
HAL Id: lirmm-03468587
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03468587

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Incremental Computation of Aggregations over
Sliding Windows

Chao Zhang, Reza Akbarinia, Farouk Toumani

To cite this version:
Chao Zhang, Reza Akbarinia, Farouk Toumani. Efficient Incremental Computation of Aggregations
over Sliding Windows. BDA 2021 - 37e Conférence sur la Gestion de Données - Principes, Technologies
et Applications, Oct 2021, Virtual, France. �lirmm-03468587�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03468587
https://hal.archives-ouvertes.fr

Efficient Incremental Computation of Aggregations
over Sliding Windows

Chao Zhang
LIMOS, CNRS, University of

Clermont Auvergne
France

chao.zhang@uca.fr

Reza Akbarinia
LIRMM, INRIA, University of

Montpellier
France

reza.akbarinia@inria.fr

Farouk Toumani
LIMOS, CNRS, University of

Clermont Auvergne
France

farouk.toumani@uca.fr

ABSTRACT
Computing aggregation over sliding windows, i.e., finite subsets of
an unbounded stream, is a core operation in streaming analytics.
We propose PBA (Parallel Boundary Aggregator), a novel parallel
algorithm that groups continuous slices of streaming values into
chunks and exploits two buffers, cumulative slice aggregations
and left cumulative slice aggregations, to compute sliding window
aggregations efficiently. PBA runs in𝑂 (1) time, performing at most
3 merging operations per slide while consuming 𝑂 (𝑛) space for
windows with 𝑛 partial aggregations. Our empirical experiments
demonstrate that PBA can improve throughput up to 4× while
reducing latency, compared to state-of-the-art algorithms.

CCS CONCEPTS
• Information systems→ Data streaming.

KEYWORDS
Data Stream; Streaming Algorithm; Sliding Window Aggregation
ACM Reference Format:
Chao Zhang, Reza Akbarinia, and Farouk Toumani. 2021. Efficient Incremen-
tal Computation of Aggregations over Sliding Windows. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467360

1 INTRODUCTION
Nowadays, we are witnessing the production of large volumes of
continuous or real-time data in many application domains like traf-
fic monitoring, medical monitoring, social networks, weather fore-
casting, network monitoring, etc. For example, every day around
one trillion messages are processed through Uber data analytics
infrastructure1 while more than 500 million tweets are posted on
Twitter [11]. Efficient streaming algorithms are needed for analyz-
ing data streams in such applications. In particular, aggregations
[23], having the inherent property of summarizing information
1AthenaX: SQL-based streaming analytics platform, https://eng.uber.com/athenax

from data, constitute a fundamental operator to compute real-time
statistics in this context. In the streaming setting, aggregations are
typically computed over finite subsets of a stream, called windows.
In particular, Sliding-Window Aggregation (SWAG) [20, 21, 26, 28]
continuously computes a summary of the most recent data items in
a given range 𝑟 (aka window size) and using a given slide 𝑠 . If the
range and slide parameters are given in time units (e.g., seconds),
then the sliding window is time-based, otherwise, i.e., if these pa-
rameters are given as the number of values, it is count-based. Fig. 1
presents an example of computing sum over the count-based sliding
window with a range of 10 values and a slide of 2 values.

Stream processing systems (SPSs) [2, 6, 19, 30, 32] are ubiquitous
for analyzing continuously unbounded data. However, one of the
challenges faced by SPSs is to efficiently compute aggregations
over sliding windows. This requires the ability of such systems to
incrementally aggregate moving data, i.e., inserting new data items
and evicting old data items when a window is sliding without re-
computing the aggregation from scratch. High throughput and low
latency are essential requirements as SPSs are typically designed
for real-time applications [13].

Two orthogonal techniques have been proposed to meet such
requirements: slicing (aka partial aggregation) [7, 18, 20, 31], and
merging (aka incremental final aggregation) [25–28]. Slicing tech-
niques focus on slicing the windows into smaller subsets, called
slices, and then computing partial aggregation over slices, called
slice aggregations. The benefit of the slicing technique is that slice
aggregations (i.e., partial aggregations over slices) can be shared
by different window instances. For example, in Fig. 1, a slice ag-
gregation over a slice of 2 values can be shared by 5 windows. On
the basis of a slicing technique, final aggregations over sliding win-
dows are computed by merging slice aggregations, e.g., in Fig. 1,
SWAGs are computed by merging 5 slice aggregations. During the
merging phase, each insertion or eviction is processed over a slice
aggregation rather than a value. In modern SPSs, practical sliding
windows can be very large [28], thereby making the merging phase
non-trivial. To efficiently merge slice aggregation, incremental com-
putation is necessary because an approach that recalculate slice
aggregations from scratch (hereafter called Recal) is very inefficient
[20, 21, 26, 28].

The difficulty of incremental merging depends on the considered
class of aggregations: invertible or non-invertible. An aggregation is
invertible if the merging function for its partial aggregations has an
inverse function. For example, 𝑠𝑢𝑚 is clearly invertible, because it
has the arithmetical subtraction as the inverse function. Similarly,
𝑎𝑣𝑔 and 𝑠𝑡𝑑 are invertible because they use addition as merging
function. Partial aggregations of invertible aggregations can be

Figure 1: Example of computing sum over a count-based slid-
ing window with a range of 10 values and a slide of 2 values.

efficiently merged using the subtract-on-evict algorithm [13, 27], i.e.,
maintaining a running sum over a sliding window by subtracting
evicted values and adding inserted values. However, this is not
the case for non-invertible aggregations, e.g., max, min, and bloom
filter, where the subtract-on-evict algorithm cannot be applied at
the merging phase. Incremental merging of continuous data in the
context of non-invertible aggregations is challenging and requires
more sophisticated algorithms (e.g., see [5, 25–28]).

This paper focuses on merging slice aggregations for computing
non-invertible aggregations over FIFO sliding windows with an
arbitrary range and an arbitrary slide. We propose PBA (Parallel
Boundary Aggregator), a novel algorithm that computes incremen-
tal aggregations in parallel. PBA groups continuous slices into
chunks, and maintains two buffers for each chunk containing, re-
spectively, the cumulative slice aggregations (denoted as 𝑐𝑠𝑎) and
the left cumulative slice aggregations (denoted as 𝑙𝑐𝑠) of the chunk’s
slices. Using such a model, SWAGs can be computed in constant
time bounded by 3 for both amortized and worst-case time. Inter-
estingly, the required 𝑐𝑠𝑎 and 𝑙𝑐𝑠 for each window aggregation are
completely independent from each other, so the incremental com-
putation of 𝑐𝑠𝑎 and 𝑙𝑐𝑠 can be achieved in parallel. These salient
features put PBA ahead of state-of-the-art algorithms in terms of
throughput and latency.

In this paper, we make the following main contributions:
• We propose a novel algorithm, PBA, to efficiently compute
SWAGs. PBA uses chunks to divide final aggregations of
window instances into sub-aggregations that are elements
of 𝑐𝑠𝑎 and 𝑙𝑐𝑠 buffers. These two buffers can be computed
incrementally and in parallel.

• We analyze the latency caused by SWAG computations with
different chunk sizes in PBA, and propose an approach to
optimize the chunk size leading to the minimum latency.

• We conduct extensive empirical experiments, using both
synthetic and real-world datasets. Our experiments show
that PBA behaves very well for average and large sliding
windows (e.g., with sizes higher than 1024 values), improv-
ing throughput up to 4× against state-of-the-art algorithms
while reducing latency. For small-size windows, the results
show the superiority of the non-parallel version of PBA (de-
noted as SBA) that outperforms other algorithms in terms
of throughput.

• To show the benefit of our approach in modern stream-
processing frameworks, we implemented PBA on top of
Apache Flink [3, 6], called FPBA. Our empirical evaluation
shows that FPBA scales well as increasing the parallelism of
Flink in both local and cluster modes.

The rest of this paper is organized as follows. In Section 2, we
present the background related to SWAG. We discuss state-of-the-
art algorithms for merging slice aggregations, and parallelization in
SPSs in Section 3. PBA is presented in Section 4. Our experimental
evaluation is reported in Section 5. We conclude in Section 6. All
related proofs and pseudo-codes are included in our technical report,
which is available online [1].

2 BACKGROUND
2.1 Sliding Window Aggregations
A sliding window𝑊 [𝑟 , 𝑠], 𝑟 > 𝑠 , with a range 𝑟 and a slide 𝑠 is
an infinite sequence of window instances (𝑤0,𝑤1,𝑤2, ...). Sliding
window aggregationmeans computing an aggregate function𝛼 over
eachwindow instance of a slidingwindow𝑊 [𝑟 , 𝑠], i.e.,𝛼 (𝑊 [𝑟 , 𝑠]) =
(𝛼 (𝑤0),𝛼 (𝑤1),𝛼 (𝑤2), ...).

We assume that the sliding window respects the FIFO semantic,
where values that are first inserted into the window will be first
evicted from it. In this case, SWAG is computed by aggregating
streaming values according to their arrival order.

Two stream-processing models are widely used by SPSs. One is
the micro-batch processing model, where a micro batch containing
a finite subset of values is processed at a time, e.g., Apache Spark
[4]. The other is the continuous processing model, where streaming
values are processed one by one, e.g., Apache Flink [3]. We con-
sider the continuous processing model in this paper. In this case, the
computation of SWAGs is triggered immediately at the boundary
of window instances.

2.2 Stream Slicing
To share partial aggregations, a stream is sliced to generate disjoint
subsets of streaming values, called slices. SWAGs can be computed
by merging partial aggregations of slices. The state-of-the-art slic-
ing technique is Cutty [7], in which a partial aggregate is incremen-
tally computed for each slice. Given a sliding window𝑊 [𝑟 , 𝑠], the
size of each slice determined by Cutty is 𝑠 which equals to the slide
size. For example, for the sliding window𝑊 [10, 3], each slice has
3 streaming values, and an instance of𝑊 [10, 3] will cover 3 slices
and 1 streaming value. We consider Cutty as the underlying slicing
technique in this paper.

2.3 Aggregation Functions
Modern frameworks provide a uniform interface to capture general
aggregations. In the streaming context, aggregation functions can
be decomposed into three functions: lift, combine, and lower [13, 28],
called hereafter the LCL framework. We use the geometric mean,
i.e., 𝑔𝑚(𝑋) = (Î𝑛

𝑖=1 𝑥𝑖)1/𝑛 , as an example to illustrate them:
- lift maps a streaming value to a tuple of one or several values,
e.g., 𝑔𝑚.𝑙𝑖 𝑓 𝑡 (𝑣) = (𝑣, 1);

- combine continuously merges two outputs of lift, e.g.,
𝑔𝑚.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ((𝑣1,𝑛1), (𝑣2,𝑛2)) = ((𝑣1 × 𝑣2), (𝑛1 + 𝑛2));

- lower maps a tuple to a final aggregation result, e.g.,
𝑔𝑚.𝑙𝑜𝑤𝑒𝑟 (𝑣,𝑛) = 𝑣1/𝑛 .

The combine function is also known asmerging function and its out-
puts are called partial aggregations. We use ⊕ to denote a combine
function through this paper.

An aggregation is invertible if its combine function is invertible.
Let 𝑥,𝑦 be any values from the domain of a combine function
⊕. Then ⊕ is invertible if there exists an operation ⊖, such that
𝑥 ⊕ 𝑦 ⊖ 𝑦 = 𝑥 , e.g., the combine function of geometric mean is
invertible as its inverse function is a pair of division and subtraction.

Aggregations can also be classified in distributive, algebraic and
holistic [10]. Distributive aggregations, e.g., sum and max, have an
identical constant size for both partial and final aggregation. Alge-
braic aggregations have a bounded size for partial aggregation, e.g.,
average and geometric mean. The other aggregations are holistic,
which have an unbounded size for partial aggregations, e.g.,median
and percentile. In this paper, we consider non-invertible aggrega-
tions that are distributive or algebraic. Note that, such consideration
is consistent with state-of-the-art works [25–27].

3 STATE OF THE ART
This section reviews state-of-the-art algorithms devoted to merging
slice aggregations, and discusses slicing techniques and paralleliza-
tion in SPSs. A more broad vision on SWAG can be found in [13]
while existing surveys review various facets of SPSs [8, 12, 14].

3.1 Incremental Merging of Slice Aggregations
To merge slice aggregations for non-invertible aggregations, effi-
cient algorithms are needed. The performance of such algorithms
can impact the overall aggregation time, because latency caused by
computing SWAG has the nature of propagation towards compu-
tations over the following ones. To our best knowledge, TwoStack
[27], DABA [27], FlatFIT [25], SlickDeque (Non-Inv) [26] and
SlideSide (Non-Inv) [29] are the most efficient state-of-the-art al-
gorithms for computing non-invertible aggregations over FIFO
windows. Consider each instance of a sliding window that requires
merging 𝑛 slice (partial) aggregations. In Table 1, we present the al-
gorithmic complexities of the state-of-the-art algorithms computed
originally in [26, 29], and also our algorithm PBA (see Section 4.4
for explanation). TwoStack pushes pairs of a partial aggregation
and a streaming value into a back stack and pops such pairs from
a front stack. Computing an aggregation over a sliding window
instance only needs to peek and merge partial aggregations from
the front and back stack. However, when the front stack is empty,
TwoStack flips all items in the back stack onto the front stack re-
quiring 𝑂 (𝑛) time. DABA [27] leverages TwoStack to gradually
perform the flipping operation of TwoStack which amortizes its
time to 𝑂 (1). As a consequence, DABA is in 𝑂 (1) worst-case time.
FlatFIT [25] only recalculates window aggregation one time per
𝑛 + 1 slides. Intermediate aggregation results are maintained in an
appropriate index structure and reused to avoid redundant compu-
tations. Hence, on average, each of 𝑛 + 1 slides can be computed
by 3 merging steps. SlickDeque (Non-Inv) uses a deque to store
streaming values, and not every streaming value will be added
into the deque. For example, when computing max over sliding
windows, SlickDeque continuously replaces the end of a deque 𝑣 ′
using a new value 𝑣 if 𝑣 > 𝑣 ′. Adding a value 𝑣 will depend on
the rank of 𝑣 w.r.t the number of values in the deque which could
be 𝑛. The worst time complexity of SlickDeque is 𝑂 (𝑛) while its
amortized time is less than 2 because a new value will never be
compared more than twice. SlideSide (Non-Inv) uses two stacks to

Table 1: Algorithmic Complexities (Non-Invertible SWAG).

Algorithm Time (amortized) Time (worst) Space
TwoStack 3 𝑛 2𝑛
DABA 5 8 2𝑛
FlatFIT 3 𝑛 2𝑛
SlickDeque < 2 𝑛 2𝑛
SlideSide 3 𝑛 2𝑛
PBA < 3 3 3𝑛+13

2

store partial aggregations, like TwoStack, but shares values between
them. While, an operation similar to the flipping in TwoStack is
still required, resulting in 𝑂 (𝑛) worst-case time.

As shown in Table 1, which contains complexity analysis of PBA
described in Section 4.4, PBA is the best for time and space com-
plexity, except the comparison with SlickDeque in amortized time.
However, unlike SlickDeque, PBA runs in constant time, which is
also experimentally demonstrated in Section 5.1.1. Such a feature
of PBA guarantees its performance in the worst case. Note that
amortized and worst-case time determine throughput and latency,
respectively.

In addition to its low time and space complexities, one of themain
advantages of PBA compared to the state-of-the-art algorithms, e.g.,
TwoStack [27], DABA [27], FlatFIT [25], SlickDeque (Non-Inv) [26],
and SlideSide (Non-Inv) [29], is that the latter algorithms cannot
use additional threads to get performance gains, i.e., computing
intermediate results in parallel. For instance, in TwoStack, the two
stacks are interdependent. In SlickDeque, the deque needs to be
traversed in the worst case. However, the 𝑙𝑐𝑠 and 𝑐𝑠𝑎 buffers used
for computing SWAGs in PBA are completely independent of each
other, allowing their incremental computation to be done in parallel.

3.2 Combining Slicing and Merging
Various slicing techniques have been proposed in the literature,
among which we could mention Panes [20], Pairs [18], Cutty [7],
and Scotty [31]. The main goal is to determine sizes of intervals
over the stream called slices which are then used to split each
window into several slices in order to allow sharing the aggregations
computed over slices. Slicing techniques can improve throughput by
amortizing the total time of merging evenly over each stream value
in each slice. However, having only a slicing technique cannot
reduce latency caused by merging slice aggregations, which is
especially important for a continuous stream-processing model.

A merging technique on top of a slicing one can deal with the
latency issues, and additionally improves the throughput. First of
all, latency can be reduced, as demonstrated in Cutty and Scotty
through combining their slicing techniques with the FlatFAT [28]
merging algorithm. Eager slicing of Scotty (using FlatFAT for merg-
ing) shows up to two orders of magnitudes reduction of latency,
compared to lazy slicing (with Recal as the merging algorithm). In
addition, an advanced merging algorithm can also improve through-
put. Specifically, [27] shows that TwoStack outperforms Recal, ex-
cept in the case of very small window sizes, and TwoStack is always
faster, up to 6×, than FlatFAT. In this paper, we adopt the Cutty
slicing technique and design a constant-time merging algorithm to

reduce latency and improve throughput. It is worth noting that our
merging approach remains independent from slicing techniques.

3.3 Parallelization in SPSs
Parallelization in SPSs is an active research area. A large piece of
work in this field focuses on inter-operator parallelism with a clear
dominance of key-based splitting techniques [24] in shared noth-
ing cluster architecture. Regarding intra-operator parallelism, [22]
presents parallel patterns to handle generic stateful operators (e.g.,
sorting, join, grouping, . . .). PBA fits into the category of exploiting
intra-operator parallelism to incrementally compute SWAGs.

Novel SPSs are designed to exploit multi-core processors to pro-
cess streams in parallel [17, 34]. In this line of work, SABER [17]
processes fixed-size batches in parallel using a hybrid architecture
of CPUs and GPGPUs (i.e., modern GPUs), and merges local results
of batches to produce the final result. The parallelism of SABER
is suitable for the micro-batch model, giving the opportunity to
process each micro batch by separate tasks (one task for each batch
[17]). PBA is designed for the continuous processing model. In ad-
dition, PBA merges at most 3 sub-aggregations to produce the final
aggregation for arbitrary cases, i.e., requiring only constant time
for merging, which is achieved by using the optimal chunk size
computed based on the range and slide parameters in a continuous
aggregate query.

Modern distributed SPSs [2–4, 19, 30, 32] compute SWAGs over
a stream of key-value pairs in parallel. For example, in Apache
Flink [3, 6], one can transform a DataStream into a KeyedStream
with disjoint partitions, where a key will be assigned to a specific
partition. SWAGs over different partitions can be computed in
parallel using multiple cores of nodes in a cluster. The parallel
computation in PBA is orthogonal to such distributed SPSs, since
PBA computes SWAGs over values with the same key in parallel,
which makes PBA suitable to extend partition-oriented parallelism
in distributed SPSs.

4 PARALLEL BOUNDARY AGGREGATOR
In PBA, a stream is considered as a sequence of chunks having an
identical number of slices. Non-invertible aggregations over win-
dow instances are computed by merging two buffers of cumulative
aggregations over slice aggregations in chunks. To efficiently com-
pute SWAG, buffers are computed in parallel using two threads. As
SPSs are usually running on modern CPUs [33], in PBA we assume
that the system is equipped with at least two cores allowing to run
two tasks in parallel.

4.1 Main Ideas
Let us consider a query with the non-invertible aggregation𝑚𝑎𝑥
over a range of 10 values and a slide of 2 values, i.e.,𝑊 [10, 2]. Slices
of 2 values can be created, and thus each window instance needs to
merge 5 slice aggregations. In general, the final aggregation needs
to merge ⌊𝑟/𝑠⌋ slice aggregations for each instance of𝑊 [𝑟 , 𝑠].

PBA is an 𝑂 (1) time solution for𝑊 [𝑟 , 𝑠], which is achieved by
maintaining two buffers: 𝑐𝑠𝑎 (cumulative slice aggregations) and 𝑙𝑐𝑠
(left cumulative slice aggregations). Generally, a 𝑐𝑠𝑎 buffer is com-
puted through accumulating slice aggregations from left to right
inside a chunk (an array of slices), and a 𝑙𝑐𝑠 buffer from right to

5 6 0 1 3 2 7 4 9 8

9 9 9 9 8

2 7 7 9 95 6 6 6 6

𝒘𝟎

𝒃𝟎 𝒃𝟏

6 6 3 3 3

𝒘𝟏

𝒘𝟐

𝒘𝟑

𝒘𝟒

𝒘𝟓

𝑚𝑎𝑥 𝑤2 = 𝑚𝑎𝑥(𝑙𝑐𝑠0 2 , 𝑐𝑠𝑎1[1])

𝑚𝑎𝑥 𝑤3 = 𝑚𝑎𝑥(𝑙𝑐𝑠0 3 , 𝑐𝑠𝑎1[2])

𝒍𝒄𝒔𝟎

𝒄𝒔𝒂𝟎

𝒄𝟎

𝑚𝑎𝑥 𝑤0 = 𝑐𝑎0
𝑚𝑎𝑥 𝑤1 = 𝑚𝑎𝑥(𝑙𝑐𝑠0 1 , 𝑐𝑠𝑎1[0])

5 4 6 3 0 0 1 0 2 3 1 2 7 5 3 4 9 5 4 8

𝒔𝒂𝒂𝟎

𝑚𝑎𝑥 𝑤4 = 𝑚𝑎𝑥(𝑙𝑐𝑠0 4 , 𝑐𝑠𝑎1[3])

𝑚𝑎𝑥 𝑤5 = 𝑐𝑎1

𝒍𝒄𝒔𝟏

𝒄𝒔𝒂𝟏

𝒄𝟏

𝒔𝒂𝒂𝟏

Figure 2: Example of computing the count-based 𝑊 [10, 2]
with the aggregation max over a stream using PBA with a
chunk size of 5 slices.

left. Then SWAG can be computed by merging 2 elements respec-
tively from 𝑙𝑐𝑠 and 𝑐𝑠𝑎 for this example. The two buffers of PBA
for computing𝑚𝑎𝑥 over𝑊 [10, 2] are shown in Fig. 2, e.g., 𝑐𝑠𝑎0 and
𝑙𝑐𝑠0 for chunk 𝑐0. Let us explain in detail how the two buffers are
computed. Streaming values are partitioned into chunks having
an identical number of slices, e.g., 𝑐0 and 𝑐1 in Fig. 2 have 5 slices,
and chunks are separated by boundaries, e.g., 𝑏1 between 𝑐0 and
𝑐1. Slice aggregations inside a chunk are sequentially stored in a
𝑠𝑎𝑎 (slice aggregation array), e.g., 𝑠𝑎𝑎0 and 𝑠𝑎𝑎1 in Fig. 2. Then, 𝑐𝑠𝑎
and 𝑙𝑐𝑠 are computed over 𝑠𝑎𝑎, which are two arrays having the
same length as a 𝑠𝑎𝑎 array. For example, 𝑐𝑠𝑎1 and 𝑙𝑐𝑠0 are computed
by memorization of each intermediate result during accumulating
elements of 𝑠𝑎𝑎1 and 𝑠𝑎𝑎0, illustrated as follows.
- 𝑐𝑠𝑎1 is obtained by accumulating from 𝑠𝑎𝑎1 [0] to 𝑠𝑎𝑎1 [4],
- 𝑙𝑐𝑠0 is obtained by accumulating from 𝑠𝑎𝑎0 [4] to 𝑠𝑎𝑎0 [0].
The last element in a 𝑐𝑠𝑎 array is denoted as a 𝑐𝑎 (chunk aggrega-
tion), e.g., 𝑐𝑎1 = 𝑐𝑠𝑎1 [4] = 9. Aggregation over a window instance
is computed using elements in 𝑙𝑐𝑠 and 𝑐𝑠𝑎 arrays, e.g., in Fig. 2,
𝑚𝑎𝑥 (𝑤3) = 𝑚𝑎𝑥 (𝑙𝑐𝑠0 [3], 𝑐𝑠𝑎1 [2]). Consequently, 𝑚𝑎𝑥 over each
window instance, e.g., each of (𝑤0, ...,𝑤4), only requires at most 1
𝑚𝑎𝑥 operation.

Challenges in PBA: In order to obtain the constant-time solu-
tion described above, the two buffers, 𝑐𝑠𝑎 and 𝑙𝑐𝑠 , must be efficiently
computed as streaming values keep arriving. 𝑐𝑠𝑎 can be computed
by accumulating streaming values and slice aggregations. The main
difficulty is how to compute 𝑙𝑐𝑠 efficiently, since computing a 𝑙𝑐𝑠
array requires traversing a 𝑠𝑎𝑎 array inversely, which means having
to stop computing 𝑐𝑠𝑎, resulting in an eventual high delay. We use
a parallel strategy to deal with this issue. Our key observation is
that SWAG never uses 𝑐𝑠𝑎 and 𝑙𝑐𝑠 from the same chunk, so the
inputs required to compute 𝑐𝑠𝑎 and 𝑙𝑐𝑠 are completely indepen-
dent. For example, in Fig. 2, computing𝑚𝑎𝑥 (𝑤0) requires 𝑙𝑐𝑠0 and
𝑐𝑠𝑎1. 𝑙𝑐𝑠0 is computed with 𝑠𝑎𝑎0 as input, which is complete at the
boundary 𝑏1. While 𝑐𝑠𝑎1 is computed with 𝑠𝑎𝑎1 as input, which
is independent of 𝑠𝑎𝑎0. The independence between the inputs of

𝑙𝑐𝑠0 and 𝑐𝑠𝑎1 allows the task of computing 𝑙𝑐𝑠0 to be carried out
when streaming values reach the boundary 𝑏1. This task runs in
parallel and simultaneously with the task of computing 𝑐𝑠𝑎1. Thus,
PBA can keep receiving new streaming values after 𝑏1 and compute
𝑐𝑠𝑎1. Another issue is whether the task of computing 𝑙𝑐𝑠0 can be
finished before the end of𝑤1, i.e., whether PBA needs to wait for the
result of 𝑙𝑐𝑠0 [1] to compute𝑚𝑎𝑥 (𝑤1). Such an issue is dealt with
in Section 4.3, where we identify the optimal chunk size minimize
the waiting time.

4.2 PBAModel
In PBA, a stream is considered as a sequence of non-overlapping
chunks of slices. Each chunk has an identical number of slices and
starts at a specific time denoted as boundary.

- 𝑏𝑖 (boundary): the start of the chunks, e.g., 𝑏1 in Fig. 2;
- 𝑐𝑖 (chunk): a sequence of slices from 𝑏𝑖 to 𝑏𝑖+1, e.g., 𝑐0 in Fig. 2;
- 𝑏 (chunk size): the number of slices in a chunk, e.g., 5 in Fig. 2.

We incrementally compute partial aggregations for every chunk
to compute SWAGs. PBA applies two kinds of incremental aggre-
gations: (i) computing 𝑐𝑠𝑎 and (ii) computing 𝑙𝑐𝑠 . To compute 𝑐𝑠𝑎,
PBA adopts a two-level incremental computation inside each chunk:
(i.1) accumulating streaming values inside each slice to have a slice
aggregation, and (i.2) accumulating slice aggregations inside each
chunk to have a chunk aggregation. To compute 𝑙𝑐𝑠 , PBA maintains
intermediate results during accumulating slice aggregations from
right to left in a slice aggregation array 𝑠𝑎𝑎𝑖 .

Dividing SWAG into Sub-Aggregations: As the window in-
stances, whose starts coincide with boundaries in every chunk, are
trivial cases requiring only 𝑐𝑠𝑎 elements e.g.,𝑤0 in Fig. 2, we focus
on the other cases in the sequel. To illustrate the PBAmodel, we first
define 𝑘 = ⌊ ⌊𝑟/𝑠 ⌋𝑏 ⌋, which denotes the number of chunks a window
instance can fully cover, e.g., 𝑘 = ⌊ ⌊10/2⌋5 ⌋ = 1 in Fig. 2. In the PBA
model, we use boundaries to divide a window instance𝑤 of𝑊 [𝑟 , 𝑠]
into several sub-parts and merge partial aggregations of sub-parts
to have a final aggregation of𝑤 . The number of sub-parts can be
𝑘 + 1 or 𝑘 + 2, depending on𝑊 [𝑟 , 𝑠] and the used chunk size. We
denote a partial aggregation of each sub-part as a sub-aggregation,
and all sub-aggregations of𝑤 as (𝑆𝐴0, 𝑆𝐴1, ...), i.e., 𝑆𝐴0 is the first
one (see Fig. 3 for an example). Then the first sub-aggregation is
an element in 𝑙𝑐𝑠 , and the last one in 𝑐𝑠𝑎. Each of the others is a
chunk aggregation, i.e., the last element in a 𝑐𝑠𝑎 buffer. An exam-
ple of 𝑘 = 1 is shown in Fig. 2, where each window instance is
divided into 2 sub-parts and SWAGs are computed by merging 2
sub-aggregations. To illustrate the case of 𝑘 > 1, Fig. 3 presents the
example of computing a count-based𝑊 [16, 1] with a chunk size of
4, where we have 𝑘 = 4 and each window instance is divided into 5
sub-parts, e.g.,𝑚𝑎𝑥 (𝑤1) =𝑚𝑎𝑥 (𝑙𝑐𝑠0 [1], 𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3, 𝑐𝑠𝑎4 [0]).

Efficient Computation of 𝑙𝑐𝑠: In the final aggregation stage,
since 𝑙𝑐𝑠 and 𝑐𝑠𝑎 buffers used for merging are computed over com-
pletely independent 𝑠𝑎𝑎 arrays, we compute 𝑙𝑐𝑠 and 𝑐𝑠𝑎 buffers in
parallel, i.e., two tasks run simultaneously and each task focus on
computing a single buffer. Specifically, we maintain two threads
in PBA. The main thread is used to compute 𝑐𝑠𝑎 and the final ag-
gregation, and the other for processing the task of computing 𝑙𝑐𝑠

5 5 6 6 0 0 1 1 2 3 3 3 7 7 7 7 9 9 9 9

6 6 6 3 1 1 1 0 3 3 2 2 7 5 4 4 9 8 8 8

!"

#" #$ #%

…

5 4 6 3 0 0 1 0 2 3 1 2 7 5 3 4 9 5 4 8

'()"

("

'()$

()*$

($

()*"

(+

()*% ()*,

'()% '(),

#, #+

(,(%

()*+

'()+

-.%-.$-." -., -.+

!$

Figure 3: Example of using a chunk size of 4 to computemax
a count-based𝑊 [16, 1], which leads to 𝑘 = ⌊ ⌊16/1⌋4 ⌋ = 4 and
the window instance𝑤1 is divided into 5 sub-parts.

launched at each boundary. Using a multi-core CPU, new stream-
ing values can be immediately accumulated to 𝑐𝑠𝑎 without any
interruption.

4.3 Optimal Chunk Size in PBA
The chunk size is crucial for PBA. Specifically, a carelessly selected
chunk size can cause delay to compute final aggregations. For in-
stance, consider the example in Fig. 2, and let 1 𝑇𝑢 be the time re-
quired to execute ⊕, i.e., a merging function or a combine function.
Although the two tasks for computing 𝑙𝑐𝑠0 and 𝑐𝑠𝑎1 are simultane-
ously started at the boundary 𝑏1, 𝑙𝑐𝑠0 [1] cannot be obtained earlier
than 𝑐𝑠𝑎1 [0] because computing 𝑙𝑐𝑠0 [1] (3 𝑇𝑢) requires two more
𝑇𝑢 than computing 𝑐𝑠𝑎1 [0] (1𝑇𝑢). Thus, PBA needs to wait for 2𝑇𝑢
to use 𝑙𝑐𝑠0 [1] and 𝑐𝑠𝑎1 [0] to compute𝑚𝑎𝑥 (𝑤1).

The following two theorems identify the optimal chunk size,
denoted as 𝑏∗, for count-based windows and time-based window,
respectively. The corresponding proofs are provided in our technical
report, which is available online [1].

Theorem 1. Given a count-based sliding window 𝑊 [𝑟 , 𝑠], the
optimal chunk size 𝑏∗ in PBA can be obtained as follows:
- if ⌊𝑟/𝑠⌋ ⩽ 𝑠 + (𝑟 mod 𝑠) + 1, then 𝑏∗ = ⌊𝑟/𝑠⌋;
- otherwise 𝑏∗ = ⌊ 𝑠 (⌊𝑟/𝑠⌋ + 1) + 𝑟 mod 𝑠 + 1

𝑠 + 1 ⌋.
With 𝑏∗, we have 𝑘 = ⌊ ⌊𝑟/𝑠 ⌋𝑏∗ ⌋ = 1.

Theorem 2. Given a time-based sliding window𝑊 [𝑟 , 𝑠], the opti-
mal chunk size 𝑏∗ in PBA can be obtained as follows:

- if ⌊𝑟/𝑠⌋ ⩽ 𝑠+2𝑇𝑢+𝐶
𝑇𝑢

, then 𝑏∗ = ⌊𝑟/𝑠⌋;
- otherwise 𝑏∗ = ⌊ ⌊𝑟/𝑠 ⌋ (𝑠+𝑇𝑢)+𝑠+2𝑇𝑢+𝐶𝑠+2𝑇𝑢 ⌋,
where 𝐶 = 0 if 𝑟 mod 𝑠 = 0, otherwise 𝐶 = 𝑠 (𝑟 mod 𝑠) + 1 𝑇𝑢 . With
𝑏∗, we have 𝑘 = ⌊ ⌊𝑟/𝑠 ⌋𝑏∗ ⌋ = 1.

The optimal chunk size ensures that (i) each 𝑙𝑐𝑠 buffer can be ob-
tained without waiting, and (ii) 𝑘 = 1 which leads to the minimum
number of merging operations to compute final aggregations.

4.4 Complexity Analysis
As previous works [25–27, 29] present complexities by computing a
count-based𝑊 [𝑛, 1] with a range of 𝑛 and a slide of 1, i.e., merging

𝑛 slice aggregations for each window instance, we also rest on such
a scenario to discuss complexities of PBA.

Given a sliding window𝑊 [𝑛, 1], as PBA is used with the optimal
chunk size 𝑏∗, we have 𝑏∗ = ⌊𝑛+22 ⌋ and 𝑘 = ⌊ ⌊𝑟/𝑠 ⌋𝑏∗ ⌋ = 1 according
to Theorem 1. Thus, a window instance will be divided into either
𝑘 + 1 = 2 or 𝑘 + 2 = 3 sub-parts, i.e., spanning 2 or 3 chunks. Based
on this, we discuss the time and space complexity of PBA below.

Time Complexity: In the final aggregation stage, merging 2 or
3 sub-aggregations of sub-parts needs 1 or 2 merging operations.
Considering that the last streaming value of a window will be
merged with 𝑐𝑠𝑎, the total number of merging operations by PBA
is 2 or 3. Therefore, the worst-case time is 3, and the amortized time
is less than 3.

Space Complexity: As a window instance can span at most 3
chunks, w.l.o.g, we denote the three chunks as 𝑐𝑖−2, 𝑐𝑖−1, 𝑐𝑖 , and
consider the current streaming value is arriving at a slice of 𝑐𝑖 .
Thus, 3 𝑠𝑎𝑎 arrays of size 𝑏∗ are needed. Note that the 𝑙𝑐𝑠 arrays
of the three chunks will be computed over 𝑠𝑎𝑎 arrays and do not
require extra space. In addition, PBA only needs the 𝑐𝑠𝑎 array of
the current chunk 𝑐𝑖 , i.e., 𝑐𝑠𝑎𝑖 , and maintains one element in 𝑐𝑠𝑎𝑖 ,
the current one, rather than the entire 𝑐𝑠𝑎𝑖 array. For windows
spanning 3 chunks, the chunk aggregation 𝑐𝑎𝑖−1 of chunk 𝑐𝑖−1 is
also needed. Thus, the total space required by PBA is: 3𝑏∗ + 2 =
3⌊𝑛+22 ⌋ + 2 ≤ 3𝑛+13

2 .

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of PBA against the
state-of-the-art algorithms for computing non-invertible aggrega-
tions over sliding windows with FIFO semantics. Moreover, we
integrate PBA into Apache Flink and present the corresponding
improvement in local and cluster modes, respectively.

5.1 PBA Compared to Alternatives
State-of-the-Art Algorithms: In our experimental evaluation we
compare PBA to the two best state-of-the-art algorithms: SlickD-
eque [26] and TwoStack [27]. SlickDeque shows the best perfor-
mance in terms of throughput and latency [26] while TwoStack is
slightly worse than SlickDeque but behaves better than the others
[26, 27, 29]. Note that, although DABA [27] has a constant time
complexity in the worst case, it does not show a better performance
result compared to SlickDeque in terms of throughput and latency
[26], or TwoStack in terms of throughput [27]. We also consider
the naive algorithm algorithm and call it Recal (recalculate). As the
sliding windowmoves, it calculates an aggregation from scratch. To
study the performance of our algorithm in the case of single-core
machines, we implemented a sequential version of PBA, denoted as
SBA (sequential boundary aggregator), which uses only one thread
to compute SWAG. SBA follows the same procedure as PBA, except
that the task of computing 𝑙𝑐𝑠 in SBA is done in the same thread
as the one that computes 𝑐𝑠𝑎 buffer (SBA uses only one thread). In
order to slice a data stream, we set each slice size to be equal to
the slide size (as described in Section 2.2 for details). Notice that
this is the underlying slice solution for all algorithms tested in our
evaluation. We implemented PBA and SBA using Java 8, and the
state-of-the-art algorithms based on the pseudo-codes in [27] and

[26]. The source codes of PBA, SBA, and the implementation of
state-of-the-art algorithms are available online [1].

Datasets:We use two datasets, a real-world and a synthetic one,
for throughput experiment. The real-world dataset is the DEBS12
Grand Challenge Manufacturing Equipment Dataset [15], which
is also used by SlickDeque [26]. This dataset contains energy con-
sumption recorded by sensors of manufacturing equipment with
the frequency of 100 records per second, and each tuple is associated
with a timestamp, which we will use in our time-based experiments.
The original dataset contains 32 million tuples, which we made into
130 million tuples, i.e., 4 copies. The synthetic dataset contains 200
million values generated using the uniform distribution. Note that
in our experiments we observed the same tendency for PBA with
different datasets, this is why we have not used more than two test
datasets. For the latency experiments, we used the synthetic dataset
and tested latency results for 1 million window instances.

In our experiments, as aggregation function we use max, com-
monly used in related works [25, 26, 28, 29] as the representa-
tive of non-invertible aggregations. We first evaluate through-
put for count-based windows with a fixed slide while vary-
ing the ranges. Then we evaluate the case with a fixed range
while varying the slides. Similarly, we evaluate the throughput
for time-based windows in both settings (i.e., with a fixed slide
and varying ranges, and then with a fixed range and varying
slides). We test latency for both count-based and time-based
windows. To further study the latency of different algorithms,
we also test a more complex aggregation, MomentSketch =
(𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑠𝑢𝑚, 𝑐𝑜𝑢𝑛𝑡,

Í
𝑥𝑖 , ...

Í
𝑥𝑙𝑖 ,

Í
𝑙𝑜𝑔𝑥𝑖 , ...

Í(𝑙𝑜𝑔𝑥𝑖)𝑙)[9] with
𝑙 = 10, which can approximate percentiles.

Experiment Setup:We run the throughput and latency experi-
ments at a server with Ubuntu 16.01.3 LTS, 6 virtual CPUs of Intel(R)
Xeon(R) 2.40GHz, and 16GB main memory, where the heap size of
JVM is configured to 14GB.

5.1.1 Throughput Experiments. The workload for evaluating max
over count-based windows is as follows: 1) range from 23 to 220
with the slide size set to one; 2) slide from 1 to 10 with a range
of 217. For the time-based windows the workload is as follows: 1)
range from 6 to 60 minutes with a slide of 10 milliseconds; 2) slide
from 10 milliseconds to 100 milliseconds with a range of 1 hour. We
do not test for larger slide sizes as the overall throughput will be
amortized by the time of computing slice aggregations, such that the
differences between merging algorithms cannot be observed (see
Section 3.2 for detailed discussion). We run the workload 20 times
and report the median of all evaluation results. We stop reporting
the throughput of the Recal algorithm when the corresponding
throughput is too small. Our experimental results are presented in
Fig. 4, Fig. 5, and Fig 6. We discuss the results in the sequel.

Count-based windows with a fixed slide. Our throughput results
for this case are shown in Fig. 4. PBA shows the best throughput
with large window sizes, and SBA (the sequential version of PBA)
shows a higher throughput than TwoStack and SlickDeque, even
for small window sizes. More precisely, the throughput of PBA
increases w.r.t to the increase of window size 𝑟 when 𝑟 < 215, and
keeps consistent when 𝑟 ⩾ 215. When 𝑟 ⩾ 215, the throughput of
PBA is 2.5× higher than that of TwoStack and 4× higher than that
SlickDeque. Note that, the throughput of PBA increases w.r.t to the

����� �������� ���������� ��� ���

�
� �

�
�
�

�
� �

�
�
�

�
�

�
�� �

��
�
��

�
�� �

��
�
��

�
�� �

��
�
��

�
��

�
��

�����������

�

��

��

��

��

��

�
��
��
�
�
��
��
�
�
��

(a) DEBS’12 dataset [15]

�
� �

�
�
�

�
� �

�
�
�

�
�

�
�� �

��
�
��

�
�� �

��
�
��

�
�� �

��
�
��

�
��

�
��

�����������

�

��

��

��

��

��

�
��
��
�
�
��
��
�
�
��

(b) Synthetic dataset

Figure 4: Throughput for count-based windows by varying the window size and with a fixed slide size.

� � � � � � � � � ��

����������

��

��

��

��

���

�
��
��
�
�
��
��
�
�
��

(a) DEBS’12 dataset [16]

� � � � � � � � � ��

����������

��

��

��

��

���

�
��
��
�
�
��
��
�
�
��

(b) Synthetic dataset

Figure 5: Throughput for count-based windows by varying
the slide size and with a fixed range.

window size 𝑟 when 𝑟 < 215, because a smaller window size will
lead to a smaller optimal chunk size in PBA. Thus, the parallel task
in PBA, i.e., computing 𝑙𝑐𝑠 , will consequently require less time but
will be launched more frequently, compared to a case with a larger
window size. In such a case, the constant overhead for launching
a parallel task will be relatively more obvious. For example, when
𝑟 = 25, the optimal chunk size of PBA is 17. Then, the corresponding
parallel computation for each chunk in PBA requires applying only
15 times of the 𝑚𝑎𝑥 operation over 2 elements, and this cost is
much less than the cost of launching a parallel task. But, if 𝑟 = 220,
the optimal chunk size is 5242884, which requires 5242882 times of
𝑚𝑎𝑥 over 2 elements. In the latter case, launching a parallel task
can bring significant benefits.

Count-based windows with various slide sizes. Our throughput
results for this case are shown in Fig. 5. We observe that, with
a larger slide size, combining slicing with merging can improve
throughput. PBA shows better throughput with a small slide shown
in Fig. 5, because 𝑟𝑎𝑛𝑔𝑒

𝑠𝑙𝑖𝑑𝑒 is still large in such cases, whichmeans there
are still a large number of slice aggregation that need to be merged.
Then, as the slide size is getting larger, the throughput of different
algorithms are getting closer. There are mainly two reasons that
explain such a behavior. The first reason comes from the fact that
the ratio 𝑟𝑎𝑛𝑔𝑒

𝑠𝑙𝑖𝑑𝑒 is smaller in these cases, which leads to less slice
aggregations to be merged for each window instance. Thus, the
required computations are not enough to exploit the full capacity
of PBA. The second reason is that the overall difference between
various algorithms will be amortized by the cost of computing
partial aggregations over each slice (this is due to the large number
of ⊕ operations performed in each slice).

� �� �� �� �� �� �� �� �� ��

���������������������

��

��

��

��

��

��

��

�
��
��
�
�
��
��
�
�
��

(a) Fixed-slide experiment

�� �� �� �� �� �� �� �� �� ���

�������������������������

��

��

��

��

��

��

��

�
��
��
�
�
��
��
�
�
��

(b) Fixed-range experiment

Figure 6: Throughput for time-based windows.

Time-based windows with various range and slide sizes. Our
throughput results of this case are shown in Fig. 6. PBA shows
the overall best throughput with large window sizes, and SBA
(the sequential version of PBA) shows a higher throughput than
TwoStack and SlickDeque. The corresponding reasons are identical
to the case of count-based windows. Note that, in Fig. 6 (a), PBA
outperforms the others because 𝑟𝑎𝑛𝑔𝑒

𝑠𝑙𝑖𝑑𝑒 is large even for the case of
𝑟𝑎𝑛𝑔𝑒 = 6 minutes.

5.1.2 Latency Experiments. The workload consists in: (i) comput-
ing the aggregation Max over count-based windows with a slide
of 1 and ranges of 213 and 214 respectively, and (ii) computing the
aggregation MS (MomentSketch) over time-based windows with
a slide of 1 second (containing around 100 streaming values) and
ranges of 1 and 2 hours respectively. In this experiment, we compare
TwoStack, SlickDeque, SBA and PBA. We capture the computation
time in nanoseconds, corresponding to the time required by an
algorithm to compute the aggregation over each window when the
ends of windows are reached. We run the experiments for 1 million
windows, and report the latency for the last 970 thousand ones.

Our latency results are presented in Fig. 7. In Table 2 and Table
3, we present 7 statistical summaries for the latency experiments,
i.e., Min (minimum), Max (maximum), Avg (average), Std (standard
deviation), LQ (lower quartile, i.e., 25% percentile), Med (median),
HQ (higher quartile, i.e., 75% percentile). On the whole, we observe
that both SlickDeque and PBA do not have latency spikes, and PBA
performs better than SlickDeque. We discuss detailed results of all
tested algorithms in the sequel.

As it can be observed, PBA has the overall best latency results
in terms of all statistical summaries, especially for the Max and Std
metrics shown in Table 2 and 3, which corresponds to the worst case

�������� ���������� ��� ���

������ ������ ������ ������

������������������

��
�

��
�

��
�

��
�

�
�
�
�
�
�
�
�
�
�
�

��������������������������

������ ������ ������ ������

������������������

��
�

��
�

��
�

��
�

�
�
�
�
�
�
�
�
�
�
�

���������������������������

������ ������ ������ ������

������������������

��
�

��
�

��
�

��
�

�
�
�
�
�
�
�
�
�
�
�

���������������������������

������ ������ ������ ������

������������������

��
�

��
�

�
�
�
�
�
�
�
�
�
�
�

���������������������������

Figure 7: Latency experiments.

Table 2: latency summaries ofMax over count-basedwindows.

Algo. Range Min Max Avg Std LQ, Med, HQ
TS 213 57 74543 69.21 754.3 60, 60, 61
SD 213 57 667 81.77 22.12 64, 79, 88
SBA 213 43 15160 50.39 233.64 45, 46, 47
PBA 213 40 559 53.93 10.41 45, 48, 65
TS 214 63 150024 77.55 1077.86 67, 68, 70
SD 214 61 647 83.07 21.86 65, 80, 90
SBA 214 43 31031 50.06 331.25 45, 46, 47
PBA 214 42 537 46.06 5.24 44, 45, 47

Table 3: latency summaries of MS over time-based windows.

Algo. Range Min Max Avg Std LQ, Med, HQ
TS 1 h 203 365582 337.65 5348.91 223, 230, 258
SD 1 h 267 13638 385.28 101.5 336, 370, 415
SBA 1 h 131 103716 194.85 1566.49 160, 163, 166
PBA 1 h 129 12837 164.24 73.35 141, 145, 168
TS 2 h 207 934212 381.1 9999.85 226, 235, 290
SD 2 h 266 13175 392.72 84.86 342, 380, 427
SBA 2 h 132 226099 201.77 2471.56 162, 164, 168
PBA 2 h 135 12971 171.75 64.59 145, 150, 191

time complexity of PBA shown in Table 1. Moreover, PBA shows
better latency results with a larger window size, shown in Fig. 7, and
Table 2 and 3 (the reason has been discussed in Section 5.1.1). SBA
shows similar results as PBA except for Max and Std in Table 2 and
3. SBA computes a 𝑙𝑐𝑠 buffer at each boundary, which postpones
the computation of a 𝑐𝑠𝑎 buffer until the computation of 𝑙𝑐𝑠 has
been completed. Therefore, SBA has a high latency periodically,
e.g., in Fig. 2, at boundary 𝑏1, SBA needs to firstly compute 𝑙𝑐𝑠0, and
then 𝑐𝑠𝑎1, and this incurs high latency for𝑤1. Such a high latency
of SBA can be observed in Fig. 7. Note that, PBA does not have
high latency due to computing 𝑙𝑐𝑠 and 𝑐𝑠𝑎 in parallel.

SlickDeque has almost the same latency as TwoStack for Avg,
but much better than TwoStack for Max and Std. As shown in Fig.
7, TwoStack has latency spikes periodically, and thus TwoStack
does not perform well in terms of Max and Std. Such latency spikes
become larger when the window size increases. TwoStack requires
moving all elements of one stack to another one periodically, and
the corresponding cost is linearly increasing w.r.t to the window
size. This is why the periodical red spike of TwoStack for the case of
16384 is higher than the corresponding one for the case of 8192, and
similar for time-based window with a range of 2 hours compared
to a range of 1 hour.

We also observe that, as aggregation getting more complex, the
latency is also getting higher, which can be observed in Table 2 and
Table 3. As an aggregation defined in the LCL framework can have
an arbitrarily complex ⊕ operation, the difference in the latency
caused by using a different merging algorithm can be more obvious.

5.2 Apache Flink Integration
We integrate PBA into Apache Flink [3, 6], denoted as FPBA. PBA
is integrated into Flink through KeyedProcessFunction, i.e., a low-
level operator in Flink. To support parallel tasks of PBA, a thread
pool for each task slot in Flink is launched, which will be used to
compute the 𝑙𝑐𝑠 buffers for all key-value pairs associated with the

� � � � � �

����������������������������

���

���

�
�
�
�
��
��

�����

����

(a) Local mode experiment

� � � � � �

���������������

���

���

���

�
�
�
�
��
��

�����

����

(a) Cluster mode experiment

Figure 8: Throughput on top of Apache Flink.

corresponding task slot. Our goal in this subsection is to show that
PBA can be easily integrated into modern distributed and parallel
SPSs, and to evaluate FPBA in both local and cluster modes. In this
experiment, we consider 210 as the representative of large windows.
We compute𝑚𝑎𝑥 over count-based sliding windows with a slide
of 1 and a window size of 210, and capture the throughput of Flink
and FPBA by using a different degree of parallelism in local mode,
and a different number of nodes in cluster mode.

Datasets: We use the DEBS14 Grand Challenge Smart Home
Dataset [16], which contains recordings from smart plugs in private
households. Each tuple of this dataset includes a power consump-
tion and a plugin ID. The first 10 million tuples contain 14 plugin
IDs with a slight data skew, which we made into different sizes with
the identical distribution in our experiments, i.e., 60 million tuples
with 84 plugin IDs for local execution, and 240 million tuples with
336 plugin IDs for cluster execution.

Experiment Setup: We run the cluster experiment at a Flink
cluster having 1 master node and 6 worker nodes running Ubuntu
server 16.01.3 LTS. The master node has 6 virtual CPU cores of
Intel XEON 3GHz, and 16GB main memory, and the job manager
of Flink is configured with 6GB of memory. Every worker node has
4 virtual CPU cores of Intel XEON 3GHz, and 8GB main memory,

and the task manager of Flink is configured with 6GB of memory.
We run the local experiment only at the master node of the Flink
cluster. We run both local and cluster experiments 10 times, where
we consider the first 3 runs as warm-ups, and we repeat the whole
execution 3 times. We report the median throughput for Flink and
FPBA. We use Flink 1.10.0 and Java 8 in this experiment.

We present the results in Fig. 8. In Fig. 8 (a), we observe the
throughput of FPBA or Flink linearly increases up to 3 parallel
instances (called parallelism in Flink). Each parallel instance of the
execution pipeline of FPBA, or Flink, contains 2 tasks, i.e., reading
data and computing SWAG. Therefore, up to 3 parallel instances,
the task for computing SWAG can run on a dedicated CPU core at a
machine with 6 cores. For more parallel instances, the throughput
growth becomes less linear compared to the first phase. In Fig. 8
(b), we observe the throughput of FPBA and Flink linearly scale up
w.r.t more nodes used in a cluster.

6 CONCLUSION
In this paper, we presented PBA, a novel algorithm that calcu-
lates incremental aggregations in parallel for efficiently computing
SWAGs, and also its sequential version SBA. We also proposed an
approach to optimize the chunk size, which guarantees the mini-
mum latency for PBA. Our experimental results demonstrate that
SBA has higher throughput than state-of-the-art algorithms irre-
spective of window sizes, and PBA shows best performance for
large windows (i.e., improving throughput up to 4× while reducing
latency). Thus, a simple strategy for obtaining high performance
can be using SBA for small windows and PBA for larger ones. In
addition, FPBA, an integration of PBA into Apache Flink, shows
significant improvement in both local mode and cluster mode.

As future works, we plan to extend PBA to support both multi-
query processing and out-of-order streams. The idea is to replace
the array structure of 𝑙𝑐𝑠 buffers with a tree structure, where each
leaf node stores a slice aggregation and any intermediate node
stores partial aggregation of all its children (e.g., in the spirit of
the array-based binary heap implementation of FlatFAT). In such a
scenario, the major benefit of using PBA model is that any updates
caused by late values can be processed only over 𝑙𝑐𝑠 buffers in
parallel, such that the computation for accumulating streaming
values will not be delayed. One technical challenge underlying the
development of such an approach lies in optimizing the chunk size
that ensures the overall minimum latency, while taking into account
watermarks and multiple combinations of ranges and slides.

7 ACKNOWLEDGMENTS
This research was financed by the French government IDEX-ISITE
initiative 16-IDEX-0001 (CAP 20-25).

REFERENCES
[1] 2021. https://github.com/chaozhang-db/PBA.
[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
(2013).

[3] Apache Flink. 2019. https://flink.apache.org.
[4] Apache Spark. 2019. https://spark.apache.org/.
[5] Arvind Arasu and JenniferWidom. 2004. Resource Sharing in Continuous Sliding-

Window Aggregates. In VLDB.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. (2015).

[7] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl.
2016. Cutty: Aggregate Sharing for User-Defined Windows. In CIKM ’16.

[8] Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Infor-
mation: From Data Stream to Complex Event Processing. ACM Comput. Surv.
(2012).

[9] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-Based Quantile Sketches for Efficient High Cardinality Aggregation
Queries. Proc. VLDB Endow. (2018).

[10] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Min. Knowl. Discov. (1997).

[11] Vibhuti Gupta and Rattikorn Hewett. 2020. Real-Time Tweet Analytics Using
Hybrid Hashtags on Twitter Big Data Streams. Inf. (2020).

[12] Thomas Heinze, Leonardo Aniello, Leonardo Querzoni, and Zbigniew Jerzak.
2014. Cloud-Based Data Stream Processing. In DEBS.

[13] Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. 2017. Sliding-Window
Aggregation Algorithms: Tutorial. In DEBS.

[14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. (2014).

[15] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung,
and Nenad Stojanovic. 2012. The DEBS 2012 Grand Challenge. In DEBS.

[16] Zbigniew Jerzak and Holger Ziekow. 2014. The DEBS 2014 Grand Challenge. In
DEBS.

[17] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures. In SIGMOD.

[18] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. 2006. On-the-Fly
Sharing for Streamed Aggregation. In SIGMOD.

[19] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In SIGMOD.

[20] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
No Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over Data
Streams. SIGMOD Rec. (2005).

[21] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
Semantics and Evaluation Techniques for Window Aggregates in Data Streams.
In SIGMOD.

[22] Gabriele Mencagli and Tiziano De Matteis. 2016. Parallel Patterns for Window-
Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach.
International Journal of Parallel Programming (2016).

[23] Radko Mesiar Michel Grabisch, Jean-Luc Marichal and Endre Pap. 2009. Aggre-
gation Functions. Cambridge University Press.

[24] Henriette Röger and Ruben Mayer. 2019. A Comprehensive Survey on Paral-
lelization and Elasticity in Stream Processing. ACM Comput. Surv. (2019).

[25] Anatoli U. Shein, Panos K. Chrysanthis, and Alexandros Labrinidis. 2017. FlatFIT:
Accelerated Incremental Sliding-Window Aggregation For Real-Time Analytics.
In SSDBM.

[26] Anatoli U. Shein, Panos K. Chrysanthis, and Alexandros Labrinidis. 2018. SlickD-
eque: High Throughput and Low Latency Incremental Sliding-Window Aggrega-
tion. In EDBT.

[27] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2017. Low-Latency
Sliding-Window Aggregation in Worst-Case Constant Time. In DEBS.

[28] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.
General Incremental Sliding-Window Aggregation. PVLDB (2015).

[29] Georgios Theodorakis, Peter Pietzuch, and Holger Pirk. 2020. SlideSide: A Fast
Incremental Stream Processing Algorithm for Multiple Queries. In EDBT.

[30] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@twitter. In
SIGMOD.

[31] Jonas Traub, Philipp M. Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß,
Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2019. Efficient Window
Aggregation with General Stream Slicing. In EDBT.

[32] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at
Scale. In SOSP.

[33] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. An-
alyzing Efficient Stream Processing on Modern Hardware. Proc. VLDB Endow.
(2019).

[34] Shuhao Zhang, Bingsheng He, Daniel Dahlmeier, Amelie Chi Zhou, and Thomas
Heinze. 2017. Revisiting the Design of Data Stream Processing Systems on
Multi-Core Processors. In ICDE.

