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Abstract One of the challenging aspects of open ended

or lifelong agent development is that the final behaviour

for which an agent is trained at a given moment

can be an element for the future creation of one, or

even several, behaviours of greater complexity, whose

purpose cannot be anticipated.

In this paper, we present MIND (Modular Influence

Network Design), an artificial agent control architecture

suited to open ended and cumulative learning. The

MIND architecture encapsulates sub behaviours into

modules and combines them into a hierarchy reflecting

the modular and hierarchical nature of complex tasks.

Compared to similar research, the main original aspect

of MIND is the multi layered hierarchy using a generic

control signal, the influence, to obtain an efficient global

behaviour.

This article shows the ability of MIND to

learn a curriculum of independent didactic tasks of

increasing complexity covering different aspects of a

desired behaviour. In so doing we demonstrate the

contributions of MIND to open-ended development:

encapsulation into modules allows for the preservation

and re-usability of all the skills acquired during

the curriculum and their focused retraining, the

modular structure serves the evolving topology by

easing the coordination of new sensors, actuators and

heterogeneous learning structures.
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1 Introduction

Jean Piaget’s (Piaget, 1954; Piaget and Duckworth,

1970) theory of cognitive development as a dynamical

process of coordination schemes through multiple

stages (from sensory-motor schemas to abstract level

operations) is a starting point for every research

on epigenetic, or developmental, robotics (Lungarella

et al., 2003). Piaget’s main idea is that learning is done

progressively through interaction between the child and

his environment, more complex tasks being learned on

top of simpler tasks. This idea influenced the field of

developmental robotics, where it is fundamental that

the complexity of knowledge and skills acquired by an

artificial agent increases progressively (Oudeyer, 2012).

According to Piaget, the complexity of learning can

evolve along three axes:

1. Environment can progressively be more and more

complex, from sand box to real world situations.

2. Motivations can be more and more complex, from

grasping an object to building a house.

3. Skills and their structuring into behaviour should

develop to handle the increase in complexity of both

environment and motivations.

From early Renaissance pioneers identifying areas

of the human brain linked to specific functions to

more recent works on coordination between these areas,

research shows that biological systems use a modular

approach (Felleman and Van Essen, 1991). Different

areas of the brain are dedicated to specific processes,

and organized in modules to accomplish tasks. Works

on the primate visual cortex aimed at creating a bridge

between biology and computer vision have pointed out

the hierarchical structure of the brain and the need for
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hierarchical design in computer vision (Kruger et al.,

2013).

If computer vision systems can benefit from

hierarchical structures to identify objects in a

world that is “spatially laid out and structured

hierarchically.1”, and since we are inclined to describe

processes and tasks in hierarchies of procedures,

whether we call it a recipe or an algorithm, could

not a learning system benefit as well from having

each of its subskills represented in its own module

that coordinates with other modules hierarchically to

accomplish complex tasks?

In this article we aim to provide a control

architecture for artificial agents that is particularly

suited to learning from a curriculum carefully designed

by an instructor. A curriculum is defined as a set

of independent tasks to perform, each task having

an environment, a goal, and rewards or motivation

mechanisms. The various tasks of a curriculum are

ordered by increasing complexity, latter tasks may

depend on the knowledge acquired from previous tasks.

This set of tasks will cover various aspects of a desired

behaviour, and their mastery will lead to the mastery of

the target behaviour. In the perspective of open ended

or lifelong development, a crucial importance is placed

on the fact that the current desired final behaviour

will be an element for the future creation of one, or

even several, behaviours of greater complexity, whose

purpose cannot be anticipated. Unlike many works

using a monolithic, or synthetical black-box approach

such as those presented in section 2.2, we build upon

modular design principles and propose the Modular

Influence Network Design architecture, an architecture

which is suited to progressive and curriculum learning.

This architecture reflects the modular properties of

the curriculum by creating corresponding modules that

can encapsulate many forms of learning structures

(neural networks, function approximator, etc.). These

modules will be provided with a way to coordinate with

others to accomplish complex tasks. The goal of this

architecture is to give an agent the ability to accumulate

new skills continuously and to coordinate previously

acquired skills to quickly master new tasks of increasing

complexity.

This article is organized as follows: an overview of

related works is given in section 2, section 3 describes

the MIND architecture and section 4 describes

the experimental setup of the three experiments

we conducted to evaluate the MIND architecture:

learning a complex behaviour from scratch (section

5), improving a behaviour (section 6), learning a new

1 Objects can be naturally split into parts and sub-parts,
complex features and simple features (Kruger et al., 2013)

complex behaviour making use of a previous behaviour

(section 7). Before concluding, we discuss preliminary

experiments on a real world robot (section 8) and

potential limitations (section 9).

2 Background

In this section we give a definition of a few terms

to help the comparison between works in the field of

curriculum learning and skill-based architectures. We

will then take a detailed look at the Robot Shaping

techniques (Dorigo and Colombetti, 1994, 1998) that

encompasses all the desired aspects of developmental

agents, bringing together learning techniques and

structure. We will compare it to other techniques and

recent works that also use curriculum learning to shape

a hierarchy of skills.

2.1 Terminology

A task is an objective to be accomplished for an agent

situated in an environment. If the task is intended to

train an agent, it must include a motivation system, a

feedback signal or a fitness function.

A Curriculum is a series of independent and

increasingly complex training tasks, or lessons, covering

the different aspects of a desired behaviour.

A behaviour is the expression of a skill, a capability,

whose purpose is to perform an action related to the

task.

A skill, or ability, is a memorized element, acquired

through experience or training, that is expressed in the

form of a behaviour.

A Base skill or sensor-motor skill is a skill

that directly associates sensors with actuators, and

represents the lowest level of decision, reflexes.

When several base skills control the same actuator

simultaneously, competition occurs.

A Complex skill coordinates other skills to express

a more complex behaviour than its subskills. The

complex skill delegates to its subskills the realization of

the actions by combining, prioritizing, and arbitrating

according to circumstances.

2.2 Curriculum learning

Curriculum learning (Bengio et al., 2009) is a

progressive learning method investigated to this day in

the field of machine learning as a way to accelerate

learning and simplify learning problems that are

otherwise very complex.
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Learning requires a feedback, either from the

environment directly or through a teaching entity,

but when the learning task and environment are too

complex, providing a meaningful feedback signal from

all the constraints and objectives becomes very difficult.

For instance, consider the case of accumulating different

reward sources for conflicting behaviours, the different

values of the rewards interfere with each other and it

is not possible to tell which action should be rewarded

without the teaching entity’s analysis of the context.

Many recent works are aimed at improving the

teaching entity(Lopes and Oudeyer, 2012), using for

instance the metaphor of motivation (Oudeyer and

Kaplan, 2007). External motivation describes simple

feedback from the environment, internal motivation

generates the feedback from the environment through

the agent’s perspective, finally intrinsic motivation

is able to plan a learning strategy, selecting the

appropriate feedback source and deciding what to

learn (Santucci et al., 2016, 2019; Forestier et al.,

2017). Within intrinsic motivation, several concepts are

investigated such as curiosity (Blaes et al., 2019) or

novelty (Barto et al., 2004; Hester and Stone, 2017).

Another approach to the problem is to learn each

behaviour with its own feedback as a curriculum,

and then learn how to combine these well established

behaviours. Instead of using a complex teaching

entity, a curriculum is handcrafted using simple

feedback (External motivation). Creating separate

tasks greatly simplifies the process of designing learning

environments, reduces the cost in supervision during

training and also helps in the exploratory aspect of

learning, focusing on the additional complexity of the

new environment associated with the task.

Fig. 1: The final skill F (framed in blue) is learned

by transferring all previously learned skills, such as

reaching the exit (1), jumping on a block (2), pushing

a block (3) ... (from Foglino et al. (2019)).

Curriculum learning subdivides a learning task

into different but complementary subtasks (or source

tasks) to be learned separately, and has been applied

successfully to robotics and video games problems

(Narvekar et al., 2016). In this work, the various source

tasks are memorized by a single function approximator

through the use of transfer learning, a set of machine

learning techniques designed to re-purpose a model

trained on one task to a second related task.

Curriculum learning has also been applied in a

more abstract context to teach neural networks to

approximate functions (Gülçehre et al., 2016). In this

work, the idea is to train the network to match a

simplified version of the function and progressively

change this target function to match the actual function

we want to approximate. This method uses elements

of curriculum learning and continuation, smoothing

techniques, in which more complexity is added to

the same learning task instead of being a collection

of complementary learning tasks. In this work, the

knowledge is also represented as a single module, the

neural network.

Although these methods allow learning by progres-

sive means, they are focused on a specific task designed

beforehand. They are able to improve and specialize to

reach their goal, however, due to the use of monolithic

structures they have limited abilities to diversify their

behaviour. They do not cover the lifelong, open ended,

cumulative learning of a variety of tasks, a challenge at

the heart of developmental robotics that is character-

ized by the acquisition of skills and knowledge progres-

sively (Oudeyer, 2012).

While curriculum learning facilitates the training

of monolithic structures on a complex task, its

application to lifelong and open-ended development

calls for a specifically designed architecture. To suit the

cumulative process of development, the acquisition of a

variety of skills serving the emergent needs of the agent,

each new task should be assigned to an individual skill

module. Such a modular principle will require a way to

coordinate the potentially contradictory outputs of the

different skill modules. The following section gives an

overview of some existing skill-based architectures.

2.3 Skill-based architectures

Previous works in the field of control systems for

robots such as the Subsumption architecture (Brooks,

1986) offer solutions for alternating the use of different

skills depending on the context. Skills are arranged

in a hierarchy: the lower levels perform the most

basic functions, such as avoiding an immediate collision

and the higher level skill perform functions of an

increasing complexity, such as exploration. The higher

level skill can either perform its own function or let its
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subordinate perform its function. For instance, the skill

explore starts heading to a distant place, if the agent

meets an obstacle, explore lets avoid, its subordinate

skill, take control. As soon as the obstacle is out of the

way, explore takes the control back and continues on its

way to its objective. In the Subsumption architectures

skills are mutually exclusive, and thus have complete

motor control.

When conflicting or concurrent basic behaviours

each exhibit parts of a desired behaviour at a

given moment, arbitrating between them seems an

interesting solution. For instance, in works that

study the flocking and heard behaviour using virtual

birds (Boids, Reynolds (1987)), a controller solves

the problem of “arbitrating independent behaviours”

by combining, prioritizing, and arbitrating between

potentially conflicting behaviour.

GOAL GOAL GOAL

OBSTACLE OBSTACLE OBSTACLE

AGENT

AGENT AGENT

Va = 0.1Vo + 0.9Vg Va = 0.6Vo + 0.4Vg Va = 0.3Vo + 0.7Vg

Fig. 2: Vector composition: the direction of the agent

(Va) is determined from an obstacle avoiding (Vo)

and goal reaching (Vg) behaviours, depending on the

context.

The mechanism of output vector composition shown

in figure 2 uses a weighted average of the output of

each skill. The weights attributed to each skill varies

according to the situation. This mechanism is able to

choose between alternating or combining the actions of

separate skills, giving a weight of 0 to all skills but one

would result in the exclusive use of that skill.

Vector composition has seen a limited use in works

such as AuRA (Arkin and Balch, 1997) or Sat-Alt

(Simonin and Ferber, 2000), but the scale of these

architectures remains limited and were not intended for

deep hierarchies.

The idea of the coordination of concurrent

behaviours (Reynolds, 1987) was also used in complex

locomotion problems (Heess et al., 2016). Low level

behaviour elements, qualified as “spinal”, are in charge

of learning sensory-motor primitives, these behaviours

are then coordinated by high level “cortical” elements

which drive behaviour by modulating the inputs to

the spinal network. This distinction emphasizes the

time scale difference, allocating more resources for fast

sensor acquisition of the “spinal” level. This approach

covers a single agent sensory-motor development, to

a contemporary standard of complexity (up to a 54-

dimensional humanoid), but still does not go beyond a

two level hierarchy.

2.4 Learning hierarchies

The idea of building a hierarchy whose elements are

trained separately by a different task of the curriculum,

and given responsibility for different functions of a

complex task has long been investigated. In Layered

Learning (Stone and Veloso, 2000) a single layer

percepton is trained on a low level task, the output

of the trained layer is used as input for a new layer

which is trained on a higher level task. This method

could be viewed as training a multi-layered perceptron

one layer at a time. This is not unlike the structure

of Convolutional Neural Networks(CNN)(Krizhevsky

et al., 2012) where low level kernels are in charge

of simple shape recognition and fed to the next

convolutional layer. In Devin et al. (2017) a CNN is

trained on a sensorimotor task in such a way that it

can be cut in the middle, the input side is referred to

as the “task” module and the output side as the “robot”

module (body). This method makes different modules

interchangeable, allowing one robot module to perform

different tasks or one task module to use different robot

bodies.

Such methods operate by successively refining the

input for a higher level decision, and are not skill based

in the sense of combining concurrent behaviours.

A work that encompasses all the desired aspects of

developmental agents is the Robot Shaping techniques

developed by Dorigo and Colombetti (Dorigo and

Colombetti, 1994, 1998). In Robot Shaping, behaviours

are learned as a curriculum and represented as

individual skills, these skills are then combined to

achieve higher level behaviours. The articles cover

both the architectural and didactic aspect: Multiple

architectures are discussed, from monolithic to multi-

level hierarchies, learning methods and reward methods

tailored towards artificial agents are proposed that

constitute an excellent starting point for our work.

When examining detailed points of the Robot

Shaping Hierarchies themselves (noted hereafter RSH)

we find that they could be supplemented and improved

by recent technical works, and additional concepts.

In RSH the lower level skills are the only ones with

access to sensor data and send requests for action to
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Fig. 3: An example of three-level switch architecture

for the Chase/Feed/Escape behavior. Besides the three

basic behaviours can be seen the two switches, SW1 and

SW2. From Dorigo and Colombetti (1994)

the higher level skills (coordinators). Based solely on

these requests, the higher level skill chooses which and

how subskills should be coordinated. This was improved

in other works (Larsen and Hansen, 2005; Niël and

Wiering, 2018) by giving the higher level skills direct

access to sensor data, including data from sensors not

involved with the subskills.

This is a crucial point because dealing with how to

solve a problem involves synthesizing, distorting and

discarding a part of the information or signal. The low

level skill escape (of the chase/feed/escape hierarchy

presented in figure 3) which solves the problem of

escaping a predator does not need to know if the

predator is an immediate threat or keep track of other

priorities to perform its task. Information as to why,

when and if is discarded, leading to the same response

when subtle details in the context would call for an

entirely different approach to succeed. For instance, the

information about the current distance of the predator

and the importance of hunger, which are not used by

escape, could influence the choice between continuing

to feed a while longer or fleeing immediately.

Another limitation of RSH is its use of binary

strings as outputs for its skills. While it has a low

resource cost, it does not allow for vector composition in

the Boids sense (Reynolds, 1987), but only sequential

and exclusive skill use. This is also the case in Niël

and Wiering (2018) which despite using real number

outputs of neural networks still chooses exclusively

based on the highest value (much like the classification

use of neural networks).

Vector composition is integrated to the hierarchical

architecture in works on open-ended evolution of

virtual creatures (Lessin et al., 2013, 2015). As the

name implies, this approach lets low level signal

oriented components evolve to fit a task, the resulting

organisation solidifies into a skill which can then

be used for combination. This contrasts with RSH

declaration of skills whose controller are then trained

to perform tasks, coming from a more supervised

“shaping” philosophy. Both methods are faced with

the problem of coordinating subskills, in the evolving

virtual creatures, commands are transmitted as signal

and combined using various operators (including the

“pandemonium” which is used where mutual exclusion

is required), RSH also uses a predetermined set of

combination operators from which the coordinator

chooses the most appropriate. Still, this set of

combination operators has to be designed in advance

and hand crafted, which is a limitation for open ended

development.

The alternative we propose dispenses the use of

predetermined operators by using real numbers as

skill outputs to serve both vector composition and

combination operation mechanisms. Any particular

combination can be learned for each specific case and

is the responsibility of the higher level skill.

Using a single type of output, real numbers, for

commands and coordination will allow any combination

between the elements of the architecture. Unlike RSH

which makes a clear distinction between the base skills

(that output motor commands) and the coordinators

(that output coordination commands), the use of a

unified communication method between modules makes

this distinction only conceptual. In our approach, a

complex skill is able control base skills and actuators

at the same time.

Extending this principle of using real numbers for

communication to the input signals will open a number

of possibilities. Among the further research suggested

by RSH was mentioned finding a way to deal with

memory systems. Input and output sharing the same

numerical representation will help the integration of

memory modules, in a way comparable to the method of

dealing with time series with recurrent neural networks

(Connor et al., 1994; Lukoševičius and Jaeger, 2009).

Understanding control as a signal influencing

behaviour, from low level sensory-motor actions all the

way to abstract level operations, lead us to design a

unified mechanism suited to the developmental process

and emergent intelligent behaviour.

3 Modular Influence Network Design

Our method relies on mirroring the modularity of

progressive learning in a modular architecture. While

other solutions focus on improving the learning process
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of a single task, we designed our architecture using a

representation of knowledge suited to the accumulation

of a great diversity of skills. This cumulative process

will over time improve the learning of subsequent tasks,

by providing many possible starting points for the

new behaviours to learn. MIND (Modular Influence

Network Design) is a hierarchy of modules able to

coordinate separate behaviours, or skills, to accomplish

a complex task. The benefits of this approach reside in

the following properties:

1. Encapsulation: generic behaviours will be encap-

sulated and combined with others in various ways

to achieve different goals, rather than specialize

a global behaviour to a specific task and losing

the ability to branch from the original generic be-

haviour.

2. Identifiable behaviours: MIND gives the ability

to identify and modify behaviour locally, working

on a single aspect at a time.

3. Unifying methods: MIND places no constraints

on the decision method used by each module,

except for the input and output domains. This

enables MIND to use neural networks, programming

procedures and various other functions in the same

network. MIND provides a way for the modules to

organize with each other as a network, driven by

influence.

4. Flexibility of MIND: behaviour modules can be

replaced either by a new module or a hierarchy of

modules favouring constant evolution of the system.

5. Flexibility of body: MIND provides a generic

solution to the organization of sensors and

actuators. The method used to coordinate related

sensors and actuators into local groups is also used

to coordinate all the groups in the system together.

This also means new sensors and actuators can

easily coordinate with an already existing system

without losing previously acquired behaviours.

3.1 Base skill, complex skill, and influence

In the following we consider an agent whose sensory

information and motor commands are represented

as vectors of real numbers, normalized between 0

and 1. It is possible to create a module that

encapsulates a function f(x) that reads the input

vector VI = [I1, I2, ..., In] and outputs the vector VO

= [O1, O2, ..., Om] (Eq. 1). The function f can be

implemented as a programming procedure, or it can be

a function approximator such as a neural network, or

any other kind of function that associates two vectors of

real numbers. Using the definitions of section 2.1, such

a module is called a skill, and the module whose output

vector is used directly as motor commands a base skill.

VO = f(VI) (1)

Eq.1: The input vector VI is supplied to the internal

function f() of the skill to produce the output vector

VO.

Braitenberg vehicles (Braitenberg, 1986), are

examples of agents that directly associate an input

vector of analog signals to a similar output vector. A

MIND agent could use a single base skill to represent

the wiring of a Braitenberg vehicle.

Using a single base skill provided with all the

sensory inputs and all the motor outputs of the agent

would be sufficient to learn how to perform a complex

task, each lesson of the curriculum being memorized in

the same unique structure. This monolithic skill would

be the sum of all the different experiences, with no way

to differentiate what has been taught.

Instead of performing a complex task by a single

skill, the complex task can be divided into subtasks,

some even conflicting, to be performed by separate

base skills. Each base skill only associates the inputs

and outputs necessary to accomplish its designated

task. To perform the complex task, a complex skill

is created which will coordinate several skills, that

we call its subskills (Figure 4). A complex skill

accomplishes coordination by sending to its subskills

a signal called influence which determines how much

weight (influence) a subskill has on the resulting action.

This can be understood as delegating to one or a

combination of subskills the resolution of the current

task in the same fashion as the Boid brain coordinates

its sub behaviours to accomplish the task of flocking

(Reynolds, 1987).

A Complex skill, as any skill, encapsulates a function

that takes an input vector from the sensors VI and

outputs a vector of real numbers VO, but the output

is directed to its subskills. This output vector is called

the influence vector VInfl = [Infl1, Infl2, ..., Inflm],

and its elements Inflx are called influences.



Modular Influence Network Design 7

Base    
Skill 1    

Base          
Skill 2          

      Influence 
operation

Influence 
    operation

Sensory Input 
Vector

Motor Output
Vector

Influence

Motor 
           command

Weighted 
Motor command

Sensory information

Complex
Skill

Fig. 4: A complex skill influencing two base skills.

A complex skill can have other complex skills as

its subskills, thus creating hierarchies of skills. At the

top of the hierarchy is the master skill, a complex

skill whose only particularity is to receive a constant

influence of 1.0, an impulse setting the whole process

in motion.

Fig. 5: A skill hierarchy, a master skill influences

complex skills which in turn influence the base skills.

This hierarchy of skills forms a Directed Acyclic

Graph (Figure 5). The influence flows along a vertical

axis from the master skill down to the base skills

and determines who (and with which magnitude) is in

charge of the resulting action. The information from

the sensors reaches all the skills of the hierarchy and

the motor commands are output from the base skills

to the actuators forming a horizontal information flow.

Its purpose is to determine how the resulting action is

going to be executed.

Figures 4 and 5 show that sensory inputs are

available to every skill, including complex skills. This

enables a complex skill to perform subtle coordination

based on information that is not needed by the

subskills.

3.2 Using Influence to determine motor commands

Starting from the master skill, each complex skill

computes its output vector VO and multiplies each

element by the sum of the influences it received,

forming the influence vector VInfl. The skill then

sends each element Infl of the influence vector to the

corresponding subskill (figure 6).

VInfl = VO ∗
Cs7→s∑
c 7→s=1

Inflc 7→s (2)

Eq.2: With VInfl the influence vector to the subskills,
VO = f(VI) the output vector of the internal function of

the skill, and
∑Cs 7→s

c7→s=1 Inflc 7→s the sum of all influences

the skill received (also noted ΣInfl).

The base skill, like any other skill, computes its

output vector and multiplies each element by the sum

of the influences it received, similarly to equation

(2), forming the motor command vector VCom =

[Com1, Com2, ..., Comm]. The base skill then sends

each element Comx of the motor command vector to

the corresponding motor module along with the sum of

the influences (ΣInfl) the base skill received.

Each motor module then computes the correspond-

ing motor command for its actuator as a normalized

weighted sum:

Equation 4 gives the complete computation of a

motor command from the master skill to the actuator

in a three level hierarchy
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Fig. 6: Internal architecture of a skill.

M =

∑Bs
b=1Comb∑Bs

b=1 ΣInflb
(3)

Eq.3: With M the resulting final motor command, b

the index of the base skill that is sending a motor

command, Comb the weighted motor command for this

motor module from the base skill b, ΣInflb the sum of

influences from the base skill b.

M =

∑Bs 7→M

b=1 (Fb(V ib) 7→M ∗∑Cs7→b

c=1 (Fc(V ic) 7→b ∗
FMs(V iMs) 7→c ∗1.0))∑Cs7→b

c=1 (Fc(V ic) 7→b ∗
(FMs(V iMs) 7→c ∗1.0))

(4)

Eq.4: With M the resulting final motor command,

Bs 7→M the Base skills connected to the motor module,

Cs 7→b the Complex skills connected to the Base

skill b, FMs the internal function of the Master skill,

F (V i) 7→X the element directed to X of the output

vector of the skill internal function F processing the

input vector V i.

4 Experimental setup

To prove the effectiveness of the proposed architecture,

we experimented in a simulator with a reactive agent,

a (simulated) robot, using neural networks as internal

functions trained by a simple genetic algorithm. The

experiments will involve the task of collecting an object,

which we divided into the following hierarchy of skills:

Collect

Go to
DropZone +

Avoid

Go to 
Object +

Avoid

AvoidGo to
DropZone

Go to
Object

Fig. 7: An overview of the division into skills of the

Collect task.

We planned the experiments as follows:

– Scenario 1: Curriculum learning. We build a

hierarchy of skills of increasing complexity, from

reaching a target and simple avoidance to collecting

and bringing back objects in an environment with

obstacles.

– Scenario 2: Focused retraining. We then

observe the effects of the curriculum and learning

strategies, and the limitations of hand crafted

reward functions. We also experiment with focused

skill retraining and learning in broader context

strategies for an established MIND hierarchy.

– Scenario 3: Flexibility. Finally, we add new

skills to the already trained MIND hierarchy to

demonstrate its flexibility and show its merits as

an architecture for open ended and cumulative

learning.

Videos of the results are available at the following

addresses:

Base skills.

www.lirmm.fr/~suro/videos/BaseSkills.mp4

Complex skills:

www.lirmm.fr/~suro/videos/ComplexSkills.mp4

Collect:

www.lirmm.fr/~suro/videos/CollectPS.mp4

4.1 Skill internal function and the learning algorithm

The skill internal functions we use are neural networks,

using a genetic algorithm as a function optimizer

(De Jong (1992), Rudolph (1994)).

The internal function is implemented as multi-

layered perceptron, for which the input layer

www.lirmm.fr/~suro/videos/BaseSkills.mp4
www.lirmm.fr/~suro/videos/ComplexSkills.mp4
www.lirmm.fr/~suro/videos/CollectPS.mp4
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corresponds to the input vector of the skill and the

output layer to its output vector. Depending on the

skill, its neural network will use 2 or 3 hidden layers of

NHIDDEN neurons, with:

NHIDDEN = Max(NV i, NV o) + 2 (5)

Eq.5: With NV i and NV o the number of neurons on the

input and output layers respectively.

The transfer function of the layers of the neural

network is sigmoid, except for the last layer which

uses a linear transfer function that is clamped between

0 and 1. This configuration is more suited to our

problem which is closer to function approximation than

classification.

We acknowledge that this configuration has a high

convergence time for the genetic algorithm we use but

it is generic enough to cover any kind of skill.

Unlike the traditional non-hierarchical approach

which uses a unique skill with a single neural

network that connects all sensors and actuators, in

our hierarchical approach, each skill has its own neural

network using only the appropriate actuators, sensors

or subskills.

To learn the tasks, we used a simple genetic

algorithm (Russell and Norvig, 2009). We choose this

solution for its simplicity, exploratory properties and

good performance with delayed rewards. By nature,

there is no need to provide it with a description of

how to achieve a goal (unlike methods which use

Backpropagation that requires an input-output training

set) but only with a way to measure if the performance

of an individual is better or worse than the performance

of other individuals. Evaluating the quality of the

behaviour at the end of the life cycle of an agent allows

it to persist in a penalizing behaviour if it eventually

leads to a greater reward, thus circumventing the issue

of delayed reward.

One of the major drawbacks of the genetic

algorithm is its high computational cost, specifically

the evaluation of the fitness function which requires

running each individual, i.e. agent, in a simulated

environment for a sufficient period of time. However, as

the evaluation of each agent is completely independent,

it can be run in parallel and allows the use of

High Performance Computing solutions. Since each

skill uses a small network we do not suffer from

much communication overhead, as a result the real

time evaluation of an entire generation is significantly

reduced.

Fig. 8: Relation between the skills and the genetic

algorithm.

To use a genetic algorithm on a neural network,

the weights of the neural network’s connections are

ordered in a vector, which corresponds to the genome

of the individual from the point of view of the genetic

algorithm. The genome will be bred and mutated

according to the value of the fitness function the

environment provides as feedback. The relation between

the skills and the genetic algorithm is illustrated in

Figure 8.

4.2 The robot and simulation environment

The simulated robot is composed of two motors, one

for each wheel, and a claw to grab the target object. It

also has 18 sensors:

– 10 obstacle sensors (range finders) placed around

the robot.

– 3 sensors giving respectively the orientation of the

target object, the drop zone and the power supply

(a zone to recharge the batteries).

– a sensor indicating if the target object is in range of

the claw.

– 2 sensors indicating respectively if the robot is inside

the drop zone and inside the power supply zone.

– a sensor indicating the remaining charge of the

batteries.

– a simple inertial sensor indicating if any movement

occurred.

The robot’s software, through what we call a Sensor

Module, is able to compute the derivative of any sensor
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input and provide the result as a virtual sensor. It can

also generate a sinusoidal wave that can be used in

the same way (useful, in conjunction with the inertial

sensor, to solve deadlock situations).

The motor command, issued by the Motor Module

to its actuator as a real number between 0 and 1, is

interpreted as a percentage of the actuator’s capability

(e.g. power, speed, angular position, etc.). In the case of

the wheels, 1 corresponds to full speed forward, 0 to full

speed backwards and 0.5 to stopped. In the case of the

claw, the number corresponds to its position (treated

as binary): above 0.5 is closed, under 0.5 is opened.

The simulation environment is based on a 2D

physics engine, the JBox2d physics library2. This

allows us to be closer to real world constrains,

using thrust vectors and inertia simulation instead of

discrete actions steps. It will also make the benefits of

MIND and its influence mechanism obvious through

the composition of thrust vectors in a continuous

environment.

Figure 9 shows the environments for the GoToOb-

ject, GoToDropZone, Avoid and Collect with power

management tasks. The red circle represents our robot,

green squares and borders represent obstacles. The long

white lines connecting the robot to the targets repre-

sents the orientation sensors. The shorter white lines

represent the obstacle detection sensors. A full line

means that the sensor has not collided with an obsta-

cle within its range. A shorter line means the sensor

has detected an obstacle and will give its distance as a

fraction of the maximum range.

Notice the difference in size between the object and

the drop zone, grabbing the object will require finer

motor control, the target being smaller. Also, grabbing

the object requires to align the front of the robot (where

the claw is mounted) with the object.

4.3 Genome evaluation

To evolve a population, each genome of a generation

must be evaluated and given a fitness score.

The genome to be evaluated sets the weights of

a neural network using its gene vector (Fig. 8). The

neural network is then placed inside the skill module

corresponding to the task to learn. Finally, this skill

and its instance of the MIND hierarchy take control of

a simulated robot placed in an environment where it

can run for a given time.

At each tick of the simulation, a set of reward

functions are evaluated and their result added to

the current score. At the end of the evaluation, this

2 JBox2d: www.jbox2d.org

Fig. 9: Top: GoToDropZone, GoToObject and Avoid

environments. Bottom: the complete training environ-

ment for Collect with power management (section 7).

accumulated score will represent the fitness score of the

evaluated genome.

For instance, the GoToObject task has two reward
functions:

1. Closing on target : −∆DistanceTarget ∗ 0.001, a very

small reward given each tick that can be negative if

the distance to the target increases.

2. Reaching target : +0.5, a large reward given each

time the robot reaches the target. The target is then

moved to a new place for the robot to reach (random

placement with minimum distance constraint).

The small Closing on target reward helps to

differentiate genomes that result in an attraction

behaviour towards the target from genomes that cause

repulsion from the target. This helps to speed up the

early stages of evolution. However, the reward remains

small compared to the Reaching target reward to favour

the outcome we desire over the process we think would

lead to that outcome. It also helps in optimizing the

final stages of evolution, favouring genomes that result

in a sharper turn when facing the target.

www.jbox2d.org
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Indirectly the Reaching target reward combined

with the time limit also leads to optimization. Genomes

that reach more targets within the time limit will have

better scores. This leads to sharper turns, straight

trajectories and moving at top speed.

The GoToObject task is a simple example, and

yet we can already see subtle interactions between

all the constraints and rewards. When designing the

Avoid task we met the same difficulties mentioned in

the Robot Shaping experiments: the iterative process

of designing the reinforcement program, the difficulty

of finding an appropriate shaping policy which is at

time as difficult as directly coding the control program

(Dorigo and Colombetti, 1994, 1998).

In complex behaviour where it is difficult to

even picture an optimal solution out of many

acceptable ones, learning from a hand crafted lesson

(or reinforcement program) will quickly show its limits.

Scenario 2 (sec. 6) will show indeed that there is no

need to tune the reward functions to get the optimal

behaviour, optimization can be achieved by simpler

means.

5 Scenario 1: Curriculum learning
Building a MIND hierarchy: Collect

In this first scenario, we aim to demonstrate that the

MIND architecture is able to organize simple skills into

complex behaviours, and is able to do this reliably even

when using a simple genetic learning process.

5.1 Protocol

In this scenario the goal is to teach the robot a collecting

task which consists in picking up an object and bringing

it back to a drop zone without colliding with obstacles.

Each of the six skills needed to accomplish this

task will be trained in 10 independent attempts. This

will give us a fair sample of possible outcomes and

convergence times, and allow us to draw conclusions

in spite of the stochastic nature of genetic algorithms

(Gen and Lin, 2007; Rudolph, 1994).

The scores given by the different sets of reward

functions are used by the selection process of the

genetic algorithm as a relative measure of performance.

The result section will provide a benchmark for the

final behaviour, however a complete evaluation and

interpretation of such complex behaviours requires

observation.3

3 Videos of the results are available at the following
addresses:
www.lirmm.fr/~suro/videos/BaseSkills.mp4

5.1.1 Curriculum and the MIND hierarchy

To create an initial hierarchy there are many possible

ways to organize the different subskills, all of which

are valid as long as they are able to learn from the

curriculum.

Fig. 10: The complete hierarchy for the initial collection

task, with sensor and motor information shown.

We choose to divide the complex Collect task into

a curriculum of five subtasks, three of which are base

tasks to be learned by the corresponding base skills:

1. GoToObject : Going to the object in an empty

environment. The agent receives a small reward

for approaching the object and a large reward for

reaching the object.

2. GoToDropZone: Going to the drop zone in an empty

environment. The agent receives a small reward for

approaching the drop zone and a large reward for

reaching it.

3. Avoid : Avoiding collision while moving in an

environment with obstacles. A collision ends the

evaluation and gives the agent a large negative

reward. A number of positive rewards are given

(in order of importance): visiting new areas of

the environment, keeping a straight path, keeping

distance with obstacles and travelling forward.

On these base tasks we build two higher level

complex tasks:

www.lirmm.fr/~suro/videos/ComplexSkills.mp4

www.lirmm.fr/~suro/videos/CollectPS.mp4

www.lirmm.fr/~suro/videos/BaseSkills.mp4
www.lirmm.fr/~suro/videos/ComplexSkills.mp4
www.lirmm.fr/~suro/videos/CollectPS.mp4
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Fig. 11: GoToObject and GoToDropZone base skills:

best individual score for each generation, 10 separate

attempts over 1000 generations.

1. GoToObject+Avoid : going to the object while

avoiding collision in an environment with obstacles.

A collision ends the evaluation, a positive reward is

given each time the agent reaches the object.

2. GoToDropZone+Avoid : going to the drop zone

while avoiding collision in an environment with

obstacles. A collision ends the evaluation, a positive

reward is given each time the agent reaches the zone.

Finally, Collect is learned in the final environment

containing an object, a drop zone and obstacles. A

collision ends the evaluation, a positive reward is given

for each object collected (picked up and brought to the

drop zone).

Learning Collect, the largest complex task, is an

interesting challenge. Its subtasks, GoToObject and

GoToDropZone, require to use the motor functions in

a completely opposite way and have to be performed

sequentially and exclusively. Conversely, the Avoid

task would be best used as a composition of vectors,

by altering the set trajectory to smoothly avoid an

obstacle.

5.2 Results

Figures 11 and 12 show that most attempts of the

GoToDropZone and GoToObject skills reach their

maximum value in 100 generations, whereas most

attempts of the Avoid skill continue to evolve past

500 generations (the figure 12 shows the attempt over

2500 generations which we will discuss in section 6).

This difference in convergence time is coherent with the

complexity of the networks to train, Avoid has more

than 10 inputs while the other base skills only 1.

We see that in both GoToObject and GoToDrop-

Zone skills, one attempt in ten did not reach a satis-

factory result within the number of generations given.

However, it is interesting to note that they are still im-

proving with each generation, which is positive in the

context of our work aimed at supporting open ended

and lifelong development of artificial agents.

Fig. 12: Avoid base skill: best individual score for each

generation, 10 separate attempts over 2500 generations.

Fig. 13: GoToObject+Avoid and GoToDrop-

Zone+Avoid complex skills: best individual score

for each generation, 10 separate attempts over 1500

generations.

Fig. 14: Collect master skill: best individual score

for each generation, 10 separate attempts over

1500 generations (Right: showing only the first 10

generations scores).

Setting aside the failed attempts, we selected

successful base skills to learn the complex skills

GoToObject+Avoid and GoToDropZone+Avoid. The

GoToObject+Avoid is slightly more difficult to learn

thanGoToDropZone+Avoid, which can be explained by

the fact that the object is smaller than the drop zone

and requires more precision (the “claw” must be aligned

with the object to grab it, see Sec. 4.3). Both skills still

succeed on each of their respective 10 attempts within

the given number of generations.
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Finally, the master skill Collect, having a very

simple network to train, succeeds on each of its 10

attempts in under 10 generations.

To illustrate the effect of influence we trained

a similar hierarchy using a set of 4 constant base

skills: moveForward always sets both wheels to full

forward,moveBackwards always sets both wheels to full

backwards, turnLeft and turnRight set one wheel to full

forward and one wheel to full backwards. Using these

base skills with the influence mechanism it is possible

to obtain any combination of values for the wheels.

Figure 15 presents our agent in a situation similar to

the one used to illustrate vector composition (Fig.2)

where it must avoid an obstacle to reach its goal. The

right panel shows the environment and the left panel

shows the state of the hierarchy. The current influence is

displayed under the name of the skill, the influence links

are represented by a gradient from black for the value 0

to green for the value 1, the central line represents the

command of the skill alone and the outer line represents

the influence actually transmitted.

The following describes and comments on the

sequence shown in figure 15:

Step 1: Our agent is approaching an object

to collect. The obstacle is not close enough to be

considered a collision risk byGoToObject+Avoid thus it

transmits its influence to GoToObject exclusively (1.0

x 1.0). GoToObject transmits an influence of 0.11 to

moveForward. Since no other constant skill receives any

influence, moveForward completely controls the output

(both wheels are set to full forward).

Step 2: The agent came too close to the obstacle,

GoToObject+Avoid transmits its influence to Avoid

exclusively. Avoid transmits an influence of 1.0 to

moveForward and turnLeft. In this simple case, both

skills transmit a motor command of full forward to

the right wheel, the commands being identical, their

average result is full forward. In the case of the left

wheel, moveForward transmits a motor command of

full forward with the influence of 1.0 (weighted motor

command: 1.0 x 1.0), turnLeft transmits a motor

command of full backwards with the influence of 1.0

(weighted motor command: 0.0 x 1.0). According to

the equation 3, the resulting motor command for the

left wheel is:

(1.0× 1.0) + (0.0× 1.0)

1.0 + 1.0
= 0.5 (6)

0.5 corresponds to stop. With the right wheel

full forward and the left wheel stopped, the resulting

behaviour is a sharp left turn centred on the left wheel.

Step 3: As the agent recovers some distance with

the obstacle, the influence to Avoid decreases while

Fig. 15: Five steps of avoiding an obstacle and reaching

a goal using influence.

the influence to GoToObject increases. GoToObject

transmits a high influence (1.0) to turnRight to make

a sharp turn right to reach the object. But since

GoToObject only has a relatively small influence (0.16)

turnRight can at most receive as much as GoToObject

(0.16 x 1.0). Since moveForward receives a much higher

influence, the result is a trajectory slightly curved to the

right.

Step 4: With the forward obstacle sensors clear of

the obstacle, Avoid lowers its influence to moveForward

which increases relatively the impact of turnRight

on the wheels (even if the influence to turnRight
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decreased). The slight curve is now a deliberate turn

around the obstacle.

Step 5: Eventually, our agent picks up the

object. Collect sends its influence exclusively to

GoToDropZone+Avoid. GoToObject+Avoid is still

transmitting influence to its subskills, but since its

own influence is 0.0, it has no effect. It is interesting

to note that GoToDropZone+Avoid chooses to keep

Avoid active at a distance from the obstacle where

GoToObject+Avoid would have it inactive. This can

be explained by the fact that GoToObject+Avoid may

have to approach an obstacle in order to collect an

object, while GoToDropZone+Avoid is more at risk of

colliding with an obstacle when carrying the object (due

to the object protruding in front).

5.3 Analysis

Our initial MIND hierarchy succeeded in quickly

learning the curriculum we designed, and reached

satisfactory scores on most of our attempts. Table

1 shows benchmark scores for this Collect hierarchy

against a monolithic structure learning the same

curriculum. The monolithic structure is a single neural

network which uses the same inputs and outputs

used by our hierarchy (see Fig. 10), and 3 hidden

layers, instead of the 2 used by each separate skills

of the hierarchy. The monolithic structure uses 1610

parameters (i.e. neural network weights), while the sum

of the parameters of all the skills of the hierarchy is

1510.

In the first benchmark (interruption on collision) 1

point is given for each object collect, any collision stops

the simulation (the agent keeps its current score). The

second benchmark (no interruption) does not stop in

the event of a collision (but does not help the agent

should it get stuck on an obstacle).

The higher score of the monolithic structure on the

first benchmark is a consequence of its longer runtime.

This shows that the monolithic structure is better

at avoiding obstacle than our hierarchy. This can be

explained by the fact that the monolithic structure

can improve its avoid behaviour during the Avoid

task, but also during both the GoToObject+Avoid

and the GoToDropZone+Avoid tasks, thus benefiting

from more generations and from in-context training.

In our hierarchy the complex skills are able to use

Avoid, but the training only affects the complex skills

themselves and not its subskills. Compared to complete

modularity which separates a complex skill from its

subskills and requires each to learn its own internal

function, a monolithic structure has the opportunity

to share intermediate results. The structures described

Interruption on collision (average runtime)
Structure Curriculum Final task only

Hierarchical 4.63 (54%) 0.06 (51%)
Monolithic 5.19 (68%) 0.31 (80%)

No interruption (equal runtime)
Structure Curriculum Final task only

Hierarchical 9.55 0.18
Monolithic 7.70 0.39

Table 1: Top table: number of objects collected and

percentage of runtime before the evaluation ends.

Bottom table: number of objects collected when a

collision does not end the evaluation. Results are given

for our hierarchy and for a single skill monolithic

structure. Each structure was trained using the

curriculum and the final task only.

in Schrum and Miikkulainen (2015) show policies

(subskill) and preference neurons (complex skill)

sharing neural paths. We can reasonably assume that

in the case of “how to avoid” (Avoid) and “when

to avoid” (GoToObject+Avoid), both behaviours could

share some analysis on the surrounding obstacles. This

would however come at the cost of modularity.

These results raise the question of evaluating the

resources needed to learn a task. The complexity of

tasks can be difficult to assess, but it is easy to

understand that the neural network assigned to the

GoToDropZone skill, which uses two inputs, has far

fewer connections, and thus fewer weights to adjust,

than the neural network assigned to the Avoid skill,

which uses more than 10 inputs. Figures 11 and 12 show

how this difference in complexity impacts learning.

Most attempts of the GoToDropZone and GoToObject

skills reach their maximum value in 100 generations,

whereas most attempts of the Avoid skill continue to

evolve after 500 generations.

It is worth noting that while the complexity of the

network to train has an impact on the learning time,

so does the nature of the task. Avoid takes a longer

time to learn, but all the attempts seem to reach an

acceptable level of training. This can be explained by

the fact that avoiding an obstacle has many solutions,

all of which being valid. On the other hand GoToObject

is represented by a much smaller network and takes less

time to learn, but accomplishing this task has only two

valid solutions:

1. The optimal solution: if the object is on my left,

turn left; if the object is on my right, turn right.

2. The suboptimal solution: turn either always left or

always right until the object is in front of me.

The suboptimal solution tends to lock the learning

process in a local maximum.
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The second column of table 1 shows the results

of learning the whole curriculum as a single task, all

reward signals cumulated in the final environment.

This is of course impossible without a teaching entity

analysing the context and prioritizing rewards, however

the runtime scores show the agent managed to learn

some form of Avoid behaviour. Learning as a single

task using a hierarchical structure is a coevolutional

approach similar to Whiteson et al. (2003), with the

difference that a MIND hierarchy requires to learn the

high level controllers. Without the given decision tree

used in coevolution, which in effect only makes base

skills evolve, no role is attributed to each skill and the

decomposition of the task does not take place. For this

method to succeed we would need a way to initiate the

specialization of each skill, a process of reinforcement

would then naturally take place.

The variation in quality of behaviours also led to

the questions of whether it is relevant to continue the

learning process, that is training the complex skills,

using sub-optimal subskills. Would MIND be able to

improve and retrain subskills after the whole hierarchy

has been trained ? The second scenario was designed to

study these issues.

6 Scenario 2: Focused retraining
Learning with sub-optimal subskills, retraining and

learning in broader context

In this scenario we will take advantage of the property

of MIND that offers identifiable behaviour to work on

the aspect of the curriculum that the agent had the

most trouble assimilating.

After the Scenario 1 resulted in a trained and

functional hierarchy, we observed that the Avoid skill

was causing a bottleneck for the performance of the

hierarchy. This section covers retraining strategies for

subskills.

6.1 Protocol

In this scenario we use the already trained hierarchy

of Scenario 1 and try to improve its performance by

retraining the Avoid skill which, by our observation of

the behaviour, seems to be causing a bottleneck. We

experimented with two different methods:

1. Allocate more resources to the original training

of the Avoid skill and measure the performance

improvement.

2. Use an alternative training method: Learning in

a broader context. In this method we will retrain

the Avoid skill from scratch while the agent is driven

Structure score runtime

Monolithic 5.19 68%
Avoid 1000 gen. 4.63 54%
Avoid 2500 gen. 5.31 56%

Avoid 1500 gen.+context 6.03 90%

Table 2: Number of objects collected and percentage of

runtime before failure for the different versions of the

Avoid skill.

by the Collect skill and its hierarchy, using the

final Collect task as the environment and reward

function.

6.2 Results

Allocate more resources: We initially set up the

learning process of each skill with 1000 generations. The

resulting Collect skill did work, but still regularly failed

due to collisions. Naturally, we considered allocating

more resources to the Avoid task, expecting that

its efficiency, and thus the efficiency of the Collect

behaviour, would improve.

We retrained Avoid from scratch, increasing the

number of generations from 1000 to 2500, and retrained

all the higher level skills based on this new version.

With 2500 generations, the final fitness score of

the Avoid skill increased by 10% compared to the

Avoid skill trained with 1000 generation (Fig. 12).

Consequently, the Collect skill based on the retrained

Avoid skill increased its final benchmark score by 14%.

This result conforms with our observation of the

behaviour and indicates that the Avoid skill is limiting

the performance of the hierarchy under the control of

the Collect skill.

Learning in a broader context: We then used

our method of learning in a broader context, using

the hierarchy of scenario 1 as a starting point. The

Collect skill was set as master skill, the final Collect

environment used, and the reward signal came from

accomplishing the Collect task. In this context, we

retrained the Avoid skill from scratch (ignoring the

hand crafted Avoid reward function in favour of

the Collect reward function). By only using 1500

generations on the Avoid skill with this method, the

final benchmark score of the Collect skill improved by

30%.

6.3 Analysis

By allocating more resources to the Avoid skill (more

than doubling it), the overall quality of the Collect task
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was only slightly improved. This leads us to question

the quality of the Avoid learning task in the curriculum.

The choices made in the elements of the reward

function are certainly in question. What we find

reasonable to guide the development of a behaviour,

it is the nature of evolution to exploit it to achieve

the best score, regardless of the spirit of the law. For

instance, in very early experiments the only reward

for the Avoid skill was a negative one which the

individual received upon colliding with an obstacle, and

so the fittest individual simply did not move. Each

subsequent laws added was in turn exploited until we

found a set of laws which gave us a behaviour close

to what was expected. This illustrates the problem of

defining the reward function, which can be as difficult

as simply programming the behaviour we want (Dorigo

and Colombetti, 1994).

We needed an Avoid skill to build the hierarchy,

but now that each skill has its own defined role in the

hierarchy, instead of trying to improve the quality of

Avoid on its own, we can train it in the final context of

the Collect skill, as an element of the hierarchy.

The experimental success of the method of learning

in a broader context suggests that there could be many

more learning strategies to consider when teaching to a

hierarchy, beyond a simple curriculum from basic to

complex tasks. In the scope of our work, we found

out that going back to further improve the subskills in

the final context, once the whole curriculum has been

roughly taught, can yield better results than trying to

maximize each subskill before moving on to the next.

The initial progressive training of the hierarchy

is still of great importance, even if each skill does

not have to be trained to perfection, this first run

through the curriculum is where each skill will specialize

in its role within the hierarchy. When observing

the resulting hierarchy learned without curriculum

(Hierarchical/Monolithic in Tab.1) we noticed that

most branches of the hierarchy were ignored and a

single skill attempted to learn the complete task.

Having established each role in the hierarchy, a

natural reinforcement process can take place, with the

added benefit of being provided on-the-job training (or

less constrained solution space). The benefits of this

approach was described as “relaxing” the hierarchy in

Robot Shaping (Dorigo and Colombetti, 1994) or as the

Coevolution mechanism in Whiteson et al. (2003).

The ability to focus the retraining on a particular

aspect of the behaviour is one of the benefits of the

property of identifiable behaviours (item 2 sec. 3),

resulting from a modular approach.

7 Scenario 3: Flexibility
The modularity of MIND: Collect with power

management

In this scenario we demonstrate that the MIND

architecture is best suited to open ended development

by adding new skills, and even new sensors, to expand

the abilities of an already trained hierarchy. When using

MIND, the acquisition of a new skill does not alter

previously acquired skills, which remain available for

other combinations. Our architecture is also able to

integrate new inputs, which would require a monolithic

structure to alter its topology and possibly lead to its

retraining from scratch. This shows another advantage

of MIND as an approach for open-ended development

of agents over monolithic architectures.

7.1 Protocol

In this scenario we add to the initial collection task the

energy consumption and the necessity to recharge the

robot’s battery. A sensor providing the current power

level of the battery and sensors giving information

about the direction of the power source are added to

the robot. This scenario adds to the previous one the

base task of going to the power source to recharge and

the complex task of going to the power source without

colliding with obstacles, re-using the previously learned

Avoid task.

The benchmark for this scenario is the same as that

in scenario 1 with the addition of power management.

The battery of the robot discharges unless the robot

stands in the power source area, in which case the

battery quickly recharges. The benchmark is run for

a given time frame or until the robot fails (if a collision

occurs or the power level of the robot reaches zero).

Each time the robot brings back the object to the drop

zone, it scores one point and a new object is placed

randomly in the environment.

We did not include a comparison to a monolithic

structure, as the change in topology occasioned by the

new sensors would require us to retrain the network

from scratch, using the whole curriculum. Although

a monolithic structure would certainly succeed in

learning this new task, the computational cost and

the drawbacks of having to keep the training material

available for every subsequent extension of the agent’s

abilities leave this method out of our consideration for

developmental purposes.
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Variant Original Avoid Retrained Avoid

Score (average runtime)
Retrained 1.73 (28%) 3.99 (69%)

Encapsulated 1.62 (36%) 3.73 (90%)

Table 3: Number of objects collected and percentage

of runtime before failure for the two variants of the

hierarchy.

7.1.1 The hierarchies

When attempting to coordinate a new skill with an

already existing complex skill in a hierarchy two

possible ways can be considered:

1. Modify the existing complex skill so that it

integrates the new one, and retrain it to fit

(Retrained variant),

2. Create a new complex skill that coordinates the

new skill with the existing complex skill. The new

complex skill will be the one that undergoes the

training and not the pre-existing one (Encapsulated

variant).

Collect

Go to
DropZone + 

Avoid
Go to Object +

Avoid

AvoidGo to
DropZone

Go to
Object

Go to Power
Supply + Avoid

Go to
Power Supply

Collect And Manage
Energy 

Fig. 16: The hierarchy for the collection task with

energy consumption. Left: Retrained variant: The old

master skill is replaced. Right: Encapsulated variant:

The old master skill becomes a subskill of the new

master skill.

7.2 Results and analysis

Table 3 shows that both variants of the hierarchy (Re-

trained and Encapsulated (fig: 16)) obtain comparable

scores, using the original and the retrained Avoid skill.

As pointed out before, in this benchmark the robot can

fail if a collision occurs or if its power level reaches zero.

No indication of what constitutes a low battery level

was given to the robot, only its current energy level. The

robot determined by itself when to abandon its current

collection task and head for the power source based on

its own experience with its battery discharge speed and

the size and complexity of the environment.

Both variants of the hierarchy are valid, however

we want to point out that the Encapsulated variant

preserves the original Collect skill, making it available

for future combinations, which is one of the desired

properties of the MIND architecture (item 1 sec. 3).

Another property of MIND that is successfully

demonstrated here, by the integration of the sensors

related to power management into the hierarchy, is the

flexibility of body (item 5 sec. 3). The local coordination

of the added physical elements with the new behaviour

did not negatively impact the previously acquired

behaviours. The new sensors did not require altering

the existing internal functions and their topology, the

existing skills remain available for future combination

and will not have to be learned again.

8 Using MIND on a real world robot

Fig. 17: Left: Our crude robot, Right: Basic object

detection using a luminous ball, a webcam, OpenCV

and low lights.

Given that the MIND hierarchy learned in

simulation is entirely reactive we did not anticipate any

problem using it on a real world application.

We designed a simple task using the two base skills

GoToObject and Avoid, and the complex skill (in this

case also the master skill) GoToObject+Avoid.

Our robot used a Raspberry PI34 running Linux

and our Java implementation of MIND. Sensory-motor

equipment was made from plug and play hobby kit

elements5 and included 10 ultrasonic range finders, a

dual motor control board, a 9dof sensor, a basic switch,

a servo control card to control a twin servo pan and tilt,

a basic webcam, and two servos to control the claw.

The pan and tilt arm and webcam were used, with

the OpenCV computer vision library6, to find and

track a luminous ball. The position of the pan arm

was converted to a sensor information replicating the

orientation sensor used in the simulation.

4 Raspberry PI3: www.raspberrypi.org/products/

raspberry-pi-3-model-b-plus/
5 Grove Pi: www.dexterindustries.com/grovepi/
6 OpenCV computer vision library: https://opencv.org/

www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
www.dexterindustries.com/grovepi/
https://opencv.org/
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Finally, the robot was driven by two shopping

trolley wheels, actuated by friction motor rollers, and

the chassis was balanced by two free rotating wheels.

The only difficulty we encountered was the delay in

sensor acquisition and motor response, most probably

because of the hobby grade hardware being used. This

problem was solved by setting appropriate sensor dead

zones and maximum ranges.

Despite the noisy sensor inputs, the acquisition

delays and the imprecision of the actuators, our crude

robot demonstrated the expected behaviour using the

hierarchy and skills learned in a simulation that was

not calibrated in any way to fit the robot or real world

environment.7

9 Limits

Our experiments have shown the ability of MIND

to handle small hierarchies. However, there could be

some concerns with large hierarchies, specifically deep

hierarchies where the successive transfer of influence

could result in a form of noisy motor output caused

by several unrelated subskills receiving a very small

amount of influence. In the context of our experiments,

the motor tasks do not require extreme precision, and

the hierarchy is not deep enough to show any hint of

this phenomenon.

The reason this problem could arise is mainly

due to the use of genetically trained artificial neural

networks as skill internal functions giving a “good

enough answer” (for a given input that should result in

a left turn, if the output is 0.99 for left turn and 0.01 for

right turn, the impact of right turn is not noticeable).

If an influence command is transmitted from master

skill to base skill with a value of 1.0 and all other

influences remain at 0.0, then no matter how many

complex skills are involved in the successive transfer,

the final output will be the exact motor command of

the base skill. What it means in practice is that if noisy

outputs become noticeable, it is due to imprecisions

in the neural networks that should be finely retrained

(as the depth of the hierarchy increases, the acceptable

imprecision of the internal functions decreases).

Future works will tell us if this concern is

justified. Should noisy output become a problem and

finer training of the internal function be costly and

impractical, we would investigate ways to reduce noise

in large networks such as filters, threshold layers, or

logit functions (invert sigmoid).

7 Videos of the results are available at the following address:
www.lirmm.fr/~suro/videos/clawDemo.mp4

10 Conclusions

Our approach to open ended or lifelong agent

development is built upon the works of authors

(Whiteson et al., 2003; Narvekar et al., 2016; Gülçehre

et al., 2016) who already established the advantages

of progressive learning, either by guiding the learning

entity through increasing the complexity of the task

or by learning a curriculum of complementary tasks

aimed towards the completion of a complex task.

To extend this cumulative learning process to agent

development, we drew inspiration from other works that

departed from monolithic architectures to reflect the

increasing complexity of a multi-stage curriculum into

modular architectures able to coordinate simple skills

into complex ones (Dorigo and Colombetti, 1994).

In this article we introduced MIND, the Modular

Influence Network Design, an architecture tailored to

open ended development and progressive learning for

artificial agents. The MIND architecture encapsulates

sub behaviours into modules and combines them using

a generic control signal, the influence, to form a

multi layered hierarchy reflecting the modular and

hierarchical nature of complex tasks.

We have first motivated and explained the main

design principles and desired features of MIND. Then,

through experiments, we demonstrated MIND’s ability

to learn from a curriculum. The positive results

obtained on the Collect task are encouraging, the

MIND architecture was able to encapsulate each step of

the curriculum to form a multi-level hierarchy of skills

with both coordination and mutual exclusion of skills.

MIND was able to handle both low level sensory-motor

tasks and complex skill influence operations, without

providing any information on the nature of the task to

the internal skill function.

We demonstrated MIND’s flexibility by extending

the physical and behavioural abilities of an agent

to meet new constrains beyond its original design.

MIND handled the new sensors and actuators without

incidence on the already trained skills, and by

combining a few new modules with the established

hierarchy, the agent was able to master a new task with

minimal training.

We also experimented with techniques for the fo-

cused retraining of a module inspired from Robot Shap-

ing (Dorigo and Colombetti, 1994). The experiment we

conducted on the retraining of subskills indicates the

advantage of going back and forth from simple to more

complex lessons rather than trying to attain perfect re-

sults on the basic tasks before moving on to more com-

plex ones. We are currently using this technique, along

with the ability of some learning algorithms to stop and

www.lirmm.fr/~suro/videos/clawDemo.mp4
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resume training from a saved state, to optimize MIND

hierarchies.

The focus of this article was to establish that MIND

is an architecture suited to open ended development

and progressive learning, as such we used structures

capable of learning, multi-layer perceptrons, as our

skills internal functions. However, the encapsulation

of the internal function into a skill and the use of

the influence mechanism together represents a unifying

method which gives any function the ability to integrate

into a MIND hierarchy. As long as a wrapper can

convert inputs and outputs into vectors of real numbers,

any kind of function can be used, including non learning

ones. For instance, in our experiment, the function

controlling the “claw” of the robot is a trivial Java

procedure that has been wrapped into a base skill

module.

We are currently improving the implementation of

the MIND architecture, most notably by using the

NEAT algorithm (Stanley and Miikkulainen, 2002) to

supplement our basic genetic algorithm. This removes

the need to define the neural network topology of

the skill’s internal function (eq.5 sec. 4.1). We are

also integrating other neural network topologies (CNN,

RNN) and other improved learning algorithms.

We are also studying social learning by using

MIND hierarchies on a foraging task using a multi-

agent system. The learning technique remains genetic,

agents use an instance of the same hierarchy of skills,

but the fitness score is evaluated collectively. Our

preliminary results show that multi-agent coordination

and emergent distribution of roles can be learned by the

MAS using an already established single agent MIND

hierarchy and a curriculum adding the required multi-

agent skills.

As mentioned before, we are considering the

suggestions for further research of Robot Shaping

(Dorigo and Colombetti, 1994) on memory systems.

We began adding a number of simple memory modules

conforming to the MIND system of influence to give the

ability to the agent to evolve beyond simple reactive

behaviour.

We are currently investigating a way to teach a

knowledge representation without allowing the teaching

entity direct access to the memory modules. This will

benefit the instructor by providing a method that is

not dependent on the configuration of the agent being

taught. We also hope that not violating the barrier of

the interiority of the agent’s mind will lead to emergent

memory representations.

Beyond that, we plan to use these memory modules

in a connectionist fashion on a situated agent having

learning capabilities, as a test-bed for new research on

evolving low level cognitive functions from the ground

up. Using this developmental approach we intend to

propose an alternative to symbolic AI, investigating

the fundamental scientific issue of the emergence of

symbols, or “symbol grounding problem”, as suggested

by Oudeyer (2012).

Our next step towards the creation of an artificial

agent capable of open ended and lifelong development

through curriculum learning under human supervision

is the automation or streamlining of the different steps

required by the MIND approach.

For a new lesson given by the instructor, with a well

defined goal, a MIND agent should be able to determine

what are the relevant sensor inputs and actuator

outputs or subskills that should be used to accomplish

the task. The new skill could be created from scratch, or

it could be mutated from an existing module (Schrum

and Miikkulainen, 2015), only changing a few inputs or

outputs, or altering the behaviour.

From the instructor’s point of view, what languages

and strategies in formulating a lesson would help the

agent understand what is expected of it while at the

same time remaining natural and simple to define for

the human instructor?
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Gülçehre, Ç., Moczulski, M., Visin, F., and Bengio,

Y. (2016). Mollifying networks. CoRR,

abs/1608.04980.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T. P.,

Riedmiller, M. A., and Silver, D. (2016). Learning

and transfer of modulated locomotor controllers.

CoRR, abs/1610.05182.

Hester, T. and Stone, P. (2017). Intrinsically motivated

model learning for developing curious robots.

Artificial Intelligence, 247:170–186.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.

(2012). Imagenet classification with deep

convolutional neural networks. In Advances

in neural information processing systems, pages

1097–1105.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M.,

Leonardis, A., Piater, J., Rodriguez-Sanchez, A. J.,

and Wiskott, L. (2013). Deep hierarchies in the

primate visual cortex: What can we learn for

computer vision? IEEE transactions on pattern

analysis and machine intelligence, 35(8):1847–

1871.

Larsen, T. and Hansen, S. T. (2005). Evolving

composite robot behaviour-a modular architecture.

In Proceedings of the Fifth International Workshop

on Robot Motion and Control, 2005. RoMoCo’05.,

pages 271–276. IEEE.

Lessin, D., Fussell, D., and Miikkulainen, R. (2013).

Open-ended behavioral complexity for evolved

virtual creatures. In Proceedings of the 15th

annual conference on Genetic and evolutionary

computation, pages 335–342.

Lessin, D., Fussell, D., Miikkulainen, R., and Risi,

S. (2015). Increasing behavioral complexity for

evolved virtual creatures with the esp method.

arXiv preprint arXiv:1510.07957.

Lopes, M. and Oudeyer, P.-Y. (2012). The strategic

student approach for life-long exploration and

learning. In 2012 IEEE International Conference

on Development and Learning and Epigenetic

Robotics (ICDL), pages 1–8. IEEE.
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A Appendix

The following tables give the settings used in scenario 1.
All values are given using the units of the physics engine
(Jbox2d). These values were used to obtain the results shown
in this article. However, other settings can be used with
substantial improvements in convergence time and computing
cost.

World data

Time step 1/60
Velocity iterations 8
Position iterations 3

Robot

size 2
proximity sensor range 12

angularDamping 20
linearDamping 5

max thrust per wheel +- 80

Table 4: Setting used in scenario 1. Jbox2d engine.
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GoToObject environment

Runtime in steps 10000
Environment size ∞

Target size 3 to 1 (-0.1 per collect)
GoToObject rewards

10 points for reaching the target
0.001∆ distance to object per tick
0.01 for forward motion per tick

GoToDropZone environment

Runtime in steps 10000
Environment size ∞

Zone size 5
GoToDropZone rewards

10 points for reaching the target
0.001∆ distance to object per tick
0.01 for forward motion per tick

Avoid environment

Runtime in steps 10000 or collision
Environment size 100

Avoid rewards

10 points for each new patch visited (size 4)
-200 for collision

0.01 for forward motion per tick
for each proximity sensor (per tick):

If distance <1/4 max range -0.03(1-4 range/maxrange)
If distance >1/4 max range 0.001 range/maxrange

-0.4(Σ∆ thrust exceding 20% over 10 ticks) per tick

GTO + Avoid environment

Runtime in steps 10000 or collision
Environment size 100

Target size 3 to 1 (-0.1 per collect)
GTO + Avoid rewards

10 points for reaching the target
0.001∆ distance to object per tick

GTDZ + Avoid environment

Runtime in steps 10000 or collision
Environment size 100

Zone size 5
GTDZ + Avoid rewards

10 points for reaching the target
0.001∆ distance to zone per tick

Collect environment

Runtime in steps 30000 or collision
Environment size 100

Zone size 10
Target size 1

Collect rewards

30 points per collected object
0.001(+)∆ or 0.0005(-)∆ distance to zone per tick
0.001(+)∆ or 0.0005(-)∆ distance to object per tick

Table 5: Exhaustive list of the settings and rewards of the
curriculum used in scenario 1.
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