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Abstract

Zombies and Survivor is a variant of the well-studied game of Cops and Robbers
where the zombies (cops) can only move closer to the survivor (robber). We con-
sider the deterministic version of the game where a zombie can choose their path
if multiple options are available. Similar to the cop number, the zombie number of
a graph is the minimum number of zombies required to capture the survivor. In
this short note, we solve a question by Fitzpatrick et al., proving that the zombie
number of the Cartesian product of two graphs is at most the sum of their zombie
numbers. We also give a simple graph family with cop number 2 and an arbitrarily
large zombie number.

1 Introduction
Cops and Robbers is a pursuit-evasion two-player game: the cops and the robber. At the initial
round each cop choose a starting vertex, then the robber choose its starting vertex; then at each
round, each cop choose to move to an adjacent vertex, or to stay on its current vertex, then
the robber has a similar choice. The cops win if after a finite number of rounds, a cop occupies
the same vertex as the robber; and vice-versa, the robber wins if he can indefinitely avoid the
cops. The cop number of a graphG, which is denoted by c(G), is the minimum number of cops
needed to guarantee that they have a winning strategy. Albeit being very simple, this game is
related to fundamental questions regarding the structural properties of graphs (see [Bon12],
[BP17] and [Bon11] for a survey, and additional background on this game).

In this paper, we consider a new variant of this game, namely Zombies and Survivors,
defined in [FHMP16] as follows: zombies take the place of the cops and survivors take the place
of the robber. The zombies, being of limited intelligence, have a very simple objective in each
round – to move closer to a survivor. Therefore, each zombie must move along some shortest
path, or geodesic, joining itself and a nearest survivor. We say that the zombies capture a
survivor if one of the zombies moves onto the same vertex as a survivor. In this version,
zombies may have a choice as to which shortest path to follow, if there are multiple ones. A
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different version of the game involves randomness in the choice of the shortest path. We refer
the interested reader to [BMPGP16, Pra19] and do not consider the topic further.

Following [FHMP16], we only consider the case of a unique survivor in the graph, and
assume all graphs throughout the paper to be connected. Similarly to cops and robbers, the
zombie number of a graph G is the minimum number of zombies needed to ensure that the
survivor will be eventually captured, and is denoted by z(G).

We focus on the following two questions:
Question 1.1 (Question 10 in [FHMP16]). Is z(G□H) ⩽ z(G) + z(H) for all graphs G and H?

Question 1.2 (Question 19 in [FHMP16]). Over all graphs G, how large can the ratio z(G)
c(G)

be?
Here, we answer Question 1.1 in the affirmative, improving upon Theorems 11, 13 and

14 in [FHMP16]. By noting that z(Q3) = 2, we also obtain immediately that z(Qn) = ⌈2n
3
⌉.

This was the object of Conjecture 18 in [FHMP16], though it was since solved independently
in [OO19] and [Fit18].

Theorem 1.3. For all graphs G and H , we have z(G□H) ⩽ z(G) + z(H).

We also argue that the ratio in Question 1.2 can be arbitrarily large. Note that a union G
of cycles all sharing a vertex satisfies trivially c(G) ⩽ 2.

Theorem 1.4. For every integer k, there is a graph Gk that is a union of cycles sharing a vertex
such that z(Gk) ⩾ k.

This was already argued in [OO19], but our construction and proof are arguably simpler.
Additionally, the graphs we present are outerplanar graphs, and in fact cacti. Informally, this
gives little hope for Question 1.2 to have a bounded answer in a meaningful graph class.

We prove Theorem 1.3 in Section 2, Theorem 1.4 in Section 3, and conclude in Section 4
with some open problems which seem of interest to us.

2 Cartesian products of graphs
Proof of Theorem 1.3. Given a vertex u ∈ G□H , we denote its coordinates in G and H as
(uG, uH). Given two vertices u, v in G□H , we denote dG(u, v) = dG(uG, vG) (respectively
dH(u, v) = dH(uH , vH)) the distance between u and v in the projection of G□H on G (re-
spectively H). A copy of G (respectively H) is the subgraph induced in G□H by all vertices
u with uH = w (respectively uG = x) where w is some vertex in H (respectively x is some
vertex in G). Let SG be an optimal strategy for z(G) zombies in G, and SH be an optimal
strategy for z(H) zombies in H . Throughout the proof, we denote by s the vertex occupied
by the survivor.

We are now ready to describe a winning strategy (for zombies) involving z(G) + z(H)
zombies. We will distinguish two types of zombies: a set B of z(G) blue zombies, which are
placed according to SG in some copy of G, and a set R of z(H) red zombies, which are placed
according to SH in some copy ofH . Note that for every x, y ∈B, we have dH(x, s) = dH(y, s).
We maintain that property step after step, and denote the corresponding value dH . Similarly,
for every x, y ∈ R, we have dG(x, s) = dG(y, s): we denote that value dG.

The set B applies the following strategy: as long as dH is positive, all the zombies in B
move towards s in H (choosing to keep the same coordinate in G). Note that this is a valid
move, as there is a shortest path to s going through the corresponding vertex. Once dH = 0,
all zombies in B either follow SG (if sH is unchanged) or move toward s in H to remain in
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the same copy of G as s (if sH changed). Note that either way, we maintain dH = 0. The set
R applies the same strategy, symmetrically with H and G instead of G and H .

We observe that neither dH nor dG increases. Additionally, at every step, either sH or sG
is unchanged. Assume sH is unchanged. Then dH , if positive, decreases. If dH = 0, then all
zombies inB follow SG. Since dH = 0 for the rest of the game,B is one step closer to catching
the survivor. Meanwhile, if sH is changed, then dH does not change, andB is not further away
from capturing the survivor according to SG. Since the winning strategy SG terminates in a
finite number of steps, and the same analysis holds for SH , the process for G□H terminates
and the survivor is eventually captured and eaten.

3 Simple graphs with large ratio
Proof of Theorem 1.4. For k ∈ N∗, let Gk be the graph obtained by taking k disjoint copies of
C5, C13, . . . , C2k+2−3, for a total of k2 cycles, and merging all of them on one vertex u (see
Figure 1). Note that |V (Gk)| ∼ k · 2k+3 as k → ∞. We will argue that z(Gk) ⩾ k. We define
a direction for all cycles, which we will refer to as clockwise.

u

Figure 1: The graph G2

Assume for a contradiction that z(Gk) ⩽ k − 1, and consider a starting position for k − 1
zombies inGk. Since there are k copies of cyclesC5, C13, . . . , C2k+2−3, and only k−1 zombies,
by the pigeon-hole principle there is one copy which contains no zombie except possibly on
the vertex u. We will focus on u and the vertices of that copy, and ignore from now on the
rest of the graph. The goal, perhaps somewhat counter-intuitively, is to gather zombies closely
behind the survivor, so that eventually the survivor can safely circle around the cycle of length
2k+2 − 3 forever without encountering any zombie. Circling around a cycle means walking
around the cycle clockwise until reaching u.

The survivor use the following winning strategy: For i from 1 to k, while the the ith closest
zombie is at distance at least 2i+2 − 1, the survivor choose the second vertex in the cycle of
length 2i+2 − 3 if they have not chosen a starting point yet. Then the survivor circle around
the cycle of length 2i+2 − 3.

The strategy for the survivor is elementary. By circling around in an appropriate way, the
survivor makes sure that at some point, the first i zombies are within distance 2i+2−2 behind.
Since there are only k − 1 zombies, this guarantees that circling around the cycle of length
2k+2 − 3 is eventually safe and leads to a surviving strategy for the survivor. The only crucial
property about the behaviour of zombies is that the distance between the survivor and a given
zombie never increases. Note that since all cycles are odd, free will has in fact no impact for
zombies.
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In our algorithm, zombies are ranked by increasing distance to the survivor, with ties
broken arbitrarily. The kth zombie, which does not exist, is considered to be at infinite distance.
When the survivor has not chosen a starting point yet, distance is considered as 2 more than
the distance to u. Note that u itself might not be a suitable starting point as there could be a
zombie on it.

To argue that the strategy is safe for the survivor, it suffices to point out that when the
survivor enters the cycle of length 2i+2 − 3 (for some i), all zombies are either at distance at
most 2i+1−2 or at least 2i+2−1. In the first case, the shortest path to the survivors makes them
circle around the cycle clockwise (since 2i+1 − 2 < 2i+2−3

2
). In the second case, they do not

reach u before the survivor has finished circling around the cycle (since 2i+2−1> 2i+2−3+1).

4 Conclusion
To conclude, we offer two open questions. While not of obvious depth, we believe that both
touch at the heart of what it means for a graph G to require z(G) zombies. In particular, if
a survivor plays so as to survive for as long as possible, are all z(G) zombies within short
distance at time of death?
Question 4.1. For every graph G, and for a graph G′ obtained from G by successively adding
vertices of degree 1, does it always hold that z(G′) = z(G)?

Question 4.1 can be interpreted as: is there any advantage for zombies to individually wait
for some pre-announced time at the beginning of the game (and then activate and follow the
standard rules)?
Question 4.2. For any graphG, is there an integer k such that, forG′

k the graph obtained from
G by subdividing all edges k times then adding the original edges, z(G′

k) ⩾ z(G) + 1?
ConcerningQuestion 4.2, it suffices to considerG=C4 to observe that k= 4 is not enough,

however, we have no reason to think that k should be large.

Addendum. After submission of this manuscript, an independent proof ofTheorem 1.3 was
published [KB21].
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