
HAL Id: lirmm-03475277
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03475277

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BREC: An R package/Shiny app for automatically
identifying heterochromatin boundaries and estimating

local recombination rates along chromosomes
Yasmine Mansour, Annie Chateau, Anna-Sophie Fiston-Lavier

To cite this version:
Yasmine Mansour, Annie Chateau, Anna-Sophie Fiston-Lavier. BREC: An R package/Shiny app
for automatically identifying heterochromatin boundaries and estimating local recombination rates
along chromosomes. BMC Bioinformatics, 2021, 22 (S6), pp.#396. �10.1186/s12859-021-04233-1�.
�lirmm-03475277�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03475277
https://hal.archives-ouvertes.fr


1

BREC: An R package/Shiny app for automatically 2

identifying heterochromatin boundaries and 3

estimating local recombination rates along 4

chromosomes 5

6

Yasmine MANSOUR1,2*, Annie CHATEAU2Y, Anna-Sophie FISTON-LAVIER1*Y, 7

1 Genomics Dept, Institute of Evolution Science of Montpellier (ISEM), Montpellier, 8

France 9

2 Informatics Dept, Laboratory of Computer Science, Robotics and Microelectronics of 10

Montpellier (LIRMM), Montpellier, France 11

YThese authors contributed equally to this work. 12

* yasmine.mansour@umontpellier.fr (YM), anna-sophie.fiston-lavier@umontpellier.fr 13

(AF) 14

Abstract 15

Motivation: Meiotic recombination is a vital biological process playing an essential 16

role in genomes structural and functional dynamics. Genomes exhibit highly various 17

recombination profiles along chromosomes associated with several chromatin states. 18

However, eu-heterochromatin boundaries are not available nor easily provided for 19

non-model organisms, especially for newly sequenced ones. Hence, we miss accurate 20

local recombination rates, necessary to address evolutionary questions. 21

Results: Here, we propose an automated computational tool, based on the Marey 22

maps method, allowing to identify heterochromatin boundaries along chromosomes and 23

estimating local recombination rates. Our method, called BREC (heterochromatin 24

Boundaries and RECombination rate estimates) is non-genome-specific, running even 25

on non-model genomes as long as genetic and physical maps are available. BREC is 26

based on pure statistics and is data-driven, implying that good input data quality 27

remains a strong requirement. Therefore, a data pre-processing module (data quality 28

control and cleaning) is provided. Experiments show that BREC handles different 29

markers density and distribution issues. BREC’s heterochromatin boundaries have been 30

validated with cytological equivalents experimentally generated on the fruit fly 31

Drosophila melanogaster genome, for which BREC returns congruent corresponding 32

values. Also, BREC’s recombination rates have been compared with previously reported 33

estimates. Based on the promising results, we believe our tool has the potential to help 34

bring data science into the service of genome biology and evolution. We introduce 35

BREC within an R-package and a Shiny web-based user-friendly application yielding a 36

fast, easy-to-use, and broadly accessible resource. 37

Availability: BREC R-package is available at the GitHub repository 38

https://github.com/ymansour21/BREC. 39

Key words Genomics, Heterochromatin regions, Centromere position, Recombination 40

rate, Non-genome-specific, Graphical user interface. 41
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Introduction 42

Meiotic recombination is a vital biological process which plays an essential role for 43

investigating genome-wide structural as well as functional dynamics. Recombination 44

events are observed in almost all eukaryotic genomes. Crossover, a one-point 45

recombination event, is the exchange of DNA fragments between sister chromatids 46

during meiosis. Recombination is a fundamental process that ensures genotypic and 47

phenotypic diversity. Thereby, it is strongly related to various genomic features such as 48

gene density, repetitive DNA, and DNA methylation [1–3]. 49

Recombination rate varies not only between species, but also within species and 50

within chromosomes. Different heterochromatin regions exhibit different profiles of 51

recombination events. Therefore, in order to understand how and why recombination 52

rate varies, it is important to break down the chromosome structure to smaller blocks 53

where several genomic feature besides, recombination rate, are known to also exhibit 54

different profiles. Chromatin boundaries allow to distinguish between two main states of 55

chromatin that can be defined as euchromatin, which is lightly compact with a high 56

gene density, and on the contrary, heterochromatin, which is highly compact with a 57

paucity in genes. The heterochromatin is represented in different chromosome regions: 58

the centromere and the telomeres. Euchromatin and heterochromatin regions exhibit 59

different behaviours in terms of genomic features and dynamics related to their biologic 60

function such as the cell division process that insures the organism viability. 61

Consequently, easily distinguishing chromatin states is necessary for conducting further 62

studies in various research fields and to be able to address questions related to cell 63

processes such as: meiosis, gene expression, epigenetics, DNA methylation, natural 64

selection and evolution, genome architecture and organization among others [4–6]. In 65

particular, a profound understanding of centromeres, their complete and precise 66

structure, organization and evolution is currently a hot research area. These repeat-rich 67

heterochromatin regions are currently still either poorly or not assembled at all across 68

eukaryote genomes. Despite the huge advances offered by NGS technologies, 69

centromeres are still considered as enigmas, mostly because they are preventing genome 70

assembly algorithms form reaching their optimal performance in order to achieve more 71

complete whole genome sequences [7]. In addition, the highly diverse mechanisms of 72

heterochromatin positioning [8] and repositioning [9] remain a complicated obstacle in 73

face of fully understanding genome organization. Thus, generating high resolution 74

genetic, physical and recombination maps, and locating heterochromatin regions is 75

increasingly interesting the community across a large range of taxa [10–16]. 76

Numerous methods for estimating recombination rates exist. Population genetic 77

based-methods [17] provide accurate fine-scale estimates. Nevertheless, these methods 78

are very expensive, time-consuming, require a strong expertise and, most of all, are not 79

applicable on all kinds of organisms. Moreover, the sperm-typing method [18], which is 80

also extremely accurate, providing high-density recombination maps, is male-specific 81

and is applicable only on limited genome regions. On the other hand, a purely 82

statistical approach, the Marey Maps [19], could avoid some of the above issues based 83

on other available genomic data: the genetic and physical distances of genomic markers. 84

The Marey maps approach consists in correlating the physical map with the genetic 85

map representing respectively physical and genetic distances for a set of genetic markers 86

on the same chromosome. Despite the efficiency of this approach and mostly the 87

availability of physical and genetic maps, generating recombination maps rapidly and 88

for any organism is still challenging. Hence, the increasing need of an automatic, 89

portable and easy-to-use solution. 90

Some Marey map-based tools already exist, two of which are largely used: (1) the 91

MareyMap Online [20,21] which is applicable on multiple species, however, it does not 92

allow accurate estimate of recombination rates on specific regions like the chromosome 93
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extremities, and (2) the Drosophila melanogaster Recombination Rate Calculator 94

(RRC) [22] which solves the previous issue by adjusting recombination rate estimates on 95

such chromosome regions, yet, as indicated by its name, the RRC is D. 96

melanogaster -specific. With the emerging Next Generation Sequencing (NGS) 97

technologies, accessing whole chromosome sequences has become more and more possible 98

on a wide range of species. Therefore, we may expect an exponential increase in markers 99

number which will require more adapted tools to better handle such new scopes of data. 100

Here, we propose a new Marey map-based method as an automated computational 101

solution that aims to, firstly, identify heterochromatin boundaries (HCB) along 102

chromosomes, secondly, estimate local recombination rates, and lastly, adjust 103

recombination rates on chromosome along the chromosomal regions marked by the 104

identified boundaries. Our proposed method, called BREC (heterochromatin 105

Boundaries and RECombination rate estimates), is provided with an R-package and a 106

Shiny web-based graphical user interface. BREC takes as input the same genomic data, 107

genetic and physical distances, as in previous tools. It follows a workflow that, first, 108

tests the data quality and offers a cleaning option, then, estimates local recombination 109

rates and identify HCB. Finally, BREC re-adjusts recombination rate estimates along 110

heterochromatin regions, the centromere and telomere(s), in order to keep the estimates 111

as authentic as possible to the biological process [23]. Identifying the boundaries 112

delimiting euchromatin and heterochromatin allows investigating recombination rate 113

variations along the whole genome, which will help comparing recombination patterns 114

within and between species. Furthermore, such functionality is fundamental for 115

identifying the position of the centromeric and telomeric regions. Indeed, the position of 116

the centromere on the chromosome has an influence on the chromatin environment and 117

recent studies are interested in investigating how genome architecture may change with 118

centromere organization [7]. 119

Our results have been validated with cytological equivalents, experimentally 120

generated on the fruit fly D. melanogaster genome [4,24, 25]. Moreover, since BREC is 121

non genome-specific, it could efficiently been run on other model as well as non-model 122

organisms for which both genetic and physical maps are available. Even though it is 123

still an ongoing study, BREC have also been tested with different further species and 124

results are reported. 125

This paper is organized as follows: in the next Section (2), the new approach BREC 126

is presented following a detailed step by step workflow. Section (3), presents the set of 127

our results, based on both simulated and real data. The results are then discussed in 128

Section (4). Concluding remarks with some perspectives are outlined in Section (5). 129

Further details of the data involved, how the methods were calibrated and validated are 130

reported within the supplementary materials. 131

New Approach: BREC 132

BREC is designed following the workflow represented in Fig 1. In order to ensure that 133

the widest range of species could be analyzed by our tool, we designed a pipeline which 134

adapts behaviour with respect to input data. Mostly, each step of the pipeline relies on 135

statistical analysis, adaptive algorithms and decision proposals led by empirical 136

observation. 137

The workflow starts with a pre-processing module (called ”Step 0”) aiming to 138

prepare the data prior to the analysis. Then, it follows six main steps: (1) estimate 139

Marey Map-based local recombination rates, (2) identify chromosome type, (3) prepare 140

the HCB identification, (4) identify the centromeric boundaries, (5) identify the 141

telomeric boundaries, and (6) extrapolate the local recombination rate map and 142

generate an interactive plot encompassing all BREC outputs (see Fig 1). Each step is 143
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detailed hereafter. 144

Step 0 - Apply data pre-processing 145

Since we have noticed that BREC estimates are sensitive to the quality of input data, 146

we propose a pre-processing step to assess data quality and suggest an optional data 147

cleaning for outliers. As such, we could ensure a proper functioning during further steps. 148

Data quality control 149

The quality of input data is tested regarding two criteria: (1) density of markers and (2) 150

the homogeneity of their distribution on the physical map, along a given chromosome. 151

First, the mean density, defined as the number of markers per physical map length, is 152

computed. This value is compared with the minimum required threshold of 2 153

markers/Mb. Based on the displayed results, the user gets to decide if data cleaning is 154

required or not. The threshold of 2 markers/Mb is selected based on a simulation 155

process that allowed to test BREC results while decreasing markers density until the 156

observed HCB estimates seemed to be no longer exploitable (see Materials and Methods 157

in Section ). Second, the distribution of input data is tested via a comparison with a 158

simulated uniform distribution of identical markers density and physical map length. 159

This comparison is applied using Pearson’s Chi− squared test [26] which allows to 160

examine how close the observed distribution (input data) is to the expected one 161

(simulated data). 162

Data cleaning 163

The cleaning step aims to reduce the disruptive impact of noisy data, such as outliers, 164

in order to provide more accurate recombination rate and heterochromatin boundary 165

results. If the input data fails to pass the Data Quality Control (DQC) test, the user 166

has the option to apply or not a cleaning process. This process consists of identifying 167

the extreme outliers and eliminating them upon the user’s confirmation. Outliers are 168

detected using the distribution statistics of the genetic map (see Fig S1). More precisely, 169

inter-marker distances (separating each two consecutive points) are computed along the 170

genetic map. Using a boxplot, distribution statistics (quartiles, mean, median) are 171

applied on these inter-marker distances in order to identify outliers, which are chosen as 172

the 5% of the data points with a genetic distance greater than the maximum extreme 173

value, and should be discarded. Thus, the cleaning is targeting markers for which the 174

genetic distance is quite larger than most of the rest. After the first cleaning iteration, 175

DQC is applied again to assess the new density and distribution. The user can also 176

choose to bypass the cleaning step, but in such case, BREC’s behaviour is no longer 177

guaranteed. 178

Step 1 - Estimate Marey Map-based local recombination rates 179

Once the data are cleaned, the recombination rate can be estimated based on the Marey 180

map [19] approach by: (1) correlating genetic and physical maps, (2) generating two 181

regression models -third degree polynomial and Loess- that better fits these data, (3) 182

computing the prime derivative for both models which will represent preliminary 183

recombination maps for the chromosome. The main purpose of interpolation here is to 184

provide local recombination rate estimates for any given physical position, instead of 185

only the ones corresponding to available markers. 186

At this point, both recombination maps are used to identify the chromosome type as 187

well as the approximate position of centromeric and telomeric regions. Yet, as a final 188
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output, BREC will return only the Loess-based adjusted map for recombination rates 189

since it provides finer local estimates than the polynomial-based map. 190

Step 2 - Identify chromosome type 191

BREC provides a function to identify the type of a given chromosome, with respect to 192

the position of its centromere. This function is based on the physical position of the 193

smallest value of recombination rate estimates, which primarily indicate where the 194

centromeric region is more likely to be located. Our experimentation allowed to come 195

up with the following scheme (see Fig S2). Two main types are identified: telocentric 196

and atelocentric [27]. Atelocentric type could be either metacentric (centromere located 197

approximately in the center with almost two equal arms) or not metacentric 198

(centromere located between the center and one telomere of the chromosome). The 199

latter includes the two most known subtypes, submetacentric and acrocentric (recently 200

considered as types rather than subtypes). It is tricky for BREC to correctly distinguish 201

between submetacentric and acrocentric chromosomes because the position of their 202

centromeres varies slightly, and capturing this variation (based on the smallest value of 203

recombination rate on both maps -polynomial and Loess-) could not be achieved, yet. 204

Therefore, we chose to provide this result only if the identification process allowed to 205

automatically identify the subtype. Otherwise, the user gets the statistics on the 206

chromosome and is invited to decide according to further a priori knowledge. The two 207

subtypes (metacentric and not metacentric) are distinguished following an intuitive 208

reasoning inspired by their definition found in the literature. First, BREC identifies 209

whether the chromosome is an arm (telocentric) or not (atelocentric). Then, test if the 210

physical position of the smallest value of the estimated recombination rate is located 211

between 40% and 60% interval, the subtype is displayed as metacentric, otherwise, it is 212

displayed as not metacentric. The recombination rate is estimated using the Loess 213

model (”LOcal regrESSion”) [28,29]. 214

Step 3 - Prepare the HCB identification 215

The HCB identification is a purely statistical approach relying on the coefficient of 216

determination R2, which measures how good the generated regression model fits the 217

input data [30]. We chose this approach because the Marey map usually exhibits lower 218

quality of markers (density and distribution) on the heterochromatin regions. Thus, we 219

aim to capture this transition from high to low quality regions (or vice versa) as it 220

reflects the transition from euchromatin to heterochromatin regions (or vice versa). The 221

coefficient R2 is defined as the cumulative sum of squares of differences between the 222

interpolation and observed data. R2 values are accumulated along the chromosome. In 223

order to eliminate the biased effect of accumulation, R2 is computed twice: 224

R2 − forward starts the accumulation from the beginning of the chromosome to 225

provide the left centromeric and left telomeric boundaries, while R2 − backwards starts 226

from the end of the chromosome providing the right centromeric and right telomeric 227

boundaries. These R2 values were calculated using the rsq package in R. To compute 228

R2 cumulative vectors, rsq function is applied on the polynomial regression model. In 229

fact, there is no such function for non-linear regression like Loess, because in such 230

models, high R2 does not always mean good fit. A sliding window is defined and 231

applied on the R2 vectors with the aim of precisely analysing their variations (see 232

details in the next step). In case of a telocentric chromosome, the position of the 233

centromere is then deduced as the left or the right side of the arm, while in case of an 234

atelocentric chromosome, the existence of a centromeric gap is investigated. 235
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Step 4 - Identify centromeric boundaries 236

Since the centromeric region is known to present reduced recombination rates, the 237

starting point for detecting its boundaries is the physical position corresponding to the 238

smallest polynomial-based recombination rate value. Then, a sliding window is applied 239

in order to expand the starting point into a region based on R2 variations in two 240

opposite directions. The size of the sliding window is automatically computed for each 241

chromosome as the largest value of ranges between each two consecutive positions on 242

the physical map (indicated as i and i+ 1 in Equation 1). After making sure the sliding 243

window includes at least two data points, the mean of local growth rates inside the 244

current window is computed and tested compared to zero. If it is positive (resp. 245

negative) on the forward (resp. backwards) R2 curve, the value corresponding to the 246

window’s ending edge is returned as the left (resp. right) boundary. Else, the window 247

moves by a step value equal to its size. 248

sliding window size(chromosome) = max{|physPosi+1 − physPosi| : 1 ≤ i ≤ n− 1} (1)

There are some cases where chromosome data present a centromeric gap. Such lack 249

of data produces biased centromeric boundaries. To overcome this issue, chromosomes 250

with a centromeric gap are handled with a slightly different approach: after comparing 251

the mean of local rates of growth regarding to zero, accumulated slopes of all data points 252

within the sliding window are computed adding one more point at a time. If the mean of 253

accumulated slopes keeps the same variation direction as the mean of growth rates, the 254

centromeric boundary is set as the ending edge of the window. Else, the window slides 255

by the same step value as before (equal to its size). The difference between the two 256

chromosome types is that for the telocentric case, only one sliding window is used, it’s 257

starting point is the centromeric side, and it moves away from it. As for the atelocentric 258

case, two sliding windows are used (one on each R2 curve), their starting point is the 259

same, and they move in opposite directions to expand the centromere into a region. 260

Step 5 - Identify telomeric boundaries 261

Since telomeres are considered heterochromatin regions as well, they also tend to exhibit 262

a low fitness between the regression model and the data points. More specifically, the 263

accumulated R2 curve tends to present a significant depletion around telomeres. 264

Therefore, a telomeric boundary is defined here as the physical position of the most 265

significant depletion corresponding to the smallest value of the R2 curve. As such, in the 266

telocentric case, only one R2 curve is used and it gives one boundary of the telomeric 267

region (the other boundary is defined by the beginning of the left telomere or the end of 268

the right telomere). Whilst in the atelocentric case, where the are two telomeres, the 269

depletion on R2− forward detects the end of the left telomeric region and the depletion 270

on R2 − backwards detects the beginning of the right telomeric region. The other two 271

boundaries (the beginning of the left telomere and the end of the right telomere) are 272

defined to be, respectively, the same values of the two markers with the smallest and the 273

largest physical position available within the input data of the chromosome of interest. 274

Step 6 - Extrapolate the local recombination rate estimates and 275

generate interactive plot 276

The extrapolation of recombination rate estimates within the identified centromeric and 277

telomeric regions automatically performs an adjustment by resetting the initial biased 278

values to zero along these heterochromatin ranges. Then, each of the above BREC 279
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outputs are combined to generate one interactive plot displayed for visualisation and 280

download (see details in Section ). 281

Results 282

In this section, we present the results obtained through the following validation process. 283

First, we automatically re-identified HCB with approximate resolution to the reference 284

equivalents. Second, we tested the robustness of BREC method according to input data 285

quality, using the well-studied D. melanogaster genome data, for which recombination 286

rate and HCB have already been accurately provided [4, 22, 24, 31](Fig S3). In addition, 287

we extended the robustness test to a completely different genome, the domesticated 288

tomato S. lycopersicum [32] to better interpret the study results. Even if the Loess span 289

value does not impact the HCB identification, but only the resulting recombination rate 290

estimates, the span values used in this study are: 15% for D. melanogaster (for 291

comparison purpose) and 25% for the rest of experiments. Our analysis shows that 292

BREC is applicable on data from a various range of organisms, as long as the data 293

quality is good enough. BREC is data-driven, thus, the outputs are strongly dependant 294

of the markers density, distribution and chromosome type specified (automatically, or 295

with the user’s a priori knowledge). 296

Approximate, yet congruent HCB 297

Fruit fly genome D.melanogaster 298

Our method for identifying HCB has been primarily validated with cytological data 299

experimentally generated on the D. melanogaster Release 5 genome [4,24,25,33]. For all 300

five chromosomal arms (X, 2L, 2R, 3L, 3R). his genome presents a mean density of 5.39 301

markers/Mb and a mean physical map length of 22.92Mb. We obtained congruent HCB 302

with a good overlap and shift, distance between the physical position of the reference 303

and BREC, from 20Kb to 4.58Mb (see Section ). We did not observe a difference in 304

terms of mean shift for the telomeric and centromeric BREC identification (χ2 = 0.10, 305

df = 1, p− value = 0.75)(See Tables 1 and S1). We observe a lower resolution for the 306

chromosomal arms 3L and 3R (see Fig S4). This suggests that the data for those two 307

chromosomal arms might not present a quality as good as the rest of the genome. 308

Interestingly, the local markers density for these two chromosomal arms shows a high 309

variation, not like for the other chromosomal arms. For instance, the 2L for which 310

BREC returns accurate results, shows a lower variation (see Fig S5). Without these two 311

arms, the max shift for both centromeric and telomeric BREC boundaries is smaller 312

than 1.54Mb with a mean shift decreasing from 1.43Mb to 0.71Mb. 313

This first analysis suggests that BREC method returns accurate results on this 314

genome. However, the boundaries identification process appears very sensitive to the 315

local density and distribution of the markers along a chromosome (see Fig S4). 316

Therefore, we conducted further experiments on a different dataset, the tomato genome 317

(see Fig S6). 318

Tomato genome S. lycopersicum 319

Results of experimenting BREC behaviour on all 12 chromosomes of S. lycopersicum 320

genome [32] are shown as values in Table S3 and as plots in Fig S7. This genome 321

presents a mean density of 2.64 markers/Mb and a mean physical map length of 322

62.71Mb. We observe a variation in the shift value representing the difference on the 323

physical map between reference HCB and their equivalents returned by BREC. Unlike 324

D. melanogaster genome which is of a smaller size, with five telocentric chromosomes 325
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Table 1. BREC HCB compared to reference boundaries from the reference
genome of D. melanogaster.

Chromosomal arm Centromeric (Mb) Telomeric (Mb)
Boundaries Shift Boundaries Shift
Reference BREC Reference BREC

X 20.67 20.10 0.56 2.46 0.92 1.54
2L 19.95 20.33 0.38 0.70 0.68 0.02
2R 6.09 5.01 1.08 20.02 20.71 0.69
3L 18.41 20.30 1.90 0.36 2.26 1.91*
3R 8.35 3.77 4.58* 27.25 25.64 1.61

Min. shift 0.38 0.02
Max. shift 4.58 1.91
Mean shift 1.70 1.15
Median shift 1.08 1.54

The shift is the absolute value of the distance between the BREC and the reference
physical heterochromatin boundary. The first five rows represent all chromosomal arms.
Grouped columns present reference, BREC and shift values for the centromeric
boundaries (Columns 2-4), and for the telomeric boundaries (Columns 4-6). Here the
boundary values correspond to the internal HCB. The external boundaries are
represented by the physical positions of the first and the last markers of the
chromosomes. All values are expressed in Megabase (Mb). The red asterisk indicates
the largest shift value reported on centromeric and telomeric boundaries separately (see
corresponding Fig S4). The last four rows represent general statistics on the shift value.
From top to bottom, they are minimum, maximum, mean, and median respectively. See
details on the shift metrics in Section .

(chromosomal arms) and a strongly different markers distribution, the tomato genome 326

exhibits a completely different study case. This is a plant genome, with an 327

approximately 8-fold bigger size genome. It is organized as twelve atelocentric 328

chromosomes of a mean size of 60Mb except for chromosomes 2 and 6 which are more 329

likely to be rather considered telocentric based on their markers distribution. Also, we 330

observe a long plateau of markers along the centromeric region with a lower density than 331

the rest of the chromosomes, something which highly differs from D. melanogaster data. 332

We believe all these differences between both genomes gives a good validation but also 333

evaluation for BREC behaviour towards various data quality scenarios. Furthermore, 334

since BREC is a data-driven tool, these experiments help analysing data-related 335

limitations that BREC could be facing while resolving differently. From another view 336

point, BREC results on the tomato genome highlights the fact that markers distribution 337

along heterochromatin regions, in particular, strongly impacts the identification of 338

eu-heterochromatin boundaries, even when the density is of 2 markers/Mb or more. 339

Consistency despite the low data quality 340

We aim in this part to study to what extent BREC results are depending on the data 341

quality. 342

BREC handles low markers density 343

We start by assessing the marker density on the BREC estimates. We generated 344

simulated datasets with decreasing fractions of markers for each chromosomal arms 345

(from 100% to 30%). For that, we randomly select a fraction of markers 30 times and 346
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compute the mean shift between the BREC and the reference telomeric and centromeric 347

boundaries. We note that BREC’s resolution decreases drastically with the fraction and 348

thus with the marker density (see Fig S8). However, BREC results appears stable until 349

70% of the data for all the chromosomal arms and more specifically for the telomeric 350

boundary detection. Only for the centromeric boundary of the chromosomal arm 3R, we 351

observe the opposite pattern: BREC returns more accurate telomeric boundary 352

estimates when the number of markers decreases. This supports the low quality of the 353

data around the 3R centromere. 354

This simulation process allowed to set a min density threshold representing the 355

minimum value for data density in order to guarantee an accurate results of BREC 356

estimates at 5 markers/Mb (fraction of around 70% of the data) on average in D. 357

melanogaster. This analysis also supports that as the marker density alone can not 358

explain the BREC resolution, BREC may be also sensitive to the marker distribution. 359

Fig S5 clearly shows that markers density varies within and between the five 360

chromosomal arms with a mean of 4 to 8 markers/Mb. The variance is induced by the 361

extreme values of local density, such as 0 or 24 markers/Mb on the chromosomal arm X. 362

Still, the overall density is around 5 markers/Mb for the whole genome. 363

BREC handles heterogeneous distribution 364

Along chromosomes, genetic markers are not homogeneously distributed. Therefore, to 365

assess the impact of the markers distribution on BREC results, we designed different 366

data scenarios with respect to reference data distribution (see Materials and Methods: ). 367

We choose as reference the chromosomal arms 2L and 2R of D. melanogaster as we 368

obtained accurate results for these two chromosomal arms. After the concatenation of 369

the two arms 2L and 2R, we ended up with a metacentric simulated chromosome as a 370

starting simulation (total physical length of 44Mb). While this length was kept 371

unchanged, markers local density and distribution were modified (see Materials and 372

Methods: ; Fig S9). 373

One particular yet common case is the centromeric gap. Throughout our analysis, 374

we consider that a chromosome presents a centromeric gap if its data exhibit a lack of 375

genetic markers on a relatively large region on the physical map. As centromeric regions 376

usually are less accessible to sequence due to its high compact state. Consequently, 377

these regions are also hard to assemble and that is why a lot of genomes have 378

chromosomes presenting a centromeric gap. It is important to know that a centromeric 379

gap is not always exactly located on the middle of a chromosome. Instead, its physical 380

location depends on the type of chromosome (see more details on Fig S2). 381

We also assess the veracity of BREC on datasets with variable distribution using 382

simulated data with and without centromeric gap (see Fig S9). 383

For all six simulation datasets, BREC results overlap the reference boundaries. Thus 384

BREC correctly handles the presence of a centromeric gap (see Fig S9: (a)(c)(e)). 385

BREC stays robust to a non-uniform distribution of markers, under the condition that 386

regions bordering the boundaries are greater than 2 markers/Mb (see Fig S10). In case 387

of non-uniform distribution, BREC resolution is higher when the local density is 388

stronger around heterochromatin regions (see Fig S9: (c)(d)(e)(f)). This suggests that 389

low density on euchromatin regions far from the boundaries is not especially a problem 390

either. 391

Accurate local recombination rate estimates 392

After the identification of HCB, BREC provides optimized local estimates of 393

recombination rate along the chromosome by taking into account the absence of 394

recombination in heterochromatin regions. Recombination rates are set to zero across 395
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the centromeric and telomeric regions regardless of the regression model. To closely 396

compare the third degree polynomial with Loess, using different span values, we 397

experimented this aspect on D. melanogaster chromosomal arms and reported the 398

results in Fig S11. 399

To assess the veracity of the recombination rates along the whole genome, we 400

compared BREC results with previous recombination rate estimates (see Fig 2; [4, 24]). 401

BREC recombination rate estimates are significantly strongly correlated with reference 402

data (Spearman’s: P << 0.001) while the reference estimates fail in telomeric regions. 403

BREC is non-genome-specific 404

NGS, High Throughput Sequencing (HTS) technologies and numerous further 405

computational advances are increasingly providing genetic and physical maps with more 406

and more accessible markers along the centromeric regions. Such shift on the availability 407

of data of poorly accessible genomic regions is a huge opportunity to shift our knowledge 408

of the biology and dynamics of heterochromatin DNA sequences as Transposable 409

Elements (TEs) for example. Therefore, BREC is not identifying centromeric gaps as 410

centromeric regions as it might seem, instead, it is targeting centromeric as well as 411

telomeric boundaries identification no matter of the presence or absence of markers 412

neither of their density or distribution variations across such complicated genomic 413

regions (see Fig S12). Given BREC is non-genome-specific, applying HCB identification 414

on various genomes allows to widen the experimental design and to test more 415

thoroughly how BREC responds to different data scenarios. Despite the several 416

challenges due to data quality issues and following a data-driven approach, BREC is a 417

non-genome-specific tool that aims to help tackling biological questions. 418

Easy, fast and accessible tool via an R-package and a Shiny app 419

BREC is an R-package entirely developed in R programming language. Current version 420

of the package and documentation are available on the GitHub repository: 421

https://github.com/ymansour21/BREC 422

In addition to the interactive visual results provided by BREC, the package comes 423

with a web-based Graphical User Interface (GUI) build using the shiny and 424

shinydashboard libraries. The intuitive GUI makes it a lot easier to use BREC without 425

struggling with the command line (see screenshots in Figs 3 and S13). 426

As for the speed aspect, BREC is quite fast when executing the main functions. We 427

reported the running time for D. melanogaster R5 and S. lycopersicum in Tables S1 and 428

S2, respectively (plotting excluded). Nevertheless, when running BREC via the Shiny 429

application, and due to the interactive plots displayed, it takes longer because of the 430

plotly rendering. Still, it depends on the size of the genetic and physical maps used, as 431

well as the markers density, as slightly appears in the same tables. The results presented 432

from other species (see Fig S12) highlight better this dependence. 433

Discussion 434

The main two results of BREC are the eu-heterochromatin boundaries and the local 435

recombination rate estimates (see Figs S4; 2). 436

The HCB algorithm, which identifies the location of centromeric and telomeric 437

regions on the physical map, relies on the regression model obtained from correlation 438

the physical distance and the genetic distance of each marker. Then, the goodness-of-fit 439

measure, the R-squared, is used to obtain a curve upon which the transition between 440

euchromatin and heterochromatin is detectable. 441
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Fig 2. Comparison of BREC vs. FlyBase recombination rate
recombination rates along the five chromosomal arms (X, 2L, 2R, 3L, 3R)
of D. melanogaster Release 5. Both recombination maps are obtained using the
same regression model: Loess with span 15%. The HCB defined by BREC are
represented in red and the reference data are in blue. Heterochromatin regions
identified by BREC are highlighted in yellow.

July 28, 2020 12/40

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.06.29.178095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/


Fig 3. Screenshots of BREC web application - Run BREC web page (3a)
and (3b) show the inputs interface. (3c) shows the output of running BREC on the
specified inputs, represented with an interactive web-based plot as a result.

(a) Inputs - 1 Run BREC for
heterochromatin boundaries page, indicated
on the left dark panel.

(b) Inputs - 2 After selecting input
parameters and clicking the ”Run” button,
a popup alert is displayed to ask the user
to confirm the chromosome type.

(c) Outputs - Here, the interactive summarizing plot of BREC main results is showing the
telocentric chromosome X. Respectively with the plot legend order, it includes the input genetic
markers (blue dots), the generated regression model (orange line), the local recombination rate
estimates (green line), the centromeric boundary (dashed red vertical line on the right)
delimiting the centromeric region (highlighted in light red), and the telomeric boundary
(dashed black vertical line on the left) delimiting the telomeric region (highlighted in light grey)

July 28, 2020 13/40

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.06.29.178095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/


On the other hand, the recombination rate algorithm, which estimates local 442

recombination rates, returns the first derivative of the previous regression model as the 443

recombination rates, then, resets the derivative values to zero along the heterochromatin 444

regions identified (see Fig 1). 445

We validated the BREC method with a reference dataset known to be of high 446

quality: D. melanogaster. While two distinct approaches were respectively implemented 447

for the detection of telomeric and the centromeric regions, our results show a similar 448

high resolution (see Table 1 and Fig S4). Then we analysed BREC’s robustness using 449

simulations of a progressive data degradation (see Figs S8; S10). Even if BREC is 450

sensitive to the markers distribution and thus the local marker density, it can correctly 451

handle a low global marker density. For D. melanogaster genome, a density of 5 452

markers/Mb seems to be sufficient to detect precisely the HCB. 453

We also validated BREC using the domesticated tomato S. lycopersicum dataset (see 454

Table S3 and Fig S7). At first glance, one might ask: why validating with this species 455

when the results do not seem really congruent? In fact, we have decided to investigate 456

this genome as it provides a more insightful understanding of the data-driven aspect of 457

BREC and how data quality strongly impacts the heterochromatin identification 458

algorithm. Variations in the local density of markers in this genome are particularly 459

associated with the relatively large plateaued centromeric region representing more than 460

50% of the chromosome’s length. Such data scenario is quite different compared to what 461

we previously reported on the D. melanogaster chromosomal arms. This is partially the 462

reason for which we chose this genome for testing BREC limits. While analysing the 463

experiments more closely, we found that BREC processes some of the chromosomes as 464

presenting a centromeric gap, while that is not actually the case. Thus, we forced the 465

HCB algorithm to automatically apply the with-no-centromeric-gap-algorithm, then, we 466

were inspired to implement this option into the GUI in order to give the users the 467

ability to take advantage of their a priori knowledge and by consequence to use BREC 468

more efficiently. Meanwhile, we are considering how to make BREC completely 469

automated regarding this point for an updated version later on. In addition, the 470

reference heterochromatin results we used for the BREC validation are in fact rather an 471

approximate than an exact indicator. The reference physical used correspond to the 472

first and last markers tagged as ”heterochromatin” on the spreadsheet file published by 473

the Tomato Genome Consortium authors in [32]. However, we hesitated before 474

validating BREC results with these approximate reference values due to the redundant 475

existence of markers tagged as ”euchromatin” directly before or after these reference 476

positions. Unfortunately, we were not able to validate telomeric regions since the 477

reference values were not available. As a result, we are convinced that BREC is 478

approximating well enough in the face of all the disrupting factors mentioned above. 479

On the other hand, the ambition of this method is to escape species-dependence, 480

which means it is conceived to be applicable to a various range of genomes. To test that, 481

we thus also launched BREC on genomic data from different species (the house mouse’s 482

chromosome 4, roundworm’s chromosome 3 and the chromosome 1 of zebrafish). 483

Experiments on these whole genomes showed that BREC works as expected and 484

identifies chromosome types in 95% of cases (see Fig S12). 485

One can assume, with the exponential increase of genomics resources associated with 486

the revolution of the sequencing technologies, that more and more fine-scale genetic 487

maps will be available. Therefore, BREC has quite the potential to widen the horizon of 488

deployment of data science in the service of genome biology and evolution. It will be 489

important to develop a dedicated database to store all these data. 490

BREC package and design offer numerous advantageous (see Table S5) compared to 491

similar existing tools [21,22]. Thus, we believe our new computational solution will 492

allow a large set of scientific questions, such as the ones raised by the authors of [5, 34], 493
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to be addressed more confidently, considering model as well as non-model organisms, 494

and with various perspectives. 495

Conclusion 496

We designed a user-friendly tool called BREC that analyses genomes on the 497

chromosome scale, from the recombination point-of-view. BREC is a rapid and reliable 498

method designed to determine euchromatin-heterochromatin frontiers on chromosomal 499

arms or whole chromosomes (resp. telocentric or metacentric chromosomes). BREC also 500

uses its heterochromatin boundary results to improve the recombination rate estimates 501

along the chromosomes. 502

Whole genome version of BREC is a work in progress. Its will allow to run BREC 503

on all the chromosomes of the genome of interest at ones. This version will also present 504

the identified heterochromatin regions on chromosome ideograms. As short-term 505

perspectives for this work, we may consider extending the robustness tests to other 506

datasets with high quality and mandatory information (e.g. boundaries identified with 507

cytological method, high quality maps). Retrieving such datasets seems to become less 508

and less difficult. As well, we may improve the determination of boundaries with a finer 509

analysis around them, for instance using an iterative multi-scale algorithm. Finally, we 510

will be happy to take into account users feedback and improve the ergonomy and 511

usability of the tool. As mid-term perspectives, we underline that BREC could 512

integrate other algorithms aiming to provide further analysis options such as the 513

comparison of heterochromatin regions between closely related species. 514
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Supporting materials 1

Materials and Methods 2

Validation data 3

The only input dataset to provide for BREC is genetic and physical maps one or several 4

chromosomes. A simple CSV file with at least two columns for both maps is valid. If 5

the dataset is for more than one chromosome or for the whole genome, a third column, 6

with the chromosome identifier, is required. 7

Our results have been validated using the Release 5 of the fruit fly D. 8

melanogaster [35, 36] genome as well as the domesticated tomato Solanum lycopersicum 9

genome (version SL3.0). 10

We also tested BREC using other datasets of different species: house mouse (Mus 11

musculus castaneus, MGI) chromosome 4 [37], roundworm (Caenorhabditis elegans, 12

ws170) chromosome 3 [38], zebrafish (Danio rerio, Zv6) chromosome 1 [39], respectively 13

(see Fig S12), as samples from the multi-genome dataset included within BREC (see 14

Table S4). 15

Fruit fly genome D.melanogaster 16

Physical and genetic maps are available for download from the FlyBase website 17

(http://flybase.org/; Release 5) [25]. This genome is represented here with five 18

chromosomal arms : 2L, 2R, 3L, 3R and X (see Table S1), for a total of 618 markers, 19

114.59Mb of physical map and 249.5cM of genetic map. This dataset is manually 20

curated and is already clean from outliers. Therefore, the cleaning step offered within 21

BREC was skipped. 22

Tomato genome S. lycopersicum 23

Domesticated tomato with 12 chromosomes has a genome size of approximately 900Mb. 24

Based on the latest physical and genetic maps reported by the Tomato Genome 25

Consortium [32], we present both maps content (markers number, markers density, 26

physical map length and genetic map length) for each chromosome in Table S2. For a 27

total of 1957 markers, 752.47Mb of physical map and 1434.49cM of genetic map along 28

the whole genome. 29

Simulated data for quality control testing 30

We call data scenarios, the layout in which the data markers are arranged along the 31

physical map. Various data scenarios, for experimentally testing the limits of BREC, 32

have been specifically designed based on D. melanogaster chromosomal arms (see Fig 33

S9). 34

In an attempt to investigate how markers density vary within and between the five 35

chromosomal arms of D. melanogaster Release 5 genome, markers density is analyzed in 36

two ways: locally (with 1-Mb bins) and globally (on the whole chromosome). Fig S5 37

shows the results of this investigation where each little box indicates how many markers 38

are present within each bin of 1Mb size on the physical map, while global markers 39

density per chromosomes is represented by the mean value. Global markers density per 40

chromosomes is also shown in Table S1 where the values are slightly different. This is 41

due to computing markers density in two different ways with respect to the analysis. 42

Table S1, presenting the genomic features of the validation dataset, shows markers 43

density in Column 3, which is simply the result of the division of markers number (in 44
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column 2) by the physical map length (in Column 4). For example, in the case of 45

chromosomal arm X, this gives 165/21.22 = 7.78markers/Mb. On the other hand, Fig 46

S5, aimed for analysing the variation of local markers density, displays the mean of of 47

all 1-Mb bins densities which is calculated as the sum of local densities divided by the 48

number of bins, and this gives 165/22 = 7.5markers/Mb. 49

The exact same analysis has been conducted on the tomato genome S. lycopersicum 50

where the only difference lies is using 5-Mb instead of 1-Mb bins, due to the larger size 51

of its chromosomes (see Fig S6). 52

Validation metrics 53

The measure we used to evaluate the resolution of BREC’s HCB is called shift 54

hereafter. It is defined as the difference between the observed heterochromatin 55

boundary (observed HCB) and the expected one (expected HCB) in terms of physical 56

distance (in Mb)(see Equation S0). 57

shift = |observed HCB− expected HCB| (S0)

The shift value is computed for each heterochromatin boundary independently. 58

Therefore, we observe only two boundaries on a telocentric chromosome (one 59

centromeric and one telomeric) while we observe four boundaries in case of an 60

atelocentric chromosome (two centromeric giving the centromeric region and two 61

telomeric giving each of the two telomeric regions). 62

The shift measure was introduced not only to validate BREC’s results with the 63

reference equivalents, but also to empirically calibrate the DQC module, where we are 64

mostly interested in the variation of its value with respect to variations of the quality of 65

input data. 66

Implementation and Analysis 67

The entire BREC project was developed using the R programming language (version 68

3.6.3 / 2020-02-29) and the RStudio environment (version 1.2.5033). The graphical user 69

interface is build using the shiny and shinydashboard packages. The web-based 70

interactive plots are generated by the plotly package. Data simulations, result analysis, 71

reproducible reports and data visualizations are implemented using a large set of 72

packages such as tidyverse, dplyr, R markdown, Sweave and knitr among others. The 73

complete list of software resources used is available on the online version of BREC 74

package accessible at https://github.com/ymansour21/BREC. 75

From inside an R environment, the BREC package can be downloaded and installed 76

using the command in the code chunk in Fig S14. In case of installation issues, further 77

documentation is available online on the ReadMe page. If all runs correctly, the BREC 78

shiny application will be launched on your default internet browser (see Shiny interface 79

screenshots in Fig S13 and description of the build-in dataset as well as GUI elements in 80

Supplementary materials). 81

All BREC experiments have been carried out using a personal computer with the 82

following specs: 83

• Processor: Intel® Core™ i7-7820HQ CPU @ 2.90GHz x 8 84

• Memory: 32Mo 85

• Hard disc: 512Go SSD 86

• Graphics: NV117 / Mesa Intel® HD Graphics 630 (KBL GT2) 87

• Operating system: 64-bit Ubuntu 20.04 LTS 88
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Description of main components of the Shiny app 89

Build-in dataset 90

Users can either run BREC on a dataset of 40 genomes, mainly imported from [40], 91

enriched with two mosquito genomes from [41] and updated with D. melanogaster 92

Release 6 from FlyBase [25] (see Table S4), already available within the package, or, 93

load new genomes data according to their own interest. 94

User-specific genomic data should be provided as inputs within at least a 3-column 95

CSV file format including for each marker: chromosome identifier, genetic distance and 96

physical distance respectively. On the other hand, outputs from BREC running results 97

are mainly represented via interactive plots. 98

GUI input options 99

The BREC shiny interface provides the user with a set of options to select as 100

parameters for a given dataset (see figure 3a). These options are mainly necessary in 101

case the user works on his/her own dataset and this way the appropriate parameters 102

would be available to choose from. First, a tab to specify the running mode (one 103

chromosome). Then, a radio button group to choose the dataset source (existing within 104

BREC or importing new dataset). For the existing datasets case, there is a drop-down 105

scrolling list to select one of the available genomes (over 40 options), a second one for 106

the corresponding physical map unit (Mb or pb) and a third one for the chromosome ID 107

(available based on the dataset and not the genome biologically speaking). While for the 108

import new dataset case, three more objects are added (see Fig 3b); a fileInput to select 109

csv data file, a textInput to enter the genome name (optional), and a drop-down 110

scrolling list to select the data separator (comma , semicolon or tab character -set as the 111

default-). As for the Loess regression model, the span parameter is required. It 112

represents the percentage of how many markers to include in the local smoothing 113

process. There is a numericInput object set by default at value 15% with an indication 114

about the range of the span values allowed (min = 5%, max = 100%, step = 5%). The 115

user should keep in mind that the span value actually goes from zero to one, yet, in a 116

matter of simplification, BREC handles the conversion on it’s own. Thus, for example, 117

a value of zero basically means that no markers are used for the local smoothing process 118

by Loess, and so, it will induce a running error. Lastly, there is a checkbox to apply 119

data cleaning if checked. Otherwise, the cleaning step will be skipped. This options 120

could save the user some running time if s/he already have a priori knowledge that a 121

specific genome’s dataset has already been manually curated). The user is then all set 122

to hit the Run button. BREC will start processing the chromosome of interest by 123

identifying its type (telocentric or atelocentric). Since this step is quite difficult to 124

automatically get the correct result, the user might be invited to interfere via a popup 125

alert asking for a chromosome type confirmation (see Fig 3b). As shown in Fig (S13a), 126

all available genomes could be accessed from the left-hand panel (in dark grey) and 127

specifically on the tab ”Genomic data” where two pages are available: ”Download data 128

files” which provides a data table corresponding to the selected genome on a scrolling 129

list along with download buttons, and ”Dataset details” displaying a more global 130

overview of the whole build-in aata repository (see Fig S13b). To give a glance at the 131

GUI outputs, Fig 3c shows BREC results displayed within an interactive plot where the 132

user will have the an interesting experience by hovering over the different plot lines and 133

points, visualising markers labels, zooming in and out, saving a snapshot as a PNG 134

image file, and many more available options thanks to the plotly package. 135
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Supplementary figures 136

Fig S1. The data cleaning process implemented within BREC. Inter-marker
distances (i.e. genetic distances between each two consecutive points along the genetic
map) are represented using a boxplot in order to identify outliers and give the user the
option to remove them. Here is an example showing raw data of a simulated
chromosome (left) with the specific markers detected as outliers (red dots circled with
red dashed ovals) and the corresponding genetic distances (also in red) on the boxplot
(right).
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Fig S2. A schematic description of the chromosome type identification
process implemented within BREC. (a) Telocentric chromosome type is when the
centromere (the grey colored circle) is located on one of the chromosomal arm
extremities (indicated with the green upside down triangle). (b) Atelocentric
chromosome type -confirmed as metacentric- is when the centromere is located
approximately on the middle of the chromosome, here showed within the physical
positions 40% and 60% of the chromosome’s size (delimited by the red brackets and
indicated with the tag ”Meta”). (c) Atelocentric chromosome type -with no
specification- is when the centromere is located either inside the first arm (between the
beginning of the chromosome and 40% of its size), or inside the second arm (between
60% and the end, indicated with the tag ”Don’t know”).
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Fig S3. BREC pipeline steps applied on chromosome 2L of D.
melanogaster Release 5. On each plot, the x-axis represents physical distances (Mb).
The left y-axis represents genetic distances (cM) shared between markers (blue data
points) and the regression model (orange line). The right y-axis represents
recombination rates (cM/Mb) for local estimates (green line). R2 values, varying
between zero and one, are following R2 − forward (red line) and R2 − backwards
(purple line). Left telomere and Right centromere (resp. black and purple dashed lines)
indicate HCB for the corresponding identified heterochromatin region.
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Fig S4. Plots representing results of BREC and reference HCB on the D.
melanogaster genome. The results are summarized in Table 1. From top to bottom
are the five chromosomal arms X, 2L, 2R, 3L, 3R, respectively. Black dots represent
genetic markers in ascendant order according to their physical position (in Mb).
Vertical lines represent HCB for BREC centromeres (in red dashed line), for BREC
telomeres (in grey dashed line) and for the reference (in solid blue line). The
heterochromatin regions identified by BREC are highlighted for the centromere (in red)
and the telomere (in grey).For each chromosomal arm, two shift values of centromeric
and telomeric boundaries are shown under the chromosome identifier.
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Fig S5. Variations of markers local density per 1-Mb bins along D.
melanogaster Release 5 chromosomal arms. The red dashed line indicates the
mean and represents the global density. Each bin indicates the number of markers it
contains. Local density values are represented within the little boxes.
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Fig S6. Variations of markers local density per 5-Mb bins along the tomato
genome S. lycopersicum 12 chromosomes. The red dashed line indicates the
mean and represents the global density. Each bin indicates the number of markers it
contains. Local density values are represented within the little boxes.
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Fig S7. Plots representing results of BREC and reference HCB on the S.
lycopersicum genome. The results are summarized in Table S3. From top to bottom
are the twelve chromosomes 1 to 12, respectively. Black dots represent genetic markers
in ascendant order according to their physical position (in Mb). Vertical lines represent
HCB for BREC centromeres (in red dashed line), and for the reference (in solid blue
line). The heterochromatin regions identified by BREC are highlighted for the
centromere (in red). Rug plot on the x-axis represents the markers density according to
the physical map.
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Fig S8. The impact of decreasing markers density on the resolution of BREC’s HCB
expressed by the shift value. Here is an overview of the variation of shift values (see Equation S0)
for BREC’s HCB compared to reference results for the five D. melanogaster chromosomal arms (X, 2L,
2R, 3L, 3R). For each arm, two HCB are shown: squares (in red) for telomeric and triangles (in light
blue) for centromeric boundaries. The horizontal dashed line (in black) delimits results smaller than a
shift value of 3Mb for all arms while the vertical dashed line (in black) indicates up to which fraction
the 3Mb shift is conserved on each chromosomal arm’s simulations. Note that the x axis is reversed, so
from left to right it goes from 100% to 30% with a step of -5%at each point. The simulation process is
further clarified for one fraction on the chromosomal arm 2L and is illustrated in Fig S10.
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Fig S9. Distribution simulations. BREC results on the simulated chromosomes with different
scenarios of markers distribution around heterochromatin regions, as presented in the table (top) .
Plots (right after) are presenting the corresponding results for each simulation scenario. On the left, (a,
c, e) show the cases with the existence of centromeric gap while the ones on the right (b, d, f) show the
cases with no centromeric gap. From top to bottom, cases (a) and (b) show a uniform distributions
while (c) to (f) are for non uniform distributions. Cases (c) and (d) show a higher density of markers
around heterochromatin regions while cases (e) and (f) show a lower density on the same regions. Black
dots represent genetic markers. Vertical lines represent HCB for BREC centromeres (in red dashed
line), for BREC telomeres (in grey dashed line) and for the reference (in solid blue line). The
heterochromatin regions identified by BREC are highlighted for the centromere (in red) and the
telomere (in grey). The rug plot, added on the x axis, shows more clearly the variation in markers
density as well as the existence or not of the centromeric gap.
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Fig S11. Comparison of regression models for recombination rate estimates
along the five chromosomes (X, 2L, 2R, 3L, 3R) of D. melanogaster
Release 5. Regression models used here are Loess with span values, 15%, 25%, 50%,
75% and third degree polynomial. The HCB defined by BREC remain unchanged and
only local recombination rates differ according to the model used to fit the genetic and
physical maps. Recombination rate is represented by the derivative of the model. In
case of two or more models yielding the same recombination rate estimates on the same
physical position, the overlap results in only one curve line. Here, all curves show null
recombination rate value on the centromeric and telomeric regions.
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Fig S12. BREC results on different species: from top to bottom are M.
musculus (house mouse) chromosome 4, C. elegans (roundworm)
chromosome 3, D. rereo (zebrafish) chromosome 1, respectively. For each
species, two plots are shown: on the left is the chromosome’s genetic markers (black
points), their distribution along the physical map (rug on the x-axis), and reported
genomic features (label in blue). On the right is BREC results: HCB for centromeric
(red highlight) and telomeric (grey highlight) regions, (RR) local recombination rate
estimates (red line), and the running time of BREC’s algorithms to get these results
(loading data and plotting are excluded).

July 28, 2020 33/40

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.06.29.178095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178095
http://creativecommons.org/licenses/by-nc/4.0/


Fig S13. Screenshots of BREC web application - Genomic data web pages.

(a) Download data files page from the Genomic data section, indicated on the left dark panel,
is displayed Here, After selecting on the top list the Gallus gallus genome and clicking the
”Download selected” button, a dialog box is open waiting for the user to specify the file path to
save the selected data file.

(b) Dataset details page from the Genomic data section is showing a sample of ten available
genomes provided within the BREC package. The table is intentionally sorted using the forth
column values with descending number of ”Total markers”.
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Fig S14. Download, install and launch BREC. Code chunk showing the R
commands allowing to download, install and run the BREC shiny application. The
entire R package is available with open access on the indicated GitHub repository.
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Supplementary tables 137

Table S1. Genomic features and BREC running time for the D.
melanogaster Release 5 genome.

Chromosomal arms X 2L 2R 3L 3R Genome

Markers number 165 110 101 82 160 618
Markers density (marker/Mb) 7.78 4.81 4.78 3.56 5.80 5.39
Physical map length (Mb) 21.22 22.88 21.12 21.81 27.57 114.59
Genetic map length (cM) 65.8 54.8 52.5 45.9 57.5 276.5
BREC run time (sec) 1.278 0.949 0.821 0.916 1.379 5.343

The first five rows represent chromosomal arms. Columns represent the genome features
as follows: (1) the names of chromosomal arms X, 2L, 2R, 3L, and 3R; (2) the markers
number included in the study; (3) the markers density (in markers/Mb); and (4) the
physical map length (in Mb). The last row summarizes the same features for the whole
genome.
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Table S3. Results of BREC and reference HCB on the genome of S.
lycopersicum.

Chromosome Centromeric left (Mb) Centromeric right (Mb)
Boundaries Shift Boundaries Shift
Reference BREC Reference BREC

1 5.78 22.88 17.09 67.80 76.48 8.68
2 3.15 1.51 1.64 27.43 21.31 6.12
3 5.75 6.98 1.23 55.34 49.28 6.06
4 5.48 1.21 4.27 54.92 47.21 7.72
5 6.02 15.03 9.01 60.23 51.04 9.19
6 1.50 1.68 0.19 29.62 20.42 9.20
7 5.62 23.05 17.43 52.51 33.52 18.98*
8 5.10 22.87 17.77 51.73 43.96 7.77
9 4.38 32.51 28.12* 61.16 49.16 12.00
10 4.40 24.37 19.97 58.83 49.92 8.91
11 5.56 10.86 5.29 47.57 32.77 14.80
12 7.27 14.34 7.07 60.27 54.33 5.94

Min. shift 0.19 5.94
Max. shift 28.12 18.98
Mean shift 10.76 9.61
Median shift 8.04 8.80

The shift is the absolute value of the distance between the BREC and the reference
physical heterochromatin boundary. The first twelve rows represent all chromosomes.
Grouped columns present reference, BREC and shift values for the left centromeric
boundaries (Columns 2-4), and for the right centromeric boundaries (Columns 4-6). All
values are expressed in Megabase (Mb). The red asterisk indicates the largest shift
value reported on centromeric and telomeric boundaries separately (see corresponding
Fig S7). The last four rows represent some general statistics on the shift value. From
top to bottom, they are minimum, maximum, mean, and median respectively. See
details on the shift metrics in Section .
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Table S4. BREC’s built-in dataset of genomic data.

Species Common Name Taxonomy

Aedes aegypti Yellow fever mosquito Animal
Anopheles gambiae African malaria mosquito Invertebrate
Apis mellifera scutellata Honeybee
Bombyx mandarina Silkworm
Caenorhabditis briggsae Roundworm
Caenorhabditis elegans Roundworm
Culex pipiens Common house mosquito
Drosophila melanogaster R5 Fruit fly
Drosophila melanogaster R6 Fruit fly
Drosophila pseudoobscura Fruit fly
Heliconius melpomene melpomene Postman butterfly
Bos taurus Cow Animal
Canis lupus Wolf Vertebrate
Cynoglossus semilaevis Tongue sole
Danio rerio Zebrafish
Equus ferus przewalskii Prewalksii’s horse
Ficedula albicollis Collared flycatcher
Gallus gallus Chicken
Gasterosteus aculeatus Stickleback
Homo sapiens Human
Lepisosteus oculatus Spotted gar
Macaca mulatta Rhesus macaque
Meleagris gallopavo Turkey
Mus musculus castaneus House mouse
Oryzias latipes Medaka
Ovis canadensis Bighorn sheep
Papio anubis Olive baboon
Sus scrofa Wild boar
Citrus reticulata Mandarin Orange Plant
Gossypium raimondii New world cotton Woody
Populus trichocarpa Black cottonwood
Prunus davidiana David’s peach
Arabidopsis thaliana Thale cress Plant
Brachypodium distachyon Purple false brome Herbaceous
Capsella rubella Pink Shepherd’s Purse
Citrullus lanatus lanatus Watermellon
Cucumis sativus var. hardwickii Cucumber
Glycine soja Wild soybean
Medicago truncatula Barrel medic
Oryza rufipogon Wild rice
Setaria italica Foxtail millet
Sorghum bicolor subsp. verticilliflorum Wild Sudan grass
Solanum lycopersicum Domesticated tomato
Zea mays ssp parviglumis Teosinte

The available genetic and physical maps for 40 species from [40], enriched with two
recently assembled mosquito genomes: Culex pipiens and Aedes aegypti from [41],
domesticated tomato S. lycopersicum from [32], and D. melanogaster Release 6 (update)
from FlyBase [25]. The species in red bold text are the one we use in BREC
experiments. Since the data collection process is still ongoing, the current version of this
dataset is continuously evolving.
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