
HAL Id: lirmm-03454630
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03454630v1

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpreted Synchronous Extension of Time Petri Nets -
Definition, Semantics and Formal Analysis

Karen Godary-Dejean, Hélène Leroux, David Andreu

To cite this version:
Karen Godary-Dejean, Hélène Leroux, David Andreu. Interpreted Synchronous Extension of Time
Petri Nets - Definition, Semantics and Formal Analysis. Discrete Event Dynamic Systems, 2022, 32,
pp.27-64. �10.1007/s10626-021-00347-z�. �lirmm-03454630�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03454630v1
https://hal.archives-ouvertes.fr

Discrete Event Dynamic Systems

Interpreted Synchronous Extension of Time Petri Nets

Definition, Semantics and Formal Analysis
--Manuscript Draft--

Manuscript Number:

Full Title: Interpreted Synchronous Extension of Time Petri Nets

Definition, Semantics and Formal Analysis

Article Type: Manuscript

Keywords: Critical embedded systems; Implementation of Petri nets; Synchronous Time Petri
nets semantics; Bisimulation

Corresponding Author: Karen GODARY DEJEAN, Ph.D.
University of Montpellier: Universite de Montpellier
Montpellier, Languedoc-Roussillon FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Montpellier: Universite de Montpellier

Corresponding Author's Secondary
Institution:

First Author: Karen GODARY DEJEAN, Ph.D.

First Author Secondary Information:

Order of Authors: Karen GODARY DEJEAN, Ph.D.

Hélène LEROUX, Ph.D.

David ANDREU, Ph.D. HdR

Order of Authors Secondary Information:

Funding Information:

Abstract: Our work is integrated into a global methodology to design synchronously executed
embedded critical systems. It is used for the development of medical devices implanted
into human body to perform functional electrical stimulation solutions (used in
pacemakers, deep brain stimulation...). These systems are of course critical and real
time, and the reliability of their behaviors must be guaranteed. These medical devices
are implemented into a programmable logic circuit in a synchronous way, which allows
efficient implementation (space, consumption and actual parallelism of tasks
execution).
This paper presents a solution that helps to prove that the behavior of the implemented
system respects a set of properties, using Petri nets for modeling and analysis
purposes. But one problem in formal methods is that the hardware target and the
implementation strategy can have an influence on the execution of the system, but is
usually not considered in the modeling and verification processes.
Resolving this issue is the goal of this article. Our work has two main results: an
operational one, and a theoretical one. First, we can now design critical controllers with
hard safety or real time constraints, being sure the behavior is still guaranteed during
the execution. Second, this work broadens the scope of expressivity and analyzability
of Petri nets extensions. Until then, none managed in the same formalism, both for
modeling and analysis, all the characteristics we have considered (weights on arcs,
specific test and inhibitor arcs, interpretation, and time intervals, including the
management of effective conflicts and the blocking of transitions).

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

DEDS manuscript No.
(will be inserted by the editor)

Interpreted Synchronous Extension of Time Petri Nets
Definition, Semantics and Formal Analysis

Karen Godary-Dejean · Hélène Leroux · David
Andreu

Received: date / Accepted: date

Abstract Our work is integrated into a global methodology to design synchronously
executed embedded critical systems. It is used for the development of medical de-
vices implanted into human body to perform functional electrical stimulation solu-
tions (used in pacemakers, deep brain stimulation...). These systems are of course
critical and real time, and the reliability of their behaviors must be guaranteed. These
medical devices are implemented into a programmable logic circuit in a synchronous
way, which allows efficient implementation (space, consumption and actual paral-
lelism of tasks execution). This paper presents a solution that helps to prove that the
behavior of the implemented system respects a set of properties, using Petri nets for
modeling and analysis purposes. But one problem in formal methods is that the hard-
ware target and the implementation strategy can have an influence on the execution of
the system, but is usually not considered in the modeling and verification processes.
Resolving this issue is the goal of this article. Our work has two main results: an
operational one, and a theoretical one. First, we can now design critical controllers
with hard safety or real time constraints, being sure the behavior is still guaranteed
during the execution. Second, this work broadens the scope of expressivity and ana-
lyzability of Petri nets extensions. Until then, none managed in the same formalism,
both for modeling and analysis, all the characteristics we have considered (weights
on arcs, specific test and inhibitor arcs, interpretation, and time intervals, including
the management of effective conflicts and the blocking of transitions).

Karen Godary-Dejean
LIRMM UMR 5506, Univ. Montpellier, CNRS, Montpellier, France.
E-mail: karen.godary-dejean@umontpellier.fr
ORCID ID : 0000-0002-5835-021X

Hélène Leroux
Lycée International François 1er , Fontainebleau, France.

David Andreu
LIRMM UMR 5506, Univ. Montpellier, CNRS, Montpellier, France.
NEURINNOV company http://neurinnov.com/

Manuscript Click here to
access/download;Manuscript;GodaryDejean_JDEDS.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://neurinnov.com/
https://www.editorialmanager.com/disc/download.aspx?id=42667&guid=b54f0d26-5aff-42c6-87b4-562f9d702791&scheme=1
https://www.editorialmanager.com/disc/download.aspx?id=42667&guid=b54f0d26-5aff-42c6-87b4-562f9d702791&scheme=1
https://www.editorialmanager.com/disc/viewRCResults.aspx?pdf=1&docID=1331&rev=0&fileID=42667&msid=79714b80-e627-4540-b4f1-a9cea1e7054b

2 K. Godary-Dejean et al.

Keywords Critical embedded systems · Implementation of Petri nets · Synchronous
Time Petri nets semantics · Bisimulation

1 Introduction

1.1 Contexte

In the context of critical embedded systems, such as avionics, automotive and med-
ical, it is imperative to prove that requirements are met, whether they are regulatory
or normative requirements, or performance ones. To achieve this, design and devel-
opment methodologies are rigorous and testing is as thorough as possible. In most
cases, these critical systems must be certified before industrial and commercial oper-
ation. Within the framework of this certification, the potential contributions of formal
methods are studied, not as a substitute for testing at this stage, but as a complement.
This is the case, for example, with RTCA DO-333, ”Formal Methods Supplement to
DO-178C and DO-278A”. The use of formal methods includes, for example, the use
of theorem proving, model checking, or abstract interpretation.

Our work is part of such an approach, i.e. to contribute to the proof of satisfac-
tion of requirements, more particularly those related to performance and reliability.
In other words, we are interested in building a tool-based methodology that helps to
prove that the behavior of the implemented system respects a set of formally validated
properties. This work therefore falls within the scope of the HILECOP (High-Level
Hardware Component Programming) methodology, which was initially designed to
assist in the development of safe active implantable medical devices (Andreu et al
(2009); Leroux et al (2015)). These devices are implanted into human body to per-
form FES (Functional Electrical Stimulation) solutions which are being successfully
used in an increasing number of applications, including pacemakers, deep brain stim-
ulation, pain control and hearing restoration.

Therefore, the designed systems are submitted to usual constraints like dimen-
sions and energy consumption, as well as more specific ones as electrical safety,
intrinsic reliability, without omitting the need to deal with architectural and program-
ming complexity, or communication needs. Mostly, these systems are critical and
real time as the reliability of their behaviors must be guaranteed, including in a tem-
poral point of view: the stimulation must be turned on and off at very specific times.
Also, beyond the medical field, this methodology could be useful for any system with
similar constraints: avionics, automotive, spatial, etc.

The HILECOP methodology deals with the complexity of digital systems thanks
to a component modular approach as well as the use of a formal language (Petri nets)
for modeling the behavior and composing the components. Formal languages offer
the possibility of using formal validation methods to deal with the critical constraints
of the targeted systems. Formal methods are complementary to more usual methods
(as test and simulation), providing more complete validation results at an earlier step
of the design process. Finally, the embedded and real time constraints are managed
by selecting a specific execution target: FPGA (Field-Programmable Gate Arrays)
or ASIC (Application Specific Integrated Circuit), which allows efficient implemen-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 3

tation in terms of space and consumption, and time efficiency thanks to the actual
parallelism of tasks execution.

The very critical aspect of our system incites us to use formal methods, espe-
cially model checking. Model checking (Baier and Katoen (2008)) is based on the
exhaustive enumeration of all the reachable states of a model of the system. It is then
possible to verify specific properties (safety, liveness, ..) to validate the system behav-
ior. But the usual issue of the model checking approach is that properties are verified
on a model, not on the system itself. The programming step can introduce errors. This
problem is managed in the HILECOP methodology, as the programming step is done
with an automatic generation of the VHDL code corresponding to the model (Andreu
et al (2008); Leroux et al (2015)). Another problem resides in the hardware target,
which can has an influence on the execution of the system as it is usually not con-
sidered at the modeling level. To be consistent, the model and the validation method
must finely consider the implementation constraints imposed by the hardware target
and the implementation strategy.

Thus, taking into account implementation and execution constraints into the mod-
eling and validation steps is the goal of this article. We show here that our method-
ology allows to formally verify some properties on the system model, which remain
guaranteed at the execution step. The next section presents the implementation prob-
lematic and choices we have done for modeling and analysis purpose.

1.2 Implementation and execution issues

1.2.1 Interpretation problematic

In the HILECOP methodology, Petri nets (PN) are used for the design of industrial
systems. The designed model has a real signification: it is linked with the real world
as it will be implemented on industrial products. For example for the design of an
implanted medical controller for FES (Andreu et al (2009)), the PN places will rep-
resent the states of the controller, and are directly associated to actions executed by
the neural stimulator. Transitions between these states are linked with events or vari-
ables of the system environment (for example sensor values or external commands).
Then the behavior of the system, and therefore the evolution of the model, depend
on the environment events and the variable values. This specific use of PN can not
be ignored in a global methodology where the correct behavior of the implemented
system must be guaranteed by the analysis of its designed model. Thus, we have to
integrate the interpretation characteristics into the formal definition and semantics
of our modeling formalism.

In our context, interpretation is composed of conditions, continuous actions and
impulsive actions, which handle signals and variables coming from the system envi-
ronment. Conditions allow to restrict the evolution of the PN model with signals or
variables. In the form of a logical expression, a condition is associated with a tran-
sition, and then this transition is fired only if the associated condition is true. This
introduces a particularity into the semantics of the Petri nets: to be fired, a transi-
tion must not only be enabled by the marking of its input places, but it must also

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 K. Godary-Dejean et al.

take into account its associated condition. Actions allows to handle signals or vari-
ables. Continuous actions are associated to places and are executed as long as one of
its associated places is marked. Impulsive actions are associated to transitions, and
are executed once when one of their associated transitions is fired. Incrementing a
counter is a typical example of such impulsive actions. An example of such a PN,
named an Interpreted PN (IPN), is given in figure 1a, with a continuous action A0
associated to the place p0, an impulsive action F0 associated to the transition t0 which
set the internal variables a to 0 and b to 1, and a condition C1 = a.b associated to the
transition t1.

1.2.2 Synchronous implementation problematic

In programmable logic devices (such as FPGA) context, the asynchronous implemen-
tation of PN is well-known (for example in Uzam et al (2009); Wegrzyn et al (2014)).
But the addition of interpretation makes it difficult as VHDL is not executed sequen-
tially but combinatorially. Indeed, impulsive actions could handle internal variables
and then modify the condition values. Yet it is necessary to guaranty that the signals
are stables to have a deterministic behavior, but there is no (automatic) way to exactly
know when the impulsive actions are finished (Leroux et al (2015)).

For example for the interpreted PN of figure 1a, the correct behavior should be
the one of figure 1b: t0 is fired, which starts the impulsive action F0; at the end of F0,
a is set to 0; in the same time the markings of the places p0 and p1 are evolving; then,
when t1 becomes enabled (i.e. when p1 is marked), the evaluation of the condition C1
is done: C1 is now f alse, preventing the firing of t1. But if the execution time of F0
is longer than the evolution of the marking, the decision of firing t1 could be taken
before the stabilization of the C1 value, leading to an unexpected behavior (figure 1c).

(a) IPN

fire(t0)

a

fire(t1)

b

1

F0

C1

p1

p0

1

1

0

1

0

(b) Correct behavior

fire(t0)

a

fire(t1)

b

1

F0

C1

P1

P0

1

1

0

1

0

(c) Incorrect behavior

Fig. 1 Incorrect behavior because of interpretation in asynchronous execution

One solution is to implement the interpreted PN in a synchronous way. The prin-
ciple is that the evolution of the PN is driven by a clock. In our approach, the two
clock edges are used, and the following steps concerning the evolution of the model
states are repeated at each clock cycle (figure 2):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 5

– On the falling edge of the clock 1©: evaluation, from the current state, of which
transitions have to be fired (i.e. they are enabled because of the marking, and
firable depending on their condition values).

– On the rising edge of the clock 3©: update of the marking depending on the pre-
viously fired transitions.

– Periods 2© and 4© are necessary for the transmission and the stabilization of the
signals and the variable values.

Continuous and impulsive actions are performed on stable states:

– Continuous actions are activated on the falling edge of the clock 1©, once the
marking of the places is stable, and are maintained as long as their associated
places are marked.

– Impulsive actions are triggered on the rising edge 3© following the firing of the
transitions they are associated to, and must end before the next falling edge (their
maximum execution time is the half-period 4©).

clock

 choice of transitions to be fired

update of the marking

1
3

2

4

 execution of continuous actions

start of impulsive actions 1 t

Fig. 2 Principle of the synchronous implementation of IPN

The synchronous implementation in such a parallel execution target (FPGA or
ASIC) specifically manages the parallelism: all the transitions firable at the same
clock tick will be fired simultaneously, as shown figure 3: if t0 and t1 are firable at the
initial state (i.e. C0 and C1 are true), then they are both fired on the first falling edge.

p1

t1

(a) IPN

firing(t0)

p3

p2
p1

p0

clock

firing(t1)

(b) Synchronous behavior

Fig. 3 Simultaneous firing of transitions in synchronous execution

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 K. Godary-Dejean et al.

But this behavior could be problematic in a Petri net, in case of conflicts. Infor-
mally speaking, a conflict is a situation in which a token could be used by several
transitions at the same time. In synchronous execution, this could induce inconsis-
tencies as one shared token could be used to fire two different transitions at the same
time, potentially leading to an unacceptable behavior in case of a choice structure.
Figure 4 illustrates this problem: transitions t0 and t1, which are in conflict, are both
firable, and then are simultaneously fired in synchronous execution. It leads to the
marking of both places p1 and p2, which is not the expected behavior of such a clas-
sical choice structure in Petri nets. Thus the synchronous execution of a Petri nets
model must manage the simultaneous firing of the firable transitions while consider-
ing the conflict problem.

p0

t0 t1

p2p1

p0

t0 t1

p2p1

Fig. 4 Problem of an effective conflict in synchronous execution

1.3 State of the art of Petri nets formalisms

We have quickly present earlier the classical Petri nets, as well as their extension with
interpretation. But in our context, the model must reflect the whole behavior of our
targeted system. Thus it is necessary to integrate into the modeling formalism all the
needed characteristics. We also have to study the analysis capacity of the formalism,
as we want to use model checking techniques for properties verification.

The use of Petri nets is a natural choice as the actual parallelism of the FPGA
target fits with the actual parallelism of PN. PN are a well-known formalism in the
discrete event systems and control synthesis communities. Time Petri nets (TPN)
(Merlin (1974)), a temporal extension of PN for quantitative time in which transitions
are associated with firing intervals, are often used for modeling and analysis of real
time systems (Girault and Valk (2013)). But we have seen that our need of determin-
ism, as well as our specific implementation target, make it necessary to execute the
Petri nets in a synchronous way, which does not fit with the classical asynchronous
hypothesis of PN and TPN formalisms. Furthermore, the formalism we need must
deal with interpretation, as the designed model is linked with the real world by vari-
ables and signals. We thus have to consider others PN extensions to deal with our
constraints.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 7

Few works deal with the formal definition and analysis of interpreted Petri nets.
In the work done on SPIN (Signal Interpreted PN, Frey (2002)), as well as the one
on CIPN (Control Interpreted PN, Grobelna and Adamski (2011)), interpretation is
handled like the classic way in controller programming: it is associated as input with
transitions and as output with places. But, in these cases, the execution hypothesis is
that the transition firing is instantaneous, which is not the case in our context. Fur-
thermore, both SPIN and CIPN solutions do not manage conflicts in a deterministic
way, and do not allow quantitative time representation.

The interpretation could also be seen as synchronization: in the synchronized
Petri nets formalism defined in (David and Alla (2010); Moalla et al (1978)), syn-
chronization is considered as the association of transitions with event occurrences.
Similarly, in Basile et al (2020), the input/output interpretation are associated with
event occurences, mixing Interpreted and Synchronized Petri nets. Traditionally used
for logic controllers specification and synthesis (Devillers and Van Begin (2006);
David and Alla (2010)), synchronized PN have been used in various application do-
mains, for example testing (Pocci et al (2016)) or fault diagnosis and control (Chen
et al (2013)). But synchronized PN have some differences with our implementation
choices, especially as they make the hypothesis that the firing execution time of tran-
sitions is instantaneous, and so do not consider the execution time for the associated
impulsive actions. This could lead to problem in case of too long execution time as
illustrated figure 1, and also could lead to instantaneous multiple firing of transitions
(see David and Alla (2010)). A solution could be to combine timed PN and synchro-
nized PN as in Huang et al (2018); Elidrissi et al (2020). But timed PN are different
from temporal PN. The semantics describes in these articles uses timed transitions
to represent a fixed duration of firing, and the decision of firing is done without
considering the temporal information. Thus we could not represent a firing inter-
val, which could be useful to represent the behavior of real time systems. Finally,
Synchronized PN and Timed Synchronized PN also make the hypothesis that two
independent events never occur simultaneously (David and Alla (2010)), which sim-
plifies the problematic of simultaneous firings, reducing the problem to transitions
associated to the same event (Pocci et al (2016)).

Furthermore, synchronized PN are a more general definition than needed in our
context, where the events associated with transitions are the clock edges. In our con-
text, clock edges are the only events that could trigger the firing of transitions, we do
not need to represent more events. Thus the synchronous semantics we need seems
closer to the discrete-time semantics of TPN (Popova (1991); Magnin et al (2008,
2009); Knapik et al (2010)) where time can not elapse more then 1tu (time unit) at a
time. But this semantics is only a discrete interpretation of the time firing intervals of
the TPN, while keeping the asynchronous firing hypothesis. Thus, the simultaneous
firing of transitions is not managed.

So, the only way to be really close from our implementation choices is defini-
tively to use the specific synchronous semantics of Petri nets. Unfortunately, few
works deal with synchronous Petri nets, and even less with a precise and formal de-
scription of their corresponding behavior. In Hilal and Ladet (1993), Synchronous
Petri nets (SynPN) are based on the traditional assumptions as for synchronous lan-
guages, which means that ”the firing cycle duration is considered as null”. But we

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 K. Godary-Dejean et al.

think that this assumption is not realistic, as the marking evolution as well as the
diffusion of the variable values are not instantaneous in a circuit. In Ribeiro and Fer-
nandes (2007), the authors define synchronous interpreted Petri nets, named SIP-nets,
in a close way of our implementation. But they do not consider the conflict problem,
nor the quantitative time representation. Furthermore, their semantics is also simpli-
fied by the hypothesis of safe PN (no reachable marking can contain more than one
token in any place).

The last formalisms that we must study are the generalized and extended exten-
sions of Petri nets, which are quite common tools used to increase the expressive
power of modeling. The theoretical definition of generalized Petri nets (i.e. it is pos-
sible to have several tokens in one place and weight on arcs) is well-known, but ul-
timately not often effectively used for the programming of logical controllers, where
the assumption of safe Petri nets is currently made. In the same idea, the extension
of Petri nets with test (or read) arcs and inhibitor arcs is common, even if they could
limit the analysis possibilities (Busi (2002); Berthomieu et al (2007a); Ivanov et al
(2014)). But these extensions have only been developed for asynchronous PN.

To resume, none of the existing Petri nets-based formalisms includes all the char-
acteristics necessary to finely represent the reality of the hardware implementation
we use. So we have to define a new formalism allowing all together the expression of
interpretation, synchronous and parallel execution, quantitative time and expressive-
ness facilities.

1.4 Goal of this article

This article tries to answer to an industrial and concrete need: the modeling, analysis
and synthesis of digital architectures for critical real-time embedded systems. For this
purpose, we define a new extension of Petri nets, we named Generalized Extended
Interpreted Synchronous Priority Time Petri Nets: GEISPrT PN. This formalism in-
cludes all the desired characteristics coming from our applicative context: expressive-
ness (generalized PN, with inhibitor and test arcs), interpretation (with the considera-
tion of the duration of the signals and variables evolution as non-zero), deterministic
synchronous execution (synchronized on clock edges, with simultaneous transitions
firing and deterministic conflict management thanks to priorities), and quantitative
time (representation of time constraints). This article presents in details the formal
definition and semantics of the GEISPrT PN. It also presents some model transfor-
mation rules which allow to guarantee that the behavior of this formalism is included
into the behavior of more classical (asynchronous) Petri nets, classically named TPN
and more precisely in this article named GET PN (Generalized Extended Time Petri
Nets). Thanks to that, some properties of a GEISPrT PN model could be verified with
existing TPN analysis tools.

This article completes earlier works: a first definition of the formalism and the
semantics of GEISPrT PN has been given in Leroux et al (2013, 2015)1, but here
these definitions have been refined with the consideration of the clock falling edge

1 In these articles the GEISPrT PN formalism has been named IPrTPN.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 9

events (expressing the synchronous aspect) and the explicit management of the inter-
pretation. This semantics is therefore more precise, which was necessary to perform
the formal proof of the semantics behavior preservation. One novelty of this article is
indeed the formal proof of the inclusion of the GEISPrT PN behavior into the GET
PN one (i.e. the ”classical” Petri nets), which is the necessary condition to obtain
some verification results with existing analysis tools.

To simplify the explanation, the article is composed iteratively, first dealing with
GEIS PN without conflict nor time, then introducing the conflict management and
finally adding time intervals. Section 2 introduces the basis of our formalism: the
Generalized Extended Interpreted Synchronous Petri Nets, first supposing that they
are without conflict. We address the problematic of the analysis of this formalism in
sections 3 and 4. The management of simultaneous firable transitions which are in
conflict is added in section 5 both into the semantics and the analysis. And we finally
study the addition of the quantitative time in section 6.

2 Generalized Extended Interpreted Synchronous Petri Nets

As presented in introduction, our context leads us to enhance the basic Petri Nets for-
malism with many characteristics that have to be considered for modeling but also for
implementation and analysis purposes. It is then necessary to formally precise defini-
tion and semantics of such a formalism. For now, we only consider in this section in-
terpretation and synchronous execution, without quantitative time consideration into
the designed model. We also make the hypothesis in this section that our model does
not has conflict: the firing of one transition could not prevent the firing of a simulta-
neous firable one. We integrate as a basis of our formalism specific characteristics on
the arcs: weight could be associated to arcs, and test and inhibitor arcs are allowed.
We think that these elements are essential to increase the modeling opportunities for
industrial designers, and they are yet included in existing analysis tools.

2.1 Formal definition of GEIS PN

Definition 1 (GEIS PN) Let C the set of conditions, F the set of impulsive ac-
tions and A the set of continuous actions. A Generalized Extended Interpreted Syn-
chronous Petri Net (GEIS PN) without conflict is a tuple < P,T,Pre,Pret ,Prei,Post,
m0,C,F,A,clk > where:

– < P,T,Pre,Pret ,Prei,Post,m0 > is a generalized extended Petri net (David and
Alla (2010)). P is the set of places, T the set of transitions and m0 is the initial
marking. Pre,Pret ,Prei,Post : T → P→N are respectively the precondition, test,
inhibition and postcondition functions2.

– C : T → C → {−1,0,1} is the condition function. ∀t ∈ T,∀c ∈ C ,C(t)(c) = 1
means that condition c is associated to t; C(t)(c) = −1 means that the negation

2 For simplification, when the context does not lead to confusion, we will simplify the notation
Pre(t)(p) into Pre(t), and respectively for the functions Pret , Prei and Post.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 K. Godary-Dejean et al.

of the condition c is associated to t; and C(t)(c) = 0 means that condition c is not
associated to t.

– F : T →F → B is the impulsive action function. ∀t ∈ T,∀ f ∈F ,F(t)(f) = 1
means that function f is associated to t, otherwise F(t)(f) = 0.

– A : P→A → B is the continuous action function. It is defined on the same prin-
ciple as F .

– clk ∈Clk is the clock signal that synchronizes the PN. The set of clock events is
Clk = {↑ clk,↓ clk}, with ↑ clk the rising edge and ↓ clk the falling edge of the
system clock.

Definition 2 (GEIS marking, state, enabled and firable) The marking of the GEIS
PN is defined by the function m : P→ N such that ∀p ∈ P, m(p) is the number of
tokens in the place p. The definition of a transition enabled by a marking m, noted
t ∈ en(m), is:

t ∈ en(m) ⇔
(
m≥ Pre(t)+Pret(t)

)
∧
(
m < Prei(t)

)
The instantaneous value of a condition (i.e. its real value at each instant) is defined
with the function val : C → B. The value used to manage the system evolution (i.e.
the one used on the following edge) is an image of this instantaneous value at the
moment we read it, defined with the function cond : C → B. The execution of the
impulsive or continuous actions is defined with the function ex : F ∪A → B. Thus,
the state of a GEIS PN is defined with s = (m,cond,ex).
In GEIS PN, the definition of a firable transition t from the state s = (m,cond,ex),
noted t ∈ f irableGEIS(s), is:

t ∈ f irableGEIS(s) ⇔ t ∈ en(m)

∧
(
∀c ∈ C |C(t)(c) = 1,cond(c) = 1

)
∧
(
∀c ∈ C |C(t)(c) =−1,cond(c) = 0

)
.

The explicit representation of the association of the negation of a condition to a transi-
tion leads to a quite complex representation of the firable expression. It seams useless
at this point, as the negation could be directly integrated in the logic expression it-
self. But this information could be interesting for conflict resolution (see section 5).
Nevertheless, when this information is not essential, we assume that we always have
conditions such as C(t)(c) = 1.

2.2 Semantics of GEIS PN

Based on these definitions for GEIS PN with the hypothesis of no conflict, we can
now formally define their semantics.

Definition 3 (GEIS semantics) The semantics of a GEIS PN without conflict <
P,T,Pre, Pret ,Prei,Post,m0,C,F,A,clk> is the transition system < S,s0,−→> where:

– S is the set of states.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 11

– s0 = (m0,o,o) is the initial state where o is the zero function. At the initial state,
we have ↓ clk = 1.

– −→⊆ S× (Clk×T ∗ε)× S is the state transition relation, with T ∗ the set of finite
sets of transitions on T and T ∗ε = T ∗∪ ε . This relation is defined as follows:

– Falling transition: we have s=(m,cond,ex)
↓clk,ε−→ s′=(m,cond′,ex′) iff ↓ clk=

1 and:
1. ∀a∈A ,∃p∈P | A(p)(a)= 1∧m(p) 6= 0⇒ ex′(a)= 1, otherwise ex′(a)=

0 (update of the execution function for continuous actions)
2. ∀c ∈ C ,cond′(c) = val(c) (update of conditions values)

Let f ired(s′) ⊆ T ∗ be the set of transitions that will be fired from s′. At this
point we can determine f ired(s′) depending on f irableGEIS(s′):

1. ∀t ∈ f irableGEIS(s′), t ∈ f ired(s′) (firable transitions will imperatively
be fired)

2. ∀t /∈ f irableGEIS(s′), t /∈ f ired(s′) (transitions not firable are not fired)

– Rising transition: we have s
↑clk, f ired(s)−−−−−−−→ s′, with s = (m,cond,ex) and s′ =

(m′,cond,ex′), iff ↑ clk = 1 and:
1. m′ = m− ∑

t∈ f ired(s)
Pre(t)+ ∑

t∈ f ired(s)
Post(t) (update of markings)

2. ∀ f ∈ F ,∃t ∈ f ired(s) | F(t)(f) = 1 ⇒ ex′(f) = 1, sinon ex′(f) = 0
(update of the execution function for impulsive actions)

Example 1 (GEIS PN execution) We illustrate in figure 5 the evolution of the GEIS
PN of figure 3. At the initial state e0, the initial marking is m0 = p0 p2 and the values
of all the conditions and the continuous or impulsive actions are nil (resp. Ci, Ai and
Fi). At the initial state we also have ↑ clk = 1, so the next state transition is a falling
transition leading to state e00. The falling transition sets the continuous actions values
depending on the marking: p0 and p2 are marked thus ex(A0) = ex(A2) = 1. It also
set the conditions values, reading the external value of the signals: for this example,
we suppose that both conditions C0 and C1 are true. For that reason, transitions t0 and
t1 are firable in e00, and then will be fired during the next rising transition: we have
↑ clk = 1∧ f ired(e00) = f irableGEIS(e00) = {t0, t1}. This transition leads to state e1,
and the update of the marking is: m1 = p1 p3. There is also an update of the impulsive
action values: as the fired transitions are t0 and t1, so ex(F0) = ex(F1) = 1.

Now the semantics of the formalism of GEIS PN without conflict is known, and
it precisely respects the implementation constraints of our hardware target. But we
also have to translate this formalism into an analyzable one to allow the verification
of properties in a formal way.

3 Analysability of GEIS PN

3.1 State of the art

The analysability of the GEIS PN could be considered with three problems to solve:
the analysis method must consider the extension for expressiveness (weights, in-
hibitor and test arcs), the synchronous behavior, and the interpretation influence. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 K. Godary-Dejean et al.

marking: 20 pp

cond(Ci)=0 �i

ex(Ai)=ex(Fi)=0

marking: 20 pp

� � � �1000 , ttefirableGEIS �

� � �� �1000 , ttefired �

Rising transition

marking: 31pp

e0 e00 e1

Falling transition

�i

cond(C0)=cond(C1)=1

ex(A0)=ex(A2)=1

ex(A1)=ex(A3)=0

ex(Fi)=0 �i

cond(C0)=cond(C1)=1

ex(A0)=ex(A2)=1

ex(A1)=ex(A3)=0

ex(F0)=ex(F1)=1

Fig. 5 Evolution of the GEIS PN of figure 3

first point is not a problem as many validation methods and tools allow formal anal-
ysis of generalized and extended Petri nets (Berthomieu et al (2004); Gardey et al
(2005)).

The second point is more complex, as there is no tool allowing to analyze Petri
nets with our synchronous evolution. A classical synchronous evolution could even-
tually be represented into a discrete semantics, as in Popova (1991); David and Alla
(2010). The analysis of discrete time Petri nets has been studied several times, and
methods have been proposed for computing the state space and for verifying log-
ical properties (Popova (1991); Magnin et al (2008, 2009); Janowska A. (2013)).
There is no deep study on the equivalence of the analysis results between discrete
and synchronous behaviors. But we have seen that some specific behaviors are not
considered in discrete time, as for example the simultaneous firing of transitions.
Furthermore, discrete time TPN analysis methods still have combinatory explosion
problem, and there are more optimization methods and efficient tools for the dense
time TPN (Gardey et al (2005); Berthomieu et al (2004)).

Another track to follow is the analysis of synchronized PN. The reachability set
of a synchronized PN model can easily be computed supposing some simplifying
hypotheses: the model is supposed to be safe and/or deterministic (without effective
transition conflicts), as in Devillers and Van Begin (2006); Chen et al (2013); Pocci
et al (2016). In that case, the reachability set and the language - the set of feasible
transition firing sequences - are included into the ones of the underlying ordinary PN
(Chen et al (2013)). But we do not accept this simplification. Moreover, synchronized
PN make the hypothesis of the instantaneous propagation of the interpretation signals,
which could be a problem depending on the calculation time performances of the
hardware target. We illustrate this problem on an example figure 1.

Finally, about the third problem, it is well-known that interpretation could not
be analyzed on a model as the value of interpretation variables could not be known
a priori. To be exhaustive in the property verification process (for the validation of
safety properties for example), the only solution is to consider all the possible values
of the interpretation and then to over-estimate the real reachable state set. For example
if an input variable is a binary one, we could not know a priori if its value will be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 13

equal to 0 or 1 at the execution moment. We thus must consider both the values into
the analysis process, to verify all the possible real behaviors.

To conclude, there is no analysis method nor analysis tool which are perfectly
suitable to our needs. Thus we choose to use the well-known analysis possibilities
of the more classical time Petri nets, and we propose a method to take into account
the interpretation and the synchronous characteristics into the analysis process thanks
to specific time intervals on transitions. We then describe transformation rules from
GEIS PN to GET PN (Generalized Extended Time Petri Nets), which is a formalism
that could be analyzed with existing analysis tools (Berthomieu et al (2004), Gardey
et al (2005)). We also prove that these analysis results are useful and safe: the real
implemented behaviors are included into the analyzed behaviors.

3.2 Formal definition and semantics of GET PN

The formal definition of the GET PN formalism is well-known and could be find in
the literature (for example Berthomieu et al (2007b); Boyer and Roux (2008); Reynier
and Sangnier (2009)). We just give here the basic definitions to fix the notation used
in the rest of the article.

Let I+ be the set of non empty real intervals with non negative integer endpoints.
∀i ∈ I+, ↓ i is its lower bound and ↑ i its upper bound (could be +∞). To simplify
notations, we define that for any i∈ I+, θ ∈R+, i−θ corresponds to [↓ i−θ ,↑ i−θ].

Definition 4 (GET PN) A generalized extended time Petri net (GET PN) is a tuple
< P,T,Pre, Pret ,Prei,Post,m0, Is > where :
– < P,T,Pre,Pret ,Prei,Post,m0 > is a GE PN with P the places, T the transitions,

m0 the initial marking and Pre,Pret ,Prei,Post : T → P→ N+ the precondition,
test, inhibition and postcondition functions.

– Is : T → I+ is the static interval function.

Definition 5 (GET marking, state, enabled, newly enabled and firable) The mark-
ing and enabled definitions are the same as for the GEIS PN. A state of a GET PN
is a pair s = (m, I) in which m is the marking and I is the interval function defined as
I : T → I+. It associates a time interval with every transition enabled at m.

It is also necessary to define the set of newly enabled transitions: a transition k
is said to be newly enabled by the firing of the transition t (t 6= k) from the marking
m, noted k ∈ ↑ en(m, t), iff k is enabled by the new marking m−Pre(t) +Post(t)
but was not by m−Pre(t). The marking m−Pre(t) is considered because the tokens
consumed by the firing of t could temporarily disable a transition before adding the
tokens of Post(t). t could also be newly enabled itself if it is still enabled by the new
marking. We have:

k ∈ ↑ en(m, t)⇔ k ∈ en(m−Pre(t)+Post(t))

∧
[(

k = t
)
∨
(
k /∈ en(m−Pre(t))

)]
Finally, in GET PN, a transition is firable if it is enabled since enough time to

respect its time interval:

t ∈ f irableGET (s)⇔ t ∈ en(m) ∧ ↓ I(t) = 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 K. Godary-Dejean et al.

Definition 6 (GET semantics) The semantics of a GET PN < P,T,Pre,Pret ,Prei,
Post,m0, Is > is the timed transition system < S,s0,−→> where:

– S is the set of states.
– s0 = (m0, I0) is the initial state where m0 is the initial marking and I0 is the static

interval function Is, restricted to the transitions enabled at m0.
– −→⊆ S× (T ∪R+)×S is the state transition relation defined as follows:

– Discrete transition: we have (m, I) t−→ (m′, I′) iff t ∈ T and:
1. t ∈ f irableGET (m)
2. m′ = m−Pre(t)+Post(t)
3. ∀k ∈ T , if k ∈ ↑ en(m), I′(k) = Is(k), else I′(k) = I(k).

– Continuous transition: we have (m, I) θ−→ (m, I′) iff θ ∈ R+ and:
1. ∀t ∈ T, t ∈ en(m)⇒ θ ≤ ↑ I(t)
2. ∀t ∈ T, t ∈ en(m)⇒ I′(t) = I(t)−θ

All the necessary definitions of the GEIS and GET PN formalisms have now been
given, we can now specify the transformation rules to represent a GEIS PN model into
a GET PN one.

3.3 Transformation rules from GEIS to GET PN

The aim is to translate a GEIS PN N =< P,T,Pre,Pret ,Prei,Post,m0,C, F,A,clk >
into a GET PN N′ =< P′,T ′,Pre′, Pre′t ,Pre′i,Post ′,m′0, Is′ >.

– First the PN structure is kept, thus: P′ = P, T ′ = T , Pre′ = Pre, Pre′t = Pret ,
Pre′i = Prei, Post ′ = Post and m′0 = m0.

– Then Is′ is defined to reflect the synchronous constraints and the interpretation
possibilities. We establish that 1tu represents a whole clock period. The syn-
chronous implementation requires that transitions can not be fired in less than
1tu thus: ∀t ∈ T ′,↓ Is′(t) = 1. In the other hand, interpretation could indefinitely
prevent the firing of a transition, if its associated condition remains false. Thus if
a transition in N does not has condition it will be fired in 1tu, else it can be fired
at any time, possibly never:

– ∀t ∈ T,∀c ∈ C ,C(t)(c) = 0⇒ ↑ Is′(t) = 1
– ∀t ∈ T,∃c ∈ C |C(t)(c) 6= 0⇒ ↑ Is′(t) = +∞

These basic transformations are illustrated in figure 6.
– Continuous and impulsive actions of the interpretation are not considered here be-

cause they do not directly influence the system execution. They indirectly modify
the condition values, then they are ever considered as we have included all the
possible conditions values in the GET PN model.

These transformation rules allow to obtain, from a GEIS PN which repre-
sents the implemented behavior, a corresponding GET PN. Now we must show
that the analysis of this GET PN provides pertinent (guaranteed) and interesting (suf-
ficient, useful) validation results.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 15

p0

t0 t1

p1

p2 p3

[1,1]

(a) Discrete time (b) Condition value

Fig. 6 Transformation rules from GEIS PN to GET PN

4 Analysis results relevance

4.1 Discussion on analysis results

It is of course not possible to precisely describe the behavior of a GEIS PN into a
GET PN. First, the interpretation could only be verified considering all the possible
values of the interpretation variables, which is a superset of the execution scenarios.
Indeed, as the variables could depend on each other, some of the configurations are
not realistic. For example, if a = b− 5, and if a and b are independently associated
to the conditions of two different transitions, the scenario with a = 12 and b = 0 is
not possible in the real world, but will be analyzed. As a result of the interpretation,
the analyzed behaviors are therefore a superset of the state space of the implemented
real behaviors (see figure 7).

Analyzed behaviors

(GET PN)

Synchronous

Fig. 7 Inclusion of the real implemented behaviors into the analyzed ones

Second, we could guarantee that the synchronous behavior is included into the
asynchronous one, but they are not equivalent. Figure 8 gives in 8a an example of
a Petri net, then its state graphs for an asynchronous execution in 8b, and for a syn-
chronous one in 8c3. In this example, transitions t0 and t1 are concurrent: they are both
firable from the initial marking p0 p1. With synchronous execution, they are simulta-
neously fired and then the next marking is p1 p2. But with asynchronous execution,
the transitions must be fired one after the other: either t0 is fired first then t1, or the

3 These graphs are not complete: only the relevant marking information have been represented. The
continuous GET transitions, as well as the rising GEIS ones, have not been detailed.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 K. Godary-Dejean et al.

contrary. Thus it exists two intermediate markings 2p1 and p0 p2 which do not exist
in the synchronous state space.

p0

t0

t1

p1

p2

(a) PN model

p0 p1

t
1

2p1

p0 p2

p1 p2

t
0

t
1

t
0

2p2

t
1

(b) Asynchronous state graph

p0 p1 p1 p2 2p2

t
1

t
0
t

1

(c) Synchronous state graph

Fig. 8 Synchronous vs. asynchronous state space

This example clearly shows that the asynchronous hypothesis produces more states
than the synchronous one. The question now is: are all the synchronous behaviors are
included in those asynchronous ? We will prove in the following that this inclusion is
true, thus proving the relations given in figure 7.

The inclusion of the real behaviors (with the GEIS PN semantics) into the ana-
lyzed ones (from the GET PN model) has several consequences on the analysis pos-
sibilities, depending on the properties we want to verify (Baier and Katoen (2008)).
For example, invariance4 or safety5 properties could be guaranteed: if they are satis-
fied by all the GET PN reachable states, so they are verified by the GEIS PN ones.
However, if such a property is not satisfied on the GET PN states, it can still be in
the GEIS PN ones, but we can not verify it. On the contrary, the verification results
for liveness6 or reachable7 properties are irrelevant for the GEIS PN if the answer
is ”yes”, as the state satisfying the property could be one of the over-estimated - so
unreal - states. However, if these properties are never verified in the GET PN state
space, they will not either in the GEIS PN one.

Our goal is to automatically translate the designed model (GEIS PN) into an
analyzable model (GET PN) while ensuring the behavior inclusion. But our goal
is also to minimize the unrealistic analyzed scenarios, i.e. all parts in figure 7 that
are not included in the grey-hatched zone. Indeed, the closer are the analyzed and
implemented models, the more interesting are the validation results. The translation
method given in section 3.3 respects these two aims. In the domain of formal analysis,
model transformations are usual, for example to reduce the verification complexity by
the refinement of a complex model with an abstracted one. Refinement relations such

4 Invariance property: holds for all reachable states
5 Safety property: something bad never happens
6 Liveness: a good thing will happen in the future
7 Reachability: one specific state could be reach

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 17

as language inclusion, timed strong or weak simulation or bisimulation are useful to
prove trace inclusion, conservation of behaviors and preservation of properties. In the
following sections, we prove the inclusion of the GEIS PN behaviors into the GET
PN ones thanks to our transformation rules, using the timed simulation equivalence
relation.

4.2 Formal definition

Timed simulations (either weak or strong) are powerful relations leading to several in-
teresting conclusions on analysis results. These methods have been used to prove the
behaviors conservation of refinements with Timed Automata (Frehse (2006), Fares
et al (2013)) and to make a comparison of the expressiveness between several seman-
tics of Time Petri Nets (Bérard et al (2005, 2013)) and Timed Automata (Berthomieu
et al (2006); Balaguer et al (2012)). We can also note that the weak timed simulation
implies the language inclusion: S1 �W S2 =⇒ L (S1) ⊆ L (S2) (Baier and Katoen
(2008); Bérard et al (2013)). It also has been introduced as a sufficient condition for
trace inclusion (Fares et al (2013); Frehse (2006)).

We remind here useful definitions adapted from the above mentioned articles:

Definition 7 (Weak Timed Simulation)
Let S1 = (Q1,q1

0,Σε ,−→1) and S2 = (Q2,q2
0,Σε ,−→2) be two transition systems over

the alphabet Σ and � be a binary relation over Q1×Q2. Σε = Σ ∪ ε with ε the silent
letter and the empty word. Let −→i,ε be the weak transition relation allowing ε-
transition over −→i, i ∈ {1,2}. The relation � is a weak timed simulation relation of
S1 by S2 iff:

– q1
0 � q2

0;
– if q1

a−→1,ε q′1 with a∈Σε∪R≥0 and q1� q2 then ∃q2
a−→2,ε q′2 such that q′1� q′2;

A transition system S2 weakly simulates S1 if there is a weak timed simulation rela-
tion of S1 by S2. We write S1 �W S2 in this case.

Definition 8 (GEIS PN run) The synchronous implementation (see section 1.2.2)
imposes that a falling transition is necessarily followed by a rising one, thus a GEIS
PN run is at least composed of one couple { f ,r}. Therefore, the ↓ clk and ↑ clk
signals are the representation of the evolution of the time, and the total duration of
one falling (f) followed by one rising (r) transitions represents one time unit. We will
note Duration({ f ,r}) = 1. The implementation also imposes that no more than 1tu
can flow by. Indeed, if the conditions associated with all the enabled transitions are
false, no transition is firable, but the values of the conditions will be re-evaluated each
time unit. In that case, an empty rising transition is fired with no transition fired.

Thus, a run ρ of length n in the GEIS PN semantics is a finite sequence of alter-
nating rising (r) then falling (f) transitions such as:

ρ = s0
f0−→ s′0

r0−→ s1 . . . sn−1
fn−1−→ s′n−1

rn−1−→ sn

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 K. Godary-Dejean et al.

We also write s0
f0r0... fn−1rn−1−−−−−−−−→ sn. We define Untimed(ρ) ∈ T ∗ as the concatena-

tion of the transitions fired in the falling transitions of ρ , and Duration(ρ) ∈ N∗ the
representation of the time elapsed during this run. Thus for the run ρ we have:

Untimed(ρ) = f ired(s′0) f ired(s′1) . . . f ired(s′n−1)

and

Duration(ρ) =
n−1

∑
i=0

Duration({ fi,ri}) = n

The set of the GEIS PN runs is noted RunGEIS.

Definition 9 (GET PN run) A run ρ of length n in the GET PN semantics is a finite
sequence of alternating continuous (θi ∈ R) and discrete (ti ∈ T) transitions such as:

ρ = s0
θ0−→ s′0

t0−→ s1 . . . sn−1
θn−1−→ s′n−1

tn−1−→ sn

We also write s0
θ0t0...θn−1tn−1−−−−−−−−→ sn. The word Untimed(ρ) ∈ T ∗ is obtained by the

concatenation t0 t1 . . . tn−1 of the transitions ti ∈ T fired during the discrete transitions,
and we have Duration(ρ) = ∑

i
|θi| with |θi| the duration of the continuous transition

θi. Unlike GEIS PN runs, a GET PN run can consist of a single transition. The set of
GET PN runs is noted RunGET .

Definition 10 (Equivalence of runs) Two runs are equivalent if their respective
Untimed and Duration values are the same: the same transitions are fired during
the same amount of time. We formally note: ∀ρs ∈ RunGEIS, ∀ρa ∈ RunGET :

ρs ≈run
ρa ⇐⇒ Untimed(ρs) =Untimed(ρa)∧Duration(ρs) = Duration(ρa)

Definition 11 (Equivalence of states) Let Ns the synchronous GEIS PN semantics
and Na the asynchronous GET PN semantics. We consider the equivalence relation
≈ over states ss = (ms,cond,ex) of Ns and sa = (ma, I) of Na such that: ss and sa are
two equivalent states (ss ≈ sa) iff :

– ma = ms: they have the same markings;
– the interval function I of sa uses the values of the static interval function which

were generated from ss respecting the translation rules given in section 3.3.

4.3 Inclusion proof: GEIS PN ⊂ GET PN

To well understand this section, it is very important to distinguish transitions from
models than transitions from semantics. For that, we remind that semantics transitions
are either named continuous and discrete transitions for the asynchronous semantics,
or rising and falling transitions for the synchronous one.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 19

Proposition 1 For any Petri net Ns =< P,T,Pre,Pret ,Prei,Post,m0,C,F,A,clk >
with the GEIS PN semantics SemGEIS = (Ss,ss0,−→s), it exists a Petri net Na =<
Pa,Ta,Prea,Preta,Preia,Posta,m0a, Is > with the GET PN semantics SemGET = (Sa,
sa0,−→a) which weakly timed simulates Ns. Hence the GET PN semantics weakly
simulates the GEIS PN semantics: SemGEIS ≤w SemGET .

Proof
We consider that Na was generated from Ns respecting the transformation rules of
section 3.3. By definition of these rules, the structure of the Petri net, as well as the
initial marking, are conserved thus Na =< P,T,Pre,Pret ,Prei,Post,m0, Is >.

The initial states of the two semantics respect the conditions of definition 11 so
they are equivalent: sa0 ≈ ss0. Then we can consider that it exists ss = (ms,cond,ex)
a state of SemGEIS and sa = (ma, I) a state of SemGET which are equivalent: ss ≈ sa.
The weak timed similarity of the semantics will be established if ss ≈ sa and for any
ss

ρs−→s ss then it exists sa
ρa−→a sa with ρs ≈run ρa and ss ≈ sa. We have to prove

this equivalence for all the three possible types of GEIS PN runs: (1) no transition
is fired, (2) only one transition is fired and (3) several transitions are fired. For each
case, we will prove that it exists in the GET PN semantics an equivalent run, and we
will prove that this run leads to a final state equivalent to the final one of the GEIS PN
semantics. So, the inclusion SemGEIS ⊂ SemGET will be proved, with the hypothesis
established in this section that the Petri nets have no conflict.

(1) No transition fired: Let consider a GEIS PN run ρs0 such as: ss
ρs0−→s ss, with

Untimed(ρs0) = /0 and Duration(ρs0) = n ∈ N∗. We have ρs0 = ss
f0−→s s′s

r0−→s

ss1 . . . ssn−1
fn−1−→s s′sn−1

rn−1−→s ss with ri = (↑ clk, /0) ∀i. This run can has any du-
ration n ∈ N∗, indeed it could be possible to infinitely repeat an alternation of fi
and ri without firing a transition.

Existence of an equivalent run ρa0 : The run ρs0 corresponds to states for which all
the enabled transitions are not firable8. According to definition 2, this corresponds
to transitions associated to conditions whose values prevent the firing. Thus, as
all these enabled transitions are associated to a condition in Ns, the translation
rules impose that these transitions have the following time interval in Na: ∀ti ∈
en(ma), Is(ti) = [1,+∞[(as in the right of figure 6). As the upper bound is infinite,
there is no obligation to fire these transitions: it exists a run where time could
elapsed without firing any transition. Hence a continuous transition θ is possible
from sa with any duration, including all the values of N∗: sa

θ−→a sa. Thus we
have proved, for any GEIS PN run with no transition fired, the existence of an
equivalent GET PN run:

∀ρs0 ∈ RunGEIS |Untimed(ρs0) = /0, ∃ρa0 ∈ RunGET | ρa0 ≈run
ρs0

8 We do not detailed the case where no transition is enabled, because it represents a blocking state
without discrete possible evolution, but the proof is also relevant in this case.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 K. Godary-Dejean et al.

Equivalence of the final states ss ≈ sa : According to the GEIS PN semantics, the
falling transitions fi do not change the marking. Furthermore, for all the rising
transitions ri of the run ρs0 no transition is fired, so there is no marking change
either. Therefore we have ms = msi = m′si = ms ∀i. We also remind that ss ≈ sa
thus we have ms = ma. Let consider now ρa0 a GET PN run equivalent to ρs0. As
ρa0 consists of only one continuous transition, there is no marking change and
ma = ma. By hypothesis, we consider that Na was generated from Ns respecting
the desired transformation rules. So the equivalence of markings is sufficient to
establish the equivalence of states. Thus, we have ss ≈ sa.

(2) Only one transition fired: Let consider a run ρs1 such as: ss
ρs1−→s ss, with t1 ∈ T ,

Untimed(ρs1) = {t1} and Duration(ρs1) = 1. We have ρs1 = ss
f−→s s′s

r−→s ss
with r = (↑ clk, t1). This case corresponds to a transition which is enabled and
firable in s′s: t1 ∈ f irableGEIS(s′s). Thus t1 is either without condition or associated
to a condition which is true in ss, as in the example of figure 9a. Furthermore, the
firing of only one transition means that (for a PN without conflict) either only this
transition is enabled, or the other enabled transitions are not firable because of
their conditions: ∀ti ∈ en(m′s) | ti 6= t1⇒ ti 6∈ f irableGEIS(s′s). An example of such
a run is given in figure 10, if the condition C is false so only t1 is fired.

p1 p2

t1 Ct2

p2'p1'

(a) GEIS PN

[1,1] [1,w[t1 t2

p1 p2

p1' p2'

(b) GET PN

Fig. 9 Example of a GEIS PN and its corresponding GET PN

Existence of an equivalent run ρa1 : Following the transformation rules, the tran-
sitions of Ns are transformed in Na in temporal transitions: Is(t1) = [1,1], t1 being
without condition in Ns, and Is(t2) = [1,+∞[, t2 being associated to a condition
in Ns. Thus, from sa, it is necessary to first execute a continuous transition θ

with |θ | = 1: sa
θ−→a s′a. According to the GET PN semantics, we then have

↓ I′a(t) = ↓ Ia(t)− |θ | = 0, ∀t ∈ en(ma). Then all the transitions enabled by ma
become firable in s′a, including t1: it is now possible to execute a discrete transition

corresponding to the firing of t1. Therefore it exists a run ρa1 = sa
θ−→a s′a

t1−→a sa
in the GET PN semantics with Duration(ρa1) = 1 and Untimed(ρa1) = {t1},
which is equivalent to ρs1. Such a run is given in figure 11.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 21

marking : p1 p2

cond : cond(C)=0

marking :

cond :

marking :

cond :

ss

s's

en(m's)={t1t2}

� � � �t1sfirableGEIS s �'

f

r

fired s'
s� �� t1� �

ss

cond(C)=0

cond(C)=0

p1 p2

p'1 p2

Fig. 10 Run ρs1 of the GEIS PN of figure 9a if C is false

marking : p1 p2

Ia : 1 � t1 � 1

1� t
2
� ��

marking :

I’a :

marking :

Ia : 0 � t
2
���

sa

s'a

� �amen �'

firableGET s'
a� ��

�

t
1

sa

� � � 	2a tmen �

� � 1

� �a � 	2tt1men �

firableGET s
a� ��

p1 p2

p'1 p2

0 � t1 � 0

0� t
2
� ��

� 	2tt1

� 	2tt1

Fig. 11 One run ρa1 of the GET PN of figure 9b

Equivalence of the final states ss ≈ sa : In the GEIS PN semantics, the firing of the
falling transition f does not change the marking: m′s =ms. The only marking mod-
ification of the run ρs1 is done during the rising transition r which corresponds
to the firing of t1. Thus the final marking of ρs1 is: ms = ms−Pre(t1)+Post(t1).
According to the GET PN semantics, the continuous transition θ does not modify
the marking: m′a = ma. On the contrary, the discrete transition t1 set the marking
to ma = ma−Pre(t1)+Post(t1). As ms = ma, the markings ms and ma are the
same and we have ss ≈ sa.

This proof has been done when the fired transition (t1) has no associated condi-
tion. But the same proof can be done with one associated condition, for example
in figure 9, firing t2 if C is true and t1 not firable (p1 not marked).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 K. Godary-Dejean et al.

(3) Several transitions fired: This proof will be done by induction: first for the firing
of two transitions, then we discuss on the general case of n transitions.
Let consider a run ρs2 such as: ss

ρs2 s ss, with Untimed(ρs2) = {t1, t2} and

Duration(ρs2) = 1. We have ρs2 = ss
f−→s s′s

r−→s ss with f = (↓ clk,ε) and
r = (↑ clk,{t1, t2}). This corresponds to the case where transitions t1, t2 are en-
abled, and they are the only firable ones: either they do not have condition, or
their conditions have true values in ss, and all others enabled transitions are not
firable. This could be the case in figure 9 if C is true: both t1 and t2 are firable,
and then fired in the same rising transition. This run is shown in figure 12a, and
its equivalent GET PN run ρa2 in figure 12b.

Existence of an equivalent run ρa2 : To respect the synchronous behavior, all
the transitions of Ns have been transformed in Na in temporal transitions with
↓ Is(t) = 1. Thus, no transition is immediately firable. So it is necessary to first

execute from sa (sa ≈ ss) a continuous transition θ1 with |θ1|= 1: sa
θ1−→a s′a. The

marking is modified but the time intervals is decremented: ∀t ∈ en(m′a), ↓ I′(t) =
1−|θ1| = 0. Then all the enabled transitions become firable, included t1 and t2.
Thus we can execute a discrete state transition corresponding to the firing of the
transition t1: s′a

t1−→a sa1. First, according to the GET PN semantics, we know that
there is no new firable transition: the time intervals are not modified by a discrete
transition, excepted for the transitions newly enabled in sa1. But in that case we
would have: ∀k ∈ ↑ en(ma1, t1),↓ Ia1(k) = 1 thus k /∈ f irableGET (sa1). Second,
as we supposed that Ns is without conflict, the firing of t1 does not prevent the
firing of the other firable transitions. In particular, t2 is still firable. As a GET PN
run is an alternation of continuous and discrete transitions, it is now necessary to

fired a continuous transition, which can be instantaneous (|θ2|= 0): sa1
θ2−→a s′a1.

This transition does not change either the label or the firing intervals, so we can
fire a discrete transition with t2: s′a1

t2−→a sa. We finally have the complete run

ρa2 = sa
θ1−→a s′a

t1−→a sa1
θ2−→a s′a1

t2−→a sa with Duration(ρa2) = |θ1|+ |θ2|= 1
and Untimed(ρa2) = {t1, t2}. Thus we have ρa2 ≈run ρs2.

Equivalence of the final states ss ≈ sa : In ρs2, f does not change the marking:
ms = m′s and r changes the marking respecting the GEIS PN semantics: ms =
ms − Pre(t1)− Pre(t2) + Post(t1) + Post(t2). In ρa2, the continuous transitions
does not modify the marking: m′a = ma and m′a1 = ma1. For the discrete transition
corresponding to the firing of t1, we have ma1 =m′a−Pre(t1)+Post(t1). Likewise,
we have ma =m′a1−Pre(t2)+Post(t2). Then we finally have ma =ma−Pre(t1)+
Post(t1)−Pre(t2) +Post(t2), which is equal to ms as ma = ms. Thus, the final
states are equivalent: sa ≈ ss.

Generalization to n fired transitions: If more than two transitions are firable in
the GEIS PN semantics without conflict, they are all fired in the same time unit.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 23

marking : p1 p2

cond : cond(C)=0

marking :

cond :

marking :

cond :

ss

s's

en(m's)={t1t2}

� � � �t1t2sfirableGEIS s �'

f

r

fired s'
s� � � t1t2� �

ss

cond(C)=1

cond(C)=1

p1 p2

p'1 p'2

(a) GEIS PN run ρs2

marking : p1 p2

Ia : 1 � t1 � 1

1� t
2
� ��

marking :

I’a:

marking :

Ia1 :0 � t
2
���

sa

s'a

firableGET s'a� ��

��

t
1 sa1

� � 	
2a1 tmen �

�� � 1

� �a 	
2tt1men �

firableGET s
a� ���

p1 p2

p'1 p2

0 � t1 � 0

0� t
2
� ��

� �amen �' 	
2tt1

	
2tt1

marking :

I’a1 :

marking :

Ia :

s'a1

firableGET s'
a1� ��

��

t2 sa

�� � 0

p'1 p'2

0 � t1 � 0

0� t
2
� ��

� �a1men �' 	
2t
p'1 p2

	
2t

(b) GET PN run ρa2

Fig. 12 Equivalent runs with two simultaneously fired transitions

We just proved that for the simultaneous firing of two transitions in synchronous
semantics, the firing of the same two transitions is done during the same time unit
in the corresponding asynchronous model. This is done adding an instantaneous
continuous transition which allows to fire in the same time unit all the transitions
initially firable. Then this proof could easily be extended to n fired transitions: in
GEIS PN, all the firable transitions are fired in one time unit. In GET PN, only
one transition is fired at a time, but we can fire several transitions successively
adding instantaneous continuous transitions between them.

All the other possibilities of GEIS PN runs could be proved combining the runs
considered above. At the end, it is always possible to find an equivalent GET PN
run. And we also prove that equivalent runs lead to equivalent states. This formally
proves the proposition 1, meaning our translation rules guarantee the inclusion of
the behavior of the initial GEIS PN into the one of the generated GET PN, if
the models are without conflicts. This proves that for any Petri net with the GEIS
PN semantics, it exists a Petri net with the GET PN semantics which weakly timed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 K. Godary-Dejean et al.

simulates it. Hence GET PN semantics weakly simulates GEIS PN semantics9:

∀N ∈ SemGEIS, ∃N′ ∈ SemGET | N ≤W N′⇒ SemGEIS ≤W SemGET

It is now necessary to verify that this remains true while adding the management
of conflicts in GEIS PN models.

5 Conflicts resolution : GEIS PN with priorities

We previously made the hypothesis, as most of the methods dealing with synchronous
or synchronized PN in the literature, that the GEIS PN are without conflict. However,
we think that it is necessary to remove this hypothesis, as the expression of conflicts
are interesting in a modeling point of view, offering more possibilities and simplicity
for the designer. So the conflict problem must be considered, and a method of con-
flict resolution must be provided to manage conflict problems when needed. Conflict
resolution can be done with probabilities, alternated firing, or priorities (David and
Alla (2010)). In Leroux et al (2014) we propose a solution based on priorities, de-
scribing the conflict problematic, how to detect them, and how to manage conflicts in
our synchronous VHDL implementation context.

In this article, we focus on the formal part of our conflict management method:
we formally define the conflict concept for GEIS PN, then we present a solution to
(automatically) handle it, and the extension of our GEIS PN semantics including this
solution. This new formalism will be called GEISPr PN (Generalized Extended Inter-
preted Synchronous Priority Petri Nets). Finally, we show that the conflict resolution
does not change the verification possibilities by means of GET PN analysis.

5.1 Conflict definitions

Definition 12 (Structural conflict) A structural conflict in PN traditionally ”corre-
sponds to the existence of a place which has at least two output transitions” (David
and Alla (2010); Chen et al (2013)).

Definition 13 (Effective conflict) But a structural conflict does not necessarily lead
to a problematic situation: the real problem is when the concurrent transitions could
actually not be fired at the same time. We call it an effective conflict. A simple def-
inition of an effective conflict could be define as in Girault and Valk (2013): ”there
is a conflict when two transitions are enabled and the occurrence of one disable the
other”. For classical generalized PN, this definition only implies the consideration
of the actual marking: a set of transition Tc sharing an upstream place p are in an
effective conflict if they are enabled by a marking m and if the number of tokens in p
for m is less than the sum of the weights of the entering arcs of all the transitions of
Tc (David and Alla (2010)).

9 The opposite is not true, as some GET PN models can not be simulated by GEIS PN ones: we do not
have equivalence of the semantics.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 25

In our context, these definitions have to be extended considering all the charac-
teristics of our specific GEIS PN formalism:

Generalized The consideration of non-binary Petri nets has already been considered
in the previous definition thanks to weight on arcs.

Extended We consider several types of arcs, as inhibitor and test ones, which do
not consumed tokens when the associated transition is fired. In that cases, the
firing of these transitions does not influence the firing of the others in structural
conflict. But dealing with inhibitor arcs, we have a first difference between the
asynchronous and the synchronous Petri nets definitions of effective conflicts.
For example in figure 13a: in asynchronous semantics, the firing of t8 prevents
the firing of t7, while in the synchronous semantics they could be fired in the
same time as they do not used the same tokens.

Interpreted In our context, because of the interpretation, the set of firable transitions
is different than the set of enabled ones, taking into account the condition values.
It is thus necessary when we verify if a condition prevents the firing of another,
to consider that the transition remains firable (and not only enabled).

Synchronous This is also the case considering the synchronous execution constraint,
which imposes that the firing of a transition must be in at least 1tu. Thereby,
even if a transition marks again its input places (thus remaining enabled), all the
concurrent downstream transitions of this place do not remain firable because of
the 1tu minimal time of firing. An example of such a case is given in figure 13b.
In that case, in asynchronous semantics t9 does not prevent the firing of t10 at the
same time moment, while in synchronous semantics t10 will be fired 1tu later.

p4 p6

p5

t8

t7

(a) With an inhibitor arc

p7

t9 t10

(b) With a newly enabled transition

Fig. 13 Examples of conflict situations

Thus the definition of effective conflicts must be adapted, not considering the final
marking after the firing of ti, but considering the intermediate marking m−Pre(ti).
For that, we use the concept of newly enabled transitions defined for the GET PN
semantics (definition 5).

Definition 14 (Effective conflict in GEIS PN) For a state s = (m,cond,ex) of a
GEIS PN model, we define Tc(ti,s) ⊆ T the set of transitions in effective conflict

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 K. Godary-Dejean et al.

with ti ∈ f irableGEIS(s) and with s
f ired(ti)−−−−→ s′, as the following:

t j ∈ Tc(ti,s) ⇐⇒

 t j 6= ti
∧ t j ∈ f irableGEIS(s)
∧
[
t j ∈ ↑ en(m, ti))∨ t j /∈ f irableGEIS(s′)

]
And we define Tc(s)⊆ T the set of all the transitions implicated in at least one effec-
tive conflict for the state s as:

Tc(s) = {ti ∈ T | ti ∈ f irableGEIS(s)∧Tc(ti,s) 6= /0}

5.2 Method of conflict resolution

Our method of conflict resolution is based on a deterministic resolution of effective
conflicts. A static priority is defined between every transition of each structural con-
flicts. Then, during the execution of the PN, it is checked if the conflict is effective or
not in the current state, in order to dynamically determine which transitions must be
fired.

Time Petri nets with priority have already been defined in the literature for asyn-
chronous PN (Berthomieu et al (2006, 2007b)). In summary, if two transitions t1, t2
are concurrent and if t1 has priority over t2, noted t1 � t210, so t1 will be fired before
t2. But, because of the synchronous implementation, the priority principle we need is
slightly different from this one. Indeed in our case the priority is used only when the
transitions are in an effective conflict. If two transitions are firable but not in an effec-
tive conflict, even if there is a priority between them, both must be fired. The principle
is just to add, on the falling transition, the consideration of the existence of effective
conflicts between transitions. Only in this case the priority are considered, to select
all the most priority concurrent transitions which could be fired instantaneously.

Figure 14a gives an example of GEISPr PN with 3 transitions in effective conflict
at the initial state (supposing that C4 is true): Tc(s0) = {t2, t3, t4}. t1 is not included in
this set because its firing does not influence the firability of the others. The resolution
of this conflict is done with the following priorities: t2 � t3, t2 � t4 and t4 � t3. They
are represented in the figure with dotted arcs between transitions. Figure 14b shows
the synchronous state graph of this model, only showing the significant states (falling
transitions and their intermediate states are not represented). In s0, if C4 is true, all the
transitions are firable: t1 will be fired, but it is necessary to use the method of conflict
resolution to choose the actually fired transitions of the set Tc(s0). The marking of
s0 allows to fire the two priority transitions t2 and t4, but not t3. Then f ired(s0) =
{t1, t2, t4}, which leads to a state s1 from which there is again a conflict resolution,
with the same firable transitions but not the same marking in p0. Then 1tu later,
f ired(s1) = {t1, t2} from s1, leading to the final state s2. If C4 is true in s0, t3 will
never be fired. Now if we consider that C4 is false in s0, there is no effective conflict
so all the firable transitions {t1, t2, t3} are fired from s0, leading to a final state with
m = p1 p2 p3.

10 Graphically, this is represented with an arrow from t1 to t2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 27

t1 t2 t3 t4

p0

p1 p2 p4p3

2

C4

(a) GEIS PN model

2p0 firableGEIS(s0) = {t1, t2, t3, t4}

p0 p1 p2 p4

fired(s0) = {t1, t2, t4}

2p1 2p2 p4

fired(s1) = {t1, t2}

s0

s1

s2

firableGEIS(s1) = {t1, t2, t3, t4}

firableGEIS(s2) = 0

(b) Simplified synchronous state graph

Fig. 14 Example of effective conflict resolution

More details on our conflict management method are given in Leroux et al (2014),
considering such simple cases but also the asymmetric conflict cases as well as the
possibility to have interconnected group of transitions.

The advantage of our method is that it is a dynamic but also deterministic one:
the conflict resolution does not suppress a priori the conflicts in a structural way (as
for example alternative firing methods), but it is done in a dynamic way only when
the conflicts are effective. Our method is a deterministic one, as when an effective
conflict occurs, it is always resolved in the same way.

5.3 Definition and semantics of the GEISPr PN

Definition 15 (GEISPr PN definition) The GEIS PN semantics presented section 2.2
must be adapted with the priority management. First we must add the priority concept
into the GEIS PN definition: < P,T,Pre,Pret , Prei,Post,m0,C,F,A,clk,�> with �
the irreflexive, asymmetric and transitive priority relation.

Let Pr(t) be the set of transitions which has priority over t ∈ T :

Pr(t) = {ti ∈ T | ti � t}

Definition 16 (GEISPr PN semantics) The enabled and firable functions are the
same as for the GEIS PN. The priorities are considered for the calculation of the
f ired() set of the rising transition, adapting the GEIS PN semantics (definition 3)
with the priority management as follow:

– we can determine f ired(s′) depending on f irableGEIS(s′):
1. ∀t ∈ f irableGEIS(s′), if ∀ti ∈Pr(t), ti /∈ f irableGEIS(s′)=⇒ t ∈ f ired(s′) (firable

transitions without firable priority transitions will be fired)
2. ∀t ∈ f irableGEIS(s′), if [∀ti ∈Pr(t)∧ti ∈ f irableGEIS(s′)], m>Pre(t)+∑

ti
Pre(ti)

=⇒ t ∈ f ired(s′) (the marking is sufficient to fire t and all the more priority
firable transitions in effective conflict with t)

3. else t /∈ f ired(s′) (in other cases, the transition is not fired)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 K. Godary-Dejean et al.

5.4 Analysis of GEIS with conflict

The existence of priority between two transitions could leads to two different behav-
iors depending on the existence and the value of conditions on these transitions. For
example in figure 4, supposing t1 � t0: if t1 is firable, i.e. not associated to a condition
or if its condition is true, it is fired and t0 can not be. On the contrary, if t1 is associ-
ated to a false condition, and if t0 is firable, t0 is fired. These two different behaviors
come from the same model, the only difference is the value of the conditions, which
depends on the instantaneous values of the system variables. As we ever said, these
values could not be known a priori, therefore both the behaviors must be analyzed.
That’s why we do not used priority in the analyzed model, as the priority in GET PN
could prevent the firing of t0. Thus, we do not need to add anything to the translation
rules described section 3.3.

This guaranty that the real behaviors (GEISPr PN) are included into the analyzed
ones (GET PN). The proof of the behaviors inclusion (not detailed here) is just an
adaptation of the proof of section 4.3, taking into account runs with effective conflicts.
As informally explained in the preceding paragraph, for all the possible runs in an
effective conflict situation of GEISPr PN, it exists an equivalent run in the GET PN
(the same transitions are fired in the same duration), which keeps the proof of the
inclusion.

We now have to add the last element to our formalism: the management of quan-
titative time, to finally have the complete formalism dealing with all the constraints
of our context.

6 Temporal extension: GEISPr Time PN

Adding the time management into the GEISPr PN formalism leads to the formalism
we name GEISPrT PN. This is the final formalism, which includes all the constraints
implied by our implementation context.

6.1 Problematic of time

6.1.1 Resetting of counters

In a synchronous semantics, to deal with concurrency, it is necessary to finely manage
the resetting of the time counter caused by the transient states. An example is given
in figure 15a, in which t0 and t1 are concurrent, i.e. simultaneously firable but not
in effective conflict. In synchronous execution they will be simultaneously fired and
then the marking of place p1 remains equal to 1 token, even if a transient nil marking
exists. Now the problem resides in the consideration of the inhibitor and the test arcs
of the transitions t2 and t3: is it necessary to reset the time counters of these transitions,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 29

and how11? This problem is closed to the firing semantics problem for TPN developed
in Bérard et al (2005), in which the authors proved that the three proposed firing
semantics are equivalent for upper-closed intervals. But in synchronous semantics, it
is more intricated.

p0

[1,1]

t0 [1,1]

[3,3]

p1

2

[3,3]

t2t1t3

(a) Petri net with time

p0 p1

1 � t0� 1

s0

t0 t
1

3 � t2� 3

3 � t3� 31 � t
1
� 1

2p1

sa1

2 � t2� 2

0 � t
1
� 0

sa2

2 � t3� 2

0 � t0� 0

p0

t0 0tu

1tu1tu

p1

s'a2

0tu

p1

2���t2���2

s'a1

t
1

3 ��t3���3

����t1���� ����t1����

ss

1 u

3 ��t2���3
2���t3���2

(b) Its asynchronous / synchronous execution

Fig. 15 Management of the time counters resetting

For the analysis purpose, it is necessary that GEISPrT PN behaviors are included
into the GET PN ones. Yet, for analysis, the execution will be asynchronous (states
in dark, in figure 15b): either t0 is fired first, then t1 (run ρa1, at the left of the graph),
either the contrary (run ρa2, at the right of the graph). When t0 is fired first, the
marking of p1 becomes equal to 2, disabling t3. Then t1 is fired making t3 enabled
again, but with its firing interval which has been reset. In the case t1 is fired first, the
new marking is only 1 token in p0, disabling t2. Then the firing of t0 makes t2 enabled
again, but with its firing interval which has been reset. Then the two runs ρa1 and ρa2,
even if they lead to the same marking p1, do not lead to the same state because of the
firing interval function: ρa1 leads to state s′a1 with I′a1(t2) = [2,2] and I′a1(t3) = [3,3],
whereas ρa2 leads to state s′a2 with I′a2(t2) = [3,3] and I′a2(t3) = [2,2].

In asynchronous execution, it is not possible to observe the resetting of both coun-
ters, nor any resetting at all. If we want to guarantee the inclusion of the semantics,
the resulting state of the synchronous execution (simultaneous firing of t2 and t3)
must correspond to one of the asynchronous resulting states. Thus it is necessary to
define the management of the counter resetting in the GEISPrT PN semantics follow-
ing one of the two asynchronous situations (either the resetting of the test arcs, or the
inhibitor arcs). The choice we made is the following: in synchronous execution, the
transient marking is always calculated considering first the withdrawal of the
tokens. If a transition is disable by this transient marking, its time counter is reset. In

11 The same question could be asked when a transition is newly enabled.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 K. Godary-Dejean et al.

the case illustrated figure 15a, the simultaneous firing of {t0, t1} leads to the transient
marking m0−Pre(t0)−Pre(t1) = 0, which disable t2 as in the asynchronous run ρa2.
This also allows to deal with the resetting of a transition which re-enables itself.

In the implementation point of view, the resetting of the counters will be done
in two steps. First on the rising edge, the calculation of the new marking is done,
allowing to determinate the newly enabled transitions, and then the ones which must
be reset. We manage this by means of a specific reset signal associated to each tran-
sition. Second, on the falling edge, the time counters values of the firing interval are
calculated, including the ones that must be reset.

6.1.2 Firing semantics

Two semantics are conventionally used with regard to the firing of transitions in TPN:
strong semantics and weak semantics (Boyer and Roux (2008); Reynier and Sangnier
(2009)). Strong semantics defines that if a transition is enabled it is necessarily fired
before, or at worst when, the upper bound of its firing interval is reached. Whereas in
the weak semantics, no transition is forced to be fired: if its time interval is exceeded,
the transition is ”disabled” and will become firable again when it will be enabled
again. The strong semantics is the most used to describe real-time systems as it allows
to model the urgency of events. This is also the semantics used in the TPN analysis
tools, and the one used in the GET PN formalism we have presented section 3.2.

Therefore we use the strong semantics, but with a more strict firing rule: a firable
temporal transition is immediately and imperatively fired. This is consistent with
the behavior of the real system, and with our need for determinism. But we have to
slightly modify this semantics to take into account the blocking situations.

6.1.3 Blocking situation

The strong semantics forces the firing of a transition when its upper bound is reached.
Yet, in case of the association of a condition and a firing interval on the same tran-
sition, it could be possible that the upper bound is reached whereas the condition
always remains false12, preventing the firing and provoking a blocking situation. An
example is given in figure 16: if c2 remains false during all the duration of [a,b],
the transition t2 must, but can not, be fired when b is reached.

To manage this problem, we adapt the strong semantics introducing the weak
semantics concept: in this specific case of blocking, the transition time counter
can overlap its upper bound but the transition could not be fired anymore until
being newly enabled. In our example of figure 16, if t2 is blocked, the firing of t1
could empty p1, disabling and then unblocking t2. If such an alternative path does not
exist, then the blocked transition remains indefinitely blocked.

12 The time counter is incremented as soon as the transition is enable, independently of the condition
value.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 31

t1 t2

p3

c1

p1

p2

[a,b]

c2

Fig. 16 Example of a potential blocking situation

6.2 Formal definitions and semantics of GEISPrT PN

The basic definitions for the GEISPrT PN semantics are based on the ones given in
the sections 2.1 and 5.3. We give here the additions or the changes we have introduce
for the quantitative time management in our synchronous semantics.

6.2.1 Definitions for GEISPrT PN

Definition 17 (GEISPrT PN) First we must add the firing interval concept into the
GEISPr PN definition (definition 15), leading to the GEISPrT PN < P,T,Pre,Pret ,
Prei,Post, m0,C,F,A,clk, Is,�> with Is : T → I+ the static firing interval function.
We suppose that Is(t) = /0 for untimed transitions (transitions not concerned by time
interval13).

Definition 18 (Reset, State, Firable in GEISPrT PN) Let reset : T → B be the re-
setting function, that must be considered into the states. The value of the counter of
firing intervals must also be considered, with I : T → I+ the dynamical firing function
which associates a time interval to every transition enabled at m. We chose to repre-
sent the blocking of a transition through its firing interval: I(t) = � means that t is
blocked14. Thus the state of a GEISPrT PN is defined with s = (m,cond,ex, I,reset).

The firable definition must integrate the firing interval management: we add to
the definition given in definition 2 that a transition t is firable, in addition to being
enabled and having its associated condition true, iff the lower bound of its firing
interval is reached: 0 ∈ I(t). We note t ∈ f irableGEISPrT (s).

Definition 19 (Newly enabled function) We have seen that the notion of newly en-
abling is important in GEISPrT PN both for the counters resetting and the manage-
ment of the blocked transitions. A transition k ∈ T is newly enabled by the firing of a
set of transitions TF ⊂ T from the marking m, noted k ∈ ↑ en(m,TF), iff k is enabled

13 We could have defined a default interval Is(t) = [1,1], as in both cases this transition will be fired in
1tu, but in the implementation point of view there is a difference because untimed transitions are more
efficiently implemented regarding energy consumption and silicon footprint.

14 Note that � is different than the empty interval [0,0] and than no interval at all Is(t) = /0.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 K. Godary-Dejean et al.

by the new marking m′, and either k∈ TF or k /∈ TF and k was disabled by the transient
marking m− ∑

t∈TF

Pre(t).

Formally we have, with m′ = m− ∑
t∈TF

Pre(t)+ ∑
t∈TF

Post(t) :

k ∈ ↑ en(m,TF)
⇔[

k ∈ en(m′)
]
∧
[
(k ∈ TF)∨

(
k /∈ TF ∧ k /∈ en(m− ∑

t∈TF

Pre(t))
)]

6.2.2 Semantics of GEISPrT PN

We can now formally define the semantics of our complete formalism, including all
the desired characteristics : the Generalized Extended Interpreted Synchronous Time
Petri nets Priority (GEISPrT PN).

Definition 20 (Semantics of GEISPrT PN) The semantics of a GEISPrT PN N =
< P,T,Pre,Pret ,Prei,Post,m0,C,F,A,clock, Is,� > is the timed transition system
< S,s0,−→ > where:

– S is the set of states (m,cond,ex, I,reset) of N .
– s0 = (m0,o,o, I0,o) is the initial state where o is the zero function and I0 is the

restriction of IS to the transitions enabled by m0.
– −→⊆ S×Clk×S is the state transition relation, noted s−→ s′, defined as follows:

Let f ired(s)⊆ T the set of transitions fired from state s.

– Falling transition: we have s = (m,cond,ex, I,reset)
↓clk,ε−→ s′ = (m, cond′,ex′,

I′, reset) iff ↓ clk = 1 and:
1. Updating the execution function for continuous actions is the same as for

GEIS PN.
2. Updating condition values is the same as for GEIS PN.
3. ∀t ∈ en(m),

(
reset(t) = 0∧ I(t) 6= �

)
⇒ I′(t) = I(t)− 1 (normal evolu-

tion)
4. ∀t ∈ en(m),reset(t) = 1⇒ I′(t) = Is(t)−1 (reset of the firing interval15

while unblocking the transition if it was blocked)
5. ∀t ∈ T,

(
reset(t) = 0∧ I(t) = �⇒ I′(t) = I(t) (a blocked transition re-

mains blocked if it was not newly enabled)
– The calculation of f ired(s′) is the same as for the GEISPr PN formalism (defi-

nition 16), but using f irableGEISPrT (s′) (definition 18) instead of f irableGEIS(s′).

– Rising transition: we have s
↑clk, f ired(s)−−−−−−−→ s′, with s = (m,cond,ex, I, reset) and

s′ = (m′,cond,ex′, I′,reset ′), iff ↑ clk = 1 and:
1. The marking is updated as for GEIS PN.
2. As well as the execution function for impulsive actions.
3. ∀t ∈ T, t ∈ ↑ en(m, f ired(s))⇒ reset ′(t) = 1 else reset ′(t) = 0 (all the

newly enabled transitions will be reset in the next falling transition)

15 This reset is the consequence of the transitions fired on the previous rising transition, done in the
previous time unit. Then we reset and subtract 1 to the static interval to be consistent.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 33

4. ∀t ∈ T,(t /∈ f ired(s) ∧ ↑ I(t) = 0)⇒ I′(t) =�, else I′(t) = I(t) (blocking
of transitions not fired when their upper bound are reached)

6.3 Analysis of GEISPrT PN

6.3.1 Transformation rules

The three characteristics we add into our semantics for the time management (re-
setting the counters, the ”as soon as possible” firing semantics and the blocking se-
mantics) must of course be analyzed. We therefore have to study their inclusion into
the GET PN behaviors, and modify the transformation rules presented section 3.3 to
translate a GEISPrT PN N =< P,T,Pre,Pret ,Prei,Post,m0, C,F,A,clk, Is,�> into
an analyzable GET PN N′ =< P′,T ′,Pre′, Pre′t ,Pre′i, Post ′,m′0, Is′ > which respects
the execution constraints.

As illustrated section 6.1.1, the resetting of the counters is not a problem, as the
chosen semantics leads to an already existing GET behavior. Finally, the blocking
situation can not be entirely translated with firing intervals in the GET PN formalism.
The initial firing interval must be kept, as the condition could become true anytime
during it. But it is also necessary to explicitly add a specific structure (described in
the next section) to represent the blocking of the transition.

– ∀t ∈ T,
(
∀c∈C ,C(t)(c) = 0∧ Is(t) = /0

)
⇒↓ I′s(t) = ↑ I′s(t) = 1 (transitions with-

out condition nor firing interval are fired in 1tu)
– ∀t ∈ T,

(
∃c ∈ C |C(t)(c) 6= 0∧ Is(t) = /0

)
⇒ ↓ Is′(t) = 1, Is′(t) =+∞ (transitions

with a condition but no firing interval can be fired at any time)
– ∀t ∈ T,

(
∀c ∈ C ,C(t)(c) = 0∧ Is(t) 6= /0

)
⇒ ↓ I′s(t) = ↑ I′s(t) =↓ Is(t) (transitions

with a firing interval but no condition is fired at the lower bound)
– ∀t ∈ T,

(
∃c ∈ C | C(t)(c) 6= 0∧ Is(t) 6= /0

)
⇒ ↓ Is′(t) =↓ Is(t),↑ Is′(t) =↑ Is(t)

(transitions with condition and firing interval can be blocked: the firing interval is
kept and a blocking structure will be added)

6.3.2 Blocking structure

A specific blocking semantics does not exist in the analysis tools of classical Petri
nets. We then have to define a specific structure to explicitly represent the blocking
management into the analyzable model. An example is given in figure 17 for the
blocking management of the t transition, with the initial GEIS PN model in figure 17a
and its transformation in analyzable GET PN in figure 17b.

First we add elements allowing the modeling of the blocking (in light grey in fig-
ure 17b) of the targeted transition t: (i) a blocking transition t block t which has a
time interval [b,b] and the same enabling conditions than t: we copy the same input
arcs than the ones of t, only switching normal arcs into test ones; and (ii) a place
p block t which prevents the firing of t (after the firing of the blocking transition)
thanks to an inhibitor arc. Note that the firing of t block t does not change the mark-
ing of the input places of t which is p0 p1 p2. Then we add the unblocking mechanism

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 K. Godary-Dejean et al.

(a) Initial model (b) Analyzable model

Fig. 17 Blocking structure for analysis

(in dark grey, to the right of figure 17b): (iii) for each input place pi of t, we add a
specific unblocking transition t unblock pi with inverse enabling conditions; if one
of the input places pi does not satisfy the enabling conditions of t anymore (if its
marking changes), then t will be immediately unblock, firing the related unblocking
transitions thus consuming the token of p block t. For place and simplicity reasons,
we do not give the formal definition of this transformation, but it can be found in
Leroux (2014).

6.3.3 Behaviors inclusion

The addition of time intervals does not change the proof of the behaviors inclusion
in the general case, except in the case of the blocking semantics. Indeed, the added
blocking structure modifies the structure of the Petri nets, adding places and transi-
tions. To prove the inclusion of the behaviors, we must show that the inclusion still
exists despite of the blocking structure. Thus we have to modify the equivalence re-
lations defined section 4.2.

Let N be a GEISPrT PN, and N ′ be the GET PN generated with the transfor-
mation rules defined in 6.3.1. Let Pblock and Tblock respectively be the sets of places
and transitions added to the GET PN model for the modeling of the blocking of tran-
sitions. We have T ′ = T ∪Tblock and P′ = P∪Pblock.

Definition 21 (Equivalence of runs) For a run in a GET PN, let UntimedNB be the
restriction of Untimed on the initial ”non blocking” set of transitions, i.e. on T .

A GET run and a GEISPrT PN run are equivalent if their Duration values are
the same, and if their Untimed values contains the same non-blocking transitions of
T in the same order of execution. The only difference is the possible interleaving
of transitions of TBlock in the GEISPrT PN run. We formally note16: ∀ρs ∈ RunGEIS,
∀ρa ∈ RunGET :

ρs ≈run ρa ⇐⇒ Duration(ρs) = Duration(ρa)
∧Untimed(ρs) =UntimedNB(ρa)

16 The definition of GEIS runs is still valid for GEISPrT PN runs.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 35

Definition 22 (Equivalence of states) For a marking m in a GET PN, let mNB the
restriction of m on the ”non blocking” set of places, i.e. on P.

Let Ns the synchronous GEISPrT PN semantics and Na the asynchronous GET
PN semantics. We consider the equivalence relation ≈ over states as: the states ss of
Ns and sa of Na are equivalent if the restriction of their markings to the non-blocking
places are the same:

ss ≈ sa⇔ (ms = mNB
a)

Proof

We do not give here the details of the proof, we just give the outlines.
The blocking semantics add 3 possible behaviors in case of a potentially block-

able transition: (1) either the transition is fired inside its firing interval, and then not
blocked; (2) or its upper bound is reached but the transition is still not firable, then
it is blocked, and there is no unblocking possibility: the transition will be blocked
forever; (3) or it is blocked but will be unblocked later. To complete the proof of the
whole representation of time in GEISPrT PN (and not only the blocking structure),
we must add a fourth behavior which corresponds to the ”as soon as possible” firing
semantics of a temporal transition without associated condition.

The first and fourth behaviors are quite easy to prove, as the continuous consid-
eration of time in GET PN semantics naturally include all the discrete firing instants
(Popova (1991); Magnin et al (2009)). For the blocking situations, it is also quite easy
to show that the equivalence of the states and of the runs are kept, as (i) the marking
of none of the places of P is affected by the firing of the transitions of Tblock; (ii) the
enabling function is only affected by the new blocking place; (iii) the blocking and
unblocking transitions in the GET PN are enabled at the same time than the blocking
conditions in the GEISPrT PN semantics, leading to the same action.

7 Conclusion

This paper presents a solution to formally design digital architecture (e.g. controllers)
for synchronously-executed embedded critical systems. The typical targeted applica-
tions are active implantable medical devices (AIMD) implanted into human body to
perform FES (Functional Electrical Stimulation). In our context, the digital part of
the controller of the AIMD is implemented into a FPGA execution target in a syn-
chronous way. But these works could be used for the design of any critical systems
that need high level of dependability guarantee.

The goal of our work is to finely consider at the formal level all the executive
constraints imposed by the hardware target and the implementation strategy. The very
critical aspect of our system imposes that these constraints must be integrated from
the very beginning of the design process, within the analysis step, to guarantee that
the verification results remain consistent in all possible cases.

This article first presents our context, focusing on the two scientific key points:
expressing and analyzing the interpretation (i.e. the link between the system and the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 K. Godary-Dejean et al.

real world) and the synchronous implementation. We present in detail all the execu-
tion constraints implied by our context, and explain how these constraints must be
considered into the modeling and the analysis purposes. Then sections 2, 3 and 4
present the bases of our work: the GEIS PN (Generalized Extended Interpreted Syn-
chronous Petri Nets) semantics, which is our basic execution semantics; then how to
express it into a more classical PN (the GET PN, better known as TPN) semantics;
and finally the proof of the inclusion of the GEIS PN semantics into the GET PN
one. This inclusion offers the possibility to obtain consistent verification results on
our system using existing Petri nets analysis tools.

In sections 5 and 6, in an iterative way, we make our approach more complex to
finally integrate all our execution constraints in the final GEISPrT PN semantics, and
prove that it is still included into the GET one.

The work presented in this paper has two main results: an operational one, and
a theoretical one. First, thanks to these works, we can use the HILECOP methodol-
ogy to design more critical controllers, with harder safety or real time constraints.
We will be sure that the model we designed respects the execution constraints of our
hardware target and implementation strategy. HILECOP is currently used to the de-
sign of concrete and industrial systems in the medical domain, mainly through the
NEURINNOV start-up. Second, this work broadens the scope of expressivity and an-
alyzability of Petri nets extensions. Until then, none managed in the same formalism,
both for modeling and analysis, all the characteristics we have considered (weights
on arcs, specific test and inhibitor arcs, interpretation and time intervals, including
the management of effective conflicts and the blocking of transitions).

Perspectives As a result of this work, we want to go deeper into the analysis prob-
lematic. For now, we propose to translate our model in the well-known (GE)TPN
formalism, thus using an over-estimated state space of the real one. This implies that
many of the analyzed behaviors are unrealistic ones, as shown figure 7. This is a lim-
itation in the properties we want to verify. Liveness and reachability properties are
often very useful properties, which could not be guaranteed for now in our analysis
solution. It could be interesting to work on the semantics of a specific state space
graph for the GEISPrT PN. We thus could adapt existing analysis algorithms to this
graph to obtain more pertinent verification results.

Another element to work on is to go further than the modeling step, including the
execution language semantics itself. For now, the execution constraints are expressed
in the Petri nets semantics GEISPrT PN. Then the model is automatically translated
into a specific implementation in VHDL language, assuming that the execution con-
straints have been well represented in the model, and that they are well preserved
by the translation in VHDL. To increase the reliability of the whole methodology, a
PhD thesis is ongoing to formally prove that this translation preserves the behaviors
and the properties. The aim is so to prove the equivalence between the GEISPrT PN
specification and the VHDL code, using a COQ based approach.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 37

8 Glossary and acronyms

AIMD : Active Implantable Medical Device
Devices implanted into human body to perform FES solutions.

FES : Functional Electrical Stimulation
Application of small electrical charges to nerves and muscles to artificially gener-
ate movements. These solutions are useful in an increasing number of applications,
including pacemakers, deep brain stimulation, pain control and hearing restoration.

FPGA : Field-Programmable Gate Arrays
Specific execution target with real parallelism.

GET PN : Generalized Extended Time Petri Nets
Petri nets extension with weight on arcs, test and inhibitor arcs, and time intervals
on transitions. This formalism is rarely explicitly named, and is often included in the
more simple name TPN.

GEIS PN : Generalized Extended Interpreted Synchronous Petri Nets
Petri nets extension with weight on arcs, test and inhibitor arcs, with explicit inter-
pretation elements, and synchronously executed.

IPN : Interpreted Petri Nets
Petri nets extension in which some elements of the model are linked with the real
world through interpretation elements (events and actions) .

PN : Petri Nets
Classical formalism for modeling of discrete event systems.

TPN : Time Petri Nets
Petri nets extension with time intervals on transitions.

VHDL : Generalized Extended Interpreted Synchronous Petri Nets
Programming language adapted to FPGA execution targets.

HILECOP : High-Level Hardware Component Programming
Methodology designed in the INRIA team DEMAR/CAMIN to assist in the develop-
ment of safe AIMD.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38 K. Godary-Dejean et al.

References

Andreu D, Souquet G, Gil T (2008) Petri net based rapid prototyping of digital com-
plex system. In: Proc. of the IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Montpellier, France

Andreu D, Guiraud D, Souquet G (2009) A distributed architecture for activating the
peripheral nervous system. Journal of Neural Engineering 6(2):18

Baier C, Katoen JP (2008) Principles of Model Checking. MIT Press, Cambridge,
MA, USA

Balaguer S, Chatain Th, Haar S (2012) A concurrency-preserving translation from
time Petri nets to networks of timed automata. Formal Methods in System Design
40(3):330–355

Basile F, Faraut G, Ferrara L, Lesage J (2020) An optimization-based approach to
discover the unobservable behavior of a discrete-event system through interpreted
petri nets. IEEE Transactions on Automation Science and Engineering 17(2):784–
798

Bérard B, Cassez F, Haddad S, Lime D, Roux OH (2005) Comparison of different
semantics for time Petri nets. In: Proc. of the 3rd Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), Taipei, Taiwan

Bérard B, Cassez F, Haddad S, Lime D, Roux O (2013) The expressive power of time
petri nets. Theoretical Computer Science 474:1–20

Berthomieu B, Ribet PO, Vernadat F (2004) The tool tina – construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production
Research 42(14):2741–2756

Berthomieu B, Peres F, Vernadat F (2006) Bridging the gap between timed automata
and bounded time petri nets. In: Proc. of 4th Formal Modeling and Analysis of
Timed Systems (FORMATS), Paris, France

Berthomieu B, Lime D, Roux OH, Vernadat F (2007a) Reachability problems and
abstract state spaces for time Petri nets with stopwatches. Discrete Event Dynamic
Systems 17(2):133–158

Berthomieu B, Peres F, Vernadat F (2007b) Model checking bounded prioritized time
petri nets. In: Proc. of the Int. Symposium of Automated Technology for Verifica-
tion and Analysis (ATVA), Tokyo, Japan

Boyer M, Roux OH (2008) On the compared expressiveness of arc, place and transi-
tion time petri nets. Fundamenta Informaticae 88(3):225–249

Busi N (2002) Analysis issues in petri nets with inhibitor arcs. Theoretical Computer
Science 275:127–177

Chen Xl, Li Zw, Al-Ahmari AM, El-Tamimi AM, Nasr ESA (2013) Confusion di-
agnosis and control of discrete event systems using synchronized petri nets. Asian
Journal of Control 15(6):1736–1751

David R, Alla H (2010) Discrete, Continuous, and Hybrid Petri Nets. Springer-Verlag
Devillers R, Van Begin L (2006) Boundedness undecidability for synchronized nets.

Information Processing Letters 99(5):208–214
Elidrissi HL, Nait-Sidi-Moh A, Tajera A (2020) Modular design for an urban sig-

nalized intersections network using synchronized timed petri nets and responsive
control. In: Proc. of the 11th International Conference on Ambient Systems, Net-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Interpreted Synchronous Extension of Time Petri Nets 39

works and Technologies (ANT), Warsaw, Poland
Fares E, Bodeveix JP, Filali-Amine M, Garnacho M (2013) An automatic technique

for checking the simulation of timed systems. In: Proc. of the 11th Int. Symposium
of Automated Technology for Verification and Analysis (ATVA), Hanoi, Vietnam

Frehse G (2006) On timed simulation relations for hybrid systems and composition-
ality. In: Proc. of the 4th Int. Conf. on Formal Modeling and Analysis of Timed
Systems (FORMATS), Paris, France

Frey G (2002) Design and formal analysis of petri net based logic control algorithms.
PhD thesis, University of Kaiserslautern

Gardey G, Lime D, Magnin M, Roux OH (2005) Roméo: A tool for analyzing time
petri nets. In: Proc. of the 17th Int. Conf. on Computer Aided Verification (CAV),
Edinburgh, Scotland, UK

Girault C, Valk R (2013) Petri Nets for Systems Engineering: A Guide to Modeling,
Verification, and Applications. Springer Science & Business Media

Grobelna I, Adamski M (2011) Model checking of control interpreted petri nets.
In: Proc. of the 18th Int. Conf. Mixed Design of Integrated Circuits and Systems
(MIXDES), Gliwice, Poland

Hilal R, Ladet P (1993) Synchronous petri nets: formalisation and interpretation. In:
Proc. of the Int. Conf. on Systems, Man and Cybernetics (SMC), Le Touquet,
France

Huang Y, Weng Y, Zhou M (2018) Design of regulatory traffic light control systems
with synchronized timed petri nets. Asian Journal of Control 20:174– 185

Ivanov S, Pelz E, Verlan S (2014) Small universal non-deterministic petri nets with
inhibitor arcs. In: Proc. of the 16th Int. Workshop Descriptional Complexity of
Formal Systems (DCFS), Turku, Finland

Janowska A PAZA Penczek W (2013) Using integer time steps for checking branch-
ing time properties of time petri nets. In: Transactions on Petri Nets and Other
Models of Concurrency VIII, Lecture Notes in Computer Science, vol 8100,
Springer, Berlin, Heidelberg, pp 89–105

Knapik M, Penczek W, Szreter M, Pólrola A (2010) Bounded parametric verification
for distributed time petri nets with discrete-time semantics. Fundamenta Informat-
icae 101(1-2):9–27

Leroux H (2014) Méthodologie de conception d’architectures numériques com-
plexes : du formalisme à l’implémentation en passant par l’analyse, préservation
de la conformité. application aux neuroprothèses. PhD thesis, Université de Mont-
pellier 2

Leroux H, Godary-Dejean K, Andreu D (2013) Complex Digital System Design: a
methodology and its application to medical implants. In: Proc. of the Int. Workshop
on Formal Methods for Industrial Critical Systems (FMICS), Madrid, Spain

Leroux H, Godary-Dejean K, Coppey G, Andreu D (2014) Automatic handling of
conflicts in synchronous interpreted time petri nets implementation. In: Proc. of
the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL,
USA

Leroux H, Andreu D, Godary-Dejean K (2015) Handling exceptions in petri net-
based digital architecture: From formalism to implementation on FPGAs. IEEE
Transactions on Industrial Informatics 11(4):897 – 906

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40 K. Godary-Dejean et al.

Magnin M, Lime D, Roux OH (2008) Symbolic state space of stopwatch petri nets
with discrete-time semantics (theory paper). In: Proc. of the 29th Int. Conf. on
Application and Theory of Petri Nets and other models of concurrency (ICATPN),
Xi’an, China

Magnin M, Molinaro P, Roux OH (2009) Expressiveness of petri nets with stop-
watches. discrete-time part. Fundamenta Informaticae 97(1-2):139–176

Merlin PM (1974) A study of the recoverability of computing systems. PhD thesis,
Univ. of California

Moalla M, Pulou J, Sifakis J (1978) Synchronized petri nets: A model for the descrip-
tion of non- autonomous sytems. In: Proc. of the 7th Int. Symposium on mathe-
matical foundations of computer science (MFCS), Zakopane, Poland

Pocci M, Demongodin I, Giambiasi N, A G (2016) Synchronizing sequences on a
class of unbounded systems using synchronized petri nets. Discrete Event Dynamic
Systems 26(1):85–108

Popova L (1991) On time petri nets. Journal of Information Processing and Cyber-
netics - EIK 27(4):227–244

Reynier PA, Sangnier A (2009) Weak time petri nets strike back! In: Proc. of the 20th
Int. Conf. on Concurrency Theory (CONCUR), Bologna, Italy

Ribeiro O, Fernandes JM (2007) Translating synchronous petri nets into promela for
verifying behavioural properties. In: Proc. of the IEEE Int. Symposium on Indus-
trial Embedded Systems (SIES), Lisbon, Portugal

Uzam M, Koc I, Gelen G, Aksebzeci B (2009) Asynchronous implementation of
discrete event controllers based on safe automation Petri nets. The International
Journal of Advanced Manufacturing Technology 41(5-6):595–612

Wegrzyn M, Adamski M, Karatkevich A, Munoz A (2014) FPGA-based embedded
logic controllers. In: Proc. 7th Int. Conf. on Human System Interactions (HSI),
Costa da Caparica, Portugal

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

