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Abstract. This work is devoted to the study of the Balanced Con-
nected Subgraph Problem (BCS) from a complexity, inapproximabil-
ity and approximation point of view. The input is a graph G = (V,E),
with each vertex having been colored, “red” or “blue”; the goal is to
find a maximum connected subgraph G′ = (V ′, E′) from G that is
color-balanced (having exactly |V ′|/2 red vertices and |V ′|/2 blue ver-
tices). This problem is known to be NP-complete in general but poly-
nomial in paths and trees. We propose a polynomial-time algorithm for
block graph. We propose some complexity results for bounded-degree or
bounded-diameter graphs, and also for bipartite graphs. We also pro-
pose inapproximability results for some graph classes, including chordal,
planar, or subcubic graphs.

Keywords: Complexity · approximation · color-balanced subgraph

1 Introduction

In this paper, we consider the combinatorial optimization problem Balanced
Connected Subgraph. Given a connected bichromatic graph G = (V,E) -
a graph having its vertices colored with two colors blue or red, not necessary
proper - , the goal is to determine a maximum subset V ′ ⊆ V such that V ′

is balanced - with the same number of blue and red vertices - and subgraph
induced by V ′ is connected.

Balanced Connected Subgraph (BCS)
Input: A graph G = (V,E), with vertices set V = Vblue ∪ Vred parti-

tioned into sets of blue and red vertices respectively.
Question: Find V ′ = (V ′blue∪V ′red)⊆ V , such that V ′blue ⊆ Vblue and V ′red ⊆

Vred, that induces a maximum connected subgraph H with |V ′blue| =
|V ′red|.

1.1 Related work

Many well-studied combinatorial optimization problems consist in finding in-
duced subgraphs with a given property. For instance, finding a maximum clique
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or a maximum independent set are one of the 21 NP-complete problems clas-
sified by [12]. [9] describe a general version of these problems (GT21-22): max-
imum induced (connected) subgraph with property Π. If Π is hereditary and
non-trivial then the problem is NP-complete and some approximability results
hold.

In this article, we investigate the Balanced Connected Subgraph problem
(BCS) as introduced by [3]. Given a 2-colored graph (using colors red and blue),
find the largest connected subgraph containing as many vertices of each color.
Notice that the property of being color-balanced is far from being hereditary,
hence the need for an ad-hoc study.

BCS remains NP-complete in bipartite graphs, chordal graphs and planar
graphs [3]. They also gave polynomial algorithms solving BCS in quadratic time
for splits, graphs of diameter two and properly colored bipartite graphs, and
in time O(n4) for trees. The research on this problem remains very active; re-
cently two recent articles related to balanced connected subgraph were proposed
[2,5]: they design polynomial-time algorithms for the BCS problem on interval
O(n4 log n), circular-arc O(n6 log n) and permutation graphs O(n3). The prob-
lem remains hard even for unit-disk graphs.

In [13], the authors show that BCS can be solved in O(n2)-time for trees
(improving the complexity given in [3]) and in O(n3)-time for interval graphs
. The former result can be extended to bounded treewidth graphs. They also
consider a weighted version of BCS (WBCS). They prove that this variant is
weakly NP-hard even on star graphs and strongly NP-hard even on split graphs
and properly colored bipartite graphs, whereas the unweighted counterpart is
tractable on those graph classes. Finally, they propose a exact exponential-time
algorithm for general graphs with time complexity 2n/2nO(1). Their algorithm is
based on a variant of Dreyfus-Wagner algorithm for the Steiner Tree problem.

As they point out, BCS is strongly related to the Maximum Weight Con-
nected Subgraph (MWCS) problem mentioned by [11]. Note that BCS is neither
a special case nor a generalization of MWCS. In MWCS, the goal is to find a
connected subgraph of maximum weight. If BCS were to be formulated as a
MWCS with weights say +1 for red vertices and −1 for blue vertices, we would
search for the largest subgraph of weight exactly 0.

BCS is also related to Steiner Tree problem. In fact, assume that you
are given a graph G along with a 2-coloration (using colors red and blue) of its
vertices (less red vertices than blue vertices). Asking whether there exists a BCS
in G containing all the red vertices can be seen as a special case of Steiner Tree:
the red vertices are the terminals, and we search for a Steiner Tree of size r twice
the number of terminals. In that case, one can determine the existence of a BCS
containing all the red vertices by using efficient exact algorithms for Steiner. If
in Steiner tree there is more red than blue vertices, we can always complete with
blue vertices (the neighboring vertices of the Steiner tree are blue) to obtain a
BCS.

The Graph Motif (GM) problem is tied to BCS as well. GM consists, given
a colored graph G and a multiset of colors M , in finding a connected subgraph
such that the multiset of colors assigned to its vertices is exactly M . Finding a
balanced connected subgraph of size at least 2k can be reduced to a polynomial
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number of motif searches in a 2-colored graph: all one has to do is to search
for the motif {red,...,red, blue,..., blue} with k occurrences of red and
blue, then k + 1 occurrences of each, and so on, upon either finding a balanced
connected subgraph or having proved that none exists.

GM was first introduced by [15] in the context of metabolic networks. They
showed that GM is NP-complete even if the input graph is restricted to be
a tree. Fellows et al. [7,8] further proved that GM remains NP-complete in
trees of maximum degree 3, and even if the input graph is a 2-colored bipartite
graph of maximum degree four. As a positive result, they gave an FPT algorithm
for GM parameterized by the size of the motif in the general case. Since BCS
can be solved by solving a polynomial number of instances of GM, using their
FPT algorithm to do so would result in an FPT algorithm for BCS parameter-
ized by the size of the solution.

Consider an optimization variant of GM: find the largest connected sub-graph
which multi-set of colors is included in the given motif [6]. Moreover we proved
this variant to be APX -hard in trees of maximum degree three.

A rather comprehensive list of applications for MWCS can be found in [3].
While we do not motivate BCS with further practical applications, we believe it
may prove to be useful in network design applications (where the colors represent
roles assigned to the vertices), social data-mining (colors represent classes of
individuals), or even electoral applications (see [1] for a study of gerrymandering
as a graph partitioning problem with a red-blue colored graph as input).

On the other hand, BCS appears of interest in a purely theoretical point of
view. The problem is quite hard complexity-wise, and can be generalized in a
lot of different ways. For instance, one can loosen the ”balanced” constraint and
ask for a connected subgraph minimizing the ratio between the number of red
vertices and blue vertices. Other generalizations would be increasing the number
of colors in the input coloration, enforcing the subgraph being looked for to have
additional properties (being a path, tree, 2-connected . . . ), or coloring the edges
instead of the vertices.

1.2 Our contributions

The contributions of this paper are summarized by Table 1.
We study the computational complexity of BCS for bichromatic graph, in

some restricted cases, namely bipartite graphs of diameter four, graphs of di-
ameter three, bipartite sub-cubic graphs . . . In each case, we establish the NP-
completeness of BCS by polynomial-time reduction from well-known problems
and we propose some inapproximability results according to some topologies.
We propose a approximation with non constant ratio. We extend the hardness
for 3-colored graph even if the diameter is two.

Organization of the paper In the next section, we propose a polynomial time
algorithm for block graph. Section 3 is dedicated to NP-completeness and non-
approximation proofs in bounded-diameter graphs: bipartite graphs of diameter
four, and graph of diameter three. Complexity results is extended to the case of
three colors and diameter two is also presented. Section 4 focuses on bipartite
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Topology Or Parameter Complexity Approximation results

Block graph P - O(n5) - Theo. 1 -

D = 3 NPC Theo. 4
Bipartite D = 4 NPC Theo.2

Planar ∆ ≤ 4 NPC [3] No-APX Theo. 8
Bipartite ∆ ≤ 4 NPC Theo. 7 No-APX Cor.2
Bipartite ∆ ≤ 3 NPC Theo. 6

Chordal NPC [3] and Theo. 9 No-APX Cor. 5

Table 1: Complexity and inapproximability results discussed in this paper for
BCS according to structural parameter and/or graph topology.

(sub)cubic graphs, on planar graph with bounded degree in complexity and
inapproximation viewpoint.

2 Polynomial time algorithm for block graph

A block graph is a graph where all the biconnected components are cliques.
Recall that block graphs are a particular case of chordal graphs. In this part,
we give a polynomial-time algorithm for the BCS problem on block graphs. We
focus on this graph class since for trees the problem admits a polynomial-time
algorithm while it is NP-complete for chordal graphs [3].

Let G = (V,E) be a block graph with Vred < Vblue. We begin by observing
that, at least one articulation point of G belongs to one of optimal solutions for
each instance. Indeed, if optimal solution has no articulation point, it is part of
only one clique. Then this clique contains vertices of the solution of both colors.
So we can exchange one of the articulation points without changing the size of
the solution. Thus if at least one vertex of a clique is in the optimal solution
then there is also at least one articulation point in it.

Let Q be the set of all blue articulation points, and let G′ = (V ′, E′) be
the graph G induced by Q ∪ Vred. Clearly, we have V ′red = Vred. Without loss
of generality, we suppose that V ′red < V ′blue (otherwise there is a trivial optimal
solution containing V ′red∪V ′blue and |V ′red|−|V ′blue| random vertices from blue−Q).

Lemma 1. For each optimal solution on a graph G, there exists a solution on
G of same size which is included into graph G′.

Proof. Let S be an optimal solution on graph G, we note Sred (resp. Sblue) the
red vertices (resp. blue vertices) from S.

Recall that |Sred| = |Sblue|, and |Sred| ≤ |Vred| = |V ′red| < |V ′blue|, implying
that |Sblue| < |V ′blue|. If there exists a blue vertex x ∈ Sblue − V ′blue then x /∈ Q,
and can be replaced in S by any other vertex y from V ′blue−Sblue. Note y always
exists as |V ′blue| > 1. Thus one obtain a solution S∗ included in V ′.

As a consequence of Lemma 1, it is sufficient to compute a optimal solution
on G′ instead of on G.

Observation 1 Let us consider an optimal solution S of G′. Let us construct a
breadth-first search tree in G′ restricted to vertices from S and starting from an
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articulation point x of G′. This tree is contained in the breadth-first search tree
starting in G’ starting from the same articulation point x but not restricted to
vertices from S.

Based on Lemma 1 and Observation 1, we propose Algorithm 1 for solving
block graph instances. This algorithm consists in (1) deleting the edge between
two vertices if none is an articulation point (2) generating a spanning tree for
each articulation point following a breadth-first search, and (3) computing an
optimal solution on each spanning tree using algorithm proposed in [3].

Let BFS(G, x) be a spanning tree of G computed by following a breadth-
first search from x. Finally, bhore(T ) is the optimal solution obtained on T using
algorithm [3].

Algorithm 1: Polynomial time algorithm on block graphs

Data: a connected bichromatic block graph G = (V,E)
Result: a subgraph G′ ⊆ G of order |G′|

1 G′ ← ∅;
/* Step 1: we delete the edge between two vertices if none is an

articulation point. */

2 for {x, y} ∈ E do
3 if G[V − {x}] is connected and G[V − {y}] is connected] then
4 E ← E − {x, y}
5 end

/* Step 2: we generate a spanning tree for each articulation point

following a breadth-first search */

6 for x ∈ V do
7 if G[V − {x}] is not connected then

/* we generate a spanning tree for each articulation point

following a breadth-first search. */

8 T ← BFS(G, x);
/* We compute a solution on T with Bhore’s algorithm */

9 S ← bhore(T );
10 if |S| > |G′| then
11 G′ = T ;

12 end
13 return G′

Theorem 1. Let G be a connected bichromatic block graph. Then one can com-
pute a BCS of G in O(n5) time.

Proof. First note that Bhore’s improved algorithm proposed in [3], Lemma 5,
produces all possible balanced subtrees rooted at a root t in O(n4) time com-
plexity for trees.

We suppose G contains at least one articulation point - otherwise the solution
is trivial as G is a clique.
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It is not difficult to see that for each articulation point x, all vertex sets
that contain x and induce a connected subgraph of G also induce a connected
subgraph of T , thus all solutions containing x are considered by our algorithm.
Since there exists an optimal solution that contains an articulation point, this
proves the correctness of our algorithm.

For each articulation point x we construct a BFS-spanning tree rooted on x
(at most n trees) and run Bhore’s improved algorithm on it.

There will necessarily be at least a spanning tree that contains the optimal
solution for G.

The overall time complexity is O(n5).

Corollary 1. In a recent result proposed in [14], BCS can be solved in O(n2)
time for trees. Using this result we can improve the time complexity of our algo-
rithm to O(n3).

3 Bounded-diameter graphs

3.1 Bipartite graphs of diameter four

In the following, we prove that BCS remains NP-complete in graphs of diameter
four. The reduction is based on Dominating Set in graphs of diameter two,
which is NP-complete [16]. The following construction transforms any graph of
diameter two into a 2-colored bipartite graph of diameter four.

Dominating Set (DM)
Input: G = (V,E) and k a integer.
Question: Does G contain D ⊂ V (G) s.t. |D| ≤ k and for all x ∈ V (G),

either x ∈ D or x ∈ N(y) for some y ∈ D?

Construction 1 Let G = (V,E) be a graph on n vertices and k ∈ N. We build
G′ = (V ′, E′) an instance of BCS as follows:

– add 2n blue vertices V1 = {v11 , . . . , v1n} and V2 = {v21 , . . . , v2n};
– add n+ k red vertices Q = {q1, . . . , qn} and P = {p1, . . . , pk};
– for all i ∈ [n], add the edge v2i qi;
– for all i ∈ [n], for all w ∈ N [v] add the edge v1iw

2;
– for all i ∈ [n], for all j ∈ [k] add the edge v1i pj.

Construction 1 is clearly done in polynomial time and illustrated by Figure
1. If the base graph G has diameter two, then the graph G′ obtained after
transformation has diameter four. Indeed, each couple (x, y) ∈ V1×V1 or V2×V2
can be connected by a path of length two between x and y. It follows that each
couple (x, y) ∈ V1 × V2 can be connected by a path of length at most three.
Finally, since all the red vertices have a neighbor in V1 or V2, and G′[P ∪ V1] is
a complete bipartite graph, any pair of red vertices can be connected by a path
of length at most four.

Theorem 2. Balanced Connected Subgraph remains NP-complete on bi-
partite graphs of diameter four.
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V1

V2n

n

n

k

Fig. 1: Building an instance of BCS of diameter 4 from a graph of diameter 2.

Proof. Let G be a graph of diameter two and k ∈ N∗. Let G′ be the graph
obtained from G using 1. Let us prove that G contains a dominating set of size
k if and only if G′ has a BCS of size 2(n+ k).

⇒ if G contains a dominating set D of size k, then let D1 ⊂ V ′ be the vertices
of V1 in G′ corresponding to D. B = {v ∈ V ′ : v is red } ∪ V2 ∪D1 contains
n+ k red vertices and n+ k blue vertices. Since D is a dominating set in G,
every vertex in V2 is connected to a vertex of D1. G′[B] is thus connected
and balanced.

⇐ if G′ has a BCS S of size 2(n+k), then it has to include all the red vertices.
For the pendant red vertices to be connected in S, S must include V2. Since
V2 is of size n, S contains exactly k other blue vertices, and those vertices
belong to V1. Moreover, V2 being an independent set and S being connected,
every vertex of V2 must be connected to at least one vertex in V1 ∩ S. The
vertices of G corresponding to V1 ∩ S in G′ thus form a dominating set of
size k.

Since DM is NP-complete in graphs of diameter two [16], and BCS being
in NP, the discussion above proves the theorem.

We propose to extend previous complexity result to derive a lower bound for
Exact Algorithms. Assuming ET H, there is no 2o(n) time algorithm for DM [17]
and since Construction 1 leads a linear transformation we obtain the following
Theorem.

Theorem 3. Assuming ET H, there is no 2o(n) time algorithm for Balanced
Connected Subgraph in presence of bipartite graphs of diameter four.

3.2 Graphs of diameter three

To prove that BCS remains NP-hard in graphs of diameter three, we design a
reduction from Colorful Connected Subgraph which is stated as follows.

Colorful Connected Subgraph (CCS)
Input: G = (V,E) a p-colored graph, k ∈ N s.t. k ≤ p.
Question: Does G contain a connected subgraph of size at least k which

each color appears at most once in ?
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To the best of our knowledge, the complexity of CCS – as stated above – is
not clearly established. To show that CCS is NP-complete, we use a result given
by [7] on the Graph Motif problem. Recall that GM consists, given a colored
graph G = (V,E) and a multiset of colors M, in finding a connected subgraph
of G which multiset of colors is exactly M.

[7] show in their Theorem 1 that GM remains NP-hard even if the motif
M is colorful, that is each color appears at most once inM. In their reduction,
the instance of GM they obtain is such that the motif M is exactly the set of
all colors. Therefore, GM remains NP-complete even ifM is the set containing
each color once. Now, one can observe that CCS is NP-hard because in case p
is equal to k, then CCS is equivalent to GM in the aforementioned case. The
following lemma holds, since CCS is clearly in NP.

Lemma 2. Colorful Connected Subgraph is NP-complete.

We now reduce CCS to BCS in graphs of diameter three. The idea of the con-
struction is to create a clique containing one red vertex and ”a lot” of blue ones
for each color. The cliques are then interconnected, making sure that any pair
of cliques is connected by at least one edge.

Construction 2 Let G = (V,E) be a graph and c : V → {1, . . . , p} a p-coloring
of its vertices. We build G′ = (V ′, E′) a 2-colored graph in the following way
(refer to Figure 2).

– V ′ = C1 ∪ C2 . . . ∪ Cp with Ci = {x ∈ V : c(x) = i} ∪ {ri}.
• For all i ∈ {1, . . . , p}, G′[Ci] is connected as a clique, and each one of

its vertices, except ri, is blue.
– For all uv ∈ E, add the corresponding edge to G′.
– For all Ci, Cj such that there is no edge between Ci and Cj, add a blue

vertex xji to Ci (connected to every vertex in Ci) and a blue vertex xij to Cj

(connected to every vertex in Cj), as well as the edge xjix
i
j.

Construction 2 can be applied in polynomial time. The resulting graph has
diameter three since it is composed of pairwise connected cliques. Figure 2 gives
a example.

Theorem 4. Balanced Connected Subgraph is NP-complete in graphs of
diameter three.

Proof. Let G = (V,E) be a graph and c : V → {1, . . . , p} a p-coloring of its
vertices. Let G′ = (V ′, E′) be the 2-colored graph obtained by applying Con-
struction 2 to G. Let k ∈ N, k ≥ 3. We claim that G has a CCS of size at least
k if and only if G′ has a BCS of size at least 2k.
⇒ If G has a CCS, S, of size at least k, then the corresponding vertices in

G′ are blue and induce a connected subgraph intersecting each clique at most
once. For each clique that S intersects, just add said clique’s red vertex to S.
Doing so, we build a balanced connected subgraph in G′ of size at least 2k.
⇐ If G′ has a BCS, S, of size at least 2k then its contains at least k red

vertices belonging to at least k different cliques. Since the neighborhoods of
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a b

c

d

e f

(a) 3-colored graph.

C1

C2 C3

r1

r2 r3

d c
e

a

b

f

x23x32

(b) Graph obtained after applying Construction 2.

Fig. 2: Applying Construction 2 to a 3-colored graph. The clique C1 corresponds
the green vertices c, d and e, the clique C2 to the pink vertices a and b, and the
clique C3 to the orange vertex f . Vertices x32 and x23 originate from the absence
of a yellow-pink edge and ensure r2 and r3 are connected by a path of length
three.

red vertices are pairwise disjoint, each red vertex must have exactly one blue
neighbor (in its clique) belonging to S. Assume that a vertex xji belongs to S,
then it is the sole neighbor of ri. In order to connect ri to other red vertices, xij
has to belong to S. Now since xij is assumed to belong to S, rj cannot have any
other blue neighbor in S. Under those assumptions, S cannot be of size greater
than four which absurd because we assumed k ≥ 3. Therefore, vertices of type
xji cannot belong to S, and every blue vertex in S corresponds to a vertex in
G. Since the red vertices have degree 1 in S, removing them from S does not
break the connectivity and thus the set of blue vertices in S corresponds to a
connected subgraph in G. Since S contains at most one blue vertex per clique,
the set of blue vertices of S is a CCS of size at least k in G.

The previous discussion concludes the polynomial-time reduction from CCS
to BCS. Since the instance of BCS obtained through Construction 2 have diam-
eter three, the theorem holds.

3.3 Three colors and diameter two

In this section we extend the model by considering a 3-colored graph instead of
bichromatic. In such context we present a NP-complete result for graph admit-
ting a diameter two. Recall that for two colors and diameter two the problem
admits a polynomial-time algorithm [3]. Clearly, for diameter one the problem
is trivial.

Construction 3 Let I be an instance of CCS with k-colors, we will construct
an instance I ′ of BCS with three colors in the following way:

Let G an input graph and let Vi be the set of vertices with color i in an
instance I of CCS.

– We add 2k vertices X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk} to the
graph G.
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a b

c

d

e f

V1 = {e, c, d}
V2 = {a, b}
V3 = {f}

(a) 3-colored graph.

x1

x2

x3 X-set

y1

y2

y3

Y -set

z12 z13 z23 z21 z31 z32

Z-set

d

c

e

a

b

f

(b) Graph obtained after applying Construction 3.

Fig. 3: Encoding an instance of CCS into an instance of BCS with 3 colors. The
resulting graph admits a diamater two.

– A edge from xi-vertex (resp. yi-vertex) to Vi-vertices is added.
– We add k(k − 1) vertices Z = {zij |i 6= j, i, j ∈ {1, . . . , k}}.
– For each zij-vertex we add edge from zij to xi (resp. yj) and add a complete

graph between zij and Vi, ∀i (resp. Vj ,∀j).
– The X-vertices (resp. Y -vertices) are colored in blue (resp. red). All remain-

ing vertices are colored in white.

The resulting graph is denoted by H = (VH , EH). This construction is ac-
complished in polynomial-time. The transformation is illustrated by Figure 3.

Lemma 3. The graph H obtained by Construction 3 admits a diameter two.

Proof. – Since vertex ∀i xi are neighbors of vertices zij so in two steps the sets
X,Y, V and Z are visited.

– Each vertex zij is neighbor of vertices zkl (going through zil), Vi (by xi) and
Vj (by yj), xk (by zkj), yk (by zik).

– From Vi-vertex to Vj-vertex going through xi if i = j by zij otherwise.

Theorem 5. Balanced Connected Subgraph is NP-complete for three
colors even if the diameter is two.

Proof. Let G = (V,E) be a graph and c : V → {1, . . . , p} a p-coloring of its
vertices. Let H = (VH , EH) be the 3-colored graph obtained by applying Con-
struction 3 to G.
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BCS with three colors is in NP. Assume that k ∈ N and k ≥ 3.
We claim that G has a CCS of size at least k if and only if H has a BCS of

size at least 3k. Let S∗ be the set of the BCS-vertices.
⇒ If G has a CCS denoted S, of size at least k, we obtain a BCS of size at

least 3k by taking the X-set (resp. Y -set) and the k vertices in graph G solution
of CCS.
⇐ If H has a BCS denoted S of size at least 3k. Let Swhite be the set of

white vertices in the solution S.
All X-vertices and Y -vertices are in S. Each white vertex from V ∪ Z ad-

mits two neighbors in X ∪ Y . Since there are only k white-vertices, the white
neighborhoods N(Swhite) ∩ (X ∪ Y ) are disjoints.

1. Assume that zij ∈ S. Therefore, the following vertices cannot be in S: none
vertex from Vi (resp. Vj), none vertex zik,∀k 6= i, (resp. zkj ,∀k 6= j).
So the graph H cannot be connected.

2. So, the solution S ∩ Vi 6= 0. The X-vertices and Y -vertices admit a degree
one.
The subgraph induced by S∗ − (X ∪ Y ) contains a unique vertex in each Vi
and remains connected.

4 Bounded-degree graphs

4.1 Cubic bipartite

We prove BCS to be NP-complete in cubic bipartite graphs by reduction from
Exact Cover by 3-Sets-3 [10].

Exact Cover by 3-Sets-3 (X3C3)
Input: A universeX = (x1, . . . , x3q) and a collection C = (c1, . . . , cm=3q)

of triples of X such that each element in X belongs to exactly three
triples of C.

Question: Does G contain D ⊂ V (G) s.t. |D| ≤ k and for all x ∈ V (G),
either x ∈ D or x ∈ N(y) for some y ∈ D?

The construction consists in encoding each set by a blue subgraph (a set-
gadget) and the elements by red vertices. The graph is then completed by making
sure there are less red vertices than blue vertices. In the end, the starting X3C3
instance is positive if and only if there is a BCS containing all the red vertices
in the constructed graph.

Construction 4 Let (X,C) be an instance of X3C3, C = {c1, . . . , c3q} and
X = {x1, . . . , x3q}, with q even. Let G = (V,E) be an instance of BCS obtained
from (X,C) as follows (see Figure 4).

– For each xi ∈ X add a vertex xi (an element-vertex);
– for each ci ∈ C, ci = {xj , xk, xl}:
• add a blue gadget Hi on 14 vertices. Denote t1i , t

2
i and t3i (resp. s1i , s

2
i

and s3i ) the vertices of degree 2 at the top (resp. bottom) of Hi;
• add the edges s1ixj, s

2
ixk and s3ixl;
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x1

s11 s21 s31

t31t11 t21

a11 a21 a31

b11 b21 b31

p1

x2

s12 s22 s32

t32t12 t22

a12 a22 a32

b12 b22 b32

p2

x3

s13 s23 s33

t33t13 t23

a13 a23 a33

b13 b23 b33

p3

H1

Fig. 4: Encoding an instance of X3C3 into an instance of BCS (bipartite cubic).
From bottom to top – 3q red element-vertices; 3q blue set-gadgets on 14 vertices;
3q red connectivity-gadgets on 6 vertices connected as an accordion; 3q chains of
2 to 3 blue 2-regular bipartite graphs on 6 vertices; and 3q red terminal vertices.

• add 6 red vertices partitioned into Ai = {a1i , a2i , a3i } and Bi = {b1i , b2i , b3i }.
Add the edges a1i t

1
i , a

2
i t

2
i , a

3
i t

3
i a

1
i b

2
i , a

3
i b

2
i , a

2
i b

1
i and a2i b

3
i ;

• add 2 (if i ≤ q
2) or 3 (elsewise) 2-regular bipartite graphs on 6 blue

vertices connected by matchings. Connect the first of these graphs to Bi
by a matching. Enforce 3-regularity by adding a red terminal vertex pi
connected to the remaining 3 vertices of degree 2;

– for each i ∈ {1, . . . , 3q − 1}, add the edges a3i b
1
i+1 and b3i a

1
i+1;

– add the edges a11b
1
1 and a33qb

3
3q.

Observe that the graph G obtained through Construction 4 is bipartite: in
Figure 4 bipartiteness is depicted by the shape of the vertices, edges all have
one square-shaped endpoint and one circle-shaped endpoint. G is also cubic.
It contains 24q red vertices and 93q blue vertices. The construction is done in
polynomial time. The following lemma proves that in order to connect all the
red terminal vertices (pi) to the red vertices Bi, ”a lot” of blue vertices are
mandatory.

Lemma 4. Let (X,C) be an instance of X3C3, C = {c1, . . . , c3q} and X =
{1, . . . , 3q}. Let G = (V,E) be an instance of BCS obtained from (X,C) through
Construction 4. Let S be a BCS of G of size 48q. Then S contains at most 7q
blue vertices belonging to set-gadgets.
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Proof. Since |S| = 48q, S contains all the red vertices. In particular S contains
{p1, . . . , p3q}. Since G[S] is connected, each pi must be connected to Bi. Denote
λi the number of internal vertices in a shortest path from pi to Bi in G[S].
Observe that λi is at least 4 if i ≤ q

2 , and at least 6 otherwise. The number of
vertices required to connect {p1, . . . , p3q} to the rest of S is:

3q∑
i=1

λi =

q
2∑
i=1

λi +

3q∑
i= q

2+1

λi (1)

≥ 4× q

2
+ 6× 5q

2
(2)

≥ 17q (3)

Since S contains 24q blue vertices and at least 17q form paths connecting
{p1, . . . , p3q} to {B1, . . . , B3q}, the number of vertices belonging to set-gadgets
cannot exceed 7q thus the lemma holds.

We now prove the existence and unicity of a solution to an integer linear
program that will describe how ”expensive” (in the number of blue vertices) it
is to connect all the element-vertices to the other red vertices.

Lemma 5. Let q ∈ N and (L) be the following integer linear program:

min 7u1 + 5u2 + 3u3
s.t.

3u1 + 2u2 + u3 = 3q (1)

u1, u2, u3 ∈ N

u2 = u3 = 0 and u1 = q is the unique optimal solution to (L).

Proof. Let (u1, u2, u3) be an optimal solution to (L).

– If u2 > 0, then u3 = 0 because if u3 > 0 then (u1 + 1, u2 − 1, u3 − 1 has
better cost which is absurd). Assuming u3 = 0, the constraint (1) becomes
3u1 + 2u2 = 3q which implies u2 ≥ 3 since u2 > 0. Now (u1 + 2, u2 − 3, u3)
has lower cost, this is absurd therefore u2 = 0.

– Assume u3 > 0. With u2 = 0, the constraint (1) becomes 3u1 + u3 = 3q
which implies u3 ≥ 3. Now (u1 + 1, u2, u3 − 3) has lower cost, this is absurd
therefore u2 = 0.

We now have u2 = u3 = 0 and necessarily u1 = q to satisfy (1) and the
lemma holds.

Theorem 6. Balanced Connected Subgraphis NP-complete in bipartite
(sub)cubic graphs.

Proof. Let (X,C) be an instance of X3C3 and G = (V,E) the graph obtained
from (X,C) through Construction 4. Let us prove that (X,C) is positive if and
only if G contains a BCS of size 48q.
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⇐ If G contains a BCS, S, of size 48q we claim that S contains exactly q
paths of length 7, spread across q distinct set gadgets. To prove this, we reason
on how the set-gadgets are used to connect elements. Denote R ⊂ V the set of
red vertices in G, and R↑ ⊂ R the red vertices that are not element-vertices.

Since |S| = 48q, S contains all the red vertices. In particular, S contains all
the element-vertices. For an element x to be connected to R↑, S must contain
a path from x to R↑ and that path goes through vertices of set-gadgets. Either
the vertices of this path belong to a unique set-gadget, or they belong to several.
In case the path spreads across several set-gadgets, it must go through other
element-vertices, one of them being connected to R↑ by a path belonging to a
unique set-gadget.

(a) Type-1 (b) Type-2 (c) Type-2 (d) Type-2

(e) Type-2 (f) Type-3 (g) Type-3

Fig. 5: Different types of gadget usage in a BCS. Type-1 gadgets connect 3 ele-
ment to the top using at least 7 vertices. Type-2 gadgets connect 2 elements to
the top using at least 5 vertices. Type-3 gadgets connect 1 element to the top
using at least 3 vertices.

Now, see Figure 5. We classify the gadgets in three types, depending on how
they connect elements in S. We abuse notation by saying that S contains a
gadget when we actually mean that S contains some vertices of said gadget.

– Type-1 gadgets connect three elements to R↑. At least seven vertices of those
gadgets must belong to S.

– Type-2 gadgets connect two elements. Here, we have three cases:
• the two elements are connected to R↑ by a structure reaching one of the

top vertices of the gadget (see Figure 5b and Figure 5d);
• one of them directly to the top and the other to another element (Figure

5e)
• the two elements are connected to another element (Figure 5c)

In all cases, S contains at least five vertices per type-2 gadget.
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– Type-3 gadgets connect 1 element. Either directly to R↑ or to another ele-
ment somehow connected. In both cases, S contains at least 3 vertices per
type-2 gadget.

Denote u1 the number of type-1 gadgets in S, u2 the number of type-2 gadgets
and u3 the number of type-3 gadgets. By construction, 3u1 + 2u2 + u3 = 3q.
In addition, the number of blue vertices in S belonging to set-gadgets is at
least 7u1 + 5u2 + 3u3. (u1, u2, u3) is thus a solution to the linear program (L)
described in Lemma 5 and 7u1 + 5u2 + 3u3 is the objective function of (L).
Since (L) has a unique optimal solution costing 7q, (u1, u2, u3) must be optimal
because otherwise 7u1 + 5u2 + 3u3 > 7q which is absurd by Lemma 4. We thus
have u1 = q and u2 = u3 = 0 i.e. S contains exactly q type-1 gadgets, and for
each of those gadgets, exactly 7 blue vertices belong to S. Since each type-1
gadget connects 3 red vertices, the set of type-1 gadgets in S corresponds to an
exact cover in (X,C), therefore if G contains a BCS of size 48q then (X,C) is
positive.
⇒ If (X,C) is positive, then there exists q sets in C covering X exactly. Take

all the red vertices in G, and for each set in the exact cover pick a path of length
7 in the corresponding set gadget (see Figure 5a). Connect the red accordion
to the sinks pi using exactly 17q blue vertices. The structure thus obtained is a
BCS of size 48q in G.

BCS belonging to NP, and X3C3 being NP-complete, the discussion above
proves the NP-completeness in cubic bipartite graphs. Observe that some edges
incident to the terminal vertices pi can be removed, and these deletions do not
impact the reduction, therefore the problem remains NP-complete on subcubic
graphs, the theorem holds.

Inapproximability bipartite with bounded degree In this section, we show
that BCS is not approximable within any constant ratio, even if restricted to
bipartite graphs of maximum degree four. We reuse the construction given in
[3], when the authors prove that finding a BCS containing a specific vertex is
NP-complete. The reduction is based on X3C problem which is NP-complete
[10].

Exact Cover by 3-Sets (X3C)
Input: A universe X = (x1, . . . , x3q) and a collection C = (c1, . . . , cm)
Question: Is there a subcollection C ′ ⊂ C such that each element of X

is contained in exactly one subset of C ′?

The idea is to encode an X3C instance into a bipartite graph (the classical
graph representation of an X3C instance) plus a ”long” path, and connect all
the vertices encoding sets to one extremity of the path. The X3C instance is
then positive if and only if there is a BCS containing the whole path. We then
use this construction in a gap reduction by making copies of the obtained graph.
For the sake of clarity, Theorem 7 states inaproximability in bipartite graphs,
we then give clues to the reader as to why the result holds for bipartite graphs
of maximum degree four.
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y

x

1 9

Fig. 6: Construction of an instance of BCS from an instance of X3C. Here C =
({1, 3, 5}, {2, 3, 6}, {2, 4, 9}, {6, 7, 8}), X = {1, . . . , 9}.
Construction 5 Let (X,C) be an instance of X3C, X = (x1, . . . , x3q), C =
(c1, . . . , cm). We build G = (V,E) an instance of BCS as follows:

– for all xi ∈ X, add a red vertex xi to G (element-vertex);
– for all ci ∈ C, add a blue vertex ci to G (set-vertex), and for all xk ∈ ci, add

the edge xkci to G;
– add a blue vertex y to G along with the edges yci for all ci ∈ C;
– add a blue path of length 2q starting at y and call x the last vertex of the

path.

G contains 5q +m vertices and 4m+ 2q − 1 edges.

The transformation is done in polynomial time, and illustrated by Figure 6.
Lemma 6 uses the construction above to reduce X3C to BCS with a compul-

sory vertex (à la [3]).

Lemma 6. Let (X,C) be an instance of X3C and G = (V,E) the graph obtained
through Construction 5. There is a BCS containing x (of size 6q) in G if and
only if (X,C) is a positive instance.

Proof. ⇒ Let X be a BCS containing x. x being balanced and connected, it
contains the path from x to y, then some blue set-vertices and finally some
red element-vertices. Let l be the number of set-vertices contained in X. X
contains 2q+ l blue-vertices. For it to be balanced it has to contain 2q+ l red
vertices and therefore at least 2q+l

3 set-vertices (because sets contain three

elements). We thus have l ≥ 2q+l
3 giving l ≥ q.

On the other hand, X contains 2q + l red vertices but there are only 3q of
them, we thus have l ≤ q.
In the end, l = q and X contains exactly q set-vertices and all the element-
vertices, the corresponding sets thus form a solution to (X,C).

⇐ Trivial.

Construction 6 Let (X,C) be an instance of X3C and G = (V,E) the graph
obtained from (X,C) through Construction 5. We build an instance G′ of BCS
using ρ copies of G, (G0, . . . , Gρ), and adding a path connecting all the copies
by their x-vertex. Each x-vertex for each copy of Gi,∀i ∈ {0, . . . , ρ}, i.e. the last
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vertex of a path beginning by y in Construction 5 will be denoted by xi,∀i ∈
{0, . . . , ρ} in the following.

x0 x1
. . .

xρ

G0 G1 Gρ

Fig. 7: Building an arbitrarily large instance of BCS for bipartite bounded graph
from an instance of X3C by considering xj-vertex ∀j. A similar graph is also used
for planar bounded (resp. chordal) graph inapproximation result.

This construction is illustrated by Figure 7.

Theorem 7. BCS in bipartite graphs is not approximable within any constant
ratio unless P =NP.

Proof. Assume that there exists ρ ∈ R+ and a polynomial-time running ρ-
approximation algorithm A for BCS i.e. for any instance of BCS, if we denote
K the size of the solution returned by A and K∗ the size of an optimal one then
we have ρ ≥ K∗

K .
Let p = ρ+ 1 the number of G-copies.
Now run A on G′ and denote K the size of solution it returns. Let K∗ be

the size of an optimal solution. Using Lemma 6, we have that either K∗ > 6q
and (X,C) is a yes-instance, or K∗ = 6q and (X,C) is a no-instance. Indeed, if
K∗ > 6q then this solution contains red vertices taken from at least two copies
of G: Gi and Gj . For the solution to be connected, it must contain xi and xj .
Observe that, by construction, a connected subgraph of G containing x contains
necessarily more blue vertices than red vertices. Now, using Lemma 6, since xi

belongs to the solution, (X,C) is positive. Conversely if K∗ = 6q, it means that
there is no BCS in G reaching the x vertex and therefore (X,C) is a no-instance.

– If K ≤ 6q then K∗ ≤ 6ρq < 6pq because A is ρ− approximate. In this case
we can conclude that (X,C) is a no-instance.

– If K > 6q then K∗ > 6q and (X,C) is a yes-instance.

In both cases, A solves X3C in polynomial time. That is absurd unless P = NP.
Moreover, the graph G′ is bipartite by construction, the theorem thus holds.

Construction 5 can be adapted to obtain a bipartite graph of maximum
degree four. Instead of an instance of X3C, start with an instance of X3C3.
After the transformation, add some dummy sets and elements to ensure that
the number of sets is a power of two. Add a full binary tree rooted at y which
leaves are the set-vertices. Add pendant red vertices to all the internal nodes of
the tree. Under those assumptions, Lemma 6 still hold and so does Theorem 7.

Corollary 2. Balanced Connected Subgraph in bipartite graphs of max-
imum degree four is not approximable within any constant ratio unless P = NP.
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Inapproximability for planar graph with bounded degree In this part we
consider the BCS problem in planar graph with bounded degree. We show that
there is no hope to find an efficient approximation algorithm with a constant
ratio. The proof is based on the Steiner Tree problem [12].

Steiner Tree (ST)
Input: A graph Gst = (Vst, Est), a subset X ⊂ Vst, an integer k.
Question: Is there T ⊂ Est such that |T | ≤ k, Gst[T ] is connected and

X ⊂ V (Gst[T ])?

ST problem remains NP-complete even for subcubic planar graph [4].

Construction 7 Let (Gst, X, k) be an instance of ST with Gst = (Vst, Est),
X ⊆ V , |V | = n and |X| = m. We generate G = (V,E) an instance of BCS as
follows:

– Let G be a copy of G′ in which all vertices are blue.
– For each blue-vertex xi ∈ X, add a red vertex x′i and the edge xix

′
i.

– For each vertex x′i, take a path of n red vertices starting at yi1 ending by yin.
– Create a path of red vertex of size k + 1−m) beginning at z1 and ending at
z(k+1)−m.

– Add an edge y1nz1.
– Add a path of blue vertex of size mn beginning at w1 and ending at wmn.
– Add an edge ymn w1.

G′ contains 2mn+ n+ k + 1 vertices.

Assume that wmn lies on the boundary face of a plane embedding. Lemma 7
uses Construction 7 above (illustrated by Figure 8) to reduce an instance of ST
to an instance of BCS with an obligatory vertex.

Lemma 7. Let (Gst, X, k) be a instance of ST and G = (V,E) the graph ob-
tained by Construction 7. There is a connected balanced subgraph H containing
wmn of size 2((k + 1) +mn) if and only if (Gst, X, k) is a yes-instance.

Proof. Assume that there is a connected balanced subgraph H, of size 2((k+1)+
mn) containing wmn. Since H is balanced, connected and has 2((k + 1) + mn)
vertices including wmn, it must contain all the path from w1 to wmn, all the red
vertices from G, the m vertices of X and l vertices from V \X. Thus H contains
exactly l = ((k + 1) −m) vertices from V \X, which corresponds to a positive
solution for (Gst, X, k).

Assume that S is yes-instance of (Gst, X, k). The subgraph H is composed
of the path from w1 to wmn, all the red vertices and the vertices corresponding
to S. It is connected, balanced and has a size of 2((k + 1) +mn).

Construction 8 Let (Gst, X, k) be a instance of ST. We consider the graph G,
obtained by ρ + 1 copies of G (the graph G is the graph obtained using Con-
struction 7) and the path between the wmn-vertex of all copies. As the same as
previously, each wmn-vertex for each copy of Gi,∀i ∈ {0, . . . , ρ}, will be denoted
by wimn,∀i ∈ {0, . . . , ρ} in the following.
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Gst

V \X

x1 x2 x3 ... xm

x′1 x′2 x′3 ... x′m

y11 y21 y31 ... ym1

... ... ... ... ...

y1n y2n y3n ... ymn

z1

...

z(k+1)−m

w1

...

wmn

Fig. 8: Graph G obtained from Construction 7.

w0
mn w1

mn
. . .

wρmn

G0 G1 Gρ

Fig. 9: Building an arbitrarily large instance of BCS for planar bounded graph
from an instance of ST.

This construction is illustrated by Figure 9, by considering wjmn − vertex.

Theorem 8. Balanced Connected Subgraph problem cannot be approxi-
mated by any constant factor for planar graphs with an obligatory vertex unless
P = NP.

Proof. Assume that there is ρ ∈ R+ and an ρ-approximate algorithm A in
polynomial-time for the BCS in planar graphs. Let p = ρ + 1. Let K be the
size of the solution obtained by A on G and K∗ the size of the optimal solution.
Thanks to Lemma 7 we have either K∗ > 2((k + 1) + mn) and (Gst, X, k) is a
yes-instance, or K∗ ≤ 2((k + 1) +mn) and (Gst, X, k) is a no-instance.

Thus if K∗ > 2p((k+ 1) +mn), like K ≥ K∗

ρ , then K > 2((k+ 1) +mn). In

contrast if K∗ ≤ 2((k + 1) +mn) then K ≤ 2((k + 1) +mn).
So, using the ρ-approximation algorithm A we can distinguish between yes-

and no-instances, thus solving the ST problem.

The prescription vertex condition for wmn can be replaced by a blue vertex
u1, a red vertex u2 and the edges wmnu1, u1u2. Thus the search for a balanced
graph of size 2(k + 1 + mn) containing wmn becomes a search for a balanced
graph of size 2(k + 1 +mn+ 1). We now have the following corollary.

Corollary 3. Balanced Connected Subgraph problem cannot be approxi-
mated by any constant factor for planar graphs unless P = NP.

The ST problem is still NP-complete for subcubic planar graphs [4], so we
can state the following corollary.
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Corollary 4. Balanced Connected Subgraph problem cannot be approxi-
mated by any constant factor for planar graphs with maximum degree four unless
P = NP.

4.2 Inapproximability results for chordal graph

In this section, we show that BCS problem cannot be approximated by any
constant factor unless P = NP for chordal graph. Recall first that BCS remains
NP-complete even for chordal graph [3].

Construction 9 Let (X,C) be an instance of X3C, with X = (x1, . . . , x3q)
and C = (C1, . . . , Cm). We generate an instance G = (V,E) of BCS from the
instance (X,C) of X3C as follows:

– ∀xi ∈ X, create a red vertex xi (vertex-element), and ∀ci ∈ C, create a blue
vertex ci (vertex-collection).

– ∀xk ∈ ci, take the edge xkci, and ∀ci, cj ∈ C, add the edge cicj.
– Create a blue vertex y and the edges yci ∀ci ∈ C.
– Add a blue path of size 2q + 1, beginning at t1, . . . t2q−2, z and z′.
– Create a red vertex z′′ and the edge z′z′′.

G contains 5q +m+ 2 vertices within 1 + 3q red vertices.

t1 t2q−2

t2 z z′ z′′

CmC1

x1 x3q

Fig. 10: An instance of BCS obtained by Construction 9 from an instance (X,C)
of X3C.

Lemma 8 uses Construction 9 (based on the construction proposed in [3]) above
(illustrated by Figure 10) to reduce an instance X3C to an instance of BCS.

Lemma 8. Let (X,C) be an instance of X3C and G = (V,E) the graph obtained
by Construction 9. There is a BCS denoted H of size 6q + 2 in G if and only if
(X,C) admits yes-instance solution.

Proof. Assume that there is a connected balanced subgraph H of size 6q + 2
in G. Since H is balanced, connected and has 6q + 2 vertices, it must contain
the vertex z, the path from y to x, l blue vertex-collections and all the 3q red
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vertex-elements. Since l = q, H contains exactly q vertex-collections and all the
vertex-elements, we can trivially obtain a positive solution for (X,C).

On the other hand, assume that instance (X,C) admits a positive solution
S. The subgraph H composed of the path from z′′ to t1, all the vertex-elements
and the vertex-collections corresponding to the collections in S is a BCS of G of
size 6q + 2.

Recall that the following Theorem was proposed first by [3] (see Lemma 3 of
Section 2.3.). The construction of an instance BCS will be used in Construction 9.

Theorem 9. There exists a feasible solution containing z for BCS in chordal
graph iff X3C admits a positive solution and this solution is equal to 6q.

Proof. Consider Construction 9 in which the vertices z′ and z′′ are omitted.
Assume that z is in a solution S of size strictly less than 6q. The size of S is
6q − 2l with l ≥ 1. So there are 3q − l blue (resp. red) vertices in S. Since the
path between z and t1 must be in the solution, there are at most (q − l − 1)
vertices among vertices-collection in S. Therefore at most 3(q−l−1) red-vertices
is covered by the previous vertices, impossible.

Construction 10 Let (X,C) be a instance of X3C and G = (V,E) the graph
obtained by Construction 9 in which vertices z′ and z′′ are omitted. We generated
an instance G′ of BCS with ρ copies of G ((G0, . . . , Gρ)) and a path between the
z-vertex of all copies.

z0 z1
. . .

zρ

G0 G1 Gρ

Fig. 11: Building an arbitrarily large instance of BCS for chordal graph from an
instance of X3C.

This construction is illustrated by Figure 11.

Corollary 5. Balanced Connected Subgraph problem cannot be approxi-
mated by any constant factor for chordal graphs unless P = NP.

Proof. Based on Construction 10, clearly we have the two following cases:

– if there exists positive solution on a graph Gi, for a fixed i, the value of a
solution is 6q with z in the solution, and the value on graph G′ is obvious
6qρ.

– whereas in the negative case the value is at most or equal 6q but the vertex
z cannot be in this solution, and the value of the solution on graph G′ is
also 6q.

Thus the gap between yes/no-instance is ρ, which proves the inapproxima-
bility of BCS even if the input graph is a chordal graph.
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5 Conclusion

In this article we pursued the classification of the BCS problem related to graph
classes.

A further interesting question leads to the study of parameterized complexity
for these problems. The parameter could be the difference between the number
of red vertices and blue vertices. In this paper, we improved the complexity
results for BCS. We gave a proof of NP-completeness in bipartite cubic graphs,
graphs of diameter three and bipartite graphs of diameter four. Our results nicely
complement the ones of [3]. Indeed, they proved BCS to be polynomially solvable
in graphs of diameter two and in graphs of maximum degree two.

Despite remaining computationally difficult in restrictive settings, BCS pa-
rameterized by the size of the solution belongs to FPT . Indeed, as we stated in
the introduction, BCS can be Turing-reduced to the graph motif problem. Since
this problem parameterized by the size of the motif is FPT , it implies that BCS
parameterized by the size of the solution is FPT as well. On the negative side,
our results in graphs of bounded degree and bounded diameter imply that BCS
parameterized by the diameter or the maximum degree of the input graph is in
fact not FPT .
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Highlights

• we study Balanced Connected Subgraph Problem (BCS) , its weighted version (WBCS) and a related problem : Specified Red/Blue
Cardinality Connected Subgraph (SCCS).

• we propose several new complexity and inapproximation results for these problems:
• BCS is NPC and noAPX on chordal graphs.
• BCS is NPX and noAPX on planar or bipartite graphs with maximum degree 4.
• BCS is also NPC on graphs with diameter 3 , on bipartite graphs with diameter 4, and on bipartite graphs with maximum degree 3.




