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This work is devoted to the study of the Balanced Connected Subgraph Problem (BCS) from a complexity, inapproximability and approximation point of view. The input is a graph G = (V, E), with each vertex having been colored, "red" or "blue"; the goal is to find a maximum connected subgraph G = (V , E ) from G that is color-balanced (having exactly |V |/2 red vertices and |V |/2 blue vertices). This problem is known to be N P-complete in general but polynomial in paths and trees. We propose a polynomial-time algorithm for block graph. We propose some complexity results for bounded-degree or bounded-diameter graphs, and also for bipartite graphs. We also propose inapproximability results for some graph classes, including chordal, planar, or subcubic graphs.

Introduction

In this paper, we consider the combinatorial optimization problem Balanced Connected Subgraph. Given a connected bichromatic graph G = (V, E)a graph having its vertices colored with two colors blue or red, not necessary proper -, the goal is to determine a maximum subset V ⊆ V such that V is balanced -with the same number of blue and red vertices -and subgraph induced by V is connected.

Balanced Connected Subgraph (BCS)

Input: A graph G = (V, E), with vertices set V = V blue ∪ V red partitioned into sets of blue and red vertices respectively. Question: Find V = (V blue ∪V red ) ⊆ V , such that V blue ⊆ V blue and V red ⊆ V red , that induces a maximum connected subgraph H with |V blue | = |V red |.

Related work

Many well-studied combinatorial optimization problems consist in finding induced subgraphs with a given property. For instance, finding a maximum clique number of motif searches in a 2-colored graph: all one has to do is to search for the motif {red,...,red, blue,..., blue} with k occurrences of red and blue, then k + 1 occurrences of each, and so on, upon either finding a balanced connected subgraph or having proved that none exists. GM was first introduced by [START_REF] Lacroix | Motif search in graphs: Application to metabolic networks[END_REF] in the context of metabolic networks. They showed that GM is N P-complete even if the input graph is restricted to be a tree. Fellows et al. [START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF][START_REF] Fellows | Upper and lower bounds for finding connected motifs in vertex-colored graphs[END_REF] further proved that GM remains N P-complete in trees of maximum degree 3, and even if the input graph is a 2-colored bipartite graph of maximum degree four. As a positive result, they gave an FPT algorithm for GM parameterized by the size of the motif in the general case. Since BCS can be solved by solving a polynomial number of instances of GM, using their FPT algorithm to do so would result in an FPT algorithm for BCS parameterized by the size of the solution.

Consider an optimization variant of GM: find the largest connected sub-graph which multi-set of colors is included in the given motif [START_REF] Dondi | Maximum motif problem in vertex-colored graphs[END_REF]. Moreover we proved this variant to be APX -hard in trees of maximum degree three.

A rather comprehensive list of applications for MWCS can be found in [START_REF] Bhore | The balanced connected subgraph problem[END_REF]. While we do not motivate BCS with further practical applications, we believe it may prove to be useful in network design applications (where the colors represent roles assigned to the vertices), social data-mining (colors represent classes of individuals), or even electoral applications (see [START_REF] Apollonio | Bicolored graph partitioning, or: gerrymandering at its worst[END_REF] for a study of gerrymandering as a graph partitioning problem with a red-blue colored graph as input).

On the other hand, BCS appears of interest in a purely theoretical point of view. The problem is quite hard complexity-wise, and can be generalized in a lot of different ways. For instance, one can loosen the "balanced" constraint and ask for a connected subgraph minimizing the ratio between the number of red vertices and blue vertices. Other generalizations would be increasing the number of colors in the input coloration, enforcing the subgraph being looked for to have additional properties (being a path, tree, 2-connected . . . ), or coloring the edges instead of the vertices.

Our contributions

The contributions of this paper are summarized by Table 1.

We study the computational complexity of BCS for bichromatic graph, in some restricted cases, namely bipartite graphs of diameter four, graphs of diameter three, bipartite sub-cubic graphs . . . In each case, we establish the N Pcompleteness of BCS by polynomial-time reduction from well-known problems and we propose some inapproximability results according to some topologies. We propose a approximation with non constant ratio. We extend the hardness for 3-colored graph even if the diameter is two.

Organization of the paper In the next section, we propose a polynomial time algorithm for block graph. Section 3 is dedicated to N P-completeness and nonapproximation proofs in bounded-diameter graphs: bipartite graphs of diameter four, and graph of diameter three. Complexity results is extended to the case of three colors and diameter two is also presented. Section 4 focuses on bipartite (sub)cubic graphs, on planar graph with bounded degree in complexity and inapproximation viewpoint.

Polynomial time algorithm for block graph

A block graph is a graph where all the biconnected components are cliques.

Recall that block graphs are a particular case of chordal graphs. In this part, we give a polynomial-time algorithm for the BCS problem on block graphs. We focus on this graph class since for trees the problem admits a polynomial-time algorithm while it is N P-complete for chordal graphs [START_REF] Bhore | The balanced connected subgraph problem[END_REF]. Let G = (V, E) be a block graph with V red < V blue . We begin by observing that, at least one articulation point of G belongs to one of optimal solutions for each instance. Indeed, if optimal solution has no articulation point, it is part of only one clique. Then this clique contains vertices of the solution of both colors. So we can exchange one of the articulation points without changing the size of the solution. Thus if at least one vertex of a clique is in the optimal solution then there is also at least one articulation point in it.

Let Q be the set of all blue articulation points, and let G = (V , E ) be the graph G induced by Q ∪ V red . Clearly, we have V red = V red . Without loss of generality, we suppose that V red < V blue (otherwise there is a trivial optimal solution containing V red ∪V blue and |V red |-|V blue | random vertices from blue -Q). Lemma 1. For each optimal solution on a graph G, there exists a solution on G of same size which is included into graph G .

Proof. Let S be an optimal solution on graph G, we note S red (resp. S blue ) the red vertices (resp. blue vertices) from S.

Recall that

|S red | = |S blue |, and |S red | ≤ |V red | = |V red | < |V blue |, implying that |S blue | < |V blue |. If there exists a blue vertex x ∈ S blue -V blue then x /
∈ Q, and can be replaced in S by any other vertex y from V blue -S blue . Note y always exists as |V blue | > 1. Thus one obtain a solution S * included in V .

As a consequence of Lemma 1, it is sufficient to compute a optimal solution on G instead of on G.

Observation 1 Let us consider an optimal solution S of G . Let us construct a breadth-first search tree in G restricted to vertices from S and starting from an articulation point x of G . This tree is contained in the breadth-first search tree starting in G' starting from the same articulation point x but not restricted to vertices from S.

Based on Lemma 1 and Observation 1, we propose Algorithm 1 for solving block graph instances. This algorithm consists in [START_REF] Apollonio | Bicolored graph partitioning, or: gerrymandering at its worst[END_REF] deleting the edge between two vertices if none is an articulation point (2) generating a spanning tree for each articulation point following a breadth-first search, and (3) computing an optimal solution on each spanning tree using algorithm proposed in [START_REF] Bhore | The balanced connected subgraph problem[END_REF].

Let BF S(G, x) be a spanning tree of G computed by following a breadthfirst search from x. Finally, bhore(T ) is the optimal solution obtained on T using algorithm [START_REF] Bhore | The balanced connected subgraph problem[END_REF]. Proof. First note that Bhore's improved algorithm proposed in [START_REF] Bhore | The balanced connected subgraph problem[END_REF], Lemma 5, produces all possible balanced subtrees rooted at a root t in O(n 4 ) time complexity for trees.

Algorithm 1: Polynomial time algorithm on block graphs

Data: a connected bichromatic block graph G = (V, E) Result: a subgraph G ⊆ G of order |G | 1 G ← ∅; /*
if G[V -{x}] is connected and G[V -{y}] is connected] then 4 E ← E -{x
We suppose G contains at least one articulation point -otherwise the solution is trivial as G is a clique. It is not difficult to see that for each articulation point x, all vertex sets that contain x and induce a connected subgraph of G also induce a connected subgraph of T , thus all solutions containing x are considered by our algorithm. Since there exists an optimal solution that contains an articulation point, this proves the correctness of our algorithm.

For each articulation point x we construct a BFS-spanning tree rooted on x (at most n trees) and run Bhore's improved algorithm on it.

There will necessarily be at least a spanning tree that contains the optimal solution for G.

The overall time complexity is O(n 5 ).

Corollary 1. In a recent result proposed in [START_REF] Kobayashi | Algorithms and hardness results for the maximum balanced connected subgraph problem[END_REF], BCS can be solved in O(n 2 ) time for trees. Using this result we can improve the time complexity of our algorithm to O(n 3 ).

3 Bounded-diameter graphs

Bipartite graphs of diameter four

In the following, we prove that BCS remains N P-complete in graphs of diameter four. The reduction is based on Dominating Set in graphs of diameter two, which is N P-complete [START_REF] Lokshtanov | Hardness of r-dominating set on graphs of diameter (r + 1)[END_REF]. The following construction transforms any graph of diameter two into a 2-colored bipartite graph of diameter four.

Dominating Set (DM)

Input: G = (V, E) and k a integer. Question:

Does G contain D ⊂ V (G) s.t. |D| ≤ k and for all x ∈ V (G), either x ∈ D or x ∈ N (y) for some y ∈ D?
Construction 1 Let G = (V, E) be a graph on n vertices and k ∈ N. We build G = (V , E ) an instance of BCS as follows:

-

add 2n blue vertices V 1 = {v 1 1 , . . . , v 1 n } and V 2 = {v 2 1 , . . . , v 2 n }; -add n + k red vertices Q = {q 1 , . . . , q n } and P = {p 1 , . . . , p k }; -for all i ∈ [n], add the edge v 2 i q i ; -for all i ∈ [n], for all w ∈ N [v] add the edge v 1 i w 2 ; -for all i ∈ [n], for all j ∈ [k] add the edge v 1 i p j .
Construction 1 is clearly done in polynomial time and illustrated by Figure 1. If the base graph G has diameter two, then the graph G obtained after transformation has diameter four. Indeed, each couple (x, y)

∈ V 1 × V 1 or V 2 × V 2
can be connected by a path of length two between x and y. It follows that each couple (x, y) ∈ V 1 × V 2 can be connected by a path of length at most three. Finally, since all the red vertices have a neighbor in V 1 or V 2 , and G [P ∪ V 1 ] is a complete bipartite graph, any pair of red vertices can be connected by a path of length at most four. Proof. Let G be a graph of diameter two and k ∈ N * . Let G be the graph obtained from G using 1. Let us prove that G contains a dominating set of size k if and only if G has a BCS of size 2(n + k).

⇒ if G contains a dominating set D of size k, then let D 1 ⊂ V be the vertices of V 1 in G corresponding to D. B = {v ∈ V : v is red } ∪ V 2 ∪ D 1 contains n + k red vertices and n + k blue vertices. Since D is a dominating set in G, every vertex in V 2 is connected to a vertex of D 1 . G [B] is thus connected and balanced. ⇐ if G has a BCS S of size 2(n + k),
then it has to include all the red vertices.

For the pendant red vertices to be connected in S, S must include V 2 . Since V 2 is of size n, S contains exactly k other blue vertices, and those vertices belong to V 1 . Moreover, V 2 being an independent set and S being connected, every vertex of V 2 must be connected to at least one vertex in

V 1 ∩ S. The vertices of G corresponding to V 1 ∩ S in G thus form a dominating set of size k.
Since DM is N P-complete in graphs of diameter two [START_REF] Lokshtanov | Hardness of r-dominating set on graphs of diameter (r + 1)[END_REF], and BCS being in N P, the discussion above proves the theorem.

We propose to extend previous complexity result to derive a lower bound for Exact Algorithms. Assuming ET H, there is no 2 o(n) time algorithm for DM [START_REF] Lokshtanov | Lower bounds based on the exponential time hypothesis[END_REF] and since Construction 1 leads a linear transformation we obtain the following Theorem. Theorem 3. Assuming ET H, there is no 2 o(n) time algorithm for Balanced Connected Subgraph in presence of bipartite graphs of diameter four.

Graphs of diameter three

To prove that BCS remains N P-hard in graphs of diameter three, we design a reduction from Colorful Connected Subgraph which is stated as follows.

Colorful Connected Subgraph (CCS)

Input: G = (V, E) a p-colored graph, k ∈ N s.t. k ≤ p.
Question: Does G contain a connected subgraph of size at least k which each color appears at most once in ?

To the best of our knowledge, the complexity of CCS -as stated above -is not clearly established. To show that CCS is N P-complete, we use a result given by [START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF] on the Graph Motif problem. Recall that GM consists, given a colored graph G = (V, E) and a multiset of colors M, in finding a connected subgraph of G which multiset of colors is exactly M.

[7] show in their Theorem 1 that GM remains N P-hard even if the motif M is colorful, that is each color appears at most once in M. In their reduction, the instance of GM they obtain is such that the motif M is exactly the set of all colors. Therefore, GM remains N P-complete even if M is the set containing each color once. Now, one can observe that CCS is N P-hard because in case p is equal to k, then CCS is equivalent to GM in the aforementioned case. The following lemma holds, since CCS is clearly in N P.

Lemma 2. Colorful Connected Subgraph is N P-complete.
We now reduce CCS to BCS in graphs of diameter three. The idea of the construction is to create a clique containing one red vertex and "a lot" of blue ones for each color. The cliques are then interconnected, making sure that any pair of cliques is connected by at least one edge.

Construction 2 Let G = (V, E) be a graph and c : V → {1, . . . , p} a p-coloring of its vertices. We build G = (V , E ) a 2-colored graph in the following way (refer to Figure 2).

-V = C 1 ∪ C 2 . . . ∪ C p with C i = {x ∈ V : c(x) = i} ∪ {r i }.
• For all i ∈ {1, . . . , p}, G [C i ] is connected as a clique, and each one of its vertices, except r i , is blue. -For all uv ∈ E, add the corresponding edge to G .

-For all C i , C j such that there is no edge between C i and C j , add a blue vertex x j i to C i (connected to every vertex in C i ) and a blue vertex x i j to C j (connected to every vertex in C j ), as well as the edge x j i x i j . Construction 2 can be applied in polynomial time. The resulting graph has diameter three since it is composed of pairwise connected cliques. Figure 2 gives a example. Theorem 4. Balanced Connected Subgraph is N P-complete in graphs of diameter three.

Proof. Let G = (V, E) be a graph and c : V → {1, . . . , p} a p-coloring of its vertices. Let G = (V , E ) be the 2-colored graph obtained by applying Construction 2 to G. Let k ∈ N, k ≥ 3. We claim that G has a CCS of size at least k if and only if G has a BCS of size at least 2k.

⇒ If G has a CCS, S, of size at least k, then the corresponding vertices in G are blue and induce a connected subgraph intersecting each clique at most once. For each clique that S intersects, just add said clique's red vertex to S. Doing so, we build a balanced connected subgraph in G of size at least 2k.

⇐ If G has a BCS, S, of size at least 2k then its contains at least k red vertices belonging to at least k different cliques. Since the neighborhoods of red vertices are pairwise disjoint, each red vertex must have exactly one blue neighbor (in its clique) belonging to S. Assume that a vertex x j i belongs to S, then it is the sole neighbor of r i . In order to connect r i to other red vertices, x i j has to belong to S. Now since x i j is assumed to belong to S, r j cannot have any other blue neighbor in S. Under those assumptions, S cannot be of size greater than four which absurd because we assumed k ≥ 3. Therefore, vertices of type x j i cannot belong to S, and every blue vertex in S corresponds to a vertex in G. Since the red vertices have degree 1 in S, removing them from S does not break the connectivity and thus the set of blue vertices in S corresponds to a connected subgraph in G. Since S contains at most one blue vertex per clique, the set of blue vertices of S is a CCS of size at least k in G.

The previous discussion concludes the polynomial-time reduction from CCS to BCS. Since the instance of BCS obtained through Construction 2 have diameter three, the theorem holds.

Three colors and diameter two

In this section we extend the model by considering a 3-colored graph instead of bichromatic. In such context we present a N P-complete result for graph admitting a diameter two. Recall that for two colors and diameter two the problem admits a polynomial-time algorithm [START_REF] Bhore | The balanced connected subgraph problem[END_REF]. Clearly, for diameter one the problem is trivial. Construction 3 Let I be an instance of CCS with k-colors, we will construct an instance I of BCS with three colors in the following way:

Let G an input graph and let V i be the set of vertices with color i in an instance I of CCS.

-We add 2k vertices X = {x 1 , x 2 , . . . , x k } and Y = {y 1 , y 2 , . . . , y k } to the graph G. -A edge from x i -vertex (resp. y i -vertex) to V i -vertices is added.

-We add k(k -1) vertices Z = {z ij |i = j, i, j ∈ {1, . . . , k}}.

-For each z ij -vertex we add edge from z ij to x i (resp. y j ) and add a complete graph between z ij and V i , ∀i (resp. V j , ∀j). -The X-vertices (resp. Y -vertices) are colored in blue (resp. red). All remaining vertices are colored in white.

The resulting graph is denoted by H = (V H , E H ). This construction is accomplished in polynomial-time. The transformation is illustrated by Figure 3. Lemma 3. The graph H obtained by Construction 3 admits a diameter two.

Proof. -Since vertex ∀i x i are neighbors of vertices z ij so in two steps the sets X, Y, V and Z are visited. -Each vertex z ij is neighbor of vertices z kl (going through z il ), V i (by x i ) and V j (by y j ), x k (by z kj ), y k (by z ik ). -From V i -vertex to V j -vertex going through x i if i = j by z ij otherwise. Theorem 5. Balanced Connected Subgraph is N P-complete for three colors even if the diameter is two.

Proof. Let G = (V, E) be a graph and c : V → {1, . . . , p} a p-coloring of its vertices. Let H = (V H , E H ) be the 3-colored graph obtained by applying Construction 3 to G.

BCS with three colors is in N P. Assume that k ∈ N and k ≥ 3. We claim that G has a CCS of size at least k if and only if H has a BCS of size at least 3k. Let S * be the set of the BCS-vertices.

⇒ If G has a CCS denoted S, of size at least k, we obtain a BCS of size at least 3k by taking the X-set (resp. Y -set) and the k vertices in graph G solution of CCS.

⇐ If H has a BCS denoted S of size at least 3k. Let S white be the set of white vertices in the solution S.

All X-vertices and Y -vertices are in S. Each white vertex from V ∪ Z admits two neighbors in X ∪ Y . Since there are only k white-vertices, the white neighborhoods N (S white ) ∩ (X ∪ Y ) are disjoints.

1. Assume that z ij ∈ S. Therefore, the following vertices cannot be in S: none vertex from V i (resp. V j ), none vertex z ik , ∀k = i, (resp. z kj , ∀k = j).

So the graph H cannot be connected. 2. So, the solution S ∩ V i = 0. The X-vertices and Y -vertices admit a degree one.

The subgraph induced by S * -(X ∪ Y ) contains a unique vertex in each V i and remains connected.

4 Bounded-degree graphs

Cubic bipartite

We prove BCS to be N P-complete in cubic bipartite graphs by reduction from Exact Cover by 3-Sets-3 [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF].

Exact Cover by 3-Sets-3 (X3C3)

Input: A universe X = (x 1 , . . . , x 3q ) and a collection C = (c 1 , . . . , c m=3q ) of triples of X such that each element in X belongs to exactly three triples of C. Question: Does G contain D ⊂ V (G) s.t. |D| ≤ k and for all x ∈ V (G), either x ∈ D or x ∈ N (y) for some y ∈ D?

The construction consists in encoding each set by a blue subgraph (a setgadget) and the elements by red vertices. The graph is then completed by making sure there are less red vertices than blue vertices. In the end, the starting X3C3 instance is positive if and only if there is a BCS containing all the red vertices in the constructed graph.

Construction 4 Let (X, C) be an instance of X3C3, C = {c 1 , . . . , c 3q } and X = {x 1 , . . . , x 3q }, with q even. Let G = (V, E) be an instance of BCS obtained from (X, C) as follows (see Figure 4).

-For each x i ∈ X add a vertex x i (an element-vertex); for each c i ∈ C, c i = {x j , x k , x l }:

• add a blue gadget H i on 14 vertices. Denote t 1 i , t 2 i and t 3 i (resp. s 1 i , s 2 i and s 3 i ) the vertices of degree 2 at the top (resp. bottom) of H i ; • add the edges From bottom to top -3q red element-vertices; 3q blue set-gadgets on 14 vertices; 3q red connectivity-gadgets on 6 vertices connected as an accordion; 3q chains of 2 to 3 blue 2-regular bipartite graphs on 6 vertices; and 3q red terminal vertices.

s 1 i x j , s 2 i x k and s 3 i x l ; x1 s 1 1 s 2 1 s 3 1 t 3 1 t 1 1 t 2 1 a 1 1 a 2 1 a 3 1 b 1 1 b 2 1 b 3 1 p1 x2 s 1 2 s 2 2 s 3 2 t 3 2 t 1 2 t 2 2 a 1 2 a 2
• add 6 red vertices partitioned into

A i = {a 1 i , a 2 i , a 3 i } and B i = {b 1 i , b 2 i , b 3 i }. Add the edges a 1 i t 1 i , a 2 i t 2 i , a 3 i t 3 i a 1 i b 2 i , a 3 i b 2 i , a 2 i b 1 i and a 2 i b 3 i ; • add 2 (if i ≤ q
2 ) or 3 (elsewise) 2-regular bipartite graphs on 6 blue vertices connected by matchings. Connect the first of these graphs to B i by a matching. Enforce 3-regularity by adding a red terminal vertex p i connected to the remaining 3 vertices of degree 2; for each i ∈ {1, . . . , 3q -1}, add the edges a 3 i b 1 i+1 and b 3 i a 1 i+1 ; add the edges a 1 1 b 1 1 and a 3 3q b 3 3q .

Observe that the graph G obtained through Construction 4 is bipartite: in Figure 4 bipartiteness is depicted by the shape of the vertices, edges all have one square-shaped endpoint and one circle-shaped endpoint. G is also cubic. It contains 24q red vertices and 93q blue vertices. The construction is done in polynomial time. The following lemma proves that in order to connect all the red terminal vertices (p i ) to the red vertices B i , "a lot" of blue vertices are mandatory. Lemma 4. Let (X, C) be an instance of X3C3, C = {c 1 , . . . , c 3q } and X = {1, . . . , 3q}. Let G = (V, E) be an instance of BCS obtained from (X, C) through Construction 4. Let S be a BCS of G of size 48q. Then S contains at most 7q blue vertices belonging to set-gadgets.

Proof. Since |S| = 48q, S contains all the red vertices. In particular S contains {p 1 , . . . , p 3q }. Since G[S] is connected, each p i must be connected to B i . Denote λ i the number of internal vertices in a shortest path from

p i to B i in G[S].
Observe that λ i is at least 4 if i ≤ q 2 , and at least 6 otherwise. The number of vertices required to connect {p 1 , . . . , p 3q } to the rest of S is:

3q i=1 λ i = q 2 i=1 λ i + 3q i= q 2 +1 λ i (1) 
≥ 4 × q 2 + 6 × 5q 2 (2) ≥ 17q (3) 
Since S contains 24q blue vertices and at least 17q form paths connecting {p 1 , . . . , p 3q } to {B 1 , . . . , B 3q }, the number of vertices belonging to set-gadgets cannot exceed 7q thus the lemma holds.

We now prove the existence and unicity of a solution to an integer linear program that will describe how "expensive" (in the number of blue vertices) it is to connect all the element-vertices to the other red vertices.

Lemma 5. Let q ∈ N and (L) be the following integer linear program:

min 7u 1 + 5u 2 + 3u 3 s.t. 3u 1 + 2u 2 + u 3 = 3q (1)
u 1 , u 2 , u 3 ∈ N u 2 = u 3 = 0 and u 1 = q is the unique optimal solution to (L).

Proof. Let (u 1 , u 2 , u 3 ) be an optimal solution to (L).

-If u 2 > 0, then u 3 = 0 because if u 3 > 0 then (u 1 + 1, u 2 -1, u 3 -1 has better cost which is absurd). Assuming u 3 = 0, the constraint (1) becomes 3u 1 + 2u 2 = 3q which implies u 2 ≥ 3 since u 2 > 0. Now (u 1 + 2, u 2 -3, u 3 ) has lower cost, this is absurd therefore u 2 = 0. -Assume u 3 > 0. With u 2 = 0, the constraint (1) becomes 3u 1 + u 3 = 3q which implies u 3 ≥ 3. Now (u 1 + 1, u 2 , u 3 -3) has lower cost, this is absurd therefore u 2 = 0.

We now have u 2 = u 3 = 0 and necessarily u 1 = q to satisfy (1) and the lemma holds. Theorem 6. Balanced Connected Subgraphis N P-complete in bipartite (sub)cubic graphs.

Proof. Let (X, C) be an instance of X3C3 and G = (V, E) the graph obtained from (X, C) through Construction 4. Let us prove that (X, C) is positive if and only if G contains a BCS of size 48q.

⇐ If G contains a BCS, S, of size 48q we claim that S contains exactly q paths of length 7, spread across q distinct set gadgets. To prove this, we reason on how the set-gadgets are used to connect elements. Denote R ⊂ V the set of red vertices in G, and R ↑ ⊂ R the red vertices that are not element-vertices.

Since |S| = 48q, S contains all the red vertices. In particular, S contains all the element-vertices. For an element x to be connected to R ↑ , S must contain a path from x to R ↑ and that path goes through vertices of set-gadgets. Either the vertices of this path belong to a unique set-gadget, or they belong to several. In case the path spreads across several set-gadgets, it must go through other element-vertices, one of them being connected to R ↑ by a path belonging to a unique set-gadget. Fig. 5: Different types of gadget usage in a BCS. Type-1 gadgets connect 3 element to the top using at least 7 vertices. Type-2 gadgets connect 2 elements to the top using at least 5 vertices. Type-3 gadgets connect 1 element to the top using at least 3 vertices. Now, see Figure 5. We classify the gadgets in three types, depending on how they connect elements in S. We abuse notation by saying that S contains a gadget when we actually mean that S contains some vertices of said gadget.

-Type-1 gadgets connect three elements to R ↑ . At least seven vertices of those gadgets must belong to S. -Type-2 gadgets connect two elements. Here, we have three cases:

• the two elements are connected to R ↑ by a structure reaching one of the top vertices of the gadget (see Figure 5b and Figure 5d); • one of them directly to the top and the other to another element (Figure 5e) • the two elements are connected to another element (Figure 5c) In all cases, S contains at least five vertices per type-2 gadget.

-Type-3 gadgets connect 1 element. Either directly to R ↑ or to another element somehow connected. In both cases, S contains at least 3 vertices per type-2 gadget.

Denote u 1 the number of type-1 gadgets in S, u 2 the number of type-2 gadgets and u 3 the number of type-3 gadgets. By construction, 3u 1 + 2u 2 + u 3 = 3q. In addition, the number of blue vertices in S belonging to set-gadgets is at least 7u 1 + 5u 2 + 3u 3 . (u 1 , u 2 , u 3 ) is thus a solution to the linear program (L) described in Lemma 5 and 7u 1 + 5u 2 + 3u 3 is the objective function of (L). Since (L) has a unique optimal solution costing 7q, (u 1 , u 2 , u 3 ) must be optimal because otherwise 7u 1 + 5u 2 + 3u 3 > 7q which is absurd by Lemma 4. We thus have u 1 = q and u 2 = u 3 = 0 i.e. S contains exactly q type-1 gadgets, and for each of those gadgets, exactly 7 blue vertices belong to S. Since each type-1 gadget connects 3 red vertices, the set of type-1 gadgets in S corresponds to an exact cover in (X, C), therefore if G contains a BCS of size 48q then (X, C) is positive.

⇒ If (X, C) is positive, then there exists q sets in C covering X exactly. Take all the red vertices in G, and for each set in the exact cover pick a path of length 7 in the corresponding set gadget (see Figure 5a). Connect the red accordion to the sinks p i using exactly 17q blue vertices. The structure thus obtained is a BCS of size 48q in G.

BCS belonging to N P, and X3C3 being N P-complete, the discussion above proves the N P-completeness in cubic bipartite graphs. Observe that some edges incident to the terminal vertices p i can be removed, and these deletions do not impact the reduction, therefore the problem remains N P-complete on subcubic graphs, the theorem holds.

Inapproximability bipartite with bounded degree In this section, we show that BCS is not approximable within any constant ratio, even if restricted to bipartite graphs of maximum degree four. We reuse the construction given in [START_REF] Bhore | The balanced connected subgraph problem[END_REF], when the authors prove that finding a BCS containing a specific vertex is N P-complete. The reduction is based on X3C problem which is N P-complete [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF].

Exact Cover by 3-Sets (X3C) Input: A universe X = (x 1 , . . . , x 3q ) and a collection C = (c 1 , . . . , c m ) Question: Is there a subcollection C ⊂ C such that each element of X is contained in exactly one subset of C ?

The idea is to encode an X3C instance into a bipartite graph (the classical graph representation of an X3C instance) plus a "long" path, and connect all the vertices encoding sets to one extremity of the path. The X3C instance is then positive if and only if there is a BCS containing the whole path. We then use this construction in a gap reduction by making copies of the obtained graph. For the sake of clarity, Theorem 7 states inaproximability in bipartite graphs, we then give clues to the reader as to why the result holds for bipartite graphs of maximum degree four.

vertex of a path beginning by y in Construction 5 will be denoted by x i , ∀i ∈ {0, . . . , ρ} in the following.

x 0

x 1 . . . x ρ G0 G1 Gρ Fig. 7: Building an arbitrarily large instance of BCS for bipartite bounded graph from an instance of X3C by considering x j -vertex ∀j. A similar graph is also used for planar bounded (resp. chordal) graph inapproximation result.

This construction is illustrated by Figure 7.

Theorem 7. BCS in bipartite graphs is not approximable within any constant ratio unless P =N P.

Proof. Assume that there exists ρ ∈ R + and a polynomial-time running ρapproximation algorithm A for BCS i.e. for any instance of BCS, if we denote K the size of the solution returned by A and K * the size of an optimal one then we have ρ ≥ K * K . Let p = ρ + 1 the number of G-copies. Now run A on G and denote K the size of solution it returns. Let K * be the size of an optimal solution. Using Lemma 6, we have that either K * > 6q and (X, C) is a yes-instance, or K * = 6q and (X, C) is a no-instance. Indeed, if K * > 6q then this solution contains red vertices taken from at least two copies of G: G i and G j . For the solution to be connected, it must contain x i and x j . Observe that, by construction, a connected subgraph of G containing x contains necessarily more blue vertices than red vertices. Now, using Lemma 6, since x i belongs to the solution, (X, C) is positive. Conversely if K * = 6q, it means that there is no BCS in G reaching the x vertex and therefore (X, C) is a no-instance.

-If K ≤ 6q then K * ≤ 6ρq < 6pq because A is ρ -approximate. In this case we can conclude that (X, C) is a no-instance. -If K > 6q then K * > 6q and (X, C) is a yes-instance.

In both cases, A solves X3C in polynomial time. That is absurd unless P = N P. Moreover, the graph G is bipartite by construction, the theorem thus holds. Construction 5 can be adapted to obtain a bipartite graph of maximum degree four. Instead of an instance of X3C, start with an instance of X3C3. After the transformation, add some dummy sets and elements to ensure that the number of sets is a power of two. Add a full binary tree rooted at y which leaves are the set-vertices. Add pendant red vertices to all the internal nodes of the tree. Under those assumptions, Lemma 6 still hold and so does Theorem 7.

Corollary 2. Balanced Connected Subgraph in bipartite graphs of maximum degree four is not approximable within any constant ratio unless P = N P. Corollary 4. Balanced Connected Subgraph problem cannot be approximated by any constant factor for planar graphs with maximum degree four unless P = N P.

Inapproximability results for chordal graph

In this section, we show that BCS problem cannot be approximated by any constant factor unless P = N P for chordal graph. Recall first that BCS remains N P-complete even for chordal graph [START_REF] Bhore | The balanced connected subgraph problem[END_REF].

Construction 9 Let (X, C) be an instance of X3C, with X = (x 1 , . . . , x 3q ) and C = (C 1 , . . . , C m ). We generate an instance G = (V, E) of BCS from the instance (X, C) of X3C as follows:

-∀x i ∈ X, create a red vertex x i (vertex-element), and ∀c i ∈ C, create a blue vertex c i (vertex-collection). -∀x k ∈ c i , take the edge x k c i , and ∀c i , c j ∈ C, add the edge c i c j .

-Create a blue vertex y and the edges yc i ∀c i ∈ C.

-Add a blue path of size 2q + 1, beginning at t 1 , . . . t 2q-2 , z and z .

-Create a red vertex z and the edge z z .

G contains 5q + m + 2 vertices within 1 + 3q red vertices. Proof. Assume that there is a connected balanced subgraph H of size 6q + 2 in G. Since H is balanced, connected and has 6q + 2 vertices, it must contain the vertex z, the path from y to x, l blue vertex-collections and all the 3q red vertex-elements. Since l = q, H contains exactly q vertex-collections and all the vertex-elements, we can trivially obtain a positive solution for (X, C).

On the other hand, assume that instance (X, C) admits a positive solution S. The subgraph H composed of the path from z to t 1 , all the vertex-elements and the vertex-collections corresponding to the collections in S is a BCS of G of size 6q + 2.

Recall that the following Theorem was proposed first by [START_REF] Bhore | The balanced connected subgraph problem[END_REF] (see Lemma 3 of Section 2.3.). The construction of an instance BCS will be used in Construction 9. Theorem 9. There exists a feasible solution containing z for BCS in chordal graph iff X3C admits a positive solution and this solution is equal to 6q.

Proof. Consider Construction 9 in which the vertices z and z are omitted. Assume that z is in a solution S of size strictly less than 6q. The size of S is 6q -2l with l ≥ 1. So there are 3q -l blue (resp. red) vertices in S. Since the path between z and t 1 must be in the solution, there are at most (q -l -1) vertices among vertices-collection in S. Therefore at most 3(q -l-1) red-vertices is covered by the previous vertices, impossible.

Construction 10 Let (X, C) be a instance of X3C and G = (V, E) the graph obtained by Construction 9 in which vertices z and z are omitted. We generated an instance G of BCS with ρ copies of G ((G 0 , . . . , G ρ )) and a path between the z-vertex of all copies. if there exists positive solution on a graph G i , for a fixed i, the value of a solution is 6q with z in the solution, and the value on graph G is obvious 6qρ. whereas in the negative case the value is at most or equal 6q but the vertex z cannot be in this solution, and the value of the solution on graph G is also 6q.

Thus the gap between yes/no-instance is ρ, which proves the inapproximability of BCS even if the input graph is a chordal graph.

Conclusion

In this article we pursued the classification of the BCS problem related to graph classes.

A further interesting question leads to the study of parameterized complexity for these problems. The parameter could be the difference between the number of red vertices and blue vertices. In this paper, we improved the complexity results for BCS. We gave a proof of N P-completeness in bipartite cubic graphs, graphs of diameter three and bipartite graphs of diameter four. Our results nicely complement the ones of [START_REF] Bhore | The balanced connected subgraph problem[END_REF]. Indeed, they proved BCS to be polynomially solvable in graphs of diameter two and in graphs of maximum degree two.

Despite remaining computationally difficult in restrictive settings, BCS parameterized by the size of the solution belongs to FPT . Indeed, as we stated in the introduction, BCS can be Turing-reduced to the graph motif problem. Since this problem parameterized by the size of the motif is FPT , it implies that BCS parameterized by the size of the solution is FPT as well. On the negative side, our results in graphs of bounded degree and bounded diameter imply that BCS parameterized by the diameter or the maximum degree of the input graph is in fact not FPT .
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 21 Fig. 1: Building an instance of BCS of diameter 4 from a graph of diameter 2.

  Graph obtained after applying Construction 2.
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 2 Fig. 2: Applying Construction 2 to a 3-colored graph. The clique C 1 corresponds the green vertices c, d and e, the clique C 2 to the pink vertices a and b, and the clique C 3 to the orange vertex f . Vertices x 32 and x 2 3 originate from the absence of a yellow-pink edge and ensure r 2 and r 3 are connected by a path of length three.

  Graph obtained after applying Construction 3.
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 3 Fig.3: Encoding an instance of CCS into an instance of BCS with 3 colors. The resulting graph admits a diamater two.
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 4 Fig.4: Encoding an instance of X3C3 into an instance of BCS (bipartite cubic). From bottom to top -3q red element-vertices; 3q blue set-gadgets on 14 vertices; 3q red connectivity-gadgets on 6 vertices connected as an accordion; 3q chains of 2 to 3 blue 2-regular bipartite graphs on 6 vertices; and 3q red terminal vertices.
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 108 Fig. 10: An instance of BCS obtained by Construction 9 from an instance (X, C) of X3C.
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 11 Fig. 11: Building an arbitrarily large instance of BCS for chordal graph from an instance of X3C.

Table 1 :

 1 Complexity and inapproximability results discussed in this paper for BCS according to structural parameter and/or graph topology.

	Topology Or Parameter	Complexity	Approximation results
	Block graph	P -O(n 5 ) -Theo. 1	-
	D = 3	N PC Theo. 4	
	Bipartite D = 4	N PC Theo.2	
	Planar ∆ ≤ 4	N PC [3]	No-APX Theo. 8
	Bipartite ∆ ≤ 4	N PC Theo. 7	No-APX Cor.2
	Bipartite ∆ ≤ 3	N PC Theo. 6	
	Chordal	N PC [3] and Theo. 9	No-APX Cor. 5

(a) Type-1 (b) Type-2 (c) Type-2 (d) Type-2 (e) Type-2 (f) Type-3 (g) Type-3
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Fig. 6: Construction of an instance of BCS from an instance of X3C. Here C = ({1, 3, 5}, {2, 3, 6}, {2, 4, 9}, {6, 7, 8}), X = {1, . . . , 9}.

Construction 5 Let (X, C) be an instance of X3C, X = (x 1 , . . . , x 3q ), C = (c 1 , . . . , c m ). We build G = (V, E) an instance of BCS as follows:

for all x i ∈ X, add a red vertex x i to G (element-vertex); for all c i ∈ C, add a blue vertex c i to G (set-vertex), and for all x k ∈ c i , add the edge x k c i to G; add a blue vertex y to G along with the edges yc i for all c i ∈ C; add a blue path of length 2q starting at y and call x the last vertex of the path.

G contains 5q + m vertices and 4m + 2q -1 edges.

The transformation is done in polynomial time, and illustrated by Figure 6. Lemma 6 uses the construction above to reduce X3C to BCS with a compulsory vertex (à la [START_REF] Bhore | The balanced connected subgraph problem[END_REF]). Lemma 6. Let (X, C) be an instance of X3C and G = (V, E) the graph obtained through Construction 5. There is a BCS containing x (of size 6q) in G if and only if (X, C) is a positive instance.

Proof. ⇒ Let X be a BCS containing x. x being balanced and connected, it contains the path from x to y, then some blue set-vertices and finally some red element-vertices. Let l be the number of set-vertices contained in X. X contains 2q + l blue-vertices. For it to be balanced it has to contain 2q + l red vertices and therefore at least 2q+l 3 set-vertices (because sets contain three elements). We thus have l ≥ 2q+l 3 giving l ≥ q. On the other hand, X contains 2q + l red vertices but there are only 3q of them, we thus have l ≤ q. In the end, l = q and X contains exactly q set-vertices and all the elementvertices, the corresponding sets thus form a solution to (X, C). ⇐ Trivial.

Construction 6 Let (X, C) be an instance of X3C and G = (V, E) the graph obtained from (X, C) through Construction 5. We build an instance G of BCS using ρ copies of G, (G 0 , . . . , G ρ ), and adding a path connecting all the copies by their x-vertex. Each x-vertex for each copy of G i , ∀i ∈ {0, . . . , ρ}, i.e. the last Inapproximability for planar graph with bounded degree In this part we consider the BCS problem in planar graph with bounded degree. We show that there is no hope to find an efficient approximation algorithm with a constant ratio. The proof is based on the Steiner Tree problem [START_REF] Karp | Reducibility among combinatorial problems[END_REF].

Steiner Tree (ST)

ST problem remains N P-complete even for subcubic planar graph [START_REF] Borradaile | An o(n log n) approximation scheme for steiner tree in planar graphs[END_REF].

We generate G = (V, E) an instance of BCS as follows:

-Let G be a copy of G in which all vertices are blue.

-For each blue-vertex x i ∈ X, add a red vertex x i and the edge x i x i .

-For each vertex x i , take a path of n red vertices starting at y i 1 ending by y i n .

-Create a path of red vertex of size k + 1 -m) beginning at z 1 and ending at z (k+1)-m . -Add an edge y 1 n z 1 . -Add a path of blue vertex of size mn beginning at w 1 and ending at w mn .

-Add an edge y m n w 1 . G contains 2mn + n + k + 1 vertices.

Assume that w mn lies on the boundary face of a plane embedding. Lemma 7 uses Construction 7 above (illustrated by Figure 8) to reduce an instance of ST to an instance of BCS with an obligatory vertex. Lemma 7. Let (G st , X, k) be a instance of ST and G = (V, E) the graph obtained by Construction 7. There is a connected balanced subgraph H containing w mn of size 2((k + 1) + mn) if and only if (G st , X, k) is a yes-instance.

Proof. Assume that there is a connected balanced subgraph H, of size 2((k+1)+ mn) containing w mn . Since H is balanced, connected and has 2((k + 1) + mn) vertices including w mn , it must contain all the path from w 1 to w mn , all the red vertices from G, the m vertices of X and l vertices from V \X. Thus H contains exactly l = ((k + 1) -m) vertices from V \X, which corresponds to a positive solution for (G st , X, k).

Assume that S is yes-instance of (G st , X, k). The subgraph H is composed of the path from w 1 to w mn , all the red vertices and the vertices corresponding to S. It is connected, balanced and has a size of 2((k + 1) + mn).

Construction 8 Let (G st , X, k) be a instance of ST. We consider the graph G, obtained by ρ + 1 copies of G (the graph G is the graph obtained using Construction 7) and the path between the w mn -vertex of all copies. As the same as previously, each w mn -vertex for each copy of G i , ∀i ∈ {0, . . . , ρ}, will be denoted by w i mn , ∀i ∈ {0, . . . , ρ} in the following. This construction is illustrated by Figure 9, by considering w j mn -vertex. Theorem 8. Balanced Connected Subgraph problem cannot be approximated by any constant factor for planar graphs with an obligatory vertex unless P = N P. Proof. Assume that there is ρ ∈ R + and an ρ-approximate algorithm A in polynomial-time for the BCS in planar graphs. Let p = ρ + 1. Let K be the size of the solution obtained by A on G and K * the size of the optimal solution. Thanks to Lemma 7 we have either K * > 2((k + 1) + mn) and (G st , X, k) is a yes-instance, or K * ≤ 2((k + 1) + mn) and (G st , X, k) is a no-instance.

Thus if K * > 2p((k + 1) + mn), like K ≥ K * ρ , then K > 2((k + 1) + mn). In contrast if K * ≤ 2((k + 1) + mn) then K ≤ 2((k + 1) + mn).

So, using the ρ-approximation algorithm A we can distinguish between yesand no-instances, thus solving the ST problem.

The prescription vertex condition for w mn can be replaced by a blue vertex u 1 , a red vertex u 2 and the edges w mn u 1 , u 1 u 2 . Thus the search for a balanced graph of size 2(k + 1 + mn) containing w mn becomes a search for a balanced graph of size 2(k + 1 + mn + 1). We now have the following corollary. Corollary 3. Balanced Connected Subgraph problem cannot be approximated by any constant factor for planar graphs unless P = N P.

The ST problem is still N P-complete for subcubic planar graphs [START_REF] Borradaile | An o(n log n) approximation scheme for steiner tree in planar graphs[END_REF], so we can state the following corollary.
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