
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021 1

Autonomous Decision-Making with Incomplete
Information and Safety Rules based on

Non-Monotonic Reasoning
José-Luis Vilchis-Medina1, Karen Godary-Déjean2, and Charles Lesire1

Abstract—In this article we propose a decision process in-
tegrating Non-Monotonic Reasoning (NMR), embedded in a
deliberative architecture. The NMR process uses Default Logic
to implement goal reasoning, managing partially observable or
incomplete information, allowing the design of default behaviours
completed by the handling of specific situations, in order to
manage the current mission objective as well as safety rules. We
illustrate our approach through an application of an underwater
robot performing a marine biology mission.

Index Terms—AI-based methods, Formal methods in Robotics
and Automation, Cognitive control architectures, Marine
robotics.

I. INTRODUCTION

OVER the past decades, autonomous robots have been
used in environments where risk is high or access is

difficult for humans. However, there is still work to be done
when these robots have to integrate automated reasoning:
autonomous robots will face unforeseen events (changes in
the environment, uncertainty information, failures) and will
then have to adapt their behaviour. More specifically, we
are interested in giving to these robots goal reasoning. Goal
reasoning will make the robot able to decide what should
be its current objective according to the current situation, in
order to ensure both the mission aims and safety constraints.
Goal reasoning is a must-have for long-term autonomy in
robotics [1].

In this paper, we are more specifically interested in a ma-
rine biology application in which an autonomous underwater
vehicle must film fishes along specific transects [2] defined
by marine biologists. To perform a correct transect (w.r.t. the
outcomes expected by the biologists), the robot must follow
a straight line enforcing some specific constraints [3]. In this
paper, we are not interested in the trajectory control of the
robot, but rather on the goal reasoning process. Depending on
the current situation, the goal reasoning process can decide
either to fulfil mission objectives, i.e. transects defined by

Manuscript received: February, 24, 2021; Revised May, 29, 2021; Accepted
June, 30, 2021.

This paper was recommended for publication by Editor Markus Vincze
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the I-Site MUSE of the Univ. of Montpellier through the
French National Research Agency with reference ANR-16-IDEX-0006.

1José-Luis Vilchis-Medina and Charles Lesire are
with ONERA/DTIS, University of Toulouse, France
{jose.vilchis_medina,charles.lesire}@onera.fr

2Karen Godary-Déjean is with LIRMM/EXPLORE, University of Mont-
pellier, France karen.godary-dejean@umontpellier.fr

Digital Object Identifier (DOI): 0000-0001-5724-5920

the biologists, or change the objective to respect the con-
straints and ensure the safety of the robot (e.g. going back
to a home point, or urgently surfacing). Due to the intrinsic
uncertainty of the robot environment, it is necessary for
the goal reasoning process to manage uncertain information.
While some automated planning methods allow to manage
uncertainty, for instance using contingent approaches [4] or
probabilistic planning [5], they manage uncertainties related
to the achievement of one objective (or optimizing one utility
function), and do not allow to integrate goal reasoning, i.e.
the ability to adapt the current objectives according to the
situation.

Such goal reasoning capability generally roots in Knowl-
edge Reasoning (KR) approaches. The KR approach that
addresses incomplete and contradictory information is called
Non-Monotonic Reasoning (NMR), in which the reasoning
process can make some assumptions, and revise the con-
clusions according to further observations. In this paper, we
are more specifically interested in Default logic [6], a non-
monotonic logic in which we can reason by default, i.e. we
can derive consequences only because of lack of evidence
of the contrary. Such reasoning is indeed very relevant and
flexible to handle autonomous robotic situations, in which
we want to specify some default behaviours, except when
observing specific situations where a specific reasoning should
be applied, such as applying safety rules, or changing the
current mission goal to adapt to environment changes.

In this paper, we propose a decision process for autonomous
systems that uses NMR when incomplete or possibly contra-
dictory information must be considered. The NMR process
implements goal reasoning, determining which goals are rel-
evant according to the observed situation. Then an automated
planning algorithm computes an action plan to achieve this
goal. Finally, the NMR process decides what action the robot
should actually perform: either the first action of this plan, or
another action imposed by a specific rule (typically a safety
rule). In Sec. II, we describe related works. Next, we remind
the basic concepts of Default Logic. We then present our
contribution in Sec. IV. We show some results in Sec. V, and
finally conclude.

II. RELATED WORKS

In Robotics, automated reasoning with logical or formal
models is often based on techniques like model-checking
or temporal logic. However the purpose of model-checking



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

is generally to verify properties on a discrete-event system
model [7], [8]. Other works used Linear Temporal Logic for
under-actuated robots planning [9], [10], describing behaviours
of motion in a first-order language and using a theorem solver
to obtain moves. Nevertheless, these approaches fail to capture
the non-monotonic properties.

Knowledge Representation and Reasoning (KRR) has pro-
posed languages to reason about actions and changes, which
have been the basis of formal theory of actions [11] and
dynamic modelling [12], [13]. More recently, a noticeable
effort has been made in leveraging KRR processes for robotic
applications, more specifically for human-robot interactions,
in the KnowRob framework [14], where queries are done to a
knowledge base to deduce information about the environment
or the robot tasks. However, they still rely on a monotonic
reasoning and do not include uncertainty or incompleteness at
the logic level.

Robotics applications that integrate NMR generally use
Answer Set Programming (ASP) [15]. ASP is a declarative
language based on a stable model paradigm. Among other
applications, ASP has been used in robotics for human-robot
collaboration through dialog to handle underspecification and
further support knowledge accumulation [16], or for planning
with time-bounded generation of actions [17]. However, ASP
generally has difficulties to reason on all classes of stable
models related to a program (e.g. to make a choice of a model
according to a user-defined criteria or to compare across the
models), and as far as we know, no methodology based on
ASP has been proposed for goal reasoning in robotics.

However, there are works that strive to solve problems
through NMR based on default reasoning, e.g., for decision
support in naval missions [18], and UAV control [19]. Default
logic is indeed a relevant reasoning framework for robotic
missions in which we must handle safety rules and unknown
environments. However, the latter works use default logic at
the control level, without integration of long-term reasoning,
nor providing a methodology for applying default logic.

In this context we propose a decision architecture that
intensively uses default reasoning, to manage partial and/or
contradictory observations and safety rules. We claim that
default logic is an appropriate formal tool to design the goal
reasoning that must take place in an autonomous robot, as it
allows to define a default behaviour, and then to specialize
this default behaviour by specific rules depending on the
encountered (partially observed or incomplete) situation. This
reasoning is done at a high-level of abstractions.

III. DEFAULT LOGIC
Default logic is one of the best known formalization for

commonsense reasoning, introduced by Reiter [6]. This kind
of formalization allows to infer arguments based on partial
and/or contradictory information as premises. A default theory
∆ is a pair (D,W ), where D is a set of defaults and W a
set of formulas in First-Order Logic (FOL). A default d ∈ D
is defined by a quadruplet X,A(X), B(X), C(X), with X =
(x1, . . . , xn) a vector of (non-quantified) free variables, and
A(X), B(X), C(X) well-formed formulas (wffs) over X , and
is represented as:

d =
A(X) : B(X)

C(X)
(1)

A(X) are the prerequisites, B(X) the justifications, C(X)
the consequences. Intuitively a default means: “if A(X) is
true, and there is no evidence that B(X) might be false, then
C(X) can be true”.

The possible situations that can be derived from a default
theory ∆ are called extensions. An extension E∆ can be seen
as a set of believes of acceptable alternatives according to a
theory ∆. Formally, an extension E∆ is defined as a smallest
fixed-point set for which the following property holds: “if d
is a default of D, whose the prerequisite is in E∆, and the
negation of its justification is not in E∆, then the consequence
of d is in E∆”, and defined as E∆ =

⋃∞
i=0 Ei with [6]:

E0 = W (2)

∀i > 0, Ei+1 = Th(Ei) ∪
{
C(X) | A(X) : B(X)

C(X)
∈ D,

A(X) ∈ Ei,¬B(X) 6∈ E∆
} (3)

where Th(Ei) is the set of closed wffs (i.e. with no free
variables) that are provable from Ei. However, extensions are
difficult to compute in practice since condition ¬B 6∈ E∆ (3)
assumes that E∆ is known, while E∆ is not yet computed.

Normal default theories [6] is a specific class of default
theories in which all defaults have the form A(X):C(X)

C(X) , that
can be read “if A(X) is true, and there is no evidence
that C(X) might be false, then C(X) can be true”. The
consequence of this formulation is that (3) can be rewritten [6]:

∀i > 0, Ei+1 = Th(Ei) ∪
{
C(X) | A(X) : C(X)

C(X)
∈ D,

A(X) ∈ Ei, ¬C(X) 6∈ Ei

} (4)

Normal default theories have two main advantages: (1) at
least one extension is always guaranteed to exist, and (2)
computation of extensions using Horn clauses has a quasi-
linear complexity [20], [21].

IV. DECISION-MAKING WITH DEFAULT LOGIC

In order to handle incomplete or contradictory information
in the goal reasoning process of an autonomous robot, we
have proposed the decision architecture depicted in Fig. 1.
This architecture is based on a perception - reasoning - action
scheme, focusing here on the reasoning part.

Automated Planning

Non-Monotonic Reasoning
Action / Perception

S, Gπ

dosafe(X) obs.

Functional Layer

Fig. 1: Decision layer based on NMR.

The NMR is made on some observations (obs) coming
from the robot functional layer, being values of the internal
states of the system, environment sensing, failures, etc. From
these observations, we build and evaluate a default theory
∆ = (D,W ), where formulas in D have the form A(X):C(X)

C(X)



VILCHIS-MEDINA et al.: AUTONOMOUS DECISION-MAKING WITH INCOMPLETE INF. AND SAFETY RULES BASED ON NON-MONOTONIC REASONING 3

and formulas in W have the form A(X) → C(X). Then an
extension of ∆ is computed, and two situations may occur:

• the extension contains a dosafe statement, which indi-
cates that an action must be executed immediately, as a
reactive response to the observations; in that case, the
automated planning part is not called and the action is
chosen to be executed;

• the extension does not contain a dosafe statement, but
produces a current situation estimation S and a goal1 G,
which are given to the automated planning module. Then
this module provides a plan π which indicates the next
action(s) to be executed.

Once an action has been chosen to be executed, we evaluate
again this action in ∆. The extension resulting from ∆ must
then define a dosafe statement, that corresponds to the action
that will really be executed on the robot. In the following, we
first briefly describe how we abstracted the functional layer
(observations and actions) through a skill formal model, then
we describe the design process of the default theory we used
in the architecture, with examples from our marine biology
application.

A. Functional Layer Abstraction

In order to formalize the interactions with the robot func-
tional layer, we adopted a representation of the robot ca-
pabilities and features through a formal skill model [22].
The skills represent the actions in our reasoning model, that
can be triggered through the dosafe predicate. These skill
models have an executable semantics, described by required
inputs, behaviours, expected outcomes, preconditions, etc. In
addition to skills, the model also provides two complementary
elements: resources, modeled as finite state-machine, and data.
The skills toolchain includes code generators that provide: (1)
a library to interface with the functional layer, in order to
retrieve the resource and data values (used as observations for
the NMR), and to trigger skill (i.e. action) execution, and (2) a
PDDL formalization of skills used by the automated planning
algorithm.

B. Non-monotonic Reasoning Model

The first step of the deliberative scheme we propose consist
in evaluating observations with respect to the default theory
∆. It has a relevant role because it allows to deduce con-
clusions from observable (functional layer data and resource
states) and/or non-observable information, whose model is
defined using defaults. Moreover, in addition to estimating
non-observable information, ∆ can adapt the mission objective
to the current observed situation, either defining a new goal
for the automated planning process, or directly performing an
emergency action.

In this paper, we propose some design patterns, that can be
seen as modeling guidelines to define such a default theory ∆
for goal reasoning and safety management of a robotic system.

1When several goals are computed in an extension, then a single one is
selected thanks to specific rules.

We illustrate these guidelines through examples of logical rules
for our marine application.

In order to structure ∆ in a design perspective, we break-
down ∆ in subsets which are specific to the type of infor-
mation they deal with. First, ∆ must contain a set of facts,
summarized in a set Wobs (that can come either from obser-
vations of the functional layer, or be static information about
the environment). ∆ can also contain formulas that correspond
to rules relative to three other classes: state estimation in
∆est (that allows to infer values of unobserved states), goal
management in ∆goal and emergency safety rules in ∆safety .
Each of these sets is composed of a subset of defaults and a
subset of FOL formulas. Thus we have:

D = Dest ∪Dgoal ∪Dsafety (5)
W = Wobs ∪West ∪Wgoal ∪Wsafety (6)

Modeling guidelines for each of these sets are given in the
following paragraphs.

1) Observed Facts: The propositions that are used in Wobs

are directly deduced from the skill-based model of the func-
tional layer, that correspond to the data that can be read from
this layer, resource states, and skill execution statuses.

Let’s look at the model we developed for our marine robot
application. Wobs contains observed propositions, such as the
robot position through the at predicate, the state of sensors,
and the status of internal information, such as the precision
level of the robot localization. For instance, a typical initial
situation in our mission is when our robot is on the surface: so
the GPS sensor could be captured, while the USBL (acoustic)
sensor could not be. This situation is modeled by the formula:
at(home) ∧ ¬usbl captured ∧ gps captured ∧ on surface (7)

2) Predicate Estimation: ∆est = (Dest,West) is the part
of the default theory that models formulas to infer the truth
value of some hidden state variables, i.e. that are not directly
observed from the functional layer.

Designing formulas in ∆est is very specific to the
application. The only guideline that we can enforce is to
restrain the C part of the formulas (i.e., the consequences) to
only rely on estimated propositions, and never on elements
of Wobs.

In our application, this typically corresponds to the localized
predicate, that models the fact that we consider the robot well
localized enough to perform a specific task. We want to model
the following informal behaviour:

1) we can generally assume that the robot is localized
enough to navigate;

2) however, if the USBL signal has not been captured, and
neither was the GPS signal, then the robot has never been
geo-referenced and we consider that the localization is not
good enough.

It results in the following model, where statement 1) is
modelled as a default dloc ∈ Dest (8), while statement 2)
is an exception to dloc, modelled as classical logical formula
ϕloc ∈West (9).

dloc =
> : localized

localized
(8)

ϕloc = ¬usbl was captured ∧ ¬gps was captured

→ ¬localized
(9)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

3) Safety rules: Emergency rules consists in situations
where we want to directly apply an action instead of relying on
an automated planning process. To design such safety rules of
our model, we have defined a specific predicate, dosafe(a),
where a is a possible action of the functional layer. This
predicate represents the fact that action a has to be performed
as a consequence to the current situation.

In our application, safety rules correspond for example to
situations when we observe a critical failure due to safety
sensors of the robot (e.g., internal temperature or pressure,
water ingress). In that case, we have either to shut down the
robot to ensure its integrity, or to immediately surface.

Formulas in ∆safety must then comply with the follow-
ing guidelines: safety defaults pattern (Dsafety) are given
in eq. (10); FOL formulas patterns (Wsafety) are given in
eq. (11).

A(X) : dosafe(a)

dosafe(a)
(10)

A(X) → dosafe(a) or A(X) → ¬dosafe(a) (11)

where A(X) is a formula over observed or estimated pred-
icates (from Wobs and ∆est), and a is an action. Note that
formulas in Wsafety can “cancel” the application of a safety
action (when it is negated) as such formulas may correspond
to exception to a default safety rule. In our robotic application,
the model that corresponds to the loss of a safety sensor is:

safety sensor failure(X) : dosafe(shut down())

dosafe(shut down())
(12)

Note that the possibility to model defaults saves us from
listing all the safety sensors, leading to a smaller number of
rules. As an exception to this, we can model two formulas
(one negative and one positive) that express that, for a specific
sensor, instead of shutdown, we want to surface.

4) Goal Reasoning: The formulas in ∆goal aim at deducing
the current mission objective. To express these formulas, we
have introduced a new predicate, goal(X), where X is a
formula over the observable propositions, that correspond to
elements of the functional layer (e.g., the robot position, the
achievement of an action, the state of a sensor). Proposition
goal(X) then means that we want X to be achieved, i.e. to
be the current mission objective.

Formulas in ∆goal must then comply with the following
guidelines: goal reasoning defaults patterns (Dgoal) are given
in eq. (13); FOL formulas patterns (Wgoal) are given in
eq. (14).

A(X) : goal(Y )

goal(Y )
or

A(X) : ¬goal(Y )

¬goal(Y )
(13)

A(X) → goal(Y ) or A(X) → ¬goal(Y ) (14)

where A(X) is a formula over observable or estimated
predicates,and Y a formula on observable predicates only. In
our application, a goal reasoning can be informally described
as: (1) the general mission objective is to perform a transect
between pA and pB ; (2) except if the localisation is too bad
to do a transect. This behaviour is modeled through a default
and an exception to this default:

> : goal(transect done(pA, pB))

goal(transect done(pA, pB))
(15)

¬localized → ¬goal(transect done(X,Y )) (16)

C. Non-Monotonic Reasoning Process

In the previous paragraphs, we have seen how to model
the Default Theory ∆ to integrate goal reasoning and safety
management. In this paragraph, we will discuss the execution
loop of the NMR process. In our application, we have imple-
mented a periodic loop, where, at each period, we apply the
steps described below. The decision architecture can then be
seen as a continuous planning architecture.

1) Observation: First, we get observations from the func-
tional layer, and fill Wobs with the observed predicates.

2) Computing extensions: We compute the set of extensions
E∆ corresponding to the current default theory.

3) Applying safety actions: If the computed extension has
any dosafe(a) predicate, then we directly execute the action a
(by triggering the corresponding skill in the functional layer),
and wait for the next period.

4) Automated planning: If there is no safety action in
E∆, we split E∆ in two sets: the set of goals G =
{X, s.t. goal(X) ∈ E∆}, and the set of states S = E∆ −G.
We then use an automated planning algorithm to compute
the plan π that leads to G from S. In our architecture, we
have used the well-known FF algorithm [23]. Note that if G
is empty, there is no current goal, and the mission is then
finished.

5) Verifying the planned action: Before executing the first
action of plan π, we want to ensure that this action is not
contradictory with the safety behaviours modeled in the NMR.
We then add the first action a0 of π to ∆, and compute a
new extension E∆

π . This step is modeled through a specific
predicate, next action(a0), and a default rule:

next action(a0) : dosafe(a0)

dosafe(a0)
(17)

This equation models the fact that, if nothing prevents to
execute a0, then we can execute it. It is then possible to add
in the knowledge database an exception to this default. For
instance, in our application, we defined the formula:

next action(X) ∧ ¬enough energy(X) → dosafe(go boat)
(18)

meaning that if the energy is not sufficient to perform the
next planned action X , we decide to go back to the boat and
abort the mission. E∆

π must then contain a dosafe predicate,
indicating the action to execute, which will be most of the
time the planned action to reach the current goal, except if a
safety rule imposed an alternative action.

V. RESULTS

We have implemented the proposed architecture using the
ROS2 middleware, with the skill management layer generated
from [22], and a specific ROS2 node implementing the deci-
sion process in Python/Prolog. The skill model defines 3 data
and 9 resources, leading to 12 observable state variables, and
10 skills/actions. Most of the behaviours we have modeled
in the default theory have been defined based on a fault
analysis of our robot [24]. We have also integrated several
goal reasoning complementary behaviours. In the end, our
default theory consists of 44 rules, including 17 defaults and
27 exceptions as FOL formulas.



VILCHIS-MEDINA et al.: AUTONOMOUS DECISION-MAKING WITH INCOMPLETE INF. AND SAFETY RULES BASED ON NON-MONOTONIC REASONING 5

Fig. 2: Timeline of the skill execution. Blue segments indicate successful skill executions, and gray segment shows a skill
interruption.

To evaluate our approach, we made a set of simulations,
activating the several goal reasoning and safety rules. In this
section, we first present a simulation run in order to illustrate
the approach, and then report an evaluation of computation
times when the size of the models increases.

A. Simulated Scenario

Figure 2 shows the skills executions (from the functional
layer perspective) during our simulated scenario. In this sce-
nario, the robot must perform two transects. The successive
actions performed by the robot are to move to a first location,
then to dive, activate the video camera, and perform the first
transect. Then, the robot moves to the start point of the
second transect. During the second transect, the localization
precision drops under a threshold, leading to the estimation
of proposition ¬localized. As a consequence, the transect is
cancelled, and the robot goes directly to its home point.

In this simulation, the decision architecture ran at a period
of 1 second. Figure 3 shows the computation times of the
NMR process (to compute extensions) and the FF planning
algorithm. The computation times are quite stable all along

Fig. 3: Evolution of the computation time of the NMR
and Planning (FF) processes. The dashed lines indicate their
respective mean values.

the mission, and have quite low values, the total computation
time being below 0.1 second. Note that the FF time is the
time measured when calling FF as an external process, i.e.
including file parsing.

B. Computation Time Evaluation

In the previous scenario, the mission objectives defined
by the biologists included 2 transects, and the number of
possible positions of the robot was restrained to the transects
start and end points, as well as the home point and the
boat position. While this situation correspond to an actual
experiment specified by the marine biologists using our robot,
the complexity of the problem is limited. In this section, we
evaluated the number of inferences and the computation times
when we increase the size of the problem (Fig. 4).

Figure 4a shows the evolution of the computation times
when the number of possible positions increases up to 32
positions, which correspond to large problem: in the proposed
architecture, we are not interested in trajectory planning,
but only on goal reasoning, and the model must then only
involve the positions that may have an impact on the mission
objectives. We can see that the computation time of FF grows,
but the absolute values stay reasonable. The computation time
of the NMR is constant, which is expected as there is still only
two transects to perform, and the NMR model only relies on
the positions attached to the mission objectives. The evolution
of the number of inferences (not shown due to lack of place)
confirms the constant behaviour of the NMR.

Figure 4b shows the evolution of the number of logical
inferences done during the computation of extensions, with
respect to the number of mission objectives. In this setup, we
fixed the number of positions to 16, and defined from 2 to 10
transects. We can notice that the number of inferences grows
linearly, which is consistent with the theoretical complexity
of Normal Default Theory [6], [20]. Figure 4c shows the
evolution of the computation times. Even if the number of
goals increases, we can notice that the computations times are
almost static whatever the number of transects.

VI. CONCLUSION

In this paper, we have proposed a new decision architecture
based on a non-monotonic reasoning, more particularly default
reasoning, that encompasses goal reasoning and safety man-
agement, two major features in long-term autonomy of robotic
systems. We presented the concept of the architecture, along
with guidelines to model the several behaviours in default
logic, relying on specific predicates to manage goals and
emergency actions. The main decision-making process first
gathers observations from the functional layer, then evaluates
the default theory to compute an extension. This extension



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

(a) Comp. times w.r.t. environment size (b) Inferences w.r.t. number of goals (c) Comp. times w.r.t. number of goals

Fig. 4: Evaluation of the NMR architecture processes w.r.t. the size of the model. Plain curves represent the average value.
Light areas indicate the standard deviation envelope.

may include a dosafe statement, with an action to execute
immediately, or a goal state to achieve. In the latter case, we
use the FF algorithm to compute a plan of actions, and check
the consistency of the first action w.r.t. to the default theory.
We have illustrated the approach on a marine biology mission,
and presented the results of simulations. This application and
the associated results clearly show that the proposed method
is a practicable approach to manage safety rules and goal
reasoning for autonomous robots. Default logic is indeed very
convenient and concise framework to model such behaviours,
as it allows to define general defaults rules, and then only
specify specific exceptions.

Based on this architecture, future work will address the
implementation of an interactive decision process, to allow
the biologists to modify the NMR rules online while the robot
is doing a mission, in order to integrate new behaviours due
to not modeled situations.

ACKNOWLEDGMENTS

This work has been partly funded by the I-Site MUSE of the
Univ. of Montpellier through ANR (the French National Re-
search Agency) under the “Investissements d’avenir” program
(PIA) with reference ANR-16-IDEX-0006.

REFERENCES

[1] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A
survey,” Artificial Intelligence, vol. 247, pp. 10–44, 2017.

[2] Z. Thanopoulou, M. Sini, K. Vatikiotis, C. Katsoupis, P. G. Dimi-
trakopoulos, and S. Katsanevakis, “How many fish? Comparison of two
underwater visual sampling methods for monitoring fish communities,”
PeerJ, vol. 6, p. e5066, 2018.

[3] A. Hereau, K. Godary-Dejean, J. Guiochet, C. Robert, T. Claverie, and
D. Crestani, “Testing an Underwater Robot Executing Transect Missions
in Mayotte,” in TAROS, Virtual, United Kingdom, 2020.

[4] J. Hoffmann and R. Brafman, “Contingent Planning via Heuristic
Forward Search with Implicit Belief States,” in ICAPS, Monterey, CA,
USA, 2005.

[5] J.-A. Delamer, Y. Watanabe, and C. P. C. Chanel, “Safe path planning
for UAV urban operation under GNSS signal occlusion risk,” Robotics
and Autonomous Systems, vol. 142, 2021.

[6] R. Reiter, “A logic for default reasoning,” Artificial intelligence, vol. 13,
no. 1-2, pp. 81–132, 1980.

[7] H. Bride, J. S. Dong, R. Green, Z. Hóu, B. P. Mahony, and M. Oxenham,
“GRAVITAS: A model checking based planning and goal reasoning
framework for autonomous systems,” Eng. Appl. Artif. Intell., vol. 97,
p. 104091, 2021.

[8] S. Bensalem, K. Havelund, and A. Orlandini, “Verification and validation
meet planning and scheduling,” Int. J. on Software Tools for Technology
Transfer, vol. 16, no. 1, pp. 1–12, 2014.

[9] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic
motion planning for teams of underactuated robots using satisfiability
modulo convex programming,” in CDC, Melbourne, Australia, 2017.

[10] A. Bolotov, O. Grigoriev, and V. Shangin, “Automated natural deduction
for propositional linear-time temporal logic,” in TIME, Alicante, Spain,
2007.

[11] M. Gelfond and V. Lifschitz, “Action Languages,” Electronic Trans. on
Artificial Intelligence, vol. 2, pp. 193–210, 1998.

[12] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A logic programming language for dynamic domains,” The
Journal of Logic Programming, vol. 31, no. 1-3, pp. 59–83, 1997.

[13] Y. Jin and M. Thielscher, “Representing beliefs in the fluent calculus,”
in ECAI, Valencia, Spain, 2004.

[14] M. Tenorth and M. Beetz, “KnowRob: A knowledge processing infras-
tructure for cognition-enabled robots,” IJRR, vol. 32, no. 5, pp. 566–590,
2013.

[15] T. Kern, J. Kreijger, and L. Willcocks, “Exploring ASP as sourcing strat-
egy: theoretical perspectives, propositions for practice,” J. of Strategic
Information Systems, vol. 11, no. 2, pp. 153–177, 2002.

[16] X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie, “Developing
high-level cognitive functions for service robots.” in AAMAS, Toronto,
Canada, 2010.

[17] B. Schäpers, T. Niemueller, G. Lakemeyer, M. Gebser, and T. Schaub,
“Asp-based time-bounded planning for logistics robots,” in ICAPS, Delft,
The Netherlands, 2018.

[18] I. Toulgoat, P. Siegel, and A. Doncescu, “Modelling of submarine
navigation by nonmonotonic logic,” in Int. Conf. on Broadband and
Wireless Computing, Communication and Applications, Washington,
DC, USA, 2011.

[19] J. L. V. Medina, P. Siegel, V. Risch, and A. Doncescu, “Intelligent and
Adaptive System based on a Non-monotonic Logic for an Autonomous
Motor-glider,” in ICARCV, Singapore, 2018.

[20] V. W. Marek, A. Nerode, and J. B. Remmel, “Complexity of recursive
normal default logic,” Fundamenta Informaticae, vol. 32, no. 2, pp. 139–
147, 1997.

[21] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Computing Surveys
(CSUR), vol. 33, no. 3, pp. 374–425, 2001.

[22] C. Lesire, D. Doose, and C. Grand, “Formalization of robot skills with
descriptive and operational models,” in IROS, Las Vegas, NV, USA
(virtual), 2020.

[23] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gener-
ation through heuristic search,” JAIR, vol. 14, pp. 253–302, 2001.

[24] A. Hereau, K. Godary-Dejean, J. Guiochet, , and D. Crestani, “A Fault
Tolerant Control Architecture Based on Fault Trees for an Underwater
Robot Executing Transect Missions,” in ICRA, Xi’an, China, 2021.


	INTRODUCTION
	RELATED WORKS
	DEFAULT LOGIC
	DECISION-MAKING WITH DEFAULT LOGIC
	Functional Layer Abstraction
	Non-monotonic Reasoning Model
	Observed Facts
	Predicate Estimation
	Safety rules
	Goal Reasoning

	Non-Monotonic Reasoning Process
	Observation
	Computing extensions
	Applying safety actions
	Automated planning
	Verifying the planned action


	RESULTS
	Simulated Scenario
	Computation Time Evaluation

	CONCLUSION
	References

