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r-hued (r + 1)-coloring of planar graphs with girth at least 8 for r ≥ 9
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Abstract

Let r, k ≥ 1 be two integers. An r-hued k-coloring of the vertices of a graph G = (V,E) is a
proper k-coloring of the vertices, such that, for every vertex v ∈ V , the number of colors in its
neighborhood is at least min{dG(v), r}, where dG(v) is the degree of v. We prove the existence of an
r-hued (r+1)-coloring for planar graphs with girth at least 8 for r ≥ 9. As a corollary, every planar
graph with maximum degree ∆ ≥ 9 and girth at least 8 admits a 2-distance (∆+1)-coloring.

Keywords: planar graphs, 2-distance coloring, r-hued coloring, dynamic coloring, discharging
method

1. Introduction

A k-coloring of the vertices of a graph G = (V,E) is a map φ : V → {1, 2, . . . , k}. A k-coloring φ is
a proper coloring, if and only if, for all edge xy ∈ E, φ(x) 6= φ(y). In other words, no two adjacent
vertices have the same color. The chromatic number of G, denoted χ(G), is the smallest integer
k so that G has a proper k-coloring. A generalization of k-coloring is k-list-coloring. A graph G
is L-list colorable if for a given list assignment L = {L(v) : v ∈ V (G)} there is a proper coloring
φ of G such that for all v ∈ V (G), φ(v) ∈ L(v). If G is L-list colorable for every list assignment
L with |L(v)| ≥ k for all v ∈ V (G), then G is said to be k-choosable or k-list-colorable. The list
chromatic number of a graph G, is the smallest integer k such that G is k-choosable. List coloring
can be very different from usual coloring as there exist graphs with a small chromatic number and
an arbitrarily large list chromatic number.

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring [28, 29]. This notion
generalizes the “proper” constraint (that does not allow two adjacent vertices to have the same
color) in the following way: a 2-distance k-coloring is such that no pair of vertices at distance
at most 2 have the same color (similarly to proper k-list-coloring, one can also define 2-distance
k-list-coloring). The 2-distance chromatic number of G, denoted χ2(G), is the smallest integer k so
that G has a 2-distance k-coloring. An example of 2-distance colorings is given in Figure 1.

For all v ∈ V , we denote dG(v) the degree of v in G and by ∆(G) = maxv∈V dG(v) the maximum
degree of a graph G. For brevity, when it is clear from the context, we will use ∆ (resp. d(v))
instead of ∆(G) (resp. dG(v)). One can observe that, for any graph G, ∆ + 1 ≤ χ2(G) ≤ ∆2 + 1.
The lower bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree
∆, and v itself must have a different color. As for the upper bound, a greedy algorithm shows that
χ2(G) ≤ ∆2 + 1. Moreover, this bound is tight for some graphs, for example, Moore graphs of

Preprint submitted to EJC March 2, 2020
© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0195669820301402
Manuscript_402b4761eb0fc4dcad28f2577781d8c0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0195669820301402
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0195669820301402


6

1

2

3

4 5 6

7

3
(i) A proper 7-coloring
that is not 2-distance.

6

1

2

3

4 5 6

7

4
(ii) A non-optimal
2-distance 7-coloring.

6

1

2

3

4 5 6

4

5
(iii) An optimal 2-
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6-coloring.

Figure 1: A graph G with χ2(G) = 6 and χ(G) = 3.

type (∆, 2), which are graphs where all vertices have degree ∆, are at distance at most two from
each other, and the total number of vertices is ∆2 + 1. See Figure 2.

A graph is planar if one can draw its vertices with points on the plane, and edges with curves
intersecting only at its endpoints. When G is a planar graph, Wegner conjectured in 1977 that
χ2(G) becomes linear in ∆(G):
Conjecture 1 (Wegner [38]). Let G be a planar graph with maximum degree ∆. Then,

χ2(G) ≤


7, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3∆
2

⌋
+ 1, if ∆ ≥ 8.

The upper bound for the case where ∆ ≥ 8 is tight (see Figure 3(i)). Recently, the case ∆ ≤ 3 was
proved by Thomassen [37], and by Hartke et al. [22] independently. For ∆ ≥ 8, Havet et al. [23]
proved that the bound is 3

2∆(1 + o(1)), where o(1) is as ∆→∞ (this bound holds for 2-distance
list-colorings). Conjecture 1 holds for K4-minor free graphs [31].

For large ∆ (≥ 8), the coefficient before ∆ becomes 1 when the graph becomes “sparser”. Here, a
“sparse” graph means that it has a “low” number of edges. One way to measure the sparsity of
a graph is through its maximum average degree. The average degree ad of a graph G = (V,E) is
defined by ad(G) = 2|E|

|V | . Themaximum average degree mad(G) is the maximum, over all subgraphs
H of G, of ad(H). Another way to measure the sparsity is through the girth, i.e. the length of
a shortest cycle. We denote by g(G) the girth of G. Intuitively, the higher the girth of a graph
is, the sparser it gets. These two measures can actually be linked directly in the case of planar
graphs.
Proposition 2 (Folklore). For every planar graph G, (mad(G)− 2)(g(G)− 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be translated to a theorem
with a lower bound on g(G) under the condition that G is planar.

In the case of sparse planar graphs, extensive researches have been done and many results have
taken the following form: every planar graph G of girth g ≥ g0 and ∆(G) ≥ ∆0 satisfies χ2(G) ≤
∆+ c(g0,∆0), where c(g0,∆0) is a constant depending only on g0 and ∆0. Table 1 shows all known
such results on the 2-distance chromatic number of planar graphs with fixed girth, up to our own
knowledge.
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(ii) The Moore graph of type
(3,2):
the Petersen graph.

(iii) The Moore graph of type
(7,2):
the Hoffman-Singleton graph.

Figure 2: Examples of Moore graphs for which χ2 = ∆2 + 1.
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(i) A graph with girth 3 and χ2 = b3∆
2 c+ 1
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(ii) A graph with girth 4 and χ2 = b3∆
2 c − 1.

Figure 3: Graphs with χ2 ≈ 3
2 ∆
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g0

χ2(G) ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7 ∆ + 8

3 ∆ = 3 [37, 22]
4
5 ∆ ≥ 107 [3]2 ∆ ≥ 339 [20] ∆ ≥ 312 [19] ∆ ≥ 15 [11]1 ∆ ≥ 12 [10]2 ∆ 6= 7, 8 [19] all ∆ [18]
6 ∆ ≥ 17 [5]5 ∆ ≥ 9 [10]2 all ∆ [13]
7 ∆ ≥ 16 [24]2 ∆ = 4 [16]3

8 ∆ ≥ 10 [24]2
∆ ≥ 94 ∆ = 5 [9]3

9 ∆ ≥ 8 [4]5 ∆ = 5 [9]3 ∆ = 3 [17]2
10 ∆ ≥ 6 [24]2
11 ∆ = 4 [16]3
12 ∆ = 5 [24]2 ∆ = 3 [7]2
13
14 ∆ ≥ 4 [4]5
. . .
22 ∆ = 3 [24]2

Table 1: The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

For example, the result from line “7” and column “∆ + 1” from Table 1 reads as follows : “every
planar graph G of girth at least 7 and of ∆ at least 16 satisfies χ2(G) ≤ ∆ + 1”. The crossed out
cases in the first column correspond to the fact that, for g0 ≤ 6, there are planar graphs G with
χ2(G) = ∆ + 2 for arbitrarily large ∆ [6, 21]. The lack of results for g ≥ 4 is due to the fact that
the graph in Figure 3(ii) has girth 4, and χ2 = b3∆

2 c−1 for all ∆. Finally, many of these results are
corollaries of theorems on 2-distance list-colorings or 2-distance colorings of graphs with bounded
maximum average degree.

The “2-distance” condition in 2-distance colorings requires that vertices at distance at most two
have different colors. In other words, all neighbors of the same vertex must have different colors.
This condition was generalized recently and the notion of r-hued coloring was introduced [33].
Let r, k ≥ 1 be two integers. An r-hued k-coloring of the vertices of G is a proper k-coloring of
the vertices, such that all vertices are r-hued. A vertex is r-hued if the number of colors in its
neighborhood NG(v) = {x|xv ∈ E} is at least min{dG(v), r}. The r-hued chromatic number of G,
denoted χr(G), is the smallest integer k so that G has an r-hued k-coloring.

It is indeed a generalization of 2-distance colorings which corresponds to the case r ≥ ∆, as all
vertices in the same neighborhood will have different colors. More generally, its link to proper
coloring and 2-distance coloring resides in the following equation:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G) = χ∆+1(G) = · · · = χ2(G) (1)

Examples of r-hued colorings are given in Figure 4.

1Corollaries of r-hued list-colorings of planar graphs.
2Corollaries of 2-distance list-colorings of planar graphs.
3Corollaries of 2-distance list-colorings of graphs with a bounded maximum average degree.
4This is a corollary of our result (see Corollary 5).
5Corollaries of 2-distance colorings of graphs with a bounded maximum average degree.
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Figure 4: A graph G with ∆ = 5.

Similar to the 2-distance chromatic number, the r-hued chromatic number is linear in r when it
comes to planar graphs. In 2014, Song et al. proposed a generalization of Conjecture 1:
Conjecture 3 (Song et al. [34]). Let G be a planar graph. Then,

χr(G) ≤


r + 3, if 1 ≤ r ≤ 2,
r + 5, if 3 ≤ r ≤ 7,
b3r

2 c+ 1, if r ≥ 8.

One can note that the case r = 1 corresponds to the Four Color Theorem [1, 2] ; additionally,
by taking r = ∆(G), Conjecture 3 implies Conjecture 1 except for the case r = 3. Moreover, the
only extremal known examples reaching the upper bounds of Conjecture 3 are the same as for
Conjecture 1 (see Figure 3(i)).

The case of r = 2 has been proven by Chen et al. in [14]. Song and Lai [35] proved that, if r ≥ 8,
then every planar graph verifies χr(G) ≤ 2r + 16. Similar to 2-distance coloring, the coefficient
before r in this upper bound becomes 1 for graphs with a higher girth. Table 2 shows all known
results of the following form: let r and r0 be integers such that r ≥ r0, every planar graph G of
girth g(G) ≥ g0 satisfies χr(G) ≤ r + c(g0, r0), where c(g0, r0) is a constant depending only on g0
and r0.

g0

χr(G)
r + 1 r + 2 r + 3 r + 4 r + 5 r + 6 r + 7 . . . r + 10

3 r = 2 [25]6 r = 2 [14] r = 2 [27]7 r = 3 [32]
4
5 r ≥ 15 [11]8 all r [11]
6 r ≥ 3 [30]
7 r = 2 [27]7 r = 3 [26]7

8 r ≥ 66 [36]9
r ≥ 910

9 r ≥ 8 [12]7 r = 3 [26]7
10 r ≥ 6 [12]7
11
12 r ≥ 5 [12]7
13
14 r = 3 [15]

Table 2: The latest results with a coefficient 1 before r in the upper bound of χr.
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The result from the “9” line and “r + 1” column reads “for r ≥ 8, every planar graph G of girth
at least 9 satisfies χr(G) ≤ r + 1”. Since an r-hued coloring is a 2-distance coloring when r ≥ ∆,
some results for 2-distance colorings come from r-hued colorings. Similarly to 2-distance colorings,
many of these results also come from r-hued list-colorings, or r-hued colorings of graphs with a
bounded maximum average degree.

We are interested in the case χr(G) = r+ 1 (as r+ 1 is a trivial lower bound for χr(G) as soon as
the graph contains a vertex of degree at least r). In particular, we were looking for the smallest
integer r such that a planar graph of girth at least 8 can be r-hued colored with r + 1 colors,
with the aim to find a sufficiently good lower bound to obtain a new result on 2-distance coloring
which is a long-standing active research area. Song et al. [36] showed that every graph G with
mad(G) < 14

5 − ε and r ≥ f(ε) satisfies χr(G) ≤ r+ 1 for 0 < ε ≤ 1
20 and f(ε) = 16

5ε + 2. Therefore,
as a corollary, one can derive that, if G is a planar graph with girth at least 8 and r ≥ 66,
then χr(G) ≤ r + 1. While restricting the study on planar graphs we improve this corollary in
Theorem 4.

Our main result is the following:
Theorem 4. If G is a planar graph with g(G) ≥ 8, then χr(G) ≤ r + 1 for r ≥ 9.

Hence for r = ∆, we get the following corollary:
Corollary 5. If G is a planar graph with g(G) ≥ 8 and ∆(G) ≥ 9, then χ2(G) = ∆(G) + 1.

Corollary 5 is an improvement of the best known 2-distance coloring result for planar graphs of
girth at least 8 with ∆ + 1 colors (see Table 1). Results for this class of graphs were first proved
by Borodin et al. in [8] who showed that these graphs can be list 2-distance colored with ∆ + 1
colors for ∆ ≥ 15. Later, the lower bound on ∆ was improved to ∆ ≥ 10 by Ivanova in [24].
We generalized these results to r-hued coloring. By dropping the choosability restriction and by
exploiting heavily the planarity of the input graph, we are able to improve the lower bound on the
maximum degree to ∆ ≥ 9 for every planar graph of girth at least 8.

Notations and drawing conventions.. In the following, we will only consider planar graphs. Each
considered planar graph will be embedded into the plane. We will denote F (G) the set of faces
of a plane graph G. We denote dG(f) the size of face f ∈ F (G). For v ∈ V (G), the 2-distance
neighborhood of v, denoted N∗G(v), is the set of 2-distance neighbors of v, which are vertices at
distance at most two from v, not including v. We also denote d∗G(v) = |N∗G(v)|. From now on, we
will omit the subscript G when there is no ambiguity.

Some more notations:

• A d-vertex (d+-vertex, d−-vertex) is a vertex of degree d (at least d, at most d). A (d↔e)-
vertex is a vertex with degree between d and e included.

• A d-face (d+-face, d−-face) is a face of size d (at least d, at most d).

6For G connected and different from C5.
7Corollaries of results on r-hued list-colorings of graphs with a bounded maximum average degree.
8Corollaries of results on r-hued list-colorings of planar graphs.
9Corollaries of results on r-hued coloring of graphs with a bounded maximum average degree.

10This is our result (see Theorem 4).
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• A k-path (k+-path, k−-path) is a path of length k + 1 (at least k + 1, at most k + 1) where
the k internal vertices are 2-vertices.

• A (k1, k2, . . . , kd)-vertex is a d-vertex incident to d different paths, where the ith path is a
ki-path for all 1 ≤ i ≤ d.

As a drawing convention for the rest of the figures, black vertices will have a fixed degree, which
is represented, and white vertices may have a higher degree than what is drawn.

2. Proof of Theorem 4

Let us now consider the proof of our main result, namely, if G is a planar graph with g(G) ≥ 8,
then χr(G) ≤ r + 1 for r ≥ 9.

Let G be a counterexample to Theorem 4 with the fewest number of edges. The purpose of the
proof is to prove that G cannot exist. In the following we will study the structural properties of
G (Section 2.1). We will then apply a discharging procedure (Section 2.2). For a plane graph
G = (V,E, F ), Euler’s formula |V | − |E|+ |F | = 2 can be rewritten as

∑
v∈V (G)

(3dG(v)− 8) +
∑

f∈F (G)
(dG(f)− 8) = −16. (2)

We assign to each vertex v the charge µ(v) = 3d(v)−8 and to each face f the charge µ(f) = d(f)−8.
To prove the non-existence of G, we will redistribute the charges preserving their sum and obtaining
a non-negative total charge, which will contradict Equation (2).

2.1. Structural properties of G

Without loss of generality, we can assume that G is connected. Moreover G has no vertex of
degree 1. Otherwise, we can simply remove the unique edge incident to such vertex v and color
the resulting graph with an r-hued coloring φ, which is possible due to the minimality of |E(G)|.
Then, we add the edge back and check the degree of v’s unique neighbor x in G. If d(x) ≤ r, we
can choose a color for v different from x’s and all of its neighbors’ to maintain the r-hued property
of the coloring. If d(x) > r, then x is already r-hued, so it suffices to choose a color for v different
from φ(x).
Lemma 6. Let w be a vertex of G that is adjacent to k vertices ui (k ≤ d(w)), each satisfying
d∗(ui) ≤ r + i− 1 for 1 ≤ i ≤ k. Then we have d∗(w) ≥ r + k + 1.

Proof. Suppose by contradiction that w is adjacent to ui with d∗G(ui) ≤ r + i − 1 for 1 ≤ i ≤ k,
but d∗G(w) ≤ r + k. See Figure 5. We remove the edges wui for 1 ≤ i ≤ k. By minimality of G,
let φH be a r-hued coloring of H = (V,E \ {wu1, . . . , wuk}).

We uncolor the vertex w and the vertices ui for 1 ≤ i ≤ k. We extend then φ to G as follows :

1. We define φG(v) = φH(v) for all v ∈ V \ {w, u1, . . . , uk}.

7



w

≥
∑
i dG(ui)− k + 1

u1
≥ dG(w) + 1

u2

uk

≤ r + k −
∑k
i=1 dG(ui)

≤ r − dG(w)

...

Figure 5: The configuration of Lemma 6.

2. We define φG(w) to be a color different from all of those of the vertices of Fw = ⋃k
i=1NG(ui)\

{w}⋃
N∗H(w). Since G has girth at least 8, we have |Fw| = ∑k

i=1(dG(ui) − 1) + d∗H(w) =∑k
i=1(dG(ui)− 1) + d∗G(w)−∑k

i=1 dG(ui) = d∗G(w)− k. By hypothesis, we have d∗G(w) ≤ r+ k
and thus |Fw| ≤ r. Thus, we have r + 1 colors and at most r are forbidden, so it remains at
least one color for w.

3. We then define φG(uk) to be a color different from those that appear on Fuk
= N∗H(uk) ∪

NH(w) ∪ {w}. Since d∗G(ui) ≤ r + i− 1, we have d∗H(ui) ≤ r + i− 1− dG(w). Therefore, we
have |Fuk

| = d∗H(uk) + dH(w) + 1 ≤ (r+ k− 1− dG(w)) + dH(w) + 1 = (r+ k− 1− dG(w)) +
(dG(w)− k) + 1 = r. So it remains at least one color for uk.

4. One by one (from k− 1 to 1), we define φG(ui) to be a color different from those that appear
on Fui

= N∗H(ui) ∪NH(w) ∪ {w, ui+1, ui+2, . . . , uk}. Using similar argument as the previous
subcase, |Fui

| ≤ r and thus it remains at least one color for each ui.

Observe that we 2-distance colored the vertices w, u1, . . . , uk. Hence the obtained coloring φG is
r-hued.
Lemma 7. Graph G has no 4+-paths.

Proof. Suppose G contains a 4-path stuvwx (see Figure 6). Then d∗(u) = d∗(v) = 4 < r which
contradicts Lemma 6.

xs wvut

Figure 6: A 4-path.

Lemma 8. Both endvertices of a 3-path have degree r.

Proof. Suppose that G contains a 3-path stuvw (see Figure 7). Since d∗(u) = 4 ≤ r, we have
d∗(v) ≥ r + 2 due to Lemma 6. Moreover, d∗(v) = d(w) + 2, so d(w) ≥ r. Suppose now that
d(w) > r. Let φ be an r-hued coloring of G′ = G − {u, v} (by minimality of G). Whatever color
we choose for v, vertex w is r-hued since |φ(NG′(w))| ≥ min(dG(w)− 1, r) ≥ r = min(dG(w), r). It
suffices to choose φ(v) different from φ(w) (to have a proper coloring) and from φ(t) (to make sure

8



that u is r-hued). Finally, we 2-distance color u (the obtained coloring is proper, and the vertices
t and v are also r-hued).

ws vut

Figure 7: A 3-path.

Lemma 9. At least one of the endvertices of a 2-path has degree r or both of them have degree
r − 1.

Proof. Consider a 2-path uxyw (see Figure 8). Suppose by contradiction that d(w) 6= r and
d(u) /∈ {r − 1, r}.

If d(u) ≤ r − 2, then d∗(x) = d(u) + 2 ≤ r. So, by Lemma 6, d∗(y) = d(w) + 2 ≥ r + 2 meaning
that d(w) > r. By minimality of G, we color G − {x, y}. Observe that w is already r-hued. We
2-distance color x (u and y become r-hued), and we color y with a color different from that of u,
x, and w (x becomes r-hued).

If d(u) ≥ r + 1, then we color G− {x, y}. Observe that u is r-hued. Either d(w) ≥ r + 1 (in that
case w is already r-hued) and we color y with a color different from that of w and u, or d(w) ≤ r−1
and we 2-distance color y. Finally we color x with a color different from the colors of u, y, and
w.

wu yx

Figure 8: A 2-path.

Lemma 10. Graph G has no cycles consisting of 3-paths.

Proof. Suppose that G contains a cycle consisting of k 3-paths (see Figure 9). We remove all
vertices v4i+1, v4i+2, v4i+3 for 0 ≤ i ≤ k − 1. Consider a coloring of the resulting graph. We
color v1, v3, v5, . . . , v4k−1. This is possible since each of them has at least two choices of color (as
d(v0) = d(v4) = · · · = d(v4(k−1)) = r due to Lemma 8) and by 2-choosability of even cycles. This
procedure ensures that every vertex with even index is r-hued. Finally, it is easy to color greedily
v2, v6, . . . , v4k−2 since they each have at most four forbidden colors (ensuring that every vertex with
odd index is r-hued).

v4

v0

v3 2
v2 r − 3
v1 2

2

v4j

v4(j+1)v4k−1

2

Figure 9: A cycle consisting of consecutive 3-paths.
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Lemma 11. Let v be a vertex such that 3 ≤ d(v) ≤ b r+1
2 c. Then v cannot be a (2, 1+, 1+, . . . , 1+)-

vertex.

Proof. Suppose that G contains a vertex v with 3 ≤ d(v) ≤ b r+1
2 c that is a (2, 1+, 1+, . . . , 1+)-

vertex. Let w be a neighbor of v that belongs to a 2-path. See Figure 10. We have d∗(w) = d(v)+2
and d∗(v) = 2d(v). Moreover, as d(v) ≤ b r+1

2 c, it follows that d∗(w) ≤ r since r > 3. Thus,
d∗(v) ≥ r + 2 by Lemma 6. Since d(v) is an integer and 2d(v) ≥ r + 2, d(v) ≥ d r+2

2 e which
contradicts d(v) ≤ b r+1

2 c.

vw

Figure 10: A (2, 1+, . . . , 1+)-vertex v with 3 ≤ d(v) ≤ b r+1
2 c.

Lemma 12. Graph G does not contain the configurations depicted by Figure 11.

x

a

b

c

y

u

v

w

(i) d(w) ≤ r−2

x

a

b

c

y

u

v

w
v′ v′′

a′

b′

c′

(ii)

x

a

b

c

y

u

v

w
v′′

u′
u′′

w′
w′′

(iii)

x

a

b

c

y

u

v

w

v′

v′′
a′ b′ c′

w′′

a′′

b′′

c′′

(iv) d(w) ≤ r − 4

Figure 11: Configurations of Lemma 12.

Proof. Recall that the endvertex of a 3-path always have degree r by Lemma 8. Also, at least one
endvertex of a 2-path has degree r unless they both have degree r − 1 by Lemma 9. Thus, x, y,
and v′′ always have degree r in what follows (r ≥ 9).

(a) Consider the configuration depicted on Figure 11(i) where d(w) ≤ r − 2.

By minimality of G, let φ be an r-hued coloring of G′ = G− {a, b, u, v}. Let us start coloring
a and u. Both vertices have r − 2 + 1 = r − 1 restrictions coming from x. Additionally, a
(resp. u) has one restriction from c (resp. w). As φ(c) 6= φ(w) (since d(y) = r), one can color
a and u with two distinct colors. Finally, b and v can always be 2-distance colored since b only
has four restrictions on its number of colors, and v always has at least one choice of color as
d(w) ≤ r − 2. The obtained coloring is r-hued. That contradiction completes the proof.

(b) Consider the configuration depicted on Figure 11(ii).

By minimality of G, let φ be an r-hued coloring of G′ = G−{a, b, c, u, v, w, a′, b′, c′, v′}. Observe
first that, since d∗(b) < r + 1, d∗(v) < r + 1, d∗(b′) < r + 1, vertices b, v, b′ can be 2-distance
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colored at the end. Vertices a, u, a′ have the same r − 2 restrictions coming from x ; they
must be colored with the last three available colors, say α1, α2, α3. Similarly c and w (resp.
c′ and v′) have the same r − 1 restrictions coming from y (resp. v′′) ; they must be colored
with the last two available colors, say β1 and β2 (resp. γ1 and γ2). Now, if β1 does not occur
in {α1, α2, α3}, then one can sequentially color c with β1, then w, v′, u, c′, a′, and a. So by
symmetry, we have {β1, β2} ⊂ {α1, α2, α3} and {γ1, γ2} ⊂ {α1, α2, α3}. If follows that {β1, β2}
and {γ1, γ2} have at least one common element, say β1 = γ1. Hence we color the vertices as
follows : c with β1, w with β2, v′ with γ1 = β1, c′ with γ2 (which may be equal to β2), a′ with
β1, a with β2, and u with the color of {α1, α2, α3} \ {β1, β2}. That leads to an r-hued coloring
of G, a contradiction.

(c) Consider the configuration depicted on Figure 11(iii).

By minimality of G, let φ be an r-hued coloring of G′ = G − {a, b, c}. Since d∗(b) < r + 1,
d∗(v) < r + 1, d∗(u′) < r + 1, d∗(w′) < r + 1, b can be 2-distance colored and the vertices v,
u′, w′ can be 2-distance recolored at the end if necessary. Vertex a (resp. c) has r restrictions
coming from x and u (resp. y and w). If they can be colored differently, then we obtain an
r-hued coloring of G. So, they must have the same available color left, say α. Without loss of
generality, say φ(u) = β and φ(w) = γ. Since φ is r-hued, α, β, γ are all distinct. Moreover
at least one of u′′ and w′′ has a color distinct from α ; by symmetry say φ(u′′) 6= α. We now
recolor u with α, we color a with β, c with α, we 2-distance color b and as well u′, v, w′ if
necessary. That leads to an r-hued coloring of G, a contradiction.

(d) Consider the configuration depicted on Figure 11(iv) where d(w) ≤ r − 4.

By minimality of G, let φ be an r-hued coloring of G′ = G−{a′, b′, c′}. Recall that d(w) ≤ r−4
; so d∗(v) < r + 1. The same holds for d∗(b) and d∗(b′), so vertices v, b, b′ can be 2-distance
recolored at the end. Vertex a′ (resp. c′) has r restrictions coming from x, a, u (resp. v′′, v′, c′′).
If a′ and c′ can be colored differently, then we can obtain an r-hued coloring of G. So, they
must have the same available color left, say α. Let β be the color of u and γ the one of a.
Since φ is r-hued, α, β, γ are all distinct. If φ(c) 6= α, then we recolor a with α, a′ with γ, and
c′ with α. It follows that φ(c) = α. Now observe that, as d(y) = d(v′′) = r, we have φ(w) 6= α
and φ(v′) 6= α (as α is the available color for c′). So we recolor u with α ; we color a′ with β
and c′ with α. It remains to 2-distance recolor v if necessary and to 2-distance color b′. That
leads to an r-hued coloring of G, a contradiction.

Lemma 13. Given a (2, 1, 0)-vertex v having a 7-neighbor, the endvertex of the 1-path (distinct
from v) is a 8+-vertex.

Proof. Suppose G contains a (2, 1, 0)-vertex v having three neighbors a, b, c such that a belongs
to a 2-path, b belong to a 1-path vbd, and such that c has degree 7 and d has degree at most 7.
See Figure 12. Let φ be an r-hued coloring of G′ = G − {a, b, v}. Let us sequentially 2-distance
color v, b, and a. The obtained coloring is r-hued, a contradiction.
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v

a

b d

c

Figure 12: A (2, 1, 0)-vertex having a 7-neighbor.

2.2. Discharging rules

In this section, we define the discharging procedure that contradicts the structural properties of
G (see Lemmas 6 to 13) showing that G does not exist.
Definition 14 (Small, medium, and large 2-vertex). A 2-vertex v is said to be

• large if it is adjacent to two 3+-vertices,

• medium if it is adjacent to exactly one 2-vertex,

• small if it is adjacent to two 2-vertices.
Definition 15 (Bridge vertex). A large 2-vertex is called a bridge if it has a 3-neighbor and a
8+-neighbor.
Definition 16 (Sponsor). Consider the set of 3-paths in G. By Lemma 8, the endvertices of every
3-paths are r-vertices and by Lemma 10, the graph induced by the edges of all the 3-paths of G is
a forest F . For each tree of F , we choose an arbitrary root. Each small 2-vertex v is assigned a
unique sponsor which is the r-vertex corresponding to the grandson of v. See Figure 13.

rootsponsor

Figure 13: The sponsor assignment in a tree consisting of 3-paths.

Definition 17 (Special and non-special vertices). A (3↔ 5)-vertex is said to be special if it has
at least two r-neighbors and non-special otherwise.

We first assign to each vertex v the charge µ(v) = 3d(v) − 8 and to each face f the charge
µ(f) = d(f) − 8. By Equation (2), the total sum of the charges is negative. We then apply the
following discharging rules (R1 to R9):

Vertices to vertices:

R0 (see Figure 14):

(i) Every 3+-vertex gives 1 to its large 2-neighbors, and 2 to its medium 2-neighbors.

(ii) Every sponsor gives 1 to its small 2-neighbors.

12



(iii) Every 8+-vertex gives 1 to its adjacent bridges.

R1 (see Figure 15):

(i) Every 8+-vertex gives 2 to its 3-neighbors.

(ii) Every (5↔7)-vertex v gives 1 to its 3-neighbors.

(iii) Every bridge gives 1 to its 3-neighbor.

R2 (see Figure 16):

(i) Every 8+-vertex gives 2 to its 4-neighbors.

(ii) Every (6↔7)-vertex gives 1 to its 4-neighbors.

R3 (see Figure 17): Every 8+-vertex gives 2 to its 5-neighbors.

R4 (see Figure 18): Every special vertex gives 1 to its r-neighbors.

Vertices to faces:

R5 (see Figure 19): Each 8-face f = v1v2 . . . v8 with d(v1) = d(v7) = r, 3 ≤ d(v4) ≤ 5 and
d(v2) = d(v3) = d(v5) = d(v6) = 2, receives charge 1

2 from v1 and v7.

R6 (see Figure 22): Let f = xabcywvu be an 8-face where xabcy is a 3-path.

(i) If xuvw is a 2-path with d(w) ≥ r − 1, then y gives 1
2 to f .

(ii) If xuv is a 1-path with d(v) ≥ 4, then x gives 1
2 to f .

(iii) If xuv is a 1-path with d(v) = 3 and d(w) ≤ 5, then v gives 1
2 to f .

(iv) If xuv is a 1-path with d(v) = 3 and d(w) ≥ 6, y gives 1
2 to f .

(v) If d(u) ≥ 6 and d(w) ≥ 3, then x gives 1
2 to f .

(vi) If 4 ≤ d(u) ≤ 5 and d(w) ≥ 3, then u gives 1
2 to f .

(vii) If d(u) = 3 and d(v) ≥ 3, then u gives 1
2 to f .

(viii) If u is a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex, with d(v) = 2, and d(w) ≥ 3, then u gives
1
2 to f .

Faces to faces:

R7 (see Figure 20): Let f = xabcywvu be an 8-face where xabcy is a 3-path, and u and w
are (2, 1, 0)-vertices (with the 1-path in common). Let u′, u′′, and u′′′ (resp. w′, w′′, and
w′′′) be, respectively, the 1-distance, 2-distance and 3-distance neighbor of u (resp. w) along
its incident 2-path. We also suppose that u′′′ 6= w′′′. Let f ′ be the 9+-face incident to
u′′′u′′u′uvww′w′′w′′′. Face f ′ gives 1

2 to f .

Faces to vertices:

R8 (see Figure 21): Each face f gives 1
2 to each of its incident small 2-vertices11.

11f gives 1
2 twice to a small 2-vertex if that vertex is only incident to f .
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R9 (see Figure 19): Each 8+-face f incident to a path v1v2 . . . v7 as described in R5 gives 1 to
v4.

3+3+

r3+

r−1r−1

rr

11

22

22

22

(i)

r

sponsor

r

1

(ii)

38+

bridge
1

(iii)

Figure 14: R0.

8+ 3

2

(i)

5↔7 3

1

(ii)

38+

bridge
1

(iii)

Figure 15: R1.

8+ 4

2

(i)

6↔7 4

1

(ii)

Figure 16: R2.

8+ 5

2

Figure 17: R3.

3↔5

special

r

1

Figure 18: R4.

rv7r v1

v6
3↔5

v4

v2 v5v3

f

1
2

1
2

1

Figure 19: R5 and R9.

rx

a

b

c

ry

u

v

w

r

u′′′

r

w′′′

u′ u′′

w′ w′′

f ′f 1
2

Figure 20: R7.
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Figure 21: R8.
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(viii) u is a (1, 1, 0)-vertex,
or a (1, 0, 0)-vertex.

Figure 22: R6.

2.3. Verifying that charges on vertices and faces are non-negative

Let µ∗ be the assigned charges after the discharging procedure. In what follows, we prove that:
∀x ∈ V (G) ∪ F (G), µ∗(x) ≥ 0.

2.3.1. Faces

Let f be a face of G. Recall that µ(f) = d(f)− 8. We consider two cases according to the length
of f :

Case 1: d(f) ≥ 9.
Note that f may give 1

2 (resp. 1
2 , 1) by R7 (resp. R8, R9). By R9 (resp. R8, R7), face

f may give 1 (resp. 1
2 ,

1
2) at most d(f)

6 (resp. d(f)
4 , d(f)

8 ) times. Observe that in Figures 19
to 21 except the r-vertices (u′′, w′′, x1, x5, v1, v7), all other vertices are pairwise distinct.
Therefore, assuming that R9 (resp. R8, R7) is applied i (resp. j, k) times, we must
have d(f) ≥ 6i+ 4j + 8k.

Observe that: µ∗(f) ≥ d(f)−8−i− j
2−

k
2 ≥ 6i+4j+8k−8−i− j

2−
k
2 ≥ 5i+ 7

2j+
15
2 k−8 ≥ 0

when i ≥ 2 or k ≥ 2 or j ≥ 3 or (j ≥ 1 and i = 1) or (j ≥ 1 and k = 1) or (i = 1
and k = 1). Now observe that for the remaining cases: µ∗(f) ≥ d(f) − 8 − i − j

2 −
k
2 ≥
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1− i− j
2 −

k
2 ≥ 0 when (i, j, k) = (1, 0, 0) or (i, j, k) = (0, 0, 1) or (i, j, k) = (0, 2−, 0). It

follows that µ∗(f) ≥ 0.

Case 2: d(f) = 8.

Suppose f is not incident to a 3-path. It follows that f is involved only in R5 and
R9. Observe that if R9 applies, then R5 applies. In all cases, we have either µ∗(f) ≥
d(f)− 8 + 2 · 1

2 − 1 = 8− 8 + 1− 1 = 0 or µ∗(f) ≥ µ(f) ≥ 0.

Suppose that f is incident to a 3-path. By Lemma 10, f has only one such path on its
boundaries. Face f gives once 1

2 by R8 (and R9 cannot be applied). We show now that
f receives 1

2 by R6 or R7. Let f = xabcywvu where xabcy is a 3-path.

• If f is also incident to a 2-path of the form xuvw, then f gets 1
2 by R6(i) (see

Figure 22(i)). Note that the case where d(w) ≤ r−2 does not occur by Lemma 12(i).

µ∗(f) ≥ d(f)− 8− 1
2 + 1

2 = 8− 8− 1
2 + 1

2 = 0.

• If f is incident to a 1-path of the form xuv, then f gets 1
2 by R6(ii), (iii), or (iv)

(see Figure 22(ii), (iii), (iv))).

µ∗(f) ≥ 0− 1
2 + 1

2 = 0.

• If f is incident to a 1-path of the form uvw and d(u) > 3, then f gets 1
2 from R6(v)

or (vi) (see Figure 22(v), (vi)). If d(u) = 3, then u is either a (1, 1, 0)-vertex, or a
(1, 0, 0)-vertex, or a (2, 1, 0)-vertex. By symmetry, the same reasoning holds for w.
If one of them is a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex, then f gets 1

2 by R6(viii) (see
Figure 22(viii)). If both of them are (2, 1, 0)-vertices, then we are in Configuration
R7 (see Figure 20) with u′′′ 6= w′′′ by Lemma 12(iii). In that case, f also receives
1
2 . So, we have in all cases:

µ∗(f) ≥ 0− 1
2 + 1

2 = 0.

• In the remaining case, f receives 1
2 by R6(v), (vi) or (vii) (see Figure 22(v), (vi),

(vii)).
µ∗(f) ≥ 0− 1

2 + 1
2 = 0.

2.3.2. Vertices

Observation 18. Consider a special (3↔ 5)-vertex u adjacent to an r-vertex v. It follows that
R4 applies, so u gives 1 to v. In return, if d(u) = 3 (resp. d(u) = 4, d(u) = 5), then v gives 2 to
u by R1(i) (resp. R2(i), R3). Additionally, u may give 1

2 (at most twice) along uv to incident
faces by R6(vi), (vii) or (viii) (see Figure 23). To sum up, when R4 applies, u does not lose
charge along uv, as in the worst case 2−1−2 · 1

2 = 0. Moreover, when R6 does not apply, u gains
2− 1 = 1.

16



3↔5u r v

(R6(vi-viii))

1 (R4)

2 (R1(i)/R2(i)/R3)

1
2

1
2

Figure 23: The charge distribution when R4 applies. Dashed arrows indicate the possible application of R6.

Case 1: d(v) ≥ 8.
Suppose first that d(v) 6= r. Observe that v is involved in R0(i) and (iii), R1(i), R2(i), R3
and v gives at most 2 to each adjacent vertex by R0(i), R1(i), R2(i), R3 or a combination
of R0(i) and (iii) (in the case of a bridge). Hence,

µ∗(v) ≥ 3d(v)− 8− 2d(v) = d(v)− 8 ≥ 0.

Suppose now that d(v) = r. Additionally, v also gives charges to faces by R5 and R6 and
to sponsored small 2-vertices by R0(ii). Using the same idea as before, we show that v gives
at most 2 along each incident edge.

When R5 is applied to v, w.l.o.g. v1 = v in Figure 19, one sends 1
2 to f via the edge v1v8.

The edge v1v8 belongs to two faces, hence v1v8 may be involved twice by R5. If v8 has degree
at least 6, no additional charge transits via v1v8. If v8 is a (3↔ 5)-vertex, then v1 gives 2
to v8 by R1(i), R2(i), and R3, but it receives 1 by R4 since v8 would be special as v1, v7
are r-vertices. If v8 has degree 2, then only 1 may transit by R0(i). In all cases, at most 2
transits from v1 along v1v8.

Consider now that R6 is applied to v. As previously, we show that the charge 1
2 is given to f

via a particular edge on which at most 2 transits. Rule R6 is applied to v in the cases R6(i),
R6(ii), R6(iv), and R6(v). Observe that no charge is given to 6+-vertices. Hence charge
1
2 transits (at most twice) along edge yw in R6(i) and R6(iv), along edge xu in R6(v). In
case R6(ii), charge 1

2 transits (at most twice) along edge xu and x = v gives 1 to u by R0(i).
Again at most 2 transits along each incident edge.

Finally, vertex v can sponsor at most one small 2-vertex by the definition of the sponsor
relation and R0(ii). It follows that:

µ∗(v) ≥ 3d(v)− 8− 2d(v)− 1
≥ d(v)− 9 = r − 9 ≥ 0

Case 2: d(v) = 7.
Observe that v may send 1 by R1(ii), R2(ii), and R0(i) in the case of the 1-path, and may
send 2 by R0(i) in the case of the 2-path. As µ(v) = 13, µ∗(v) ≥ 0 except in the case where
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v is incident to seven 2-paths, but in that case d∗(v) = 14, contradicting Lemma 6 (that
implies d∗(v) ≥ 17).

Case 3: d(v) = 6.
Vertex v may give 1 (resp. 2, 1, 1) by R0(i) in the case of the 1-path (resp. R0(i) in the
case of the 2-path, R1(ii), R2(ii)). As µ(v) = 10, µ∗(v) ≥ 0 except in the case where v gives
2 to each of five of its neighbors and gives at least 1 to its last neighbor, but in that case
d∗(v) ≤ 14, contradicting Lemma 6 (that implies d∗(v) ≥ 15).

Case 4: d(v) = 5.
Vertex v may give 1 (resp. 2, 1, 1, 1

2) by R0(i) in the case of the 1-path (resp. R0(i) in the
case of the 2-path, R1(ii), R4 when it is a special vertex, and R6(vi)) and may receive 2
(resp. 1) by R3(i) (resp. R9). Recall µ(v) = 7.

Suppose that R6(vi) is applied to v (v plays the role of u in Figure 22(vi)). Let us use the
notations of Figure 22(vi). Hence u gives 1

2 to f (let say via the edge ux). It may give 1 to
x by R4 (if u is special), and receives 2 from x by R3. Moreover R6(vi) may be applied to
the two faces incident to ux. When we sum the charges transiting along ux, u may give at
most 2 · 1

2 − 2 + 1 = 0. Hence in the following we consider that, if R6(vi) is applied to u, no
charge is transferred along ux.

By Lemma 11, v is not a (2, 1+, 1+, 1+, 1+)-vertex. Hence v is incident to at most four 2-
paths. If v is incident to four 2-paths, then v receives 1 from three incident faces by R9 and
may give at most 2, 2, 2, 2, 1 along incident edges ; so µ∗(v) ≥ 7 + 3− 4 · 2− 1 = 1. If v is
incident to exactly three 2-paths, then v receives at least 1 by R9 and may give at most 2,
2, 2, 1, 1 along incident edges ; so µ∗(v) ≥ 7 + 1− 3 · 2− 2 · 1 = 0. If v is incident to at most
two 2-paths, then µ∗(v) ≥ 7− 2 · 2− 3 · 1 = 0.

Case 5: d(v) = 4.
Vertex v may give 1 (resp. 2, 1, 1

2) by R0(i) in the case of the 1-path (resp. R0(i) in the
case of the 2-path, R4, R6(vi)) and may receive 2 (resp. 1, 1) by R2(i) (resp. R2(ii), R9).
Recall µ(v) = 4. Similar to 5-vertices, if R6(vi) is applied to v, then no charge is transferred
along the edge linking v and the r-vertex. By Lemma 11, v is not a (2, 1+, 1+, 1+)-vertex.
Hence, v is incident to at most three 2-paths.

If v is incident to three 2-paths, then v is not special, v receives 1 from two incident faces by
R9 and gives 2, 2, 2, 0 along incident edges ; so µ∗(v) = 4 + 2 · 1− 3 · 2 = 0.

Suppose now that v is incident to two 2-paths. If v is not incident to a 1-path, then we are
done as µ∗(v) = 4− 2 · 2 = 0 whether v is special or not due to Observation 18. So consider
that v is incident to exactly one 1-path by Lemma 11 and so is not special. The 3+-neighbor
of v has degree at least 6 (otherwise it contradicts Lemma 6, d∗(v) ≤ 11 while we must have
d∗(v) ≥ 12), then it gives at least 1 to v by R2 and so µ∗(v) ≥ 4 + 1− 2 · 2− 1 = 0.

Finally assume that v is incident to at most one 2-path. If v gives at most one along each
incident edge, then we are done (as µ∗(v) ≥ 4− 4 · 1 ≥ 0). So assume that v gives 2 to one
of its neighbors. In that case, it means that R0(i) applied and v is thus incident to exactly
one 2-path. Since v is not a (2, 1+, 1+, 1+)-vertex, it may be incident to at most two 1-paths.
If v is incident to a 2-path and two other 1-paths, then v is not special. Hence we have
µ∗(v) ≥ 4− 2− 1− 1 ≥ 0.
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Case 6: d(v) = 3.
Vertex v may give 1 (resp. 2, 1

2 , 1) by R0(i) in the case of the 1-path (resp. R0(i) in the case
of the 2-path, R6, R4) and may receive 2 (resp. 1, 1, 1) by R1(i) (resp. R1(ii), R1(iii),
R9). Recall µ(v) = 1. By Lemma 11, v is not a (2, 1+, 1+)-vertex. Let us examine all
possible configurations for v.

– Suppose that v is a (2, 2, 0)-vertex. Let v1, v2, and u be the two 2-neighbors and 3+-
neighbor of v respectively. Since v is not special, R4 does not apply. Vertex v does
not fall into any configuration of R6, so R6 does not apply. Vertex v gives 2 to each
of its 2-neighbors by R0(i). By Lemma 9, the other endvertices of the two 2-paths are
r-vertices; so v falls into the configuration in R9 and receives 1 from an incident face.
Moreover, v1 and v2 satisfy d∗(vi) = 5 ≤ r (i = 1, 2). By Lemma 6, d∗(v) ≥ 12 and
d∗(v) = d(u) + 4, so d(u) ≥ 8. By R1(i), v receives 2 from u. In total, we have

µ∗(v) ≥ 1− 2 · 2 + 1 + 2 = 0.

– Suppose that v is a (2, 1, 0)-vertex. Let v1, v2, and u be the two 2-neighbors (where v1
belongs to the 2-path and v2 belongs to the 1-path) and 3+-neighbor of v respectively.
As previously, v is not special. Vertex v1 has d∗(v1) = 5 ≤ r. By Lemma 6, d∗(v) ≥ 11,
and d∗(v) = d(u) + 4, so d(u) ≥ 7. It follows that R6 does not apply (in particular
R6(iii)).

If d(u) ≥ 8, then v receives 2 from u by R1(i). Hence, by R0(i) and R1(i), we have:

µ∗(v) ≥ 1− 2− 1 + 2 = 0.

If d(u) = 7, then v receives 1 from u by R1(ii). Moreover, the neighbor of v2 (different
from v) has degree at least 8 by Lemma 13. Hence v receives 1 from v2 by R1(iii). It
follows that:

µ∗(v) ≥ 1− 2− 1 + 1 + 1 = 0.

– Suppose that v is a (2, 0, 0)-vertex. Let x1, x2 be the 0-path neighbors of v and v1 be
the 2-path neighbor of v.

Suppose first that v is not concerned by R6(vii) (i.e. v only gives charge to vertices).
Vertex v1 satisfies d∗(v1) = 5 ≤ r. By Lemma 6, d∗(v) ≥ r + 2. Since d∗(v) =
d(x1) + d(x2) + 2, we have d(x1) + d(x2) ≥ r ≥ 9. W.l.o.g. x1 has degree at least 5.
Note that, if v is non-special, then R4 does not apply and v receives at least 1 from x1
by R1(i) or R1(ii); if v is special, then d(x1) = d(x2) = r, v gives 1 to x1 and x2 by R4
and receives 2 from x1 and x2 by R1(i). In both case, we can consider that v receives
at least 1 from x1. So

µ∗(v) ≥ 1− 2 + 1 = 0.

Suppose now that R6(vii) is applied to v. Observe that R6(vii) is applied once. If v is
non-special, then v receives 2 from its r-neighbor by R1(i); if it is special, by the same
arguments as in the previous paragraph, we can consider that v receives 1 from both x1
and x2 (by R1(i) and R4). So

µ∗(v) ≥ 1− 2− 1
2 + 2 > 0.
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– Suppose that v is a (1, 1, 1)-vertex. Note that only R0(i), R1(iii), and R6(iii) may
concern v. Vertex v gives 1 to each 2-neighbor by R0(i) and 1

2 to at most one incident
face by R6(iii) and Lemma 12(ii). Let vxw be a 1-path incident to v. We have d∗(v) =
6 ≤ r. It follows that d∗(x) ≥ 11 by Lemma 6 and as d∗(x) = d(w) + 3, we have
d(w) ≥ 8, meaning that R1(iii) applies. Thus,

µ∗(v) ≥ 1− 3 · 1− 1
2 + 3 · 1 > 0.

– Suppose that v is a (1, 1, 0)-vertex. Let vv1w1 and vv2w2 be the two 1-paths incident to
v and let u be the 3+-neighbor of v. Note that v is not special, and it may be concerned
by R0(i), R1, R6(iii), and R6(viii).

Suppose first that v is not concerned by R6 (i.e. v only gives charge to vertices). By
R0(i), v gives 1 to each of its 2-neighbors.

If d(u) ≥ 5, then we have by R1(i) and R1(ii):

µ∗(v) ≥ 1− 2 · 1 + 1 = 0.

If d(u) ≤ 4, then d∗(v) = 8 ≤ r. By Lemma 6, d∗(v1) ≥ 11. As d∗(v1) = d(w1) + 3, we
have d(w1) ≥ 8 meaning that v receives 1 from v1 by R1(iii) (and from v2 by symmetry).
Hence,

µ∗(v) ≥ 1− 2 · 1 + 2 · 1 > 0.

Suppose that R6(iii) or R6(viii) is applied to v.

Assume we are in configuration R6(viii). Vertex v gives 1 to each of its 2-neighbors
and 1

2 to at most three incident faces (by a combination of R6(iii) and R6(viii)), and
receives 2 from u by R1(i). If it gives charge to three faces, then w1 and w2 are also
endvertices of a 3-path, meaning that they are of degree r ≥ 8. By R1(iii), v receives
1 from each bridge v1 and v2. Thus,

µ∗(v) ≥ 1− 2 · 1− 3 · 1
2 + 2 + 2 · 1 > 0.

Now, if v only gives charge to at most two faces, then we have:

µ∗(v) ≥ 1− 2 · 1− 2 · 1
2 + 2 = 0.

Assume we are in configurationR6(iii) (only, otherwise we are in the previous case). Let
us reuse the notation of Figure 22. Observe that either w has degree 2 and u and w are
two bridges (since x and y are r-vertices), or w is a (3↔5)-vertex and the endvertices
of the 1-paths incident to v (different from v) are 8+-vertices by Lemma 6 implying that
the 2-neighbors of v are bridges. Hence if R6(iii) is applied at most twice, we have by
R0(i) and R1(iii):

µ∗(v) ≥ 1− 2 · 1− 2 · 1
2 + 2 · 1 = 0.

Now, if R6(iii) is applied three times, then we obtain the configuration depicted by
Figure 11(iv) which is forbidden by Lemma 12.
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– Suppose that v is a (1, 0, 0)-vertex. Let u, v1, and v2 be its 2-neighbor and the two 3+-
neighbors of v, respectively. First note that each time R4 applies, by Observation 18,
in the worst case, the total number of charges transferred via vv1 and vv2 is 0. So,

µ∗(v) ≥ 1− 1 = 0

Suppose now that R6(iii), (vii) or (viii) is applied to v (which is not special).

If R6(vii) or R6(viii) is applied to v, then (at least) one of the 3+-neighbors of v is an
r-vertex. So v gains 2 by R1(i). It follows that

µ∗(v) ≥ 1− 1− 3 · 1
2 + 2 > 0.

Suppose now only R6(iii) is applied to v. Observe that R6(iii) may be applied at most
twice. Vertex v receives 1 from the bridge by R1(iii). Hence,

µ∗(v) ≥ 1− 1− 2 · 1
2 + 1 = 0.

– Suppose that v is a (0, 0, 0)-vertex. If R4 is applied (i.e. v is special), then v does not
need any charge by Observation 18. Suppose that v is not special. Vertex v may give
charge to faces only by R6(vii) and in that case it receives 2 from its r-neighbor by
R1(i). It follows that:

µ∗(v) ≥ 1− 3 · 1
2 + 2 > 0.

Case 7: d(v) = 2.
We have µ(v) = −2. Vertex v receives 2 by R0(i) unless v is a small 2-vertex. When v is
small, it receives 1 from its sponsor by R0(ii) and twice 1

2 from incident faces by R8. Now if
v is a bridge, then it also gives 1 to a 3-vertex by R1(iii), but it also receives 1 from R0(iii).
In all cases, µ∗(v) = 0.

To sum up, we have proven that we started out with a negative total number of charge, and
after the discharging procedure that preserves this sum, we end up with a non-negative one, a
contradiction. That completes the proof of Theorem 4.
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