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Greedy-reduction from Shortest Linear Superstring to Shortest Circular Superstring

A superstring of a set of strings correspond to a string which contains all the other strings as substrings. The problem of finding the Shortest Linear Superstring is a well-know and wellstudied problem in stringology. We present here a variant of this problem, the Shortest Circular Superstring problem where the sought superstring is a circular string. We show a strong link between these two problems and prove that the Shortest Circular Superstring problem is NPcomplete. Moreover, we propose a new conjecture on the approximation ratio of the Shortest Circular Superstring problem.

1 Notation

About String

Let Σ be a finite alphabet, then Σ ⋆ denotes the free monoid over Σ. For a linear string w = a 1 . . . a n over the alphabet Σ, |w| = n is the length of w, w[i] = a i is the i th character of w, w[i : j] = a i . . . a j is the substring from the position i to the position j. A prefix (respectively a suffix ) is a substring which begins in 1 (resp. which ends in n). A proper substring is a substring which differs from the string. An overlap from a linear string x to a linear string y is a proper suffix of x that is also a proper prefix of y. We denote by ov(x, y) the length of the longest overlap and by x ⊙ y the merge from x to y, i.e. x ⊙ y = x y[ov(x, y) + 1 : |y|].

For a circular string w = a 1 . . . a n over the alphabet Σ, |w| = n is the length of w and a substring of c is a finite substring of the linear infinite string (a 1 . . . a n ) ∞ (which denotes the infinite concatenation of the linear string a 1 . . . a n ).

Greedy reduction

We will exhibit a Strict-reduction [START_REF] Crescenzi | A short guide to approximation preserving reductions[END_REF], which is one kind of approximation-preserving reduction between two optimization problems.

A Strict-reduction from an optimization problem A to another optimization problem B is a pair of polynomial-time computable functions (f, g) where:

• for each instance x of A, f (x) is an instance of B,

• for each solution y of B, g(y) is a solution of A,

• R A (x, g(y)) ≤ R B (f (x), y)
where

R D (x, y) = max c D (x,OP T (x)) c D (x,y)
, c D (x,y) c D (x,OP T (x)) for any optimization problem D where c D is the cost function of D.

We propose here a new type of reduction that links the greedy nature of the solutions of two optimization problems. Indeed, for the Strict-reduction from an optimization problem A to another optimization problem B, if we have an approximation ratio of α for the greedy algorithm for the problem B, we know that there exists an algorithm of A, which can be different of the greedy algorithm for A, with an approximation ratio smaller than or equal to α. We want that the reduction preserves the greedy nature of the solutions.

A Greedy-reduction from an optimization problem A to another optimization problem B is a Strict-reduction (f, g) where:

• for each greedy solution y of B, g(y) is a greedy solution of A.

As the notion of greedy algorithm for an optimization problem may be ambiguous, we define in Appendix (Section 4) more formally the Greedy-reduction in the case of subset system maximization problems.

Superstring problems: definition and main contributions

Let P be a set of linear strings. A linear superstring of P is a linear string which has all strings of P as substring. A circular string w having all strings of P as substrings is a circular superstring of P . Given a set P of linear strings, the Shortest Linear Superstring problem (or SLS ) corresponds to finding the linear superstring of P of minimal length. The Shortest Circular Superstring problem (or SCS ) is defined as finding the shortest circular superstring of P . For both minimization problems, there exists a corresponding associated maximization problem, where instead of minimizing the superstring length measure, one maximizes the compression measure, i.e. one seeks a superstring maximizing the difference between P = w ∈P |w| and the length of the sought superstring.

For both problems, a specific greedy algorithm can be defined. For the Shortest Linear Superstring problem, the well-know greedy algorithm is defined as follows: for a set P of strings, the greedy algorithm takes two strings of P with the maximal overlap, remove these two elements from P , and insert their merge into P and continue until only one string remains in P . This string is a greedy solution for the Shortest Linear Superstring problem for P . We call this solution a greedy linear superstring. For the Shortest Circular Superstring problem, the greedy algorithm for SCS is identical to that for SLS except that at the end, it returns the merge of the greedy linear superstring with itself, which creates a circular string. This circular string is called a greedy circular superstring.

Theorem 1. There exists a Greedy-reduction from the Shortest Linear Superstring problem (SLS) to the Shortest Circular Superstring problem (SCS) for both the length and compression measures.

As SLS is NP-complete [START_REF] Gallant | On finding minimal length superstrings[END_REF], Theorem 1 implies that SCS also.

Corollary 2. The Shortest Circular Superstring problem is NP-complete.

Another consequence of Theorem 1: A proof of a 2-approximation of the greedy algorithm for the Shortest Circular Superstring problem would imply a proof of the well-know greedy conjecture [START_REF] Blum | Linear approximation of shortest superstrings[END_REF], which states that the approximation ratio of the greedy algorithm for the Shortest Linear Superstring problem is 2. Hence, we propose the following conjecture: Conjecture 3. The approximation ratio of the greedy algorithm for the Shortest Circular Superstring problem is 2.

Proof of Theorem 1

Given an ordered alphabet Σ, we take Σ = {a : a ∈ Σ} where Σ ∩ Σ = ∅ and Σ ∩ Σ is totally ordered. Let f be the function from P(Σ ⋆ ) to P (Σ ∪ Σ) ⋆ where for a set of strings P over Σ, f (P ) = P ∪ P with P = {w : w ∈ P } and w = a 1 . . . a k for w = a 1 . . . a k .

For a circular superstring c = a 1 , . . . , a k of P ∪ P , we denote by l(c) the linear string corresponding to the smaller circular shift of c in lexicographic order (for any a ∈ Σ and b ∈ Σ, a < b) and such that l(c) [START_REF] Blum | Linear approximation of shortest superstrings[END_REF] ∈ Σ and l(c)[k] ∈ Σ. By construction, l(c) exists and is unique. For a linear string w = a 1 . . . a q over Σ ′ and Σ ′′ ⊆ Σ ′ , w| Σ ′′ is the restriction of w to Σ ′′ . We denote by g the following application such that for a circular superstring c of P ∪ P :

g(c) = a 1 . . . a k if g ′ (c) ∈ Σ * and g ′ (c) = a 1 . . . a k or if g ′ (c) ∈ Σ * and g ′ (c) = a 1 . . . a k with g ′ (c) = Argmin |w| : w ∈ { l(c)| Σ , l(c)| Σ } Lemma 4.
For any circular superstring c of P ∪ P , g(c) is a linear superstring of P of length smaller than or equal to |c| 2 .

proof of Lemma 4. Let c = a 1 , . . . , a k be a circular superstring of P ∪ P . By definition, g

′ (c) ∈ { l(c)| Σ , l(c)| Σ }. Assume, without loss of generality, that g(c) = g ′ (c) = l(c)| Σ , i.e. | l(c)| Σ | ≤ | l(c)| Σ |. As l(c)[1] ∈ Σ and l(c)[k] ∈ Σ, l(c
) is a linear superstring of P ∪ P and thus l(c)| Σ is a linear superstring of P . Indeed, as l(c) is a linear superstring of P ∪ P , for each string s of P , there exists i and j such that l(c)[i : j] = s. As l(c)[i : j] ∈ Σ * , there exists i ′ and j ′ such that l(c Proof of Lemma 5. Let w be a linear superstring of P of length k. We want to prove that there exists a circular superstring of P ∪ P of length smaller than or equal to 2k. We take c = ww . As w is a linear superstring of P and w is a linear superstring of P , c is a circular superstring of P ∪ P . By definition, (ww)[1 : k] ∈ Σ * and (ww)[k + 1 : 2k] ∈ Σ * , thus one gets ov(ww, ww) = 0.

)[i : j] = l(c)| Σ [i ′ : j ′ ] and thus s is a substring of l(c)| Σ . As |l(c)| = | l(c)| Σ | + | l(c)| Σ | , we have that 2|g(c)| ≤ |l(c)| = |c|.
Indeed, assume ov(ww, ww) = l > 0.

By construction, we know that Σ

∩ Σ = ∅. If l ≤ k then w[k] = w[l], which is impossible because w[k] ∈ Σ and w[l] ∈ Σ. If l > k then w[1] = w[l -k + 1], which is also impossible since w[1] ∈ Σ and w[l -k + 1] ∈ Σ. As ov(ww, ww) = 0, | ww | = |ww| = |w| + |w| = 2k.
Let c be a circular superstring of P ∪ P of length k ′ . We want to prove that there exists a linear superstring of P of length smaller than or equal to k ′ 2 . We take w = g(c). By Lemma 4, w is a linear superstring of P of length smaller than or equal to |c| 2 , i.e. w ≤ k ′ 2 . Now, we can prove that there exists a shortest linear superstring of P of length k if and only if there exists a shortest circular superstring of P ∪P of length 2k. Let w o a shortest linear superstring of P of length k, we know that there exists a circular superstring of P ∪ P of length smaller than or equal to 2k and thus there exists a shortest circular superstring of P ∪ P of length smaller than of equal to 2k. Assume the length of a shortest circular superstring of P ∪ P is strictly smaller than 2k. Then by Lemma 4, there exists a linear superstring of P of length strictly smaller than Combining lemmas 4 and 6 gives us the Strict-reduction from SLS to SCS for both the length measure and the compression measure.

Lemma 7. Let c be a greedy circular superstring of P ∪ P . The linear string g(c) is a greedy linear superstring of P . proof of Lemma 7. Let c be a greedy circular superstring of P ∪ P . As c is a greedy circular superstring, there exists a greedy linear superstring w c of P ∪ P such that c is the merge of w c with itself. As for all strings w ∈ P and w ∈ P , ov(w, w) = ov(w, w) = 0, a greedy linear superstring w of P ∪ P has ov(w, w) = 0 and thus w c = c. By the definition of the greedy linear superstring, there exists Q 1 = P ∪ P , Q 2 , . . . , Q k = {w c } such that Q i correspond to the i th recursion of the greedy algorithm for the Shortest Linear Superstring problem where Q i+1 = Q i \{u i , v i }∪{u i ⊙v i } where u i and v i are the greedy choice at the step i. As the greedy choice takes the maximal overlap, we have

ov(u 1 , v 1 ) ≥ ov(u 2 , v 2 ) ≥ . . . ≥ ov(u k-1 , v k-1
). As w ∈ P and w ∈ P , ov(w, w) = ov(w, w) = 0, the set {i : ov(u i , v i ) = 0} is not empty and we take j = min({i : ov(u i , v i ) = 0}). By construction, any string of P ∪ P is substring of a string of Q j and each string of Q j is either in Σ * or in Σ * . As for all strings w ∈ P and w ∈ P , ov(w, w) = ov(w, w) = 0, any concatenation of strings of Q j ∩ Σ * is a greedy linear superstring of P , and similarly, any concatenation of strings of Q j ∩ Σ * is a greedy linear superstring of P . Hence, g(c) is a greedy linear superstring of P .

Lemma 7 shows that for any greedy circular superstring c of P ∪ P , g(c) is a greedy linear superstring of P . This concludes the proof of Theorem 1.

Appendix

Greedy-reduction for subset system maximization problems

We introduced the notion of Greedy reduction. To make it a useful concept, it is crucial to clarify what is a greedy algorithm. Especially for SLS, the greedy algorithm can be written as described above (see Section 2 and [START_REF] Gallant | On finding minimal length superstrings[END_REF]) or as the greedy algorithm from a specific subset system [START_REF] Cazaux | The power of greedy algorithms for approximating max-atsp, cyclic cover, and superstrings[END_REF] Here, we propose a definition of Greedy reduction for a subset system of maximization problems, for which the greedy algorithm is unambiguously defined.

For a finite set E, a subset system L is a set of subsets of E satisfying two conditions: first, ∅ ∈ L, and second, if B ∈ L and A ⊆ B then A ∈ L. We denote by max(L) the set of elements of L that is maximal for inclusion.

A maximization problem is called a subset system maximization problem if every instance of this problem defines a subset system [START_REF] Mestre | Greedy in approximation algorithms[END_REF]. An instance of a subset system maximization problem is thus a triplet (E, L, w) where E is a finite set, L is a subset system, and w is a function that assigns a weight to each element of E.

An optimal solution of this problem for this instance is an element of L with the maximum weight, i.e. Argmax F ∈L w(F ) where w(F ) = x∈F w(x). For a given instance (E, L, w), one can also uniquely define a greedy algorithm (see Algorithm 1).

Algorithm 1:

The greedy algorithm associated with an instance (E, L, w) of a subset system maximization problem.

Input : (E, L, w) [START_REF] Blum | Linear approximation of shortest superstrings[END_REF] The elements e i of E sorted by decreasing weight: w(e 1 ) ≥ w(e 2 ) ≥ .

. . ≥ w(e n ) 2 F ← ∅ 3 for i = 1 to n do 4 if F ∪ {e i } ∈ L then F ← F ∪ {e i }; 5 return F Output: A set F of max(L).
A Greedy-reduction from a subset system maximization problem A to another subset system maximization problem B is a pair of polynomial-time computable functions (f, g) where:

• for each instance (E, L, w) of A, there exists L ′ and w ′ such that (f (E), L ′ , w ′ ) is an instance of B,

• for each element y of max(L ′ ), g(y) is an element of max(L),

• for each greedy solution y of (f (E), L ′ , w ′ ), g(y) is a greedy solution of (E, L, w),

• w(g(y))

max F ∈L w(F ) ≤ w ′ (y) max F ∈L ′ w ′ (F )
. Now, we can reuse the subset systems of [START_REF] Cazaux | The power of greedy algorithms for approximating max-atsp, cyclic cover, and superstrings[END_REF] to define the greedy algorithm for the Shortest Linear Superstring problem and for the Shortest Circular Superstring problem.

For a set of strings P , we denote E P the set of all pairs of P , i.e. E P = P × P . We define the following subset system:

• (E P , L = {F : F satisfies (L1), (L2) and (L3)}) for the Shortest Linear Superstring problem,

• (E P , C = {F : F satisfies (L1), (L2) and (L3b)}) for the Shortest Circular Superstring problem.

where (L1) ∀s i , s j and s k ∈ P , (s i , s ) and (s j , s k ) ∈ F ⇒ i = j, (L2) ∀s i , s j and s k ∈ P , (s k , s i ) and (s k , s j ) ∈ F ⇒ i = j, (L3) for any r ∈ {1, . . . , |P |}, there exists no cycle (s i 1 , s i 2 ), . . . , (s i r-1 , s ir ), (s ir , s i 1 ) in F .

(L3b) for any r ∈ {1, . . . , |P | -1}, there exists no cycle (s i 1 , s i 2 ), . . . , (s i r-1 , s ir ), (s ir , s i 1 ) in F .

Unlike in (L3), the condition (L3b) allows for a single cycle that contains all the elements (but disallows any other cycle).

Lemma 5 .

 5 Let w o be a shortest linear superstring of P and c o be a shortest circular superstring of P ∪ P . One has 2|w o | = |c o |.

2k 2 = 2 P

 22 k = |w o |, which contradicts the fact that w o is a shortest linear superstring of P , and concludes the proof. Lemma 6. Given w o a shortest linear superstring of P , c o a shortest circular superstring of P ∪ P , and c a circular superstring of P ∪ P , one has |g(c)| |w o | ≤ |c| |c o | and P -|w o | P -|g(c)| ≤ P ∪ P -|c o | P ∪ P -|c| . Proof of Lemma 6. Let w o be a shortest linear superstring of P , c o a shortest circular superstring of P ∪ P and c a circular superstring of P ∪ P . By Lemma 4, we have 2|g(c)| ≤ |c| and by Lemma 5, 2|w o | = |c o | and thus |g(c)| |wo| = 2|g(c)| 2|wo| = 2|g(c)| |co| ≤ |c| |co| . Moreover, because P ∪ P = 2 P , one gets P -|w o | P -|g(c)| = 2 P -2|w o | 2 P -2|g(c)| ≤ -2|w o | 2 P -|c| = 2 P -|c o | 2 P -|c| = P ∪ P -|c o | P ∪ P -|c| .
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