as in the Aho-Corasick trie: a tree edge and a failure link. An edge (u, v) is a tree edge (an edge in E + 1 or E 1 , solid line in Figure 1) in an EHOG (HOG), if S(u) is the longest proper prefix of S(v) in the EHOG (HOG). It is a failure link (an edge in E + 2 or E 2 , dotted line in Figure 1) in an EHOG (HOG), if S(v) is the longest proper suffix of S(u) in the EHOG (HOG).

Given a set P = {s 1 , s 2 , . . . , s n } of strings, we can build an EHOG of P in O(||P ||) time and space [START_REF] Cazaux | Hierarchical overlap graph[END_REF]. Furthermore, given EHOG(P) and Ov(P), we can compute HOG(P) in O(||P ||) time and space [START_REF] Cazaux | Hierarchical overlap graph[END_REF]. Therefore, the bottleneck of computing HOG(P) is computing Ov(P) efficiently.

Computing HOG in linear time

In this section we introduce an algorithm to build the HOG of P = {s 1 , s 2 , . . . , s n } in O(||P ||) time. We assume that there are no two different strings s i , s j ∈ P such that s i is a substring of s j for simplicity of presentation. Our algorithm directly computes HOG(P) (and Ov(P)) from the Aho-Corasick trie of P in O(||P ||) time.

Let us assume we have the Aho-Corasick trie of P including the failure links. We define R(u) for each node u of the trie, as follows:

R(u) = {i ∈ {1, . . . , n} | S(u) is a proper prefix of s i }. (1)
That is, R(u) is a set of string indices in the subtree rooted at u if u is an internal node, or an empty set if u is a leaf node. For each input string s i , we will do the following operation separately, which is to find the longest overlap from s i to any string in P . Consider a path (v 0 , v 1 , . . . , v l) which starts from the leaf representing s i and follows the failure links until it reaches the root, i.e., S(v 0) = s i and v l is the root of the tree. By definition of the failure link, the strings corresponding to nodes appearing in the path are suffixes of s i . If there are an index j and a node v k on the path such that j ∈ R(v k), S(v k) is both a suffix of s i and a proper prefix of s j , so S(v k) is an overlap from s i to s j .

S(v k) for 0 < k ≤ l is the longest overlap from s i to s j if and only if j ∈ R(v k) and there is no m such that 0 ≤ m < k and j ∈ R(v m). If there exists such m, then S(v m) is a longer overlap from s i to s j than S(v k), so S(v k) is not the longest overlap. Therefore, we get the following lemma.

▶ Lemma 3. S(v k) is the longest overlap from s i to s j if and only if j ∈ R(v k) -R(v k-1) - . . . -R(v 0). Therefore, if |R(v k) -R(v k-1) -. . . -R(v 0)| > 0, S(v k) is the longest overlap from s i to s j for j ∈ R(v k) -R(v k-1) -. . . -R(v 0), and thus v k ∈ Ov(P). Therefore, we aim to compute |R(v k) -R(v k-1) -. . . -R(v 0)| for every 0 < k ≤ l.
Given an index k, we define k + 1 auxiliary sets of indices I k (k), I k (k -1), . . . , I k (0) in a recursive manner as follows. By definition,

I k (k) = R(v k) I k (m) = I k (m + 1) -R(v m) for m = k -1, k -2, . . . , 0
I k (0) is R(v k) -R(v k-1) -. . . -R(v 0) in Lemma
≤ m < k, we get |I k (0)| = |I k (k)| - k-1 m=0 |I k (m + 1) -I k (m)|. Since I k (k) = R(v k) and I k (m + 1) -I k (m) = I k (m + 1) -(I k (m + 1) -R(v m)) = I k (m + 1) ∩ R(v m), we have |I k (0)| = |R(v k)| - k-1 m=0 |I k (m + 1) ∩ R(v m)|.
(

) 2
We also define a new function up(u) for a node u as follows.

▶ Definition 4. Given a node u in the Aho-Corasick trie, up(u) is defined as the first ancestor of u (except u itself) in the path that starts at u and follows the failure links until it reaches the root node. We define an ancestor on the tree which consists of tree edges in the Aho-Corasick trie.

Note that up(u) is well defined when u is not the root node, since the root node is always an ancestor of u. When u is the root node, up(u) is empty. 2) for each 0 ≤ m < k as follows. We use a path (v 0 , v 1 , ..., v 5) in Figure 2 as a running example, i.e., l = 5 and 0 < k ≤ 5.

Now we analyze the value of |I

k (m + 1) ∩ R(v m)| in Equation (
▶ Lemma 5. |I k (m + 1) ∩ R(v m)| is |R(v m)| if up(v m) = v k ; it is 0 otherwise.
Proof. We divide the relationship between v m and v k into cases.

v m is outside the subtree rooted at v k

Let us assume that I k (m + 1) ∩ R(v m) is not empty and there exists j

∈ I k (m + 1) ∩ R(v m). Then j ∈ R(v k) ∩ R(v m) should hold since I k (m + 1) ⊆ I k (k) = R(v k).
Therefore, both v m and v k should be ancestors of the leaf corresponding to

s j . Because |S(v m)| > |S(v k)|, v k should be an ancestor of v m .
Since v m is outside the subtree rooted at v k , v k cannot be an ancestor of v m , which is a contradiction. Therefore such j does not exist, which shows that

I k (m + 1) ∩ R(v m) = ∅ and |I k (m + 1) ∩ R(v m)| = 0. C P M 2 0 2 1
For example, consider the case with k = 4 and m = 3 in Figure 2. Since I 4 (4) = R(v 4) = {1, 2, 3, 4} and R(v 3) = {5}, we can see that I 4 (4) ∩ R(v 3) = ∅.

v m is inside the subtree rooted at v k

In this case, v k is an ancestor of v m and we further divide it into cases. a. There exists q such that m < q < k and v q is an ancestor of v m . We get

R(v m) ⊆ R(v q) because v q is an ancestor of v m . Since I k (m + 1) = R(v k) - R(v k-1)-...-R(v m+1) and m < q < k, we have I k (m+1) ⊆ R(v k)-R(v q). Therefore, I k (m + 1) ∩ R(v m) ⊆ (R(v k) -R(v q)) ∩ R(v q) = ∅. That is, I k (m + 1) ∩ R(v m) = ∅ and |I k (m + 1) ∩ R(v m)| = 0. b.
For any q such that m < q < k, v q is not an ancestor of v m .

Here we show that

R(v m) ⊆ I k (m+1). Let us consider an index x ∈ R(v m). Since v k is an ancestor of v m , we have x ∈ R(v k). Moreover, for any q such that m < q < k, neither v q is an ancestor of v m nor v m is an ancestor of v q . That is, R(v q) ∩ R(v m) = ∅ and thus x / ∈ R(v q). Therefore, we have x ∈ I k (m + 1) = R(v k) -R(v k-1) -. . . -R(v m+1). In conclusion, R(v m) ⊆ I k (m + 1) and thus |I k (m + 1) ∩ R(v m)| = |R(v m)|.
For example, consider the case with k = 4 and m = 1 in Figure 2.

Since I 4 (2) = R(v 4) -R(v 3) -R(v 2) = {1, 2, 3} and R(v 1) = {2, 3}, we can see that R(v 1) ⊆ I 4 (2) and I 4 (2) ∩ R(v 1) = R(v 1). In summary, |I k (m + 1) ∩ R(v m)| = |R(v m)| in case 2(b)
, and 0 otherwise. In case 2(b), v k is an ancestor of v m and there is no q such that m < q < k and v q is an ancestor of v m . In other words, v k is the first ancestor of v m in the path starting from v m and following the failure links repeatedly, which means that up(v m) = v k . ◀ ▶ Theorem 6. For every 0 Now let us consider the relationship between u and up(u). S(up(u)) is a proper suffix of S(u) because up(u) can be reached from u through failure links. Furthermore, S(up(u)) is a proper prefix of S(u) because up(u) is an ancestor of u. That is, S(up(u)) is a border [START_REF] Knuth | Fast pattern matching in strings[END_REF] of S(u). Moreover, we visit every suffix of S(u) in the trie in the decreasing order of lengths and S(up(u)) is the first border we visit, so S(up(u)) is the longest border of S(x). Since each node in the Aho-Corasick trie corresponds to a prefix of some s i , we can compute up(u) for all nodes u by computing the border array of every s i as follows. Let pnode i (l) be the node which corresponds to s i [1..l], and border i (l) be the length of the longest border of s i [1..l]. Then we have the following equation for every s i and 1 ≤ l ≤ |s i |:

< k ≤ l, |I k (0)| = |R(v k)| -vm |R(v m)|,
up(pnode i (l)) = pnode i (border i (l)). (3)
If we store pnode i and border i using arrays, we can compute pnode i , border i , and up(u) in O(||P ||) time and space, because border i can be computed in O(||P ||) time using an algorithm in [START_REF] Knuth | Fast pattern matching in strings[END_REF].

▶ Example 7. Let us consider Figure 2, which is an Aho-Corasick trie built with a set P = {s 1 = caccgc, s 2 = ccgcg, s 3 = ccgca, s 4 = cgct, s 5 = gcc} of strings. For each string, we compute its corresponding border array, and get border 1 = (0, 0, 1, 1, 0, 1), border 2 = (0, 1, 0, 1, 0), border 3 = (0, 1, 0, 1, 0), border 4 = (0, 0, 1, 0), and border 5 = (0, 0, 0). We also

(v 0 , v 1 , v 2 , v 3 , v 4 , v 5
) is marked with dotted lines in Figure 2. By definition of up, we get up(v 0) = up(v 1) = up(v 2) = v 4 and up(v 3) = up(v 4) = v 5 . Therefore, we can compute |I k (0)|'s as follows. There are some interesting topics about HOG and EHOG which deserve the future work. As mentioned in the introduction, the shortest superstring problem gained a lot of interest [START_REF] Blum | Linear approximation of shortest superstrings[END_REF][START_REF] Sweedyk | A 2 1 2 -approximation algorithm for shortest superstring[END_REF][START_REF] Mucha | Lyndon words and short superstrings[END_REF][START_REF] Paluch | Better approximation algorithms for maximum asymmetric traveling salesman and shortest superstring[END_REF]. Since many algorithms dealing with the shortest superstring problem are based on the overlap graph, HOG may give better approximation algorithms for the shortest superstring problem by using the additional information that HOG has when compared to the overlap graph.

|I 0 (0)| = |R(v 0)| = 0 |I 1 (0)| = |R(v 1)| = 2 |I 2 (0)| = |R(v 2)| = 1 |I 3 (0)| = |R(v 3)| = 1 |I 4 (0)| = |R(v 4)| -|R(v 0)| -|R(v 1)| -|R(v 2)| = 4 -0 -2 -1 = 1 Note that |R(v 0)| = 0 by definition of R(u). Since v 1 , v 2 , v 3 ,

Figure 1

 1 Figure 1 Data structures built with P = {aacaa, aagt, gtc}. (a) Aho-Corasick trie. (b) Extended Hierarchical Overlap Graph. (c) Hierarchical Overlap Graph.

Figure 2

 2 Figure 2 Aho-Corasick trie with P = {caccgc, ccgcg, ccgca, cgct, gcc}.

 3 and we want to compute |I k (0)|. For every 0 ≤ m < k, I k (m) = I k (m + 1) -R(v m) ⊆ I k (m + 1) and thus |I k (m)| = |I k (m + 1)| -|I k (m + 1) -I k (m)| holds. By summing up all these equations for 0

1 m=0

 1 where 0 ≤ m < k and up(v m) = v k . Proof. From Equation (2), we have |I k (0)| = |R(v k)| -k-|I k (m + 1) ∩ R(v m)|. By Lemma 5, we have k-1 m=0 |I k (m + 1) ∩ R(v m)| = vm:up(vm)=v k |R(v m)|. By merging the two equations, we have the theorem. ◀

and v 4 ▶ Theorem 9 .

 49 have positive |I k (0)|'s, we mark them to be included in HOG. We do this process for every s i .Now we show thatAlgorithm 1 runs in O(||P ||) time and space. Computing an Aho-Corasick trie, a border array for each string, and up(u) and |R(u)| for each node u costs O(||P ||) time and space. Furthermore, for a given index i, lines 13-14 are executed at most |s i | times since line 18 is executed at most |s i | times, and thus the sum of |Child(u)| is at most |s i |. Therefore, lines 9-19 run in O(|s i |) time for given i, and thus lines 8-19 run in O(||P ||) time in total. Also they use O(|s i |) additional space to store the Child list. Lastly, we can build HOG(P) with marked nodes in O(||P ||) space and time[START_REF] Cazaux | Hierarchical overlap graph[END_REF]. Therefore, Algorithm 1 runs in O(||P ||) time and space. We remark that Algorithm 1 can be modified so that it builds the HOG from an EHOG instead of an Aho-Corasick trie, while it still costs O(||P ||) time and space. Given a set P of strings, HOG(P) can be built in O(||P ||) time and space.

4 Conclusion

 4 We have presented an O(||P ||) time and space algorithm to build the HOG, which improves upon an earlier O(||P || log n) time solution. Since the input size of the problem is O(||P ||), the algorithm is optimal.

Funding S. Park, S.G. Park and K. Park were supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2018-0-00551, Framework of Practical Algorithms for NP-hard Graph Problems). B. Cazaux and E. Rivals acknowledge the funding from Labex NumeV (GEM flagship project, ANR 2011-LABX-076), and from the Marie Skłodowska-Curie Innovative Training Networks ALPACA (grant 956229).

Algorithm 1 Build HOG in linear time.

1: procedure Build-HOG(P)

2:

Build the Aho-Corasick trie with P 3:

Compute border arrays border i for 1 ≤ i ≤ n 4:

Compute up(u) for each node u Mark root as included in HOG(P)

7:

For each node u, initialize Child(u) with an empty set for all u ′ ∈ Child(u) do 14:

Mark u as included in HOG(P)

17:

Child(u) ← an empty set Build HOG(P) with marked nodes store pnode i 's by traversing the Aho-Corasick trie. Now we can compute up by using pnode i and border i . For example, let us consider v 1 = pnode 2 (4), which represents ccgc. Since the longest border of ccgc is c, which has length 1, we have border 2 (4) = 1. As a result, we have up(v 1) = up(pnode 2 (4)) = pnode 2 (border 2 (4)) = pnode 2 (1) = v 4 by Equation [START_REF] Cazaux | Shortest DNA cyclic cover in compressed space[END_REF]. Note that v 4 represents c, which is the longest border of ccgc.

We are ready to describe an algorithm to compute HOG of P in O(||P ||) time and space. First, we build the Aho-Corasick trie with P and a border array for each s i . By using the border arrays, we compute up(u) for every node u except the root. Next, we compute |R(u)| for each node u by the post-order traversal of the Aho-Corasick trie. For each string s i , we start from the leaf node corresponding to s i and follow the failure links until we reach the root. For each node v k that we visit, we compute its corresponding

Algorithm 1 shows an algorithm to compute HOG. Lines 2-5 compute the preliminaries for the algorithm, while lines 6-19 compute the nodes to be included in HOG. Note that the loop of lines 8-19 works separately for each input string s i . We consider v k in the order of increasing k, and thus if up